

Sensorless 120-degree conducting control for permanent magnetic synchronous motor (Implementation)

RX13T with "Evaluation System for BLDC Motor"

Summary

This application note aims at explaining the sample programs to drive a permanent magnetic synchronous motor in the 120-degree conducting method using the RX13T microcontroller and how to use the motor control development support tool, 'Renesas Motor Workbench'.

These sample programs are only to be used as reference and Renesas Electronics Corporation does not guarantee the operations. Please use them after carrying out a thorough evaluation in a suitable environment.

Operation checking device

Operations of the sample programs have been checked by using the following device.

• RX13T (R5F513T5ADFL)

Target sample programs

The target sample programs of this application note are as follows.

- RX13T_MRSSK2_SPM_LESS_120_CSP_RV100 (IDE: CS+)
- RX13T_MRSSK2_SPM_LESS_120_E2S_RV100 (IDE: e² studio)
- RX13T Sensorless 120-degree conducting control sample program for Evaluation System for BLDC Motor and RX13T CPU Card

Reference

- RX13T Group User's Manual: Hardware (R01UH0822)
- Application note: '120-degree conducting control of permanent magnetic synchronous motor: algorithm' (R01AN2657)
- Renesas Motor Workbench User's Manual (R21UZ0004)
- Evaluation System for BLDC Motor User's Manual (R12UZ0062)
- RX13T CPU CARD User's Manual (R12UZ0051)

Contents

1. Overview	3
1.1 Development environment	3
2. System overview	
2.1 Hardware configuration	
2.2 Hardware specifications	
2.2.1 User interface	
2.2.2 Peripheral functions	
2.3 Software structure	
2.3.1 Software file structure	
2.3.2 Module configuration	
2.4 Software specifications	9
3. Descriptions of the control program	10
3.1 Contents of control	
3.1.1 Motor start/stop	
3.1.2 A/D Converter	
3.1.3 Speed control	12
3.1.4 Voltage control by PWM	13
3.1.5 State transition	15
3.1.6 Start-up method in sensorless control	16
3.1.7 System protection function	17
3.2 Function specifications of 120-degree conducting control software	
3.3 List of variables of 120-degree conducting control software	27
3.4 List of sensorless 120-degree conducting control software structures	
3.5 Macro definitions of 120-degree conducting control software	
3.6 Control flows (flow charts)	
3.6.1 Main process	
3.6.2 Carrier cycle interrupt handling	41
3.6.3 1 ms interrupt handling	
3.6.4 Overcurrent interrupt handling	
4. Motor Control Development Support Tool, 'Renesas Motor Workbench'	13
4.1 Overview	
4.1 Overview	
4.2 Elst of variables for Analyzer function	
	40
Website and Support	46
Revision History	

1. Overview

This application note explains how to implement the 120-degree conducting control sample programs of permanent magnetic synchronous motor (PMSM) *1 using the RX13T microcontroller and how to use the motor control development support tool, 'Renesas Motor Workbench'. Note that these sample programs are based on the algorithm described in the application note '120-degree conducting control of permanent magnetic synchronous motor: algorithm'.

Note: 1. PMSM is also known as brushless DC motor (BLDC).

1.1 Development environment

Table 1-1 and Table 1-2 show development environment for the sample programs explained in this application note.

Table 1-1Development Environment of the Sample Programs (H/W)

Microcontroller	Evaluation board	Motor
RX13T	48V 5A Inverter Board for BLDC Motor and RX13T CPU	TG-55L*2
(R5F513T5ADFL)	Card*1	

Table 1-2Development Environment of the Sample Programs (S/W)

CS+ version e ² studio version		Toolchain version
V8.04.00	2020-10	CC-RX: V3.02.00

For purchase and technical support contact, Sales representatives and dealers of Renesas Electronics Corporation.

- Notes: 1. 48V 5A Inverter Board for BLDC Motor (RTK0EM0000B10020BJ) and RX13T CPU Card (RTK0EMXA10C00000BJ) are products of Renesas Electronics Corporation. 48V 5A Inverter Board for BLDC Motor is included in Evaluation System for BLDC Motor (RTK0EMX270S00020BJ).
 - TG-55L is a product of TSUKASA ELECTRIC. TSUKASA ELECTRIC. (<u>http://www.tsukasa-d.co.jp/</u>)

2. System overview

Overview of this system is explained below.

2.1 Hardware configuration

The hardware configuration is shown below.

Figure 2-1 Hardware Configuration Diagram

2.2 Hardware specifications

2.2.1 User interface

Table 2-1 is a list of user interfaces for this system.

Table 2-1 User Interface

Item	Interface component	Function
Rotation speed	Variable resistance (VR1)	Rotation speed command value input (analog values)
START/STOP	Toggle switch (SW1)	Motor rotation start/stop command
ERROR RESET	Push switch (SW2)	Command of recovery from error status
LED1	Orange LED	At the time of Motor rotation: ON
		At the time of stop: OFF
LED2	Orange LED	At the time of error detection: ON
		At the time of normal operation: OFF
LED3	Orange LED	Not used
RESET	Push switch (RESET1)	System reset

Table 2-2 is a list of port interfaces in RX13T microcontroller for this system.

Table 2-2 Port Interface

R5F513T5ADFL Port name	Function		
P46 / AN006	Inverter bus voltage measurement		
P47 / AN007	For inputting rotation speed command values (analog values)		
PB5	START/STOP toggle switch		
PB4	ERROR RESET toggle switch		
PD6	LED1 ON/OFF control		
PD4	LED2 ON/OFF control		
PD3	LED3 ON/OFF control (not used)		
P40 / AN000	U phase current measurement		
P41 / AN001	V phase current measurement		
P42 / AN002	W phase current measurement		
P43 / AN003	U phase voltage measurement		
P44 / AN004	V phase voltage measurement		
P45 / AN005	W phase voltage measurement		
P71 / MTIOC3B	PORT output / PWM output (Up) / Low Active		
P72 / MTIOC4A	PORT output / PWM output (Vp) / Low Active		
P73 / MTIOC4B	PORT output / PWM output (W _p) / Low Active		
P74 / MTIOC3D	PORT output / PWM output (Un) / High Active		
P75 / MTIOC4C	PORT output / PWM output (V _n) / High Active		
P76 / MTIOC4D	PORT output / PWM output (Wn) / High Active		
PE2 / POE10#	PWM emergency stop input at the time of overcurrent detection		

Table 2-3 is a list of peripheral functions used in this system.

, , , , , , , , , , , , , , , , , , ,	orts executing PWM to high impedance hen an overcurrent is d.

(1) 12-bit A/D converter

The rotation speed command value input, U phase voltage (V_u), V phase voltage (V_v), W phase voltage (V_w), and inverter bus voltage (V_{dc}) are measured by using the '12-bit A/D converter'.

The operation modes must be set to the 'Single scan mode' (use software trigger).

U phase current (I_u), V phase current (I_v), W phase current (I_w) are measured by using the sample-and-hold function (use hardware trigger).

(2) Compare match timer (CMT)

- (a) One-ms interval timer The channel 0 of the compare match timer (CMT) is used as 1 ms interval timer.
- (b) Free-running timer for measuring speed The channel 1 of the compare match timer is used as free-running timer for speed measurement. Note that interrupts are not used.

(3) Multi-function timer pulse unit 3 (MTU3)

The operation mode varies depending on channels. On the channels 3 and 4, output with dead time (p-side is low active, n-side is high active) is performed by using the complementary PWM mode.

(4) Port output enable (POE3)

The ports executing PWM output are set to high impedance state when an overcurrent is detected (when a falling edge of the POE10# port is detected).

2.3 Software structure

2.3.1 Software file structure

The folder and file configurations of the sample programs are given below.

RX13T MRSSK2 SPM	Inc	main.h	Main function, user interface control header
LESS_120_CSP_V100		mtr common.h	Common definition header
		mtr ctrl mrssk.h	Board dependent processing part header
RX13T_MRSSK2_SPM_		mtr_ctrl_RX13T.h	RX13T dependent processing part header
LESS_120_E2S_V100		mtr_spm_less_120.h	Sensorless 120-degree conducting control dependent part header
		control_parameter.h	Control characteristic dependent processing part header
		motor_parameter.h	Motor characteristic dependent processing part header
		mtr_ctrl_RX13T_mrssk .h	RX13T and board dependent processing part header
		mtr_feedback.h	Feedback control processing part header
		mtr_filter.h	Filters processing part header
		mtr_gmc.h	General motor control function part header
		mtr_driver_access.h	Driver access function on part header
	ics src	ICS2_RX13T.lib	Library for GUI
		ICS2_RX13T.h	Header for GUI
		main.c	Main function, user interface control
		mtr_ctrl_mrssk.c	Board dependent processing part
		mtr_ctrl_RX13T.c	RX13T dependent processing part
		mtr_interrupt.c	Interrupt handler
		mtr_spm_less_120.c	Sensorless 120-degree conducting control dependent part
		mtr_ctrl_RX13T_mrssk .c	RX13T and board dependent processing part
		mtr_feedback.c	Feedback control processing
		mtr_filter.c	Filters processing
		mtr_gmc.c	General motor control function
		mtr_driver_access.c	Driver access function

Table 2-4 Folder and File Configuration of the Sample Program

2.3.2 Module configuration

Figure 2-2 and Table 2-5 show module configuration of the sample programs.

Figure 2-2 Module Configuration of the Sample Programs

Table 2-5	Module Configuration of the Sample Programs
-----------	---

Layers	File name	
Application layer	main.c	
Motor control layer	mtr_spm_less_120.c	
	mtr_feedback.c	
	mtr_gmc.c	
	mtr_filter.c	
	mtr_driver_access.c	
	mtr_interrupt.c *1	
H/W control layer	mtr_ctrl_RX13T_mrssk.c	
	mtr_ctrl_RX13T.c	
	mtr_ctrl_mrssk.c	
	mtr_interrupt.c *1	

Note: 1. "mtr_interrupt.c" is belong to the motor control layer and H/W control layer.

2.4 Software specifications

Table 2-6 shows the basic specifications of target software described in this application note. For details of 120-degree conducting control, refer to the application note '120-degree conducting control of permanent magnetic synchronous motor: algorithm'.

Item	Content		
Control method	120-degree conducting method (chopping at the first 60 degrees)		
Motor rotation start/stop	Determined by the level of SW1(PB5)		
	"OFF": rotation stop "ON": rotation start or input from GUI *1		
Position detection of rotor magnetic pole	Position detection by inductive voltage (by 60 degrees)		
Input voltage	DC24 [V]		
Carrier frequency (PWM)	20 [kHz]		
Control cycle	• Zero-crossing determination is performed from inductive voltage, for each carrier cycle		
	• PWM duty settings and conduction pattern are determined when switching patterns		
	Speed PI control: every 2 ms		
Rotation speed control	Both CW and CCW: 1000 [rpm] to 2650 [rpm]		
range			
SW routine for protection	 Disables the motor control signal output (six outputs), under any of the following conditions. 		
	1. Current of each phase exceeds 0.89 [A] (monitored every 50 [µs])		
	2. Inverter bus voltage exceeds 28 V (monitored per 50 [µs])		
	3. Inverter bus voltage is less than 14 V (monitored per 50 [µs])		
	Rotation speed exceeds 3000 rpm (monitored per 50 [µs])		
	5. At the time of sensorless drive, zero-crossing is not detected for 50 [ms].		
	6. Fault detection of virtual hall sensor pattern (position information)		
	• The ports executing PWM output are set to high impedance state when an overcurrent		
	is detected (when a falling edge of the POE10# port is detected).		

Table 2-6 Basic Specifications of Software

Note: 1. For more details, refer to 4. Motor Control Development Support Tool, 'Renesas Motor Workbench'.

3. Descriptions of the control program

Following are some details regarding the SW implementation of Sensorless 120-degree conduction control.

3.1 Contents of control

3.1.1 Motor start/stop

Start and stop of the motor are controlled by two methods: input from GUI or SW1.

A general-purpose port is assigned to SW1. The port is read within the main loop. When the port is at a "ON" level, it is determined that the start switch is being pressed. Conversely, when the level is switched to "OFF", the program determines that the motor should be stopped.

Also, an analog input port is assigned to VR1. The input is A/D converted within the main loop to generate a rotation speed command value. When the command value is less than 1000 [rpm], the program determines that the motor should be stopped.

3.1.2 A/D Converter

(1) Motor rotation speed command value

The motor rotation speed command value can be set by GUI input or potentiometer [VR1 an analog input]. The A/D converts VR1 value and use as rotation speed command value, as shown below.

 Table 3-1
 Conversion Ratio of the Rotation Speed Command Value

Item	Conversion	Channel			
Rotation speed	CW	CW 0 [rpm] to 2700 [rpm]: 07FFH to 0000H			
command value	CCW	0 [rpm] to 2700 [rpm]: 0800H to 0FFFH			

(2) Inverter bus voltage

It is used for modulation factor calculation and over voltage detection. (When an abnormality is detected, PWM is stopped.)

Table 3-2 Inverter Bus Voltage Conversion Ratio

Item	Conversion ratio (Inverter bus voltage: A/D conversion value)	Channel
Inverter bus voltage	0 [V] to 111 [V]: 0000H to 0FFFH	AN006

(3) U phase, V phase, and W phase voltage

The U, V and W phase voltages are measured as shown in Table 3-3 and used to determine zero-crossing.

Table 3-3 Conversion Ratio of U, V, and W Phase Voltage

	Conversion ratio	
ltem	(U, V, and W phase voltage: A/D conversion value)	Channel
U, V, W phase voltage	0 [V] to 111 [V]: 0000H to 0FFFH	AN003, AN004, AN005

(4) U, V, W phase current

The U, V and W phase currents are measured as shown in Table 3-4 and used for checking the current limits in the software.

	Conversion ratio	
Item	(U, V, and W phase current: A/D conversion value)	Channel
U, V, W phase current	-12.5 [A] to 12.5 [A]: 0000H to 0FFFH *1	lu: AN000
		lv: AN001
		lw: AN002

Note: 1. For more details of A/D conversion characteristics, refer to RX13T Group User's Manual: Hardware.

3.1.3 Speed control

In this system, the motor rotation speed is calculated from a difference of the current timer value and the timer value 2π [rad] before. The timer values are obtained when patterns are switched after zero-crossing detection, while having the timer of channel 1 of compare match timer performed free running.

Figure 3-1Motor Rotation Speed Calculation Method

The target sample software [explained in this application note] uses PI control for speed control. A voltage command value is calculated by the following formula of speed PI control.

$$v^* = (K_{P\omega} + \frac{K_{I\omega}}{s})(\omega^* - \omega)$$

v*: Voltage command value, ω^* : Speed command value, ω : Rotation speed

 $K_{P\omega}$: Speed PI proportional gain, $K_{I\omega}$: Speed PI integral gain, s: Laplace operator

For more details of PI control, please refer to specialized books.

3.1.4 Voltage control by PWM

PWM control is used for controlling output voltage. The PWM control is a control method that continuously adjusts the average voltage by varying the duty of pulse, as shown in Figure 3-2.

Figure 3-2 PWM Control

Here, modulation factor m is defined as follows.

This modulation factor is reflected in the setting value of the register that determines the PWM duty.

In the target software of this application note, first-60-degree chopping is used to control the output voltage and speed. Figure 3-3 shows an example of motor control signal output waveforms at Non-complimentary first-60-degree Chopping. Figure 3-4 shows an example of motor control signal output waveforms at Complimentary first-60-degree Chopping.

Figure 3-3 Non-complimentary first-60-degree Chopping

Figure 3-4 Complimentary first-60-degree Chopping

3.1.5 State transition

Figure 3-5 show state transition diagrams of 120-degree conducting control software.

Figure 3-5 State Transition Diagram of Sensorless 120-degree Conducting Control Software

3.1.6 Start-up method in sensorless control

Sensorless 120-degree conducting control, estimates the position of the magnetic poles at every 60 degrees from the induced voltage [back EMF]. Change in the induced voltage is caused by the change in the magnetic flux of the permanent magnet (rotor).

Therefore, as a start-up method, there is a method to lead the synchronous speed by generating a rotating magnetic field by forcibly switching conduction patterns regardless of position of the permanent magnet.

Figure 3-6, shows the start-up method in the sample software. In "MTR_MODE_BOOT", it is draw in of the magnet position. It prevents overcurrent of start-up.

Figure 3-6 Start-up Method (Example)

3.1.7 System protection function

This system has the following six types of error status and enables emergency stop functions in case of occurrence of respective error. Refer to Table 3-5 for settings.

• Overcurrent error

High impedance output is made to the PWM output port in response to an emergency stop signal (over current detection) from the hardware. In addition, U, V, and W phase currents are monitored in over current monitoring cycle. When an over current (when the current exceeds the over current limit value) is detected, the CPU executes emergency stop (software detection).

• Overvoltage error

The inverter bus voltage is monitored at the overvoltage monitoring cycle. When an over voltage is detected (when the voltage exceeds the limit value), CPU performs an emergency stop. The threshold value of the overvoltage is set in consideration of the error of resistance value of the detection circuit.

• Undervoltage error

The inverter bus voltage is monitored at the under-voltage monitoring cycle. When an under voltage is detected (when the voltage lowers the limit value), CPU performs an emergency stop. The threshold value of the overvoltage is set in consideration of the error of resistance value of the detection circuit.

• Rotation speed abnormality error

The rotation speed is monitored at the rotation speed monitoring cycle. When the speed exceeds the limit value, CPU performs an emergency stop.

- Timeout error of zero-cross detection When no pattern switching by detecting a timeout zero-crossing occurs, CPU performs an emergency stop.
- Virtual hall sensor pattern (estimated from back EMF) error
 When an error is detected in virtual hall sensor patterns (estimated from back EMF) generated from each of U, V, and W phase voltage, CPU performs an emergency stop.

 Table 3-5
 Setting Value of Each System Protection Function

Overcurrent error	Over current limit value [A]	0.89
	Monitoring cycle [µs]	50
Overvoltage error	Overvoltage limit value [V]	28
	Monitoring cycle [us]	50
Undervoltage error	Under voltage limit value [V]	14
	Monitoring cycle [us]	50
Rotation speed abnormality error	Speed limit value [rpm]	3000
	Monitoring cycle [us]	50
Timeout error of zero-cross detection	Timeout value [ms]	50

3.2 Function specifications of 120-degree conducting control software

Multiple control functions are used in this control program.

Table 3-6 List of Functions "main.c"

File name	Function name	Process overview
main.c	main	Hardware initialization function call
	Input: None	User interface initialization function call
	Output: None	Initialization function call of the variable used in the main process
		Status transition and event execution function call
		Main process
		\Rightarrow user interface call
		\Rightarrow Watchdog timer clear function call
	board_ui	Board user interface use
	Input: None	Motor status change
	Output: None	Determination of rotation speed command value
	ics_ui	GUI user interface use
	Input: None	Motor status change
	Output: None	Determination of rotation speed command value
	software_init	Initialization of variables used in the main process
	Input: None	
	Output: None	

Table 3-7 List of Functions "mtr_ctrl_RX13T.c"

File name	Function name	Process overview
mtr_ctrl_RX13T.c	R_MTR_InitHardware	Initialization of the clock and peripheral functions
	Input: None	
	Output: None	
	mtr_init_clock	Initialization of clock
	Input: None	
	Output: None	
	init_wdt	Initialization of the watchdog timer (WDT)
	Input: None	
	Output: None	
	mtr_init_cmt	Initialization of compare match timer (CMT)
	Input: None	
	Output: None	
	mtr_init_poe3	Initialization of port output enable 3 (POE3)
	Input: None	
	Output: None	
	clear_wdt	Clearing the watchdog timer (WDT)
	Input: None	
	Output: None	
	mtr_clear_oc_flag	Clearing the high impedance state
	Input: None	
	Output: None	

File name	Function name	Process overview
mtr_ctrl_mrssk.c	R_MTR_ChargeCapacitor	Wait for Stability of the bus voltage
	Input: None	
	Output: None	
	get_vr1	VR1 status acquisition
	Input: None	
	Output: (uint16) ad_data / A/D conversion result	
	get_sw1	SW1 status acquisition
	Input: None	
	Output: (uint8) tmp_port / SW1 level	
	get_sw2	SW2 status acquisition
	Input: None	
	Output: (uint8) tmp_port / SW2 level	
	led1_on	Turning LED1 ON
	Input: None	
	Output: None	
	led2_on	Turning LED2 ON
	Input: None	
	Output: None	
	led3_on	Turning LED3 ON
	Input: None	
	Output: None	
	led1_off	Turning LED1 OFF
	Input: None	
	Output: None	
	led2_off	Turning LED2 OFF
	Input: None	
	Output: None	
	led3_off	Turning LED3 OFF
	Input: None	
	Output: None	

Table 3-8 List of Functions "mtr_ctrl_mrssk.c"

Table 3-9 List of Functions "mtr_interrupt.c"

File name	Function name	Process overview
mtr_interrupt.c	mtr_over_current_interrupt	Overcurrent detection process (Hard detection)
	Input: None	Event processing selection function call
	Output: None	(Generation error event)
		Changing the motor status (to error mode)
		High impedance state clearing function call
		(to PWM output disable process)
	mtr_carrier_interrupt	Calling every 50 [µs]
	Input: None	Current and voltage offset adjustment
	Output: None	Error check function call
		Start control
		Detection of zero-cross function call
		Velocity PI control
		Calculate velocity function call
		Set GUI variables
	mtr_1ms_interrupt	Calling every 1 [ms]
	Input: None	Set reference velocity
	Output: None	Set reference voltage

File name	Function name	Process overview
mtr_spm_less_120.c	R_MTR_InitSequence	Initialization of the sequence
	Input: (uint8) u1_id / Motor ID	process
	Output: None	
	R_MTR_ExecEvent	Changing the status
	Input: (uint8) u1_event / occurred event	Calling an appropriate process
	(uint8) u1_id / Motor ID	execution function for the
	Output: None	occurred event
	mtr act active	PWM output enable
	Input: (uint8) u1_state / motor status	
	(uint8) u1_id / Motor ID	
	Output: (uint8) u1_state / motor status	
	mtr_act_inactive	PWM output disable
	Input: (uint8) u1_state / motor status	
	(uint8) u1_id / Motor ID	
	Output: (uint8) u1_state / motor status	
	mtr_act_none	No processing is performed.
	Input: (uint8) u1_state / motor status	
	(uint8) u1_id / Motor ID	
	Output: (uint8) u1_state / motor status	
	mtr_act_reset	Global variable initialization
	Input: (uint8) u1_state / motor status	
	(uint8) u1_id / Motor ID	
	Output: (uint8) u1_state / motor status	
	mtr_act_error	Motor control stop function call
	Input: (uint8) u1_state / motor status	
	(uint8) u1_id / Motor ID	
	Output: (uint8) u1_state / motor status	
	mtr_ol_signal_set	Set conduction pattern when
	Input: (MTR ST LESS 120*) st m / structure for Motor	openloop mode
	Output: None	
	mtr pattern set	Set conduction pattern
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	
	(uint8) u1_signal /conduction pattern	
	Output: None	
	mtr_speed_calc	Speed measurement calculation
	Input: (MTR ST LESS 120*) st m / structure for Motor	processing
	Output: None	
	mtr_start_init	Initializing only the variables
	Input: (MTR ST LESS 120*) st m / structure for Motor	required for motor startup
	Output: None	
	mtr_set_variables	Setting motor variables for contro
	Input: None	layer
	Output: None	,
	R_MTR_lcsInput	Setting GUI input value for the
	Input: (MTR_ICS_INPUT*) ics_input / structure for GUI	buffer
	Output: None	
	mtr_watch_variables	Setting GUI output value for the
	Input: None	buffer
	Output: None	

Table 3-10List of Functions "mtr_spm_less_120.c" (1/2)

File name	Function overview	Processing overview
mtr_spm_less_120.c	mtr_error_check	Error monitoring
	Input: None	
	Output: None	
	mtr_wait_motorstop	Check motor stop
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	
	Output: None	
	mtr_set_voltage_ref	Set reference voltage
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	
	Output: None	
	mtr_set_speed_ref	Set reference speed
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	
	Output: None	
	mtr_start_openloop	Start open-loop control
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	
	Output: None	
	mtr_set_angle_shift	Calculate phase shift count
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	
	Output: None	
	mtr_check_pattern	Check zero-cross
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	
	Output: None	
	mtr_shift_angle	Phase shift
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	 Set conduction pattern
	Output: None	function-call
		To Reflect the setting of
		conduction pattern PWM
	mtr_pattern_first60	Set voltage pattern first 60-degree
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	PWM
	Output: None	
	mtr_pattern_first60_comp	Set voltage pattern
	Input: (MTR_ST_LESS_120*) st_m / structure for Motor	complementary first 60-degree
	Output: None	PWM

Table 3-10 List of Functions "mtr_spm_less_120.c" (2/2)

File name	Function name	Process overview
mtr_ctrl_RX13T_mrssk.c	mtr_init_mtu	Initial setting of MTU3
	Input: None	
	Output: None	
	mtr_init_ad_converter	Initial setting of the A/D
	Input: None	converter
	Output: None	
	init_ui	Initialization of user
	Input: None	interface
	Output: None	
	mtr_ctrl_start	Motor startup processing
	Input: (uint8) u1_id / Motor ID	
	Output: None	
	mtr_ctrl_stop	Motor stop processing
	Input: (uint8) u1_id / Motor ID	
	Output: None	
	mtr_get_vdc_adc	A/D conversion of
	Input: (uint8) u1_id / Motor ID	inverter bus voltage
	Output: (float32*) f4_vdc_ad / Vdc A/D conversion value	
	mtr_get_vr1_adc	Get VR1 A/D conversion
	Input: None	value
	Output: (unit16) u2_temp / VR1 A/D conversion value	
	mtr_get_v_uvw_adc	Ger u/v/w phase voltage
	Input: (float32*) vu_ad / U phase A/D conversion value	
	(float32*) vv_ad / V phase A/D conversion value	
	(float32*) vw_ad / W phase A/D conversion value	
	(uint8) u1_id / Motor ID	
	Output: None	
	mtr_get_current_uvw_adc	Ger u/v/w phase current
	Input: (float32*) iu_ad / U phase A/D conversion value	
	(float32*) iv_ad / V phase A/D conversion value	
	(float32*) iw_ad / W phase A/D conversion value	
	(uint8) u1_id / Motor ID	
	Output: None	
	mtr_change_pattern	Change conduction
	Input: (uint8) pattern / Conduction pattern	pattern
	Output: None	

Table 3-11 List of Functions "mtr_ctrl_RX13T_mrssk.c"

Table 3-12 List of Functions "mtr_feedback.c"

File name	Function name	Process overview
mtr_feedback.c	mtr_pi_ctrl	PI control
	Input: (MTR_PI_CTRL*) pi_ctrl / PI control structure	
	Output: (float32) f4_ref / PI control output value	

ile name	Function name	Process overview
ntr_filter.c	R_MTR_Lpff	LPF processing
	Input: (float32) f4_lpf_input / LPF input value	(float32)
	(float32) f4_pre_lpf_output / LPF output value from the last time	
	(float32) f4_lpf_k / LPF gain	
	Output: (float32) f4_temp / LPF output value	
	R_MTR_Lpf	LPF processing
	Input: (int16) s2_lpf_input / LPF input value	(int16)
	(int16) s2_pre_lpf_output / LPF output value from the last time (int16) s2_lpf_k / LPF gain	
	Output: (int16) s2_temp / LPF output value	
	R_MTR_Limitf	Upper and Lower limit
	Input: (float32) f4_value / input value	processing
	(float32) f4_max / maximum value	(float32)
	(float32) f4_min / minimum value	
	Output: (float32) f4_temp / output value	
	R_MTR_Limit	Upper and Lower limit
	Input: (int16) s2_value / input value	processing
	(int16) s2_max / maximum value	(int16)
	(int16) s2_min / minimum value	
	Output: (int16) s2_temp / output value	
	R_MTR_Limitf_h	Upper limit processing
	Input: (float32) f4_value / input value	(float32)
	(float32) f4_max / maximum value	(100102)
	Output: (float32) f4_temp / output value	
		Linner limit processing
	R_MTR_Limit_h	Upper limit processing
	Input: (int16) s2_value / input value	(int16)
	(int16) s2_max / maximum value	
	Output: (int16) s2_temp / output value	
	R_MTR_Limitf_I	Lower limit processing
	Input: (float32) f4_value / input value	(float32)
	(float32) f4_min / minimum value	
	Output: (float32) f4_temp / output value	
	R_MTR_Limit_I	Lower limit processing
	Input: (int16) s2_value / input value	(int16)
	(int16) s2_min / minimum value	
	Output: (int16) s2_temp / output value	
	R_MTR_Limitf_abs	absolute limit processing
	Input: (float32) f4 value / input value	(float32)
	(float32) f4_limit_value / limit value	
	Output: (float32) f4_temp / output value	
	R_MTR_Limit_abs	absolute limit processing
	Input: (int16) s2_value / input value	(int16)
	(int16) s2 limit value / limit value	
	Output: (int16) s2_temp / output value	

Table 3-13 List of Functions "mtr_filter.c"

File name	Function name	Process overview
mtr_gmc.c * ¹	mtr_get_vdc	Obtaining the bus
	Input: (uint8) u1_id / Motor ID	voltage
	Output: (float32) f4_temp_vdc / Vdc value	
	mtr_check_over_voltage_error	Over voltage error
	Input: (float32) f4_vdc / vdc value	check
	(float32) f4_overvoltage_limit / over voltage limit value	
	Output: (uint16) u2_temp0 / over voltage error flag	
	mtr_check_under_voltage_error	Under voltage error
	Input: (float32) f4_vdc/ Vdc value	check
	(float32) f4_undervoltage_limit / under voltage limit value	
	Output: (uint16) u2_temp0 / under voltage error flag	
	mtr_check_over_speed_error	Over speed error
	Input: (float32) f4_speed_rad / motor angle	check
	(float32) f4_speed_limit_rad / speed limit value	
	Output: (uint16) u2_temp0 / over speed error flag	
	mtr check over current error	Over current error
	Input: (float32) f4 iu / U phase current value	check
	(float32) f4_iv / V phase current value	
	(float32) f4_iw / W phase current value	
	(float32) f4_overcurrent_limit / over current limit value	
	Output: (uint16) u2_temp0 / over current error flag	
	mtr_get_duty	Calculate
	Input: (float32) f4_v_ref / Reference voltage	Carculato
	(float32) f4_vdc_ad / Bus voltage A/D conversion Value	
	Output: (int16) s2_temp / Rate of PWM duty	
	mtr get v uvw	Obtaining the UVW
	Input: (volatile float32*) vu_ad / U phase voltage A/D conversion value	phase voltage
	(volatile float32*) vv_ad / V phase voltage A/D conversion value	phase voltage
	(volatile float32*) vv_ad / W phase voltage A/D conversion value	
	(uint8) u1_id / Motor ID	
	Output: None	
	mtr get current uvw	Obtaining the UVW
	Input: (volatile float32*) iu_ad / U phase current A/D conversion value	phase current
	(volatile float32*) iv ad / V phase current A/D conversion value	
	(volatile float32*) iw_ad / W phase current A/D conversion value	
	(uint8) u1 id / Motor ID	
	Output: None	
	mtr generate pattern	Generate virtual ha
		sensor value
	Input: (float32) vu_ad / U phase voltage A/D conversion value (float32) vv_ad / V phase voltage A/D conversion value	
	(float32) vv_ad / W phase voltage A/D conversion value	
	(float32) vm_ad / vv phase voltage A/D conversion value (float32) vn_ad / 3 phase average A/D conversion value	
	Output: (uint8) u1_temp / Virtual hall sensor value	
		Chocking time cut
	mtr_check_timeout_error	Checking time-out
	Input: (float32) f4_cnt_timeout / counter of timeout calculation	error
	(float32) f4_timeout_limit / Timeout limit	
	Output: (uint8) u1_temp0 / Flag of Timeout error	

Table 3-14 List of "mtr_gmc.c"Functions

Note: 1. Undescribed function is not used in this system.

Table 3-15 List of Functions "mtr_driver_access.c"

File name	Function name	Process overview
mtr_driver_access.c	R_MTR_SetSpeed	Setting the speed command
	Input: (int16) ref_speed / speed command value	value
	(uint8) u1_id / Motor ID	
	Output: None	
	R_MTR_SetDir	Setting the rotation direction
	Input: (uint8) dir/ rotation direction	
	(uint8) u1_id / Motor ID	
	Output: None	
	R_MTR_GetSpeed	Obtaining the speed
	Input: (uint8) u1_id / Motor ID	calculation value
	Output: (int16) s2_speed_rpm / speed	
	R_MTR_GetDir	Obtaining the rotation
	Input: (uint8) u1_id / Motor ID	direction
	Output: (uint8) u1_direction / rotation direction	
	R_MTR_GetStatus	Obtaining the motor status
	Input: (uint8) u1_id / Motor ID	
	Output: (uint8) u1_mode_system / motor status	

3.3 List of variables of 120-degree conducting control software

Lists of variables used in this control program are given below. However, note that the local variables are not mentioned.

Table 3-16 L	ist of variables
--------------	------------------

Variable name	Туре	Content	Remarks
g_s2_max_speed	int16	Rotation speed command maximum value	Mechanical angle [rpm]
g_s2_min_speed	int16	Rotation speed command minimum value	Mechanical angle [rpm]
g_s2_margin_min_speed	int16	Rotation speed command minimum value for motor stop	Mechanical angle [rpm]
g_s2_ref_speed	int16	User setting rotation speed	Mechanical angle [rpm]
g_u1_rot_dir	uint8	User setting rotation direction	0: CW 1: CCW
g_u1_motor_status	uint8	User motor status management	0: Stop 1: Rotating 2: Error
g_u1_reset_req	uint8	Reset request flag	0: Turning SW2 ON in error status 1: Turning SW2 OFF in error status
g_u1_sw1_cnt	uint8	SW1 determination counter	Chattering removal
g_u1_sw2_cnt	uint8	SW2 determination counter	Chattering removal
g_u1_stop_req	uint8	VR1 stop command flag	
g_s2_sw_ui	int16	User interface switch	0: GUI user interface use (default) 1: Board user interface use
g_s2_mode_system	int16	System mode	
g_s2_enable_write	int16	GUI write enable flag	
st_ics_input	MTR_ICS_INPUT	GUI input structure	
g_u1_cnt_ics	uint8	GUI decimation counter	
g_u1_enable_write	uint8	Variable for GUI	
st_ics_input_buff	MTR_ICS_INPUT	Buffer of GUI input structure	
st_g	MTR_ST_LESS_120	Less120-degree control structure	

3.4 List of sensorless 120-degree conducting control software structures

Lists of structures used in this control program are given below.

Table 3-17List of variables (1/3)

	Variable name	Туре	Content	Remarks
MTR_ST_LESS_	u1_mode_system	uint8	State management	0x00: Inactive mode
120				0x01: Active mode
				0x02: Error mode
	u2_run_mode	unit16	Operation mode	0x00: Init mode
			management	0x01: Boot mode
				0x02: Drive mode
				0x03: Analysis mode
				0x04: Tune mode
	u1 error status	unit8	Error status management	0x00: None error
			_	0x01: Over current error
				0x02: Over voltage error
				0x04: Rotation speed error
				0x08: Hall time out error
				0x10: BEMF time out error
				0x20: Hall pattern error
				0x40: BEMFpattern error
				0x80: Under voltage error
				0xFF: Undefined error
	u2 sensor conf	uint16	Sensor configuration	0x01: Sensorless
			management	0x02: Hall sensor
				0x04: Encoder
				0x08: Resolver
	u2 method conf	uint16	Method configuration	0x00: FOC
		-	management	(Fields Oriented Control)
				0x01: 180 degree control
				0x02: Wide angle electricity control
				0x03: 120 degree control
	u2 ctrl conf	uint16	Control configuration	0x01: Current control
			management	0x02: Speed control
				0x04: Position control
				0x08: Torque control
				0x10: Voltage control
	st_motor	MTR_	Motor parameter structure	
		PARAMETER		
	f4_rpm_rad	float32	[rpm]→[rad/s]	$2 \pi / 60^*$ (POLE PAIRS)
	f4_vdc_ad	float32	Inverter bus voltage A/D	[V]
			value	
	f4_v_ref	float32	Voltage command value	Speed PI control output value [V]
	s2_pwm_duty	int16	PWM duty	
	f4_ref_speed_rad	float32	Speed command value	Electrical angle [rad/s]
	f4_ref_speed_rad_crtl	float32	Speed command value	Electrical angle [rad/s]
	f4_speed_rad	float32	Speed calculation value	Electrical angle [rad/s]
	f4_kp_speed	float32	Speed PI control proportional gain	
	f4_ki_speed	float32	Speed PI control integral gain	
	' ~	1	·	I

	Variable name	Туре	Content	Remarks
MTR_ST_LESS_ 120	u1_cnt_speed_pi	uint8	Speed PI control function call interval counter	
	f4_speed_lpf_k	float32	Speed LPF parameter	
	f4_limit_speed_ change	float32	Speed command maximum increase limit	[rad/s]
	u1 flg wait stop	uint8	Motor rotation stop waiting flag	
	f4 ilim v	float32	Speed PI control integral limit value	[V]
	f4_vu_ad	float32	U phase voltage A/D value	[V]
	f4_vv_ad	float32	V phase voltage A/D value	[V]
	f4_vw_ad	float32	W phase voltage A/D value	[V]
	f4_vn_ad	float32	Three-phase voltage average A/D value	[V]
	f4_offset_vu	float32	U phase voltage offset value	[V]
	f4_offset_vv	float32	V phase voltage offset value	[V]
	f4_offset_vw	float32	W phase voltage offset value	[V]
	f4_offset_off_vu	float32	U phase voltage offset value for all phase output disable	[V]
	f4_offset_off_vv	float32	V phase voltage offset value for all phase output disable	[V]
	f4_offset_off_vw	float32	W phase voltage offset value for all phase output disable	[V]
	f4_sum_vu_ad	float32	U phase voltage sum of value	[V]
	f4_sum_vv_ad	float32	V phase voltage sum of value	[V]
	f4_sum_vw_ad	float32	W phase voltage sum of value	[V]
	f4_iu_ad	float32	U phase current A/D value	[A]
	f4_iv_ad	float32	V phase current A/D value	[A]
	f4_iw_ad	float32	W phase current A/D value	[A]
	f4_offset_iu	float32	U phase current offset value	[A]
	f4_offset_iv	float32	V phase current offset value	[A]
	f4_offset_iw	float32	W phase current offset value	[A]
	f4_sum_iu_ad	float32	U phase current sum of value	[A]
	f4_sum_iv_ad	float32	V phase current sum of value	[A]
	f4_sum_iw_ad	float32	W phase current sum of value	[A]
	u2_offset_calc_time	uint16	Calculation time for current offset	Setting parameter * 50µ [s]
	u1_flag_offset_calc	unit8	Current offset value calculation flag	0: Calculation in transition to the boot mode
				1: Calculation in transition to the boot mode (first time only)
	u2_cnt_adjust	uint16	offset value calculation flag	
	f4_boot_ref_v	float32	voltage command value	[V]
	u2_v_up_time	uint16	voltage command value addition time	
	f4_v_up_step	float32	voltage command value addition value	
	u2_v_const_time	uint16	voltage command value constant value	
	u2_cnt_adj_v	uint16	Counter to calculate constant voltage	
	u1_flag_draw_in	uint8	Draw in flag	
	u1_v_pattern	uint8	Conduction pattern	
	u1_v_pattern_num	uint8	Conduction pattern command number	
	u1_bemf_signal	uint8	Pattern created from inductive voltage	

Table 3-17List of variables (2/3)

Table 3-17List of variables (3/3)

	Variable name	Туре	Content	Remark
MTR_ST_LESS_ 120	u1_pre_bemf_signal	uint8	Pattern created from the previous inductive voltage	
	u1_flag_pattern_change	uint8	Zero-cross detection flag	
	u1_flag_speed_ref	uint8	Speed state management flag	0: Zero Speed
				1: Open-loop 1
				2: Open-loop 2
				3: Open-loop 3
				4: Variable speed
	u1_flag_voltage_ref	uint8	Voltage state management	0: Zero voltage
				1: Increase voltage
				2: voltage constant
				3: Open loop
				4: speed PI output
	u1_direction	uint8	Rotation direction	0: CW
				1: CCW
	s2_ol_start_rad	int16	Open loop starting rpm	[rad]
	s2_ol_mode1_change_ rad	int16	Open loop mode1 change speed	[rad]
	s2_ol_mode2_change_ rad	int16	Open loop mode2 change speed	[rad]
	f4_ol_start_refv	float32	Open loop start reference voltage	[V]
	f4_ol_mode1_rate_rad	float32	Open loop mode1 rate of reference speed	[rad/control period]
	f4_ol_mode2_rate_refv	float32	Open loop mode2 rate of reference voltage	[V/control period]
	f4_ol_mode2_rate_rad	float32	Open loop mode2 rate of reference speed	[rad/control period]
	f4_ol_mode3_rate_refv	float32	Open loop mode3 rate of reference voltage	[V/control period]
	f4_ol_mode3_max_refv	float32	Open loop mode3 rate of reference voltage	[V]
	u1_v_pattern_open	uint8	Conduction pattern for open loop	
	u1_ol_signal	uint8	Open loop conduction pattern	
	u2_ol_pattern_set	uint16	Open loop cycle	
	u2_cnt_ol_pattern_set	uint16	Open loop conduction pattern switch counter	
	u2_cnt_timeout	uint16	Stop determination time measurement counter	Cleared when the conduction pattern is switched.
	u2_bemf_timer_cnt	uint16	Free run timer count value	
	u2_pre_bemf_timer_cnt	uint16	Previous free run timer count value	
	s4_timer_cnt_ave	int32	Average of speed measurement timer count	
	u2_timer_cnt_buf	uint16	Speed measurement timer count buffer	
	u2_timer_cnt_num	uint16	Speed measurement timer count buffer number	
	u2_cnt_carrier	uint16	Carrier cycle interruption counter	
	u2_pre_cnt_carrier	uint16	Previous carrier interruption counter value	
	u2_angle_shift_cnt	uint16	Pattern switching timing command value	
	s2 angle shift adjust	int16	Pattern switching timing adjustment value	
	st_speed	MTR_ PI_CTRL	Structure for speed PI control	

Table 3-18List of structures

	Member	Туре	Content	Remarks
MTR_PARAMETER	u2_mtr_p	uint16	Number of pole pairs	
	f4_mtr_r	float32	Resistance	[Ω]
	f4_mtr_ld	float32	d-axis inductance	[H]
	f4_mtr_lq	float32	q-axis inductance	[H]
	f4_mtr_m	float32	Permanent magnetic flux	[Wb]
MTR_PI_CTRL	f4_err	float32	Error	
	f4_kp	float32	PI control proportional gain	
	f4_ki	float32	PI control integral gain	
	f4_refi	float32	Integral output value	
	f4_ilimit	float32	Integral output limit value	
MTR_ICS_INPUT	u2_mtr_p	uint16	Number of pole pairs	
	s2_ref_speed	int16	Reference speed	Mechanical angle [rpm]
	s2_direction	int16	Rotation direction	0: CW 1: CCW
	f4_kp_speed	float32	Speed PI control proportional gain	
	f4_ki_speed	float32	Speed PI control Integral gain	
	f4_speed_lpf_k	float32	Speed LPF parameter	
	f4_limit_speed_change	float32	Speed command maximum increase limit	[rad/s]
	s2_ol_start_rpm	int16	Open loop starting rpm	[rpm]
	s2_ol_mode1_change_rpm	int16	Open loop mode1 change speed	[rpm]
	s2_ol_mode2_change_rpm	int16	Open loop mode2 change speed	[rpm]
	f4_ol_start_refv	float32	Open loop start reference voltage	[V]
	f4_ol_mode1_rate_rpm	float32	Open loop mode1 rate of reference speed	[rpm/contro period]
	f4_ol_mode2_rate_refv	float32	Open loop mode2 rate of reference voltage	[V/control period]
	f4_ol_mode2_rate_rpm	float32	Open loop mode2 rate of reference speed	[rpm/control period]
	f4_ol_mode3_rate_refv	float32	Open loop mode3 rate of reference voltage	[V/control period]
	f4_ol_mode3_max_refv	float32	Open loop mode3 rate of reference voltage	[V]
	u2_offset_calc_time	uint16	Calculation time for current offset	
	f4_boot_ref_v	float32	Voltage command value	
	u2_v_up_time	uint16	Voltage command value addition time	
	u2_v_const_time	uint16	Voltage command value constant time	

3.5 Macro definitions of 120-degree conducting control software

Lists of macro definitions used in this control program are given below.

Table 3-19	List of Macro definitions "motor_parameter.h"
------------	---

File name	Macro name	Definition value	Remarks
motor_parameter.h	MP_POLE_PAIRS	2	Number of pole pairs
	MP_MAGNETIC_FLUX	0.02159f	Flux [Wb]
	MP_RESISTANCE	6.447f	Resistance [Ω]
	MP_D_INDUCTANCE	0.0045f	d-axis Inductance [H]
	MP_Q_INDUCTANCE	0.0045f	q-axis Inductance [H]
	MP_NOMINAL_CURRENT_RMS	0.42f	Nominal current [Arms]

Table 3-20	List of Macro definitions "control_parameter.h"
------------	---

File name	Macro name	Definition value	Remarks
control_parameter.h	CP_OFFSET_CALC_TIME	20000	LPF parameter of current offset value
	CP_REF_V	3.0f	voltage command value
	CP_V_UP_TIME	128	voltage command value addition time
	CP_V_CONST_TIME	64	voltage command value constant time
	CP_MAX_SPEED_RPM	2650	Rotation speed command maximum value (mechanical angle) [rpm]
	CP_MIN_SPEED_RPM	1000	Rotation speed command minimum value (mechanical angle) [rpm]
	CP_LIMIT_SPEED_CHANGE	0.2f	Speed command maximum increase limit [rad/s]
	CP_OL_START_RPM	150	Open loop starting rpm [rpm]
	CP_OL_MODE1_CHANGE_RPM	185	Open loop mode1 change speed [rpm]
	CP_OL_MODE2_CHANGE_RPM	1000	Open loop mode2 change speed [rpm]
	CP_OL_START_REFV	3.0f	Open loop start reference voltage [V]
	CP_OL_MODE1_RATE_RPM	0.25f	Open loop mode1 rate of reference speed [rpm/control period]
	CP_OL_MODE2_RATE_REFV	0.00285f	Open loop mode2 rate of reference voltage [V/control period]
	CP_OL_MODE2_RATE_RPM	0.71f	Open loop mode2 rate of reference speed [rpm/control period]
	CP_OL_MODE3_RATE_REFV	0.002f	Open loop mode3 rate of reference voltage [V/control period]
	CP_OL_MODE3_MAX_REFV	6.5f	Open loop mode3 rate of reference voltage [V/control period]
	CP_SPEED_PI_KP	0.02f	Proportional gain
	CP_SPEED_PI_KI	0.004f	Integral gain
	CP_SPEED_LPF_K	1.0f	Speed LPF parameter
	MTR_FIRST60	1	Non-Complementary First 60-degree PWM
	MTR_FIRST60_COMP	0	Complementary First 60-degree PWM

Table 3-21 List of Macro definitions "main.h"

File name	Macro name	Definition value	Remarks
main.h	ICS_UI	0	GUI user interface use
	BOARD_UI	1	Board user interface use
	M_CW	0	Rotation direction
	M_CCW	1	
	OFFSET_CALC_TIME	CP_OFFSET_CALC_TIME	Calculation time for current offset
	BOOT_REF_V	CP_BOOT_REF_V	voltage command value
	V_UP_TIME	CP_V_UP_TIME	voltage command value addition time
	V_CONST_TIME	CP_V_CONST_TIME	voltage command value constant time
	MAX_SPEED	CP_MAX_SPEED_RPM	Rotation speed command maximum value (mechanical angle) [rpm]
	MIN_SPEED	CP_MIN_SPEED_RPM	Rotation speed command minimum value [rpm]
	MARGIN_SPEED	50.0f	Rotation speed command minimum value creation constants for stop [rpm]
	MARGIN_MIN_SPEED	MIN_SPEED - MARGIN_SPEED	Rotation speed command minimum value for motor stop [rpm]
	OL_START_RPM	CP_OL_START_RPM	Open loop start reference voltage
	OL_MODE1_CHANGE_RPM	CP_OL_MODE1_CHANGE_RPM	Open loop mode1 change speed
	OL_MODE2_CHANGE_RPM	CP_OL_MODE2_CHANGE_RPM	Open loop mode2 change speed
	OL_START_REFV	CP_OL_START_REFV	Open loop start reference voltage
	OL_MODE1_RATE_RPM	CP_OL_MODE1_RATE_RPM	Open loop mode1 rate of reference speed
	OL_MODE2_RATE_REFV	CP_OL_MODE2_RATE_REFV	Open loop mode2 rate of reference voltage
	OL_MODE2_RATE_RPM	CP_OL_MODE2_RATE_RPM	Open loop mode2 rate of reference speed
	OL_MODE3_RATE_REFV	CP_OL_MODE3_RATE_REFV	Open loop mode3 rate of reference voltage
	OL_MODE3_MAX_REFV	CP_OL_MODE3_MAX_REFV	Open loop mode3 rate of reference voltage
	LIMIT_SPEED_CHANGE	CP_LIMIT_SPEED_CHANGE	Speed command maximum increase limit [rad/s]
	SPEED_PI_KP	CP_SPEED_PI_KP	Speed proportional gain
	SPEED_PI_KI	CP_SPEED_PI_KI	Speed Integral gain
	SPEED_LPF_K	CP_SPEED_LPF_K	Speed LPF parameter
	SW_ON	0	Active in case of "Low"
	SW_OFF	1	1
	CHATTERING_CNT	10	Chattering removal
	VR1_SCALING	(MAX_SPEED + 50.0f) / 2048	Speed command value creation constant
	ADJUST_OFFSET	0x7FF	Speed command value offset adjustment constant
	POLE_PAIR	MP_POLE_PAIRS	Pole pairs
	REQ_CLR	0	VR1 stop command flag clearing
	REQ_SET	1	VR1 stop command flag setting
	ICS_INT_LEVEL	6	Interrupt priority level for GUI
	ICS_BRR	4	Bit late register select for GUI
	ICS INT MODE	1	Transfer mode select for GUI

Table 3-22	List of Macro definitions "mtr_ctrl_RX13T_mrssk.h" (1/2)
------------	--

File name	Macro name	Definition value	Remarks
mtr_ctrl_RX13T_ mrssk.h	MTR_PWM_TIMER_FREQ	32.0f	PWM timer count frequency [MHz]
	MTR_CARRIER_FREQ	20.0f	Carrier frequency [kHz]
	MTR_INT_DECIMATION	0	Interrupt skip number
	MTR_CTRL_PERIOD	((MTR_INT_DECIMATION + 1) / (MTR_CARRIER_FREQ * 1000))	Control Period
	MTR_CTRL_PERIOD_INV	(1.0f / (float)MTR_CTRL_PERIOD)	1/ Control Period
	MTR_CONTROL_FREQ	((MTR_CARRIER_FREQ * 1000) / (MTR_INT_DECIMATION + 1))	Control Frequency [Hz]
	MTR_DEADTIME	2	Dead time [µs]
	MTR_DEADTIME_SET	(uint16) (MTR_DEADTIME MTR_ PWM_TIMER_FREQ)	Dead time setting value
	MTR_AD_FREQ	32.0f	Frequency of A/D conversion clock
	MTR_AD_SAMPLING_CYCL E	47.0f	A/D sampling time [Cycle]
	MTR_AD_SAMPLING_TIME	MTR_AD_SAMPLING_ CYCLE / MTR_AD_FREQ	A/D sampling time [µs]
	MTR_AD_TIME_SET	(uint16) (MTR_PWM_TIMER_ FREQ * MTR_AD_SAMPLING_TIME)	A/D sampling time count value
	MTR_CARRIER_SET_BASE	(uint16) ((MTR_PWM_TIMER_ FREQ * 1000 /MTR_CARRIER_ FREQ / 2))	Carrier period setting value
	MTR_CARRIER_SET	((uint16) MTR_CARRIER_SET_BASE + MTR_DEADTIME_SET))	Max setting value of carrier period
	MTR_HALF_CARRIER_SET	(uint16) (MTR_CARRIER_SET / 2)	Half of "MTR_CARRIER_SET"
	MTR_NDT_CARRIER_SET	(uint16) (MTR_CARRIER_ SET - MTR_DEADTIME_SET)	no dead time of MTR_CARRIER_SE
	MTR_PORT_UP	PORT7.PODR.BIT.B1	U phase (positive phase) output port
	MTR PORT UN	PORT7.PODR.BIT.B4	U phase (negative phase) output por
	MTR_PORT_VP	PORT7.PODR.BIT.B2	V phase (positive phase) output port
	MTR_PORT_VN	PORT7.PODR.BIT.B5	V phase (negative phase) output por
	MTR_PORT_WP	PORT7.PODR.BIT.B3	W phase (positive phase) output port
	MTR_PORT_WN	PORT7.PODR.BIT.B6	W phase (negative phase) output po
	MTR_PORT_SW1	PORTB.PIDR.BIT.B5	SW1 input port
	MTR_PORT_SW2	PORTB.PIDR.BIT.B4	SW2 input port
	MTR_PORT_LED1	PORTD.PODR.BIT.B6	LED1 output port
	MTR_PORT_LED2	PORTD.PODR.BIT.B4	LED2 output port
	MTR_PORT_LED3	PORTD.PODR.BIT.B3	LED3 output port
	MTR_LED_ON	0	Active in case of "Low"
	MTR_LED_OFF	1]
	MTR_INPUT_V	24	Power supply voltage [V]
	MTR_MCU_ON_V	MTR_INPUT_V * 0.8f	MCU power on voltage [V]
	MTR_ADC_OFFSET	0x7FF	A/D offset

File name	Macro name	Definition value	Remarks
mtr_ctrl_RX13T_	MTR_CURRENT_SCALING	25.0f/4095.0f	Inverter three phase current
mrssk.h			A/D conversion value
			resolution
	MTR_VDC_SCALING	111.0f/4095.0f	Inverter bus voltage
			A/D conversion value
			resolution
	MTR_OVERCURRENT_MARGIN_MULT	1.5f	Multiplier for over-current limit
	MTR_OVERCURRENT_LIMIT	MP_NOMINAL_CURRENT_RMS *	High current limit value [A]
		MTR_SQRT_2 * MTR_	
		OVERCURRENT_MARGIN_MULT	
	MTR_OVERVOLTAGE_LIMIT	28.0f	High voltage limit value [V]
	MTR_UNDERVOLTAGE_	14.0f	Low voltage limit value [V]
	LIMIT		
	MTR_SPEED_TCNT	CMT1.CMCNT	Timer counter for speed
			calculation
	_80_MTU_TOLBR_T	(0X80U)	Bit select to define the data
			transfer time from TOLBRA to
			TOCR2A
	_20_MTU_OLS3N_LH	(0x20U)	OLS3N negative phase: initial
			output "L", active level "H"
	_00_MTU_OLS3P_HL	(0x00U)	OLS3P positive phase: initial
			output "H", active level "L"
	_08_MTU_OLS2N_LH	(0x08U)	OLS2N negative phase: initial
			output "L", active level "H"
	_00_MTU_OLS2P_HL	(0x00U)	OLS2P positive phase: initial
			output "H", active level "L"
	_02_MTU_OLS1N_LH	(0x02U)	OLS1N negative phase: initial
			output "L", active level "H"
	_00_MTU_OLS1P_HL	(0x00U)	OLS1P negative phase: initial
			output "H", active level "L"

Table 3-22 List of Macro definitions "mtr_ctrl_RX13T_mrssk.h" (2/2)

Table 3-23 List of Macro definitions "mtr_spm_less_120.h" (1/4)

File name	Macro name	Definition value	Remarks
mtr_spm_less_	MTR_POLE_PAIRS	MP_POLE_PAIRS	Motor Pole pairs
120.h	MTR_TWOPI	2 * 3.14159265f	2π
	MTR_SQRT_2	1.41421356	Sqrt (2)
	MTR_RPM_RAD	MTR_TWOPI / 60 * MTR_ POLE_PAIRS	2π/60
	MTR_SPEED_LIMIT_RPM	3000	Speed limit value (mechanical angle) [rpm]
	MTR_SPEED_LIMIT	MTR_SPEED_LIMIT_RPM * MTR_POLE_PAIRS * MTR_TWOPI / 60	Speed limit value (electrical angle) [rad/s]
	MTR_SPEED_PI_DECIMATION	1	Number of interrupt decimation times for speed PI control
	MTR_SPEED_PI_KP	CP SPEED PI KP	Speed PI proportional gain
	MTR_SPEED_PI_KI	CP SPEED PI KI	Speed PI Integral gain
	MTR_SPEED_PI_I_LIMIT_V	 24.0f	Voltage PI control output limit
			value [V]
	MTR_SPEED_CALC_BASE	MTR_TWOPI * 4000000	Constant for speed measuremen
	MTR_SPEED_LPF_K	 CP_SPEED_LPF_K	Speed LPF parameter
	MTR_LIMIT_SPEED_CHANGE	CP_LIMIT_SPEED_	Speed command maximum
		CHANGE * MTR_RPM_RAD	increase limit [rad/s]
	MTR MAX DRIVE V	 20.0f	Maximum command voltage [V]
	MTR_MIN_DRIVE_V	5.0f	Minimum command voltage [V]
	MTR_MAX_BOOT_V	8.0f	Maximum command voltage for BOOT MODE [V]
	MTR_TIMEOUT_CNT	2000	Timeout count limit
	MTR_SHIFT_ADJUST	0	Value of angle shift adjusting
	MTR_STOP_BEMF	0.5	value of stop motor BEMF [ms]
	MTR_OL_START_RAD	CP_OL_START_ RPM * MTR_RPM_RAD	Open loop start speed [rpm]
	MTR_OL_MODE1_CHANGE_ RAD	 CP_OL_MODE1_CHANGE_ RPM * MTR_RPM_RAD	Open loop mode 1 changing speed [rpm]
	MTR_OL_MODE2_CHANGE_ RAD	CP_OL_MODE2_CHANGE_ RPM * MTR_RPM_RAD	Mode changing speed [rpm]
	MTR_OL_START_REFV	CP_OL_START_REFV	Command voltage at startup [V]
	MTR_OL_MODE1_RATE_RAD	CP_OL_MODE1_RATE_ RPM * MTR_RPM* MTR_RPM_RAD	Command speed adding value [rad]
	MTR_OL_MODE2_RATE_ REFV	CP_OL_MODE2_RATE_ REFV	Command voltage adding value [V]
	MTR_OL_MODE2_RATE_RAD	CP_OL_MODE2_RATE_ RPM * MTR_RPM * MTR_RPM_RAD	Command speed adding value [rad]
	MTR_OL_MODE3_RATE_ REFV	CP_OL_MODE3_RATE_ REFV	Command voltage adding value [V]
	MTR_OL_MODE3_MAX_REFV	CP_OL_MODE3_MAX_ REFV	Maximum command voltage in open loop mode [V]
	MTR_OL_PATTERN_SET_ CALC	MTR_CARRIER_ FREQ*1000*MTR_TWOPI/6	Pattern change cycle in open loop mode

Table 3-23 List of Macro definitions "mtr_spm_less_120.h" (2/4)

File name	Macro name	Definition value	Remarks
mtr_spm_less_	MTR_PATTERN_CW_V_U	2	CW virtual hall sensor value
120.h	MTR_PATTERN_CW_W_U	3	
	MTR_PATTERN_CW_W_V	1	
	MTR_PATTERN_CW_U_V	5	
	MTR_PATTERN_CW_U_W	4	
	MTR_PATTERN_CW_V_W	6	1
	MTR_PATTERN_CCW_V_U	3	CCW virtual hall sensor value
	MTR_PATTERN_CCW_V_W	2	
	MTR_PATTERN_CCW_U_W	6	
	MTR_PATTERN_CCW_U_V	4	
	MTR_PATTERN_CCW_W_V	5	
	MTR_PATTERN_CCW_W_U	1	
	MTR_PATTERN_ERROR	0	Conduction pattern
	MTR_UP_PWM_VN_ON	1]
	MTR_UP_PWM_WN_ON	2	
	MTR_VP_PWM_UN_ON	3	
	MTR_VP_PWM_WN_ON	4	
	MTR_WP_PWM_UN_ON	5	1
	MTR_WP_PWM_VN_ON	6	1
	MTR_UP_ON_VN_PWM	7	1
	MTR_UP_ON_WN_PWM	8	
	MTR_VP_ON_UN_PWM	9	1
	MTR_VP_ON_WN_PWM	10	1
	MTR_WP_ON_UN_PWM	11	
	MTR_WP_ON_VN_PWM	12	1
	MTR_U_PWM_VN_ON	13	1
	MTR_U_PWM_WN_ON	14	1
	MTR_V_PWM_UN_ON	15	1
	MTR_V_PWM_WN_ON	16	
	MTR_W_PWM_UN_ON	17	
	MTR_W_PWM_VN_ON	18	
	MTR_UP_ON_V_PWM	19	
	MTR_UP_ON_W_PWM	20	1
	MTR_VP_ON_U_PWM	21	1
	MTR_VP_ON_W_PWM	22	1
	MTR_WP_ON_U_PWM	23	1
	MTR_WP_ON_V_PWM	24	1
	MTR_DRAW_IN_1ST_TIME	1	Draw in for first time
	MTR_DRAW_IN_2ND_TIME	2	Draw in for second time
	MTR_OFFSET_CALC_TIME	CP_OFFSET_CALC_TIME	Current offset value calculation time
			[ms]

Table 3-23 List of Macro definitions "mtr_spm_less_120.h" (3/4)

File name	Macro name	Definition value	Remarks	
mtr_spm_less_	MTR_BOOT_REF_V	CP_BOOT_REF_V	voltage command value	
120.h	MTR_V_UP_TIME	CP_V_UP_TIME	voltage command value addition time	
	MTR_V_UP_STEP	MTR_BOOT_REF_ V/MTR_V_UP_TIME	voltage command value addition step	
	MTR_V_CONST_TIME	CP_V_CONST_TIME	voltage command value constant time	
	MTR_CW	0	Rotation direction setting value	
	MTR_CCW	1	7	
	MTR_FLG_CLR	0	Constant for flag management	
	MTR_FLG_SET	1		
	MTR_ICS_DECIMATION	4	Number of function call decimation times for GUI	
	MTR_V_ZERO_CONST	0	zero voltage constant	
	MTR_V_UP	1	increase of voltage	
	MTR_V_CONST	2	voltage constant	
	MTR_V_OPENLOOP	3	Open-loop voltage setting mode	
	MTR_V_PI_OUTPUT	4	Speed PI output voltage setting mode	
	MTR_SPEED_ZERO_CONST	0	Speed 0	
	MTR_SPEED_OPENLOOP_1	1	Open loop MODE1	
	MTR_SPEED_OPENLOOP_2	2	Open loop MODE2	
	MTR_SPEED_OPENLOOP_3	3	Open loop MODE3	
	MTR_SPEED_CHANGE	4	Speed changing	
	MTR_ID_A	0	Motor ID A	
	MTR_ID_B	1	Motor ID B	
	MTR_MODE_INACTIVE	0x00	Inactive mode	
	MTR_MODE_ACTIVE	0x01	Active mode	
	MTR_MODE_ERROR	0x02	Error mode	
	MTR_SIZE_STATE	3	State size	
	MTR_EVENT_INACTIVE	0x00	Inactive event	
	MTR_EVENT_ACTIVE	0x01	Active event	
	MTR_EVENT_ERROR	0x02	Error event	
	MTR_EVENT_RESET	0x03	Reset event	
	MTR_SIZE_EVENT	4	Event size	
	MTR_MODE_INIT	0x00	Init mode	
	MTR_MODE_BOOT	0x01	Boot mode	
	MTR_MODE_DRIVE	0x02	Drive mode	
	MTR_MODE_ANALYSIS	0x03	Analysis Mode	
	MTR_MODE_TUNE	0x04	Tune mode	
	MTR_SENSOR_LESS	0x01	Sensorless	
	MTR_SENSOR_HALL	0x02	Hall sensor	
	MTR_SENSOR_ENCD	0x04	Encoder	
	MTR_SENSOR_RESO	0x08	Resolver	
	MTR_METHOD_FOC	0x00	Fields Oriented Control	
	MTR_METHOD_180	0x01	180-degree control	
	MTR_METHOD_WIDE	0x02	Wide angle electricity control	
	MTR_METHOD_120	0x03	120-degree control	
	MTR_CONTROL_CURRENT	0x01	Current control	
	MTR_CONTROL_SPEED	0x02	Speed control	

Table 3-23 List of Macro definitions "mtr_spm_less_120.h" (4/4)

File name	Macro name	Definition value	Remarks
mtr_spm_less_ MTR_CONTROL_POSITION		0x04	Position control
120.h	MTR_CONTROL_TORQUE	0x08	Torque control
	MTR_CONTROL_VOLTAGE	0x10	Voltage control
	MTR_ERROR_NONE	0x00	No error
	MTR_ERROR_OVER_CURRENT	0x01	Over current error
MTR_ERROR_OVER_VOLTAGE		0x02	Over voltage error
	MTR_ERROR_OVER_SPEED	0x04	Over speed error
MTR_ERROR_HALL_TIMEOUT		0x08	Hall timeout error
	MTR_ERROR_BEMF_TIMEOUT	0x10	BEMF timeout error
	MTR_ERROR_HALL_PATTERN	0x20	Hall pattern error
	MTR_ERROR_BEMF_PATTERN	0x40	BEMF pattern error
	MTR_ERROR_UNDER_VOLTAGE	0x80	Under voltage error
	MTR_ERROR_UNKNOWN	0xff	Unknown error

3.6 Control flows (flow charts)

3.6.1 Main process

Figure 3-7 Main Process Flowchart

3.6.2 Carrier cycle interrupt handling

Figure 3-8 50 [µs] Cycle Interrupt Handling (Sensorless 120-degree Control)

3.6.3 1 ms interrupt handling

Figure 3-9 1 [ms] Interrupt Handling

3.6.4 Overcurrent interrupt handling

Figure 3-10 Over Current Detection Interrupt Handling

4. Motor Control Development Support Tool, 'Renesas Motor Workbench'

4.1 Overview

In the target sample programs described in this application note, user interfaces (rotating/stop command, rotation speed command, etc.) are based on the motor control development support tool, 'Renesas Motor Workbench' can be used. Please refer to 'Renesas Motor Workbench User's Manual' for usage and more details.

You can find 'Renesas Motor Workbench' on Renesas Electronics Corporation website.

File Option	Main Window		
	Connection	File Information	
сом	COM4 - Clock	RMT File RX66T_MRSSK_SPM_ENCD_FOC_CSP_RV100.rmt 2018/11/06 14:34:26	
Status	Connect USB シリアル デバイス	Map File RX66T_MRSSK_SPM_ENCD_FOC_CSP_RV100.m 2018/11/06 14:20:35	
	Configuration	Select Tool	
CPU	RX66T		
	Brushless DC Motor		
Motor Type		Analyzer Window	
Control	Hall and Encoder vector control (Position cor	File Help T File Analyzer	Main Window
Inverter	RSSK for Motor	Control Window Scope Window	
		Variable Data Variable List Alias Name Statu Sixu Swe Load All - Visingle 🖓 Double Scope Cipture Acquiring Data	Zoom1 Zoom2
Project File Pa	ith	Variable Data Variable List Alias Name Save Load All ∑sope Cpbure Zope Cpbure <th< td=""><td></td></th<>	
Name		Vanade Name Usta type Scale Kr. Kead Wr. Ymre i water ferende i name transfer ferende i state	
default.rmt		com_u1_sw_userif INT8 Q0 🗹 0 🗆 0	
		com_u1_direction INT8 Q0 🗹 0 🗌 0	
		com_u1_ctrl.loop_mode INT8 Q0 Q1 I 0 com_u1_ctrl.method_mode INT8 Q0 Q1 I 0	
		com_u1_ctrl_method_mode INT8 Q0 ☑ 1 □ com_u1_position_input_mode INT8 Q0 ☑ □ □	
		com_d1_basilon_inpd_inpd_invis_0 = 0 = 1 = 0	Acquisition
		com_s2_ref_position_deg INT16 Q0 ⊠ 0 ⊠ 0 .	Length
			1000
		com_u1_enable_write INT8 Q0 🗹 0 🗹 1	Sample
		g_st_focu2_error_status UINT16 Q0 🗹 0 🗆 0	1.00m
		Select Data Control File Control	RUN
		Up Down Color Load Save	Non
		(20.00) (20.00) (20.00) (20.00) (20.00) (20.00) (20.00)	Graph Setting
		Particle and part of a first part of and the second data in the second	Smoothing
		OffSet : 0 VM/Div: 20.00 OffSet : 0 VM/Div: 500.00 OffSet : 0	Channel Setting
		Min: OFFSH:0 Min: OFFSH:0 Min: Min: Min: Min: Min: Min: Min: Min:	 Set Color
		And Marie Marie Marie Angel	> Secular
		Ready CPU: RX665 Serial: SCI6 PORT: COM4	

Figure 4-1 Renesas Motor Workbench – Appearance

Set up for Renesas Motor Workbench

- (2) Drop down menu [RMT File] → [Open RMT File(O)]. And select RMT file in '[Project Folder]/ics/'.
- (3) Use the 'Connection' COM select menu to choose the COM port for Motor RSSK.
- (4) Click on the 'Analyzer' icon of Select Tool panel to open Analyzer function window.
- (5) Please refer to '4.3 Operation Example for Analyzer' for motor driving operation.

4.2 List of variables for Analyzer function

Table 4-1 is a list of variables for Analyzer. These variable values are reflected to the protect variables when the same values as $g_s2_enable_write$ are written to com_s2_enable_write. However, note that variables with (*) do not depend on com_s2_enable_write.

The display variable "ics_*" is corresponding to the structure variable.

Table 4-1	List of Variables for Analyzer
-----------	--------------------------------

			Remarks
Variable name	Туре	Content	([]: reflection variable name)
com_s2_sw_ui (*)	int16	User interface switch	[g_s2_sw_ui]
		0: GUI user interface use (default)	
		1: Board user interface use	
com_s2_mode_system (*)	int16	State management	[g_s2_mode_system]
		0: Stop mode	
		1: Run mode	
		3: Reset	
com_s2_direction	int16	Rotation direction	[s2_direction]
		0: CW	
		1: CCW	
com_u2_mtr_p	uint16	Number of pole pairs	[st_g.u2_mtr_p]
com_s2_ref_speed_rpm	int16	Speed command value (mechanical angle) [rpm]	[st_g.f4_ref_speed_rad]
com_f4_kp_speed	float32	Speed PI control proportional gain	[st_g.f4_kp_speed]
com_f4_ki_speed	float32	Speed PI control integral gain	[st_g.f4_ki_speed]
com_f4_speed_lpf_k	float32	Speed LPF parameter	[st_g.f4_speed_lpf_k]
com_f4_limit_speed_change	float32	Command speed changing limit [rad/s]	[st_g.f4_limit_speed_change]
com_s2_ol_start_rpm	int16	Speed at startup	[st_g.s2_ol_start_rad]
com_s2_ol_mode1_change_rpm	int16	Mode changing speed	[st_g.s2_ol_mode1_change_rad]
com_s2_ol_mode2_change_rpm	int16	Mode changing speed	[st_g.s2_ol_mode2_change_rad]
com_f4_ol_start_refv	float32	Command voltage at startup	[st_g.f4_ol_start_refv]
com_f4_ol_mode1_rate_rpm	float32	Command speed adding value	[st_g.f4_ol_mode1_rate_rad]
com_f4_ol_mode2_rate_refv	float32	Command voltage adding value	[st_g.f4_ol_mode2_rate_refv]
com_f4_ol_mode2_rate_rpm	float32	Command speed adding value	[st_g.f4_ol_mode2_rate_rad]
com_f4_ol_mode3_rate_refv	float32	Command voltage adding value	[st_g.f4_ol_mode3_rate_refv]
com_f4_ol_mode3_max_refv	float32	Maximum command voltage in open loop mode	[st_g.f4_ol_mode3_max_refv]
com_u2_offset_calc_time	uint16	Current offset value calculation time [ms]	[st_g.u2_offset_calc_time]
com_f4_boot_ref_v	float32	Voltage command value	[st_g.f4_boot_ref_v]
com_u2_v_up_time	uint16	Voltage command value addition time	[st_g.u2_v_up_time]
com_u2_v_const_time	uint16	Voltage command value constant time	[st_g.u2_v_const_time]
com_s2_enable_write	int16	Enable to rewriting variables	

4.3 Operation Example for Analyzer

Following is an example demonstrating the motor driving operation using Analyzer. Operation is using "Control Window". Refer to 'In Circuit Scope manual' for 'Renesas Motor Workbench User's Manual'.

- Driving the motor
 - (1) The [W?] check boxes contain checkmarks for "com_s2_mode_system", "com_s2_ref_speed_rpm", "com_s2_enable_write"
 - (2) Type a reference speed value in the [Write] box of "com_s2_ref_speed_rpm".
 - (3) Click the "Write" button.
 - (4) Click the "Read" button. Confirm the [Read] box of "com_s2_ref_speed_rpm", "g_s2_enable_write".
 - (5) Type a same value of "g_s2_enable_write" in the [Write] box of "com_s2_enable_write".
 - (6) Type a value of "1" in the [Write] box of "com_s2_mode_system".
 - (7) Click the "Write" button.

Figure 4-2 Procedure – Driving the motor

- Stop the motor
 - (1) Type a value of "0" in the [Write] box of "com_s2_mode_system"
 - (2) Click the "Write" button.

(2)0	(2)Click "Write" button			
Control Window Read Variable Data Variable Lis	Commander User Button			
Variable Name C com_s2_mode_system IN	Data Type Scale R? Read W? Write NT16 Q0 🗹 0 🗹 0 🖛 (1)Write "0"			

Figure 4-3 Procedure – Stop the motor

- Error cancel operation
 - (1) Type a value of "3" in the [Write] box of "com_s2_mode_system"
 - (2) Click the "Write" button.

Figure 4-4 Procedure – Error cancel operation

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Dec.11.20	—	First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 "Standard": Computers: offee computing the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.