

永久磁石同期モータのエンコーダベクトル制御

RX24T/RX24U 実装編

R01AN3791JJ0110 Rev.1.10 2020.10.01

要旨

本アプリケーションノートは RX24T/RX24U マイクロコントローラを使用し、エンコーダ付永久磁石同期 モータをベクトル制御で駆動するソフトウェア及びモータ制御開発支援ツール「Renesas Motor Workbench」 の使用方法について説明することを目的としています。

本アプリケーションノート対象ソフトウェアはあくまで参考用途であり、弊社がこの動作を保証するものではありません。本アプリケーションノート対象ソフトウェアを使用する場合、適切な環境で十分な評価をしたうえで御使用下さい。

動作確認デバイス

本アプリケーションノートの対象ソフトウェアの動作確認は下記のデバイスで行っております。

- RX24T(R5F524TAADFP)
- RX24U(R5F524UEADFB)

対象ソフトウェア

本アプリケーションノートの対象ソフトウェアを下記に示します。

- · RX24T MRSSK SPM ENCD FOC CSP RV110 (CS+版)
- · RX24T_MRSSK_SPM_ENCD_FOC_CSP_RV110 (e²studio 版)
- · RX24U MRSSK SPM ENCD FOC CSP RV110 (CS+版)
- · RX24U MRSSK SPM ENCD FOC CSP RV110 (e²studio 版)

24V Motor Control Evaluation System for RX23T & RX24T/RX24U CPU Card 向け RX24T/RX24U エンコーダベクトル制御ソフトウェア

参考資料

- ・RX24T グループ ユーザーズマニュアル ハードウェア編 (R01UH0576JJ0200)
- ・RX24U グループ ユーザーズマニュアル ハードウェア編 (R01UH0658JJ0100)
- ・永久磁石同期モータのエンコーダベクトル制御 (アルゴリズム編) (R01AN3789JJ0100)
- ・Renesas Motor Workbench V.1.00 ユーザーズマニュアル (R21UZ0004JJ0100)
- ・Renesas Solution Starter Kit 24V Motor Control Evaluation System for RX24T (Motor RSSK) 取扱説明書 (R20UT3697JJ0120)
- ・RX24T CPU カード 取扱説明書(R20UT3696JJ0110)
- ・RX24UCPU カード 取扱説明書(R12TU0018JJ0100)

目次

1.	概説	3
	システム概要	
3.	制御プログラム説明	10
4.	モータ制御開発支援ツール「Renesas Motor Workbench」	29

1. 概説

本アプリケーションノートでは、RX24T/RX24Uマイクロコントローラを使用した永久磁石同期モータ (PMSM)のベクトル制御ソフトウェアの実装方法及びモータ制御開発支援ツール「Renesas Motor Workbench」の使用方法について説明します。なお、このソフトウェアは「永久磁石同期モータのエンコーダベクトル制御(アルゴリズム編)」のアルゴリズムを使用しています。

1.1 開発環境

本アプリケーションノート対象ソフトウェアの開発環境を表 1-1,表 1-2 に示します。

表 1-1 ハードウェアの開発環境(H/W)

マイコン	評価ボード	モータ ^{注 3}
RX24T(R5F524TAADFP) RX24U(R5F524UEADFB)	24V 系インバータボード & RX24T /RX24U CPU カード ^{注 1}	FH6S20E-X81 ^{注 2}

表 1-2 ソフトウェアの開発環境(S/W)

CS+バージョン	e2studio バージョン	ツールチェーン バージョン ^{注4}
V8.03.00	2020-04	CC-RX V3.02.00

ご購入、技術サポートにつきましては、弊社営業及び特約店にお問い合わせ下さい。

- 【注】 1. 24V 系インバータボード & RX23T CPU カード(RTK04M0006S01212BJ)、RX24T CPU カード(RTK0EM0009C03402BJ)、RX24U CPU カード(RTK0EMX590C02000BJ)は、ルネサスエレクトロニクスの製品です。
 - 2. FH6S20E-X81 は、日本電産サーボ社の製品です。 日本電産サーボ株式会社(www.nidec-servo.com/jp/)
 - 3. Renesas Solution Starter Kit 24V Motor Control Evaluation System for RX23T (Motor RSSK) 取扱 説明書(R20UT3697JJ0120)

第2章に記載しているインバータ仕様に対応したモータと接続することができます。 同梱しているモータ以外を使用する場合は、モータの仕様を十分に確認した上でご使用ください。

4. プロジェクトで指定するツールチェーン(C コンパイラ)と同一のバージョンがインポート指定先に存在しない場合は、ツールチェーンが選択されない状態になり、エラーが発生します。プロジェクトの設定画面でツールチェーンの選択状態を確認してください。

選択方法は、FAQ 3000404 を参照してください。

FAQ 3000404 : インポートしたプロジェクトをビルドすると「PATH でプログラム "make" が見つかりません」エラーになる (e^2 studio)

2. システム概要

本システムの概要を以下に説明します。

2.1 ハードウェア構成

ハードウェア構成を次に示します。

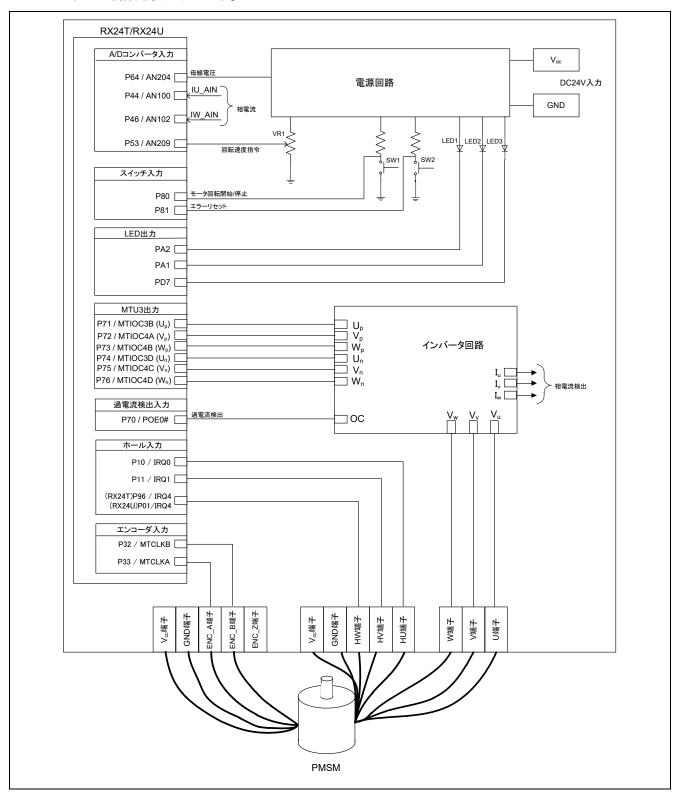


図 2-1 ハードウェア構成図

2.2 ハードウェア仕様

2.2.1 ユーザインタフェース

本システムのユーザインタフェース一覧を表 2-1 に示します。

表 2-1 ユーザインタフェース

項目	インタフェース部品	機能
回転位置/速度	可変抵抗(VR1)	回転位置/速度指令値入力(アナログ値)
START/STOP	トグルスイッチ(SW1)	モータ回転開始/停止指令
ERROR RESET	トグルスイッチ(SW2)	エラー状態からの復帰指令
LED1	黄緑色 LED	・モータ回転時:点灯
		• 停止時:消灯
LED2	黄緑色 LED	・エラー検出時:点灯
		• 通常動作時:消灯
LED3	黄緑色 LED	・位置決め完了: 点灯
		・位置決め未完了:消灯
RESET	プッシュスイッチ(RESET1)	システムリセット

本システムの端子インタフェースを表 2-2 に示します。

表 2-2 端子インタフェース

R5F524TAADFP 端子名	R5F524UEADFB 端子名	機 能
P64 / AN204		インバータ母線電圧測定
P53 / AN209		位置指令値入力用(アナログ値)
P80		START/STOP トグルスイッチ
P81		ERROR RESET トグルスイッチ
PA2		LED1 点灯/消灯制御
PA1		LED2 点灯/消灯制御
PD7		LED3 点灯/消灯制御
P44 / AN100		U 相電流測定
P46 / AN102		W 相電流測定
P71 / MTIOC3B		PWM 出力(Up)
P72 / MTIOC4A		PWM 出力(Vp)
P73 / MTIOC4B		PWM 出力(Wp)
P74 / MTIOC3D		PWM 出力(Un)
P75 / MTIOC4C		PWM 出力(V _n)
P76 / MTIOC4D		PWM 出力(Wn)
P10 / IRQ0		ホール U 相入力
P11 / IRQ1		ホール V 相入力
P96 / IRQ4	P01 / IRQ4	ホール W 相入力
P32 / MTCLKB		エンコーダB相入力
P33 / MTCLKA		エンコーダ A 相入力
P70 / POE0#		過電流検出時の PWM 緊急停止入力

2.2.2 周辺機能

本システムで使用する周辺機能一覧を表 2-3 に示します。

表 2-3 周辺機能対応表

12bit A/D	CMT	MTU3	P0E3
・回転位置指令値	・1 [ms]インターバルタイマ	・相補 PWM 出力	PWM 出力端子を
・各 U/W 相電流		・エンコーダ位相カウンタ	ハイインピーダンス状態
・インバータ母線電圧		・エンコーダカウントキャプチャ	にし、PWM 出力を停止

(1)12 ビット A/D コンバータ(S12ADF)

U 相電流(I_u)、W 相電流(I_w)、インバータ母線電圧(V_{dc})、回転速度指令値を、「シングルスキャンモード」で測定します(ハードウェアトリガを使用)。U 相電流(I_u)、W 相電流(I_w)の検出には、サンプル&ホールド機能を使用しています。

(2)コンペアマッチタイマ(CMT)

コンペアマッチタイマのチャネル 0 を、1 [ms]インターバルタイマとして使用します。

(3)マルチファンクションタイマパルスユニット 3(MTU3)

動作モードはチャネル毎に異なり、チャネル 3、4 では相補 PWM モードを使用して、デッドタイム付きの出力("High"アクティブ)を行います。

また、チャネル 1 では位相計数モードを使用して、カウンタがエンコーダからの AB 相入力信号の位相を検知し、アップカウントまたはダウンカウントをします。

チャネル0は速度計測用にフリーランタイマとして使用します。

(4)ポートアウトプットイネーブル 3(POE3)

過電流検出時(POE0#端子の立ち下りエッジ検出時)と出力短絡検出時はPWM 出力端子をハイインピーダンス 状態にします。

2.3 ソフトウェア構成

2.3.1 ソフトウェア・ファイル構成

ソフトウェアのフォルダとファイル構成を下記に示します。

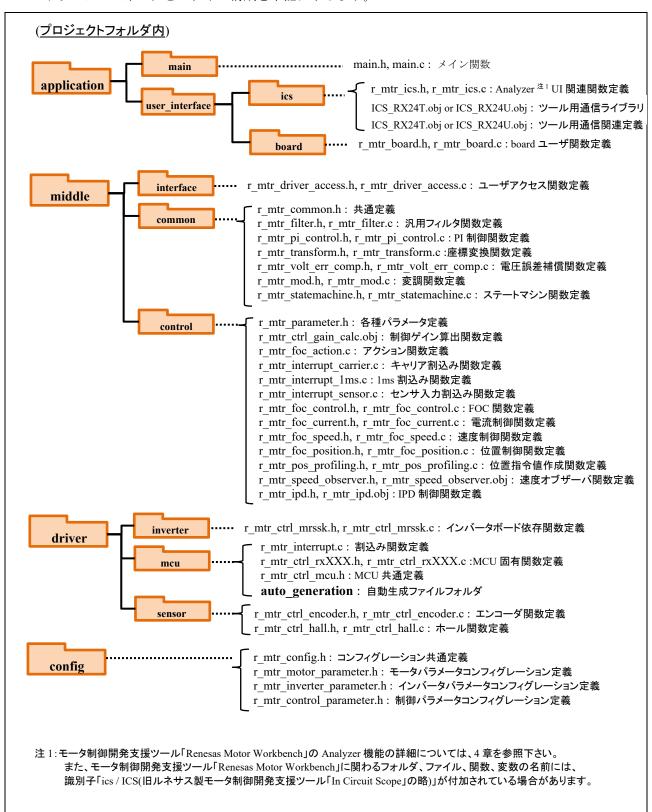


図 2-2 フォルダ・ファイル構成

2.3.2 モジュール構成

ソフトウェアのモジュール構成を図 2-3 に示します。

図 2-3 モータ制御ソフトウェアのモジュール構成

2.4 ソフトウェア仕様

本システムのソフトウェアの基本仕様を下記に示します。ベクトル制御の詳細に関しては「永久磁石同期モータのエンコーダベクトル制御(アルゴリズム編)」を参照してください。

表 2-4 エンコーダベクトル制御ソフトウェア基本仕様

項目		内 容	
制御方式	ベクトル制御		
モータ位置制御開始/停止	SW1(P91)のレベルにより判定("Low":制御開始 "High":停止)		
	または ICS から入力		
回転子磁極位置検出	インクリメンタル	エンコーダ(A 相、B 相) , ホールセンサ(UVW 相)	
入力電圧	DC 24V		
メインクロック周波数	80 [MHz]		
キャリア周波数(PWM)	20 [kHz](キャリア	周期:50 [µs])	
デッドタイム	2 [us]		
制御周期(電流)	100 [μs] (キャリア	周期の 2 倍)	
制御周期(速度・位置)	1 [ms]		
位置指令値管理	board UI	位置指令値の作成: VR1 による直接入力	
		(入力範囲)	
		-180° ~ 180°	
	ICS UI	位置指令値の作成:速度台形波方式による位置プロファイル	
		(入力範囲)	
		- 32768° ~32767°	
		(速度制限)	
	CW / CCW : 0~2000 [rpm]		
速度指令値管理	CW: 0 [rpm] to 2000rpm]		
	CCW: 0 [rpm] to 2000rpm]		
位置分解能	0.3°(エンコーダパルス:300[ppr]、4 逓倍時 1200[cpr])		
位置の不感帯 ^注	エンコーダ±1 カウント(±0.3°)		
各制御系固有周波数	電流制御系:300Hz		
	速度制御系:30Hz		
	位置制御系:10Hz	2	
コンパイラ最適化設定	最適化レベル	2 (-optimize=2) (デフォルト設定)	
	最適化方法	コード・サイズ重視の最適化 (-size) (デフォルト設定)	
ROM/RAM サイズ	ROM: 17.4KB		
	RAM: 4.6KB		
保護停止処理	以下のいずれかの条件の時、モータ制御信号出力(6本)を非アクティブにする		
	1. 各相の電流が 3.82 [A]を超過(100 [μs]毎に監視)		
	2. インバータ母線電圧が 28 [V]を超過(100 [µs]毎に監視)		
	3. インバータ母線電圧が 14[V]未満(100 [µs]毎に監視)		
	4. 回転速度が 3000 [rpm]を超過(100 [μs]毎に監視)		
	外部からの過電流検出信号(POE0#端子に立ち下りエッジを検出)及び出力短絡を検出した場合、		
	PWM 出力端子をハイインピーダンスにする		

【注】位置決め時のハンチング等を防ぐため、不感帯を設けています。

3. 制御プログラム説明

本アプリケーションノートの対象ソフトウェアについて説明します。

3.1 制御内容

3.1.1 モータ起動/停止

モータの起動と停止は、Analyzerからの入力またはSW1とVR1からの入力によって制御します。 SW1には汎用ポートが割り当てられ、メイン・ループ内で、端子を読み、"Low"レベルのときスタートスイッチが押されていると判断し、逆に"High"レベルのときはモータを停止すると判断します。

3.1.2 A/D 変換(モータ回転位置/速度指令値、インバータ母線電圧、モータ相電流)

(1)モータ回転位置/速度指令値

モータの回転位置/速度指令値は Analyzer からの入力または VR1 の出力値(アナログ値)を A/D 変換することによって決定します。 A/D 変換された VR1 の値は、以下の表のように、回転位置/速度指令値として使用します。

表 3-1 回転位置指令値の変換比

項目		変換比	チャネル
		(指令値:A/D 変換値)	
回転位置指令値	CW	0 [度]~180[度]:0800H~0FFFH	- AN209
凹粒过度相节他	CCW	0 [度]~-180[度]: 07FFH~0000H	
回転速度指令値	CW	0 [rpm]~2000[rpm] : 0800H~0FFFH	AINZU9
凹粒还泛拍卫胆	CCW	0 [rpm]~2000[rpm] : 07FFH~0000H	

(2)インバータ母線電圧

以下の表のように、インバータ母線電圧を測定します。変調率の算出、低電圧検出と過電圧検出(異常時は PWM 停止)に使用します。

表 3-2 インバータ母線電圧の変換比

項目	変換比 (インバータ母線電圧:A/D 変換値)	チャネル
インバータ母線電圧	0 [V]~111 [V]: 0000H~0FFFH	AN204

(3)U 相、W 相電流

以下の表のように、U相、W相電流を測定し、ベクトル制御に使用します。

表 3-3 U、W 相電流の変換比

項目	変換比 (U 相、W 相電流:A/D 変換値)	チャネル
U相、W 相電流	-10 [A]~10 [A]:0000H~0FFFH ^{注 1}	Iu : AN100 Iw : AN102

【注】 A/D 変換特性の詳細に関しては「RX24T グループ ユーザーズマニュアル ハードウェア編」,「RX24U グループ ユーザーズマニュアル ハードウェア編」を参照して下さい。

3.1.3 位置指令値の作成 (速度台形波方式)

エンコーダベクトル位置制御ソフトウェアでは、入力された目標値に対して速度を管理して制御周期ごと に指令値を作成する機能が実装されています。

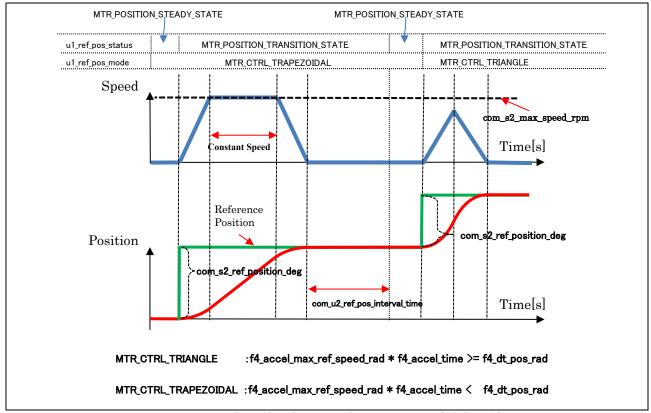


図 3-1 位置指令値の整形と三角形/台形型の速度指令値

目標位置以外に Analyzer から以下の変数を入力することで、加減速応答が可能な指令値を作成することができます。

- ·加速時間(com_f4_accel_time)
- ·最大速度(com s2 max speed rpm)
- ・整定待ち時間(com_u2_ref_pos_interval_time)

位置偏差と加速時間から求めた速度が加速時の最大速度よりも大きい場合に、台形状の速度指令値となります。

3.1.4 速度演算

本システムはより高いリアルタイム性及び低速時の速度分解能を得るため、エンコーダカウント(A,B 相信号エッジ)の間隔から速度を計算します。また、インクリメンタルエンコーダでは直交位相精度及び立ち上がり時間と立ち下がり時間の差を考慮し、エンコーダ信号の A 相または B 相一周期に進む角度と時間から速度を算出します。

(1). 速度計算方法

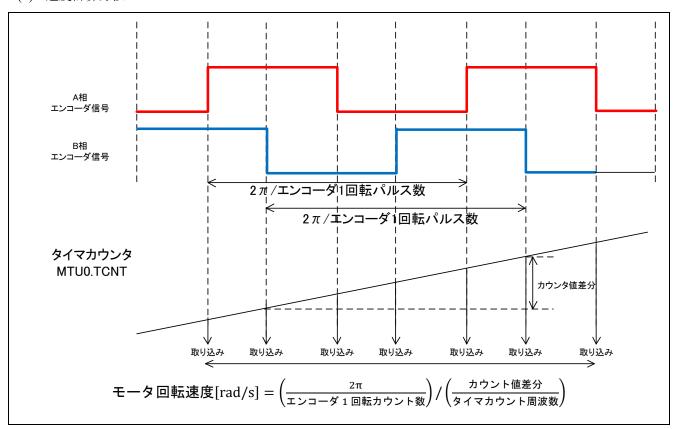


図 3-2 エンコーダによる速度計算

3.1.5 変調

本アプリケーションノート対象ソフトウェアでは、モータへの入力電圧はパルス幅変調(以降、PWM)によって生成し、PWM 波形は三角波比較法によって生成します。

(1). 三角波比較法

指令値電圧を実際に出力する方法の一つとして、キャリア波形(三角波)と指令値電圧波形を比較する事で出力電圧のパルス幅を決める三角波比較法があります。指令値電圧がキャリア波電圧より大きければスイッチをオン、小さければオフにする事で、正弦波状の指令値電圧を擬似的に出力する事が出来ます。

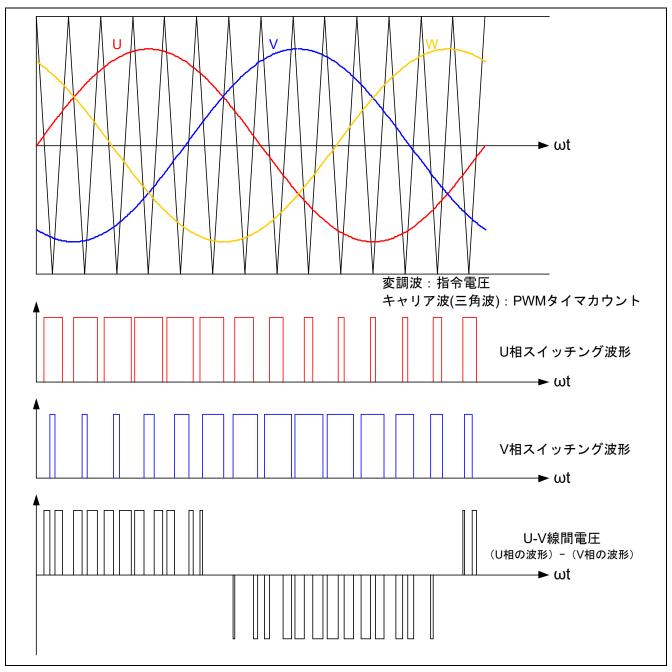


図 3-3 三角波比較法の概念図

図 3-4 のように、出力電圧パルスのキャリア波に対する割合をデューティと呼びます。

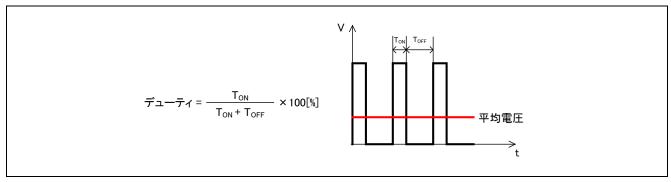


図 3-4 デューティの定義

また、変調率 m を以下のように定義します。

この変調率を、PWM デューティを決めるレジスタに反映させることで所望の制御を行います。

3.1.6 状態遷移

図 3-5 に本アプリケーションノート対象ソフトウェアにおける状態遷移図を示します。本アプリケーションノート対象ソフトウェアでは、「SYSTEM MODE」と、「RUN MODE」により状態を管理し、「Control Config」は、ソフトウェア内でアクティブになっている制御系を表しています。

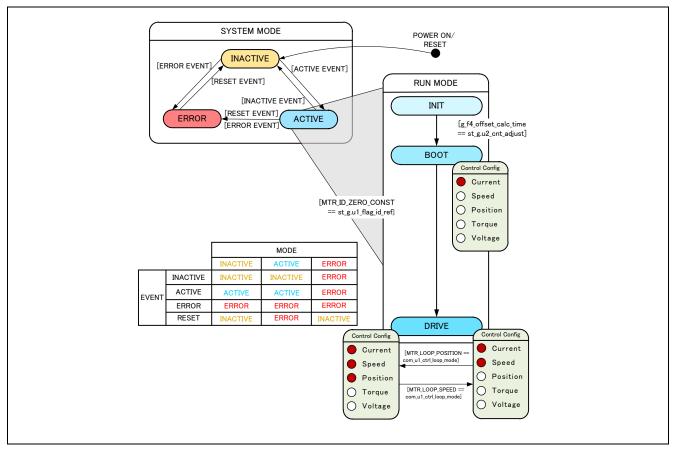


図 3-5 エンコーダベクトル制御ソフトウェアの状態遷移図

(1) SYSTEM MODE

システム動作状態を表します。各イベント(EVENT)の発生により、状態が遷移します。システムの動作状態は、モータ駆動停止(INACTIVE)、モータ駆動(ACTIVE)、異常状態(ERROR)があります。

(2) RUN MODE

モータの制御状態を表します。システムの状態が ACTIVE になると、モータの駆動状態が図 3-5 の様に遷移します。

(3) EVENT

各 SYSTEM MODE 中に EVENT が発生すると、その EVENT に従って、システム動作状態が図 3-5 中の表の様に遷移します。各 EVENT の発生要因は下記となります。

表 3-4 EVENT 一覧

イベント名	発生要因
INACTIVE	ユーザー操作により発生します
ACTIVE	ユーザー操作により発生します
ERROR	システムが異常を検出したときに発生します
RESET	ユーザー操作により発生します

3.1.7 始動方法

エンコーダベクトル制御ソフトウェアの始動制御内容を図 3-6、図 3-7 に示します。[MTR_MODE_INIT] モードで初期化、[MTR_MODE_BOOT]モードで強制励磁による磁石位置の初期化、[MTR_MODE_DRIVE] モードでベクトル制御が開始されます。d 軸電流、q 軸電流、速度、位置それぞれの指令値を管理するフラグによってモードをコントロールしています。

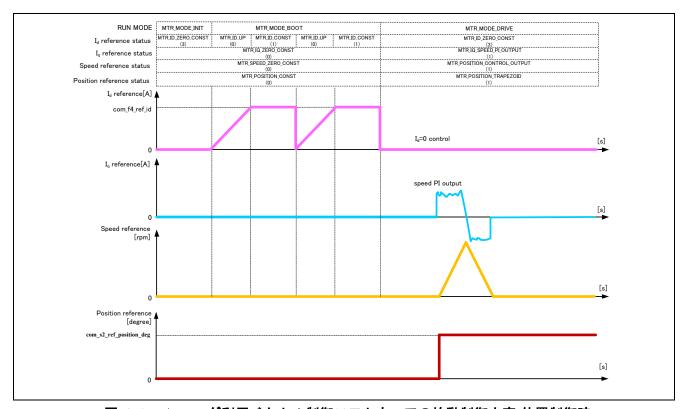


図 3-6 エンコーダ利用ベクトル制御ソフトウェアの始動制御内容(位置制御時)

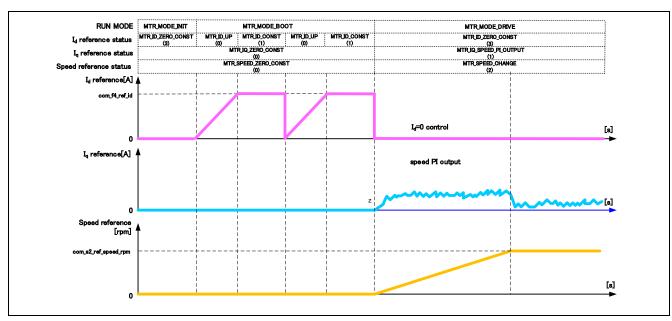


図 3-7 エンコーダ利用ベクトル制御ソフトウェアの始動制御内容(速度制御時)

エンコーダベクトル制御の詳細に関し、「永久磁石同期モータのエンコーダベクトル制御(アルゴリズム編)」を参照してください。

3.1.8 システム保護機能

本制御プログラムは、以下のエラー状態を持ち、それぞれの場合に緊急停止機能を実装しています。システム保護機能に関わる各設定値は表 3-5 を参照してください。

・過電流エラー

過電流エラーはハードウェア及びソフトウェア両方で検出されます。

ハードウェアからの緊急停止信号(過電流検出)により、PWM 出力端子をハイインピーダンス状態にします。

また、過電流監視周期でU相、V相、W相電流を監視し、過電流(過電流リミット値を超過)を検出した時に、緊急停止します(ソフトウェア検出)。

過電流リミット値はモータの定格電流[MP NOMINAL CURRENT RMS]から自動で計算されます。

・過電圧エラー

過電圧監視周期でインバータ母線電圧を監視し、過電圧(過電圧リミット値を超過)を検出した時に、緊急停止します。ここで、過電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

・低電圧エラー

低電圧監視周期でインバータ母線電圧を監視し、低電圧(低電圧リミット値を下回った場合)を検出した時 に、緊急停止します。ここで、低電圧リミット値は検出回路の抵抗値の誤差等を考慮して設定した値です。

・回転速度エラー

回転速度監視周期で速度を監視し、速度リミット値を超過した場合、緊急停止します。

表 3-5 各システム保護機能設定値

過電流エラー	過電流リミット値 [A]	3.82
過毛加工ク	監視周期 [µs]	100
海東庁・ニ	過電圧リミット値 [V]	28
過電圧エラー	監視周期 [µs]	100
低電圧エラー	低電圧リミット値 [V]	14
区电圧エク	監視周期 [µs]	100
回転速度エラー	速度リミット値 [rpm]	3000
四半4年1支上 ノー	監視周期 [µs]	100

3.2 エンコーダベクトル位置/速度制御ソフトウェア関数仕様

本アプリケーションノート対象ソフトウェアにおける制御処理は、主に 100[us]周期割り込み(キャリア割り込み)と、1[ms]周期割り込みと外部割込み(センサ入力)による割り込みにより構成されています。下記ブロック図にあるように、赤枠部が 100[us]周期毎に行われる処理で、青枠部が 1[ms]周期毎に行われる処理、緑枠部がセンサによる外部割込みにより行われる処理となります。

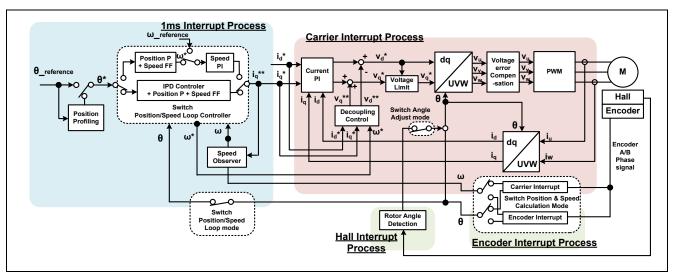


図 3-8 ベクトル制御のシステムブロック

ここでは、4つの割り込み関数と、各割り込み周期毎に実行される関数について仕様を図 3-6~図 3-9 にまとめます。また下記一覧には、エンコーダ位置/速度制御における主要な関数のみ記載しています。一覧に記載のない関数の詳細については、ソースコードを参照下さい。

表 3-6 割り込み関数・	一瞥
---------------	----

ファイル名	関数概要	処理概要
r_mtr_interrupt_carrier.c	mtr _foc_interrupt_carrier	100 [µs]毎に呼び出し
	入力:(mtr_foc_control_t *)st_foc / ベクトル制御用構造体ポイ	・電流、インバータ母線電圧検出
	ンタ	・ベクトル制御演算
	出力:なし	・電流 PI 制御
		・位置・速度推定演算
		・PWM duty設定
r_mtr_interrupt_1ms.c	mtr_foc_interrupt_1ms	1 [ms]毎に呼び出し
	入力:(mtr_foc_control_t *)st_foc / ベクトル制御用構造体ポイ	- 始動制御
	ンタ	・dq 軸電流、回転速度の指令値設定
	出力:なし	・速度 PI 制御
r_mtr_interrupt_sensor.c	mtr_angle_adj_hall_interrupt	外部割込み(ホール信号)による呼び出
	入力:(mtr_foc_control_t *)st_foc / ベクトル制御用構造体ポイ	しホールを使用した初期位置出し処理
	ンタ	・ホール信号取得
	出力:なし	・磁極位置の算出
		・ホール信号エラー処理
		・ホール割込みの禁止
	mtr_encd_pos_speed_calc_interrupt	外部割込み(エンコーダ信号)による
	入力:(mtr_foc_control_t *)st_foc / ベクトル制御用構造体ポイ	呼び出し
	ンタ	・エンコーダパルス間隔の算出
	出力: なし	・位置/速度の算出

表 3-7 100[us]周期割り込み関数内実行関数一覧(1/2)

ファイル名	関数概要	処理概要
r mtr ctrl mrssk.c	mtr_get_current_iuiw	各相電流の取得
	(float*)f4_iw_ad / W 相電流 AD 変換値	
	(uint8_t) u1_id / Motor ID	
	出力:なし	
	mtr_get_vdc	インバータ母線電圧の取得
	入力:(uint8_t)u1_id / Motor ID	
	出力: (float)f4 temp vdc / インバータ母線電圧	
r_mtr_foc_control.c	mtr_error_check	エラーの監視
1_11141_100_00114101.0	- − − 入力: (mtr foc control t*)st foc / ベクトル制御構造体	
	出力:なし	
	mtr_current_offset_adjustment	電流 A/D 変換値からオフセットを除
	入力:(mtr_foc_control_t *)st_foc / ベクトル制御構造体	去
	出力:なし	
	mtr_calib_current_offset	電流 A/D 変換オフセット算出
	入力: (mtr_foc_control_t *)st_foc / ベクトル制御構造体	
	出力: なし	
	mtr_encd_pos_speed_calc	エンコーダ信号から位置/速度の算出
	入力: (mtr_foc_control_t *)st_foc / ベクトル制御構造体	二)二 》 旧 3 % 与位置/ 建皮切弃日
	出力:なし	
	mtr_foc_voltage_limit	指令電圧制限
	入力: (mtr_foc_control_t *)st_foc / ベクトル制御構造体ポインタ	THE BELLINE
	出力:なし	
r_mtr_foc_control.c	mtr_angle_speed	磁極位置、速度の算出
1_11111_100_00111101.0	入力:(mtr_foc_control_t *)st_foc / ベクトル制御構造体	(低速時と高速時での算出方式の切換
	出力:なし	え処理)
r_mtr_foc_current.c	mtr_current_pi_control	電流 PI 制御
1_11111_100_00110111.0	入力:(mtr_current_control_t *)st_cc / 電流制御構造体	
	出力:なし	
	mtr_foc_current_decoupling	非干渉制御
	入力:(mtr_current_control_t *)st_cc / 電流制御構造体	31 1 13 1131
	(float)f4 speed rad / 回転速度	
	(mtr_parameter_t *)mtr_para / モータパラメータ構造体	
	出力: なし	
	mtr foc voltage limit	指令電圧制限
	入力: (mtr foc control t*)st foc / ベクトル制御構造体ポインタ	
	出力: なし	
r_mtr_transform.c	mtr_transform_uvw_dq_abs	UVW → dq 座標変換(絶対変換)
1_1111_114113101111.0	入力: (const mtr_rotor_angle_t *)p_angle / 位相管理用構造体ポイ	
	ンタ	
	(const float*)f4_uvw / UVW 相ポインタ	
	(float*)f4_dq / dq 軸ポインタ	
	出力:なし	
	mtr transform dq uvw abs	dq → UVW 座標変換(絶対変換)
	入力: (const mtr_rotor_angle_t *)p_angle / 位相管理用構造体ポイ	
	ンタ	
	(const float*)f4_dq / dq 軸ポインタ	
	(float*)f4_uvw / UVW 相ポインタ	
	出力:なし	
	I.	I .

表 3-8 100[us]周期割り込み関数内実行関数一覧(2/2)

ファイル名	関数概要	処理概要
r_mtr_volt_err_comp.c	mtr_volt_err_comp_main	電圧誤差補償処理
	入力:(mtr_volt_comp_t *)st_volt_comp / 電圧誤差補償構造体	
	(float*)p_f4_v_array / 3 相電圧補償量配列ポインタ	
	(float*)p_f4_i_array / 3 相電流配列ポインタ	
	(float)f4_vdc / インバータ母線電圧	
	出力:なし	
r_mtr_ctrl_rx24t.c /	mtr_inv_set_uvw	PWM duty 設定
r_mtr_ctrl_rx24u.c	入力:(float) f4_modu / U 相変調率	
	(float) f4_modv / V 相変調率	
	(float) f4_modw / W 相変調率	
	(uint8_t) u1_id / Motor ID	
	出力: なし	

表 3-9 1[ms]周期割り込み関数内実行関数一覧

ファイル名	関数概要	処理概要
r_mtr_ctrl_hall.c	mtr_angle_adj_hall_init	ホール使用磁極位置検出処理の初
	入力:(mtr_hall_t *)st_hc / ホールセンサ構造体	期化
	出力:(float) f4_hall_angle_rad / ホール検出角度	
r_mtr_foc_control.c	mtr_hall_error	ホール検出角度の異常判定と
	入力:(mtr_foc_control_t *)st_foc / ベクトル制御構造体	エラー処理
	(float) f4_hall_angle_rad / ホール検出角度	
	出力: なし	
r_mtr_ctrl_encoder.c	mtr_set_encd_tcnt	エンコーダカウンタレジスタのカ
	入力:(uint8_t) u1_id / モータ ID	ウント値の設定
	(uint16_t) u2_cnt_value / カウンタ初期値	
	出力: なし	
	mtr_encd_cnt_reset	エンコーダカウンタ変数の初期化
	入力:(uint8_t) u1_id / モータ ID	
	(uint16_t) u2_cnt_value / カウンタ初期値	
	出力: なし	
r_mtr_ctrl_rx24t.c /	mtr_speed_calc_timer_start	エンコーダタイマスタート
r_mtr_ctrl_rx24u.c	入力: (uint8_t) u1_id / モータ ID	
	出力: なし	
	mtr_irq_interrupt_enable	ホール割込みの許可
	入力:(uint8_t) u1_id / モータ ID	
	出力:なし	
r_mtr_foc_control.c	mtr_set_pos_ref	位置指令値の設定
	入力:(mtr_foc_control_t *)st_foc / ベクトル制御構造体	
	出力:(float32) f4_ref_pos_rad_calc / 位置指令值	
	mtr_set_speed_ref	速度指令値の設定
	入力:(mtr_foc_control_t *)st_foc / ベクトル制御構造体	
	出力:(float32) f4_speed_ref_rad _calc / 速度指令值	
	mtr_set_iq_ref	q 軸電流指令値の設定
	出力:(float32) f4_iq_ref_calc / q 軸電流指令值	
	mtr_set_id_ref	d 軸電流指令値の設定
	 入力:(mtr_foc_control_t *)st_foc / ベクトル制御構造体	
	出力:(float32) f4_id_ref_calc / d 軸電流指令値	

3.3 エンコーダ利用ベクトル制御ソフトウェアマクロ定義

本アプリケーションノート対象ソフトウェアで使用するマクロ定義一覧を次に示します。また下記一覧には、本アプリケーションノート対象ソフトウェアにおけるコンフィグレーションを設定するマクロ定義のみを記載しています。一覧に記載のないマクロ定義の詳細については、ソースコードを参照下さい。

表 3-10 "r_mtr_motor_parameter.h"マクロ定義一覧

ファイル名	マクロ名	定義値	備考
r_mtr_motor_parameter.h	MP_POLE_PAIRS	7	極対数
	MP_MAGNETIC_FLUX	0.006198f	磁束 [Wb]
	MP_RESISTANCE	0.453f	抵抗 [Ω]
	MP_D_INDUCTANCE	0.0009447f	d 軸インダクタンス [H]
	MP_Q_INDUCTANCE	0.0009447f	q 軸インダクタンス [H]
	MP_ROTOR_INERTIA	00000962f	イナーシャ [kgm^2]
	MP_NOMINAL_CURRENT_RMS	1.8f	定格電流[Arms]

表 3-11 "r_mtr_control_parameter.h"マクロ定義一覧

ファイル名	マクロ名	定義値	備考
r_mtr_control_parameter.h	CP_POSITION_OMEGA	10	位置制御系固有周波数[Hz]
	CP_SPEED_OMEGA	30	速度制御系固有周波数[Hz]
	CP_SPEED_ZETA	1.0f	速度制御系減衰係数
	CP_CURRENT_OMEGA	300	電流制御系固有周波数[Hz]
	CP_CURRENT_ZETA	1.0f	電流制御系減衰係数
	CP_SOB_OMEGA	200	速度オブザーバ固有周波数[Hz]
	CP_SOB_ZETA	1.0f	速度オブザーバ減衰係数
	CP_MIN_SPEED_RPM	0	最小速度(機械角) [rpm]
	CP_MAX_SPEED_RPM	2000	最大速度(機械角) [rpm]
	CP_SPEED_LIMIT_RPM	3000	速度制限値(機械角) [rpm]
	CP_OL_ID_REF	1.5f	d 軸電流指令値[A]

表 3-12 "r_mtr_inverter_parameter.h"マクロ定義一覧

ファイル名	マクロ名	定義値	備考
inverter_parameter.h	IP_DEADTIME	2.0f	デッドタイム [us]
	IP_CURRENT_RANGE	20.0f	電流 A/D 変換範囲 [A] (p-p 値)
	IP_VDC_RANGE	111.0f	インバータ母線電圧 A/D 変換範囲 [V]
	IP_INPUT_V	24.0f	インバータ入力電圧 [V]
	IP_CURRENT_LIMIT	5.0f	過電流リミット値 [A] ^注
	IP_OVERVOLTAGE_LIMIT	28.0f	過電圧リミット値 [V]
	IP_UNDERVOLTAGE_LIMIT	14.0f	低電圧リミット値 [V]

【注】シャント抵抗の定格電力から算出した値です。

表 3-13 "r_mtr_config.h"マクロ定義一覧

ファイル名	マクロ名	定義値	備考
config.h	IP_MRSSK	-	インバータ選択マクロ定義
	RX24T_MRSSK /	-	MCU 選択マクロ定義
	RX24U_MRSSK		
	MP_FH6S20EX81	-	モータ選択マクロ定義
	CP_FH6S20EX81	-	
	CONFIG_DEFAULT_UI	ICS_UI	デフォルト UI 選択
			ICS_UI : RWM の Analyzer を利用した UI
			BOARD_UI:ボードUI
	USE_VOLT_ERR_COMP	1	電圧誤差補償 0: Disable
			1: Enable
	ANGLE_ADJUST_MODE	MTR_ANGLE_ADJ_EXCIT	Select angle adjust mode
			MTR_ANGLE_ADJ_EXCIT:強制励磁モード
			MTR_ANGLE_ADJ_HALL: ホール使用モード
	POS_CTRL_MODE	MTR_CTRL_IPD	Select position control mode
			MTR_CTRL_PID: PID コントローラ
			MTR_CTRL_IPD: IPD コントローラ
	LOOP_MODE	MTR_LOOP_POSITION	Select control loop mode
			MTR_LOOP_SPEED: 速度ループモード
			MTR_LOOP_POSITION: 位置ループモード
	GAIN_MODE	MTR_GAIN_DESIGN_MODE	ゲインモード
			MTR_GAIN_DESIGN_MODE:PI ゲイン設計
			モード
			MTR_GAIN_DIRECT_MODE:PI ゲイン直接入 カモード
	MOD_METHOD	MOD_METHOD_SVPWM	変調方式
			MOD_METHOD_SPWM:正弦波変調
			MOD_METHOD_SVPWM:空間ベクトル変調

3.4 制御フロー (フローチャート)

3.4.1 メイン処理



図 3-9 メイン処理フローチャート

3.4.2 100[us]周期割り込み処理

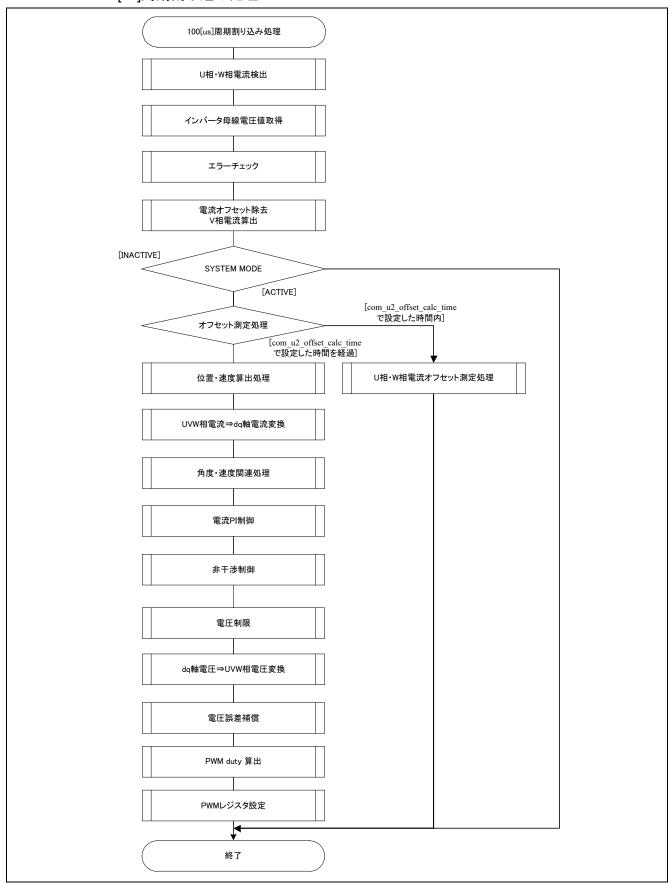


図 3-10 100 [µs]周期割り込み処理フローチャート

3.4.3 1 [ms]割り込み処理

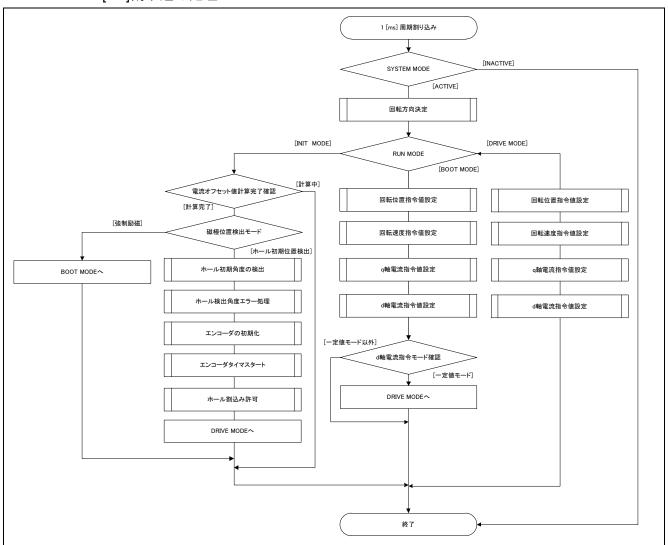


図 3-11 1 [ms]割り込み処理フローチャート

3.4.4 過電流検出割り込み処理

過電流検出割り込みは、本資料対象ソフトウェアにおける PWM 出力端子のハイインピーダンス制御条件である POE0#端子の立ち下りエッジ検出時、もしくは出力レベル比較動作による出力短絡検出時に発生する割り込みです。そのため、本割り込み処理の実行開始時点では既に PWM 出力端子はハイインピーダンス状態になっており、モータへの出力は停止しています。

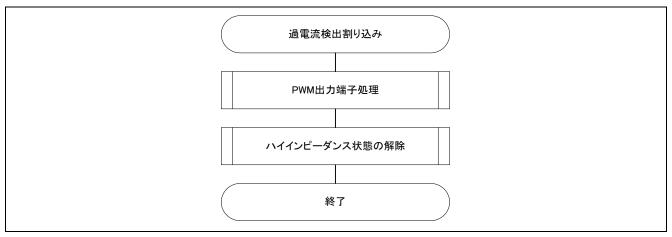


図 3-12 過電流検出割り込み処理フローチャート

3.4.5 エンコーダカウントキャプチャ割り込み処理

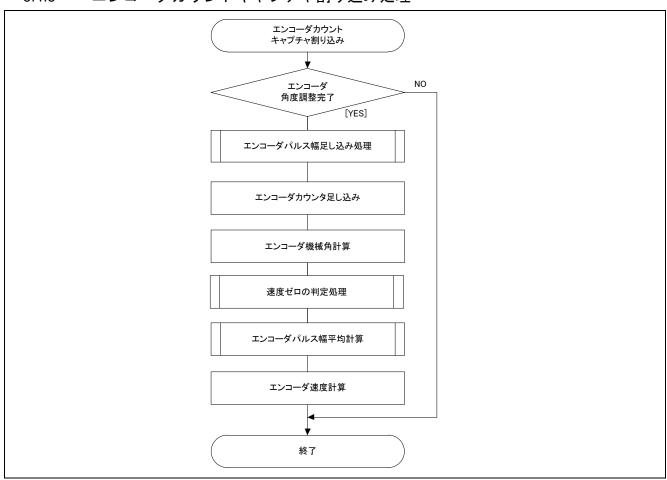


図 3-13 エンコーダカウントキャプチャ割り込みフローチャート

3.4.6 ホールエッジ割り込み処理

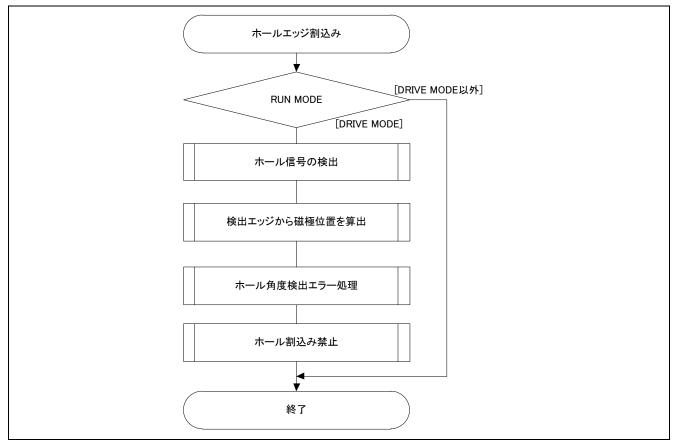


図 3-14 ホールエッジ割り込み処理フローチャート

4. モータ制御開発支援ツール「Renesas Motor Workbench」

4.1 概要

本アプリケーションノート対象ソフトウェアでは、モータ制御開発支援ツール「Renesas Motor Workbench」をユーザインタフェース(回転/停止指令、回転速度指令等)として使用します。使用方法などの詳細は「Renesas Motor Workbench V.1.00 ユーザーズマニュアル」を参照して下さい。

モータ制御開発支援ツール「Renesas Motor Workbench」は弊社 WEB サイトより入手してください。

File Nelp Option Connection COM4 Status Configuration CPU RX23T Motor Type Control Inverter MRSSK LV Project Ric Pub DAysor® Control Control

Main Window

図 4-1 Renesas Motor Workbench 外観

モータ制御開発支援ツール「Renesas Motor Workbench」の使い方

- ①ツールアイコン Workbench をクリックしツールを起動する。
- ②Main Panel の MENU バーから、[RMTFile] \rightarrow [Open RMT File(O)]を選択。 プロジェクトフォルダの"ics"フォルダ内にある RMT ファイルを読み込む。
- ③"Connection"の COM で接続されたキットの COM を選択する。
- ④"Select Tool"画面の"Analyzer"ボタンをクリックし、Analyzer 機能画面を表示する。
- ⑤"4.3 Analyzer 操作例"を元にモータを駆動させる。

4.2 Analyzer 機能用変数一覧

Analyzer ユーザインタフェース使用時の入力用変数一覧を表 4-1 に示します。なお、これらの変数への入力値は com_u1_enable_write に g_u1_enable_write と同じ値を書込んだ場合に「Middle Layer」内の対応する変数へ反映され、モータ制御に使用されます。ただし、(*)が付けられた変数は com_u1_enable_write に依存しません。

表 4-1 Analyzer 機能入力用変数一覧

Analyzer 用変数名	型	内容
com_u1_sw_userif (*)	uint8_t	ユーザインタフェーススイッチ
		0:Analyzer ユーザインタフェース使用(default)
		1:ボードユーザインタフェース使用
com_u1_mode_system(*)	uint8_t	ステート管理 0:ストップモード
		1 : ランモード
		3: リセット
com_u1_direction	uint8_t	回転方向 0:CW 1:CCW
com_u1_ctrl_loop_mode	uint8_t	制御ループの切換え 0:速度制御
		1:位置制御(default)
com_u1_ctrl_method_mode	uint8_t	制御方式の切換え 0:PID 制御(位置 P/速度 PI/電流 PI)
		1:IPD 制御(位置・速度 IPD
		+位置 FF+速度 FF+位置 P/電流 PI) (default)
		FF:フィードフォワード制御
com_u1_position_input_mode	uint8_t	位置指令値の入力方式切換え 0:0指令
		1:直接入力(ステップ入力)
		2:指令值作成(default)
com_u1_encd_angle_adj_mode	uint8_t	磁極位置検出モード 0:強制励磁による引き込み(default)
		1:ホールセンサによる検出
com_s2_ref_position_deg	int16_t	位置指令値(機械角) [度]
com_s2_ref_speed_rpm	int16_t	速度指令値 (機械角) [rpm]
com_u2_min_speed_rpm	uint16_t	速度最小値(機械角) [rpm]
com_u2_max_speed_rpm	uint16_t	速度最大値(機械角) [rpm]
com_u2_speed_limit_rpm	uint16_t	速度制限値(機械角) [rpm]
com_u2_hs_change_speed_rpm	uint16_t	切換え速度(高速時速度算出切換え機能) [rpm]
com_u2_hs_change_margin_rpm	uint16_t	切換え速度マージン(高速時速度算出切換え機能) [rpm]
com_u2_pos_interval_time	uint16_t	位置応答定常待ち時間
com_u2_pos_deadband	uint16_t	不感帯(エンコーダパルス数)
com_u2_pos_band_limit	uint16_t	位置誤差ゼロ範囲
com_u2_encd_cpr_mech	uint16_t	エンコーダパルス数
com_u2_offset_calc_time	uint16_t	電流オフセット値計算時間[ms]
com_u2_mtr_pp	uint16_t	極対数
com_f4_mtr_r	float	抵抗[Ω]
com_f4_mtr_ld	float	d 軸インダクタンス[H]
com_f4_mtr_lq	float	q 軸インダクタンス[H]
com_f4_mtr_m	float	磁束[Wb]
com_f4_mtr_j	float	ロータイナーシャ[kgm^2]
com_f4_nominal_current_rms	float	定格電流[Arms]

表 4-2 Analyzer 機能入力用変数一覧

Analyzer 機能入力用変数名	型	内容
com_f4_current_omega	float	電流制御系固有周波数
com_f4_current_zeta	float	電流制御系減衰係数
com_f4_speed_omega	float	速度制御系固有周波数
com_f4_speed_zeta	float	速度制御系減衰係数
com_f4_pos_omega	float	位置制御系固有周波数
com_f4_sob_omega	float	速度オブザーバ固有周波数
com_f4_sob_zeta	float	速度オブザーバ減衰係数
com_f4_id_kp	float	d 軸電流 PI 制御 比例ゲイン
com_f4_id_ki	float	d 軸電流 PI 制御 積分ゲイン
com_f4_iq_kp	float	q 軸電流 PI 制御 比例ゲイン
com_f4_iq_ki	float	q 軸電流 PI 制御 積分ゲイン
com_f4_speed_kp	float	速度 PI 制御 比例ゲイン
com_f4_speed_ki	float	速度 PI 制御 積分ゲイン
com_f4_pos_kp	float	位置 P 制御 比例ゲイン(PID 制御モード時)
		IPD 制御 比例ゲイン+ 位置 P 制御 比例ゲイン(IPD 制御モード時)
com_f4_ipd_speed_k_ratio	float	IPD 制御時 速度ゲインの倍率
com_f4_ipd_pos_kp_ratio	float	IPD 制御時 位置 P 制御量倍率
com_f4_ipd_err_limit_1	float	IPD 制御 偏差リミット 1
com_f4_ipd_err_limit_2	float	IPD 制御 偏差リミット 2
com_f4_accel_time	float	加速時間[s] (位置指令値作成用)
com_f4_ref_id	float	d 軸電流指令值[A]
com_f4_id_up_time	float	d 軸電流指令値加算時間[ms]
com_f4_limit_speed_change	float	速度指令最大增減幅[rad/s] (速度制御時使用)
com_u1_enable_write	uint8_t	変数書き換え許可

次にエンコーダ位置/速度制御の駆動評価を行う際に観測することの多い主要な構造体変数の一覧を表 4-3 に示します。Analyzer 機能で波形表示する際や変数の値を読み込む際に参考にして下さい。一覧にない変数の詳細についてはソースコードを参照下さい。

表 4-3 エンコーダ位置/速度制御主要変数一覧

エンコーダ位置/速度制御主要変数名	型	内容
st_foc.u2_error_status	uint16_t	エラーステータス
st_foc.st_cc.f4_id_ref	float	d 軸電流指令値 [A]
st_foc.st_cc.f4_id_ad	float	d 軸電流検出値 [A]
st_foc.st_cc.f4_iq_ref	float	q 軸電流指令値 [A]
st_foc.st_cc.f4_iq_ad	float	q 軸電流検出値 [A]
st_foc.f4_iu_ad	float	U 相電流検出値 [A]
st_foc.f4_iv_ad	float	V 相電流検出値 [A]
st_foc.f4_iw_ad	float	W 相電流検出値 [A]
st_foc.st_cc.f4_vd_ref	float	d 軸電圧指令値 [V]
st_foc.st_cc.f4_vq_ref	float	q 軸電圧指令値 [V]
st_foc.f4_refu	float	U 相電圧指令値 [V]
st_foc.f4_refv	float	V 相電圧指令値 [V]
st_foc.f4_refw	float	W 相電圧指令値 [V]
st_foc.st_sc.f4_ref_speed_rad_ctrl	float	速度指令値(電気角) [rad/s]
st_foc.st_sc.f4_speed_rad	float	速度検出値(電気角) [rad/s]
st_foc.st_pc.f4_ref_pos_rad_ctrl	float	位置指令値(電気角) [rad]
st_foc.st_pc.f4_pos_rad	float	位置検出値(電気角) [rad]

4.3 Analyzer 操作例

Analyzer 機能を使用し、モータを操作する例を以下に示します。操作は、"Control Window"で行います。"Control Window"の詳細は、「Renesas Motor Workbench V.1.00 ユーザーズマニュアル」を参照して下さい。

- モータを回転させる
- ① "com_u1_mode_system", "com_s2_ref_speed_rpm", "com_u1_enable_write"の [W?] 欄に"チェック" が入っていることを確認する。
- ② 指令回転速度を"com s2 ref speed rpm"の [Write] 欄に入力する。
- ③ "Write"ボタンを押す。
- ④ "Read"ボタンを押して現在の"com_s2_ref_speed_rpm","g_u1_enable_write"の [Read] 欄を確認する。
- ⑤ MCU 内の変数値へ反映させるため、"com_ul_enable_write" に④で確認した,"g_ul_enable_write"と同じ値を入力する。
- ⑥ "com ul mode system"の [Write]欄に"1"を入力する。
- ⑦ "Write"ボタンを押す。

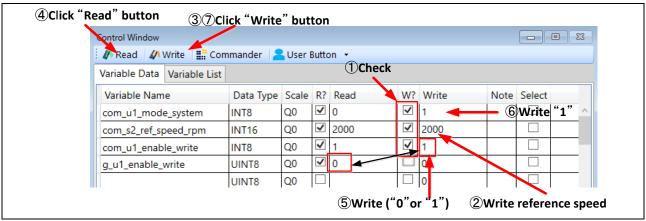


図 4-2 モータ回転の手順

- モータを停止させる
- ① "com_u1_mode_system"の[Write]欄に"0"を入力する。
- ② "Write"ボタンを押す。

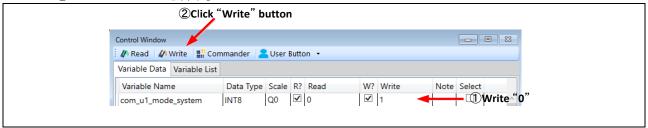


図 4-3 モータ停止の手順

- 止まってしまった (エラー) 場合の処理
- ① "com_ul_mode_system"の[Write]欄に"3"を入力する。
- ② "Write"ボタンを押す。

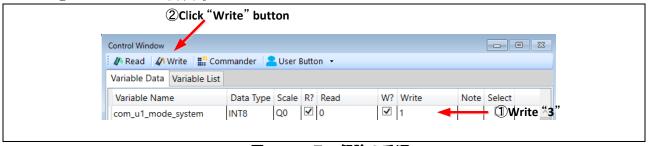


図 4-4 エラー解除の手順

ホームページとサポート窓口

ルネサス エレクトロニクスホームページ

http://japan.renesas.com/

お問合せ先

http://japan.renesas.com/contact/

すべての商標および登録商標は、それぞれの所有者に帰属します。

改訂記録

		改訂内容	
Rev.	発行日	ページ	ポイント
1.00	2017.04.05	-	新規発行
1.01	2017.07.07	-	ソフトウエアバージョン 1.01 更新
			一部の誤記を修正
1.10	2020.10.01	-	toolchain version の更新

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静雷気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替えたのクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、 V_{IL} (Max.) から V_{IH} (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、 V_{IL} (Max.) から V_{IH} (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス (予約領域) のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

任を負いません。

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品、本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、 著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではあ りません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責

- 6. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 9. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 10. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 12. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に 支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.4.0-1 2017.11)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/