
RZ/A1LU Software Package Application Note

R01AN4427EG0100 Rev.1.0 Page 1 of 64
Jul 11, 2018

RZ/A1LU group
Software Package
Introduction
This Application Note describes the operation of the software package created for the RZ/A1LU Stream it! V2.3. This
document provides a comprehensive overview of the system and its applications. For further details about the software
package please refer to the accompanying software.

This document assumes that the user has gone through the Quick Start Guide for the RZ/A1LU and is equipped with:

- RZ/A1LU Stream it! V2.3 Platform

- Stream it! TFT LCD Screen

- J-Link Debugger

- USB A to Mini-B Cable

- OV7670 Camera

- Okaya LCD PMODTM

- Ethernet Cable and connection to LAN

- USB Keyboard, Mouse and Memory Drive

Optional:

- USB Hub (to allow for concurrent USB connections)

Target Device
RZ/A1LU

Referenced Documents
Document Type Document Name Document No.
Quick Start Guide RZ/A1 Software Package Quick Start Guide R01QS0024EJ
User’s Manual RZ/A1LU Hardware Manual R01UH0437EJ
Application Note RZ/A1LU QSPI Flash Boot Loader R11AN0084EG
Application Note RZ/A1LU Framework Release Note R01AN4310EJ
Application Note RZ/A1LU SDK for Camera Sample Program R01AN4312EJ
Application Note RZ/A1LU Video Utility R01AN4313EJ
Application Note RZ/A1LU Touch Panel Utility R01AN4314EJ
Application Note RZ/A1LU GUI Sample Program R01AN4413EJ
Hardware Design Design information V2.3 https://www.renesas.com/en-

eu/solutions/key-
technology/human-
interface/rz-stream-it.html

R01AN4427EG0100

Rev.1.0
Jul 11, 2018

https://www.renesas.com/en-eu/solutions/key-technology/human-interface/rz-stream-it.html
https://www.renesas.com/en-eu/solutions/key-technology/human-interface/rz-stream-it.html
https://www.renesas.com/en-eu/solutions/key-technology/human-interface/rz-stream-it.html
https://www.renesas.com/en-eu/solutions/key-technology/human-interface/rz-stream-it.html

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 2 of 64
Jul 11, 2018

List of Abbreviations and Acronyms
Abbreviation Full Form
ANSI American National Standards Institute

ADC Analogue to Digital Converter

CDC Communication Device Class

CMOS Complementary Metal Oxide Semiconductor

CODEC Coder-Decoder. A device for encoding/decoding a digital data stream

DHCP Dynamic Host Configuration Protocol

EEPROM Electrically Erasable Programmable Read-Only Memory

GPIO General Purpose Input Output

HID Human Interface Device

HLD High Layer / Level Driver

HMI Human Machine Interface

LAN Local Area Network

LED Light Emitting Diode

LLD Low Layer / Level Driver

MCU Microcontroller Unit

MSC Mass Storage Class

OS Operating system

PMOD Pmod interface or Peripheral Module interface is an open standard defined by Digilent
Inc.

QSPI Quad Serial Peripheral Interface

QSG Quick Start Guide

RTOS Real Time Operating System

STDIO Standard Input Output

TFT Thin Film Transistor

USB Universal Serial Bus

Table 1-1 List of Abbreviations and Acronyms

RZ/A1LU group Software Package

R01AN4427EG0000 Rev.1.0 Page 3 of 64
Jul 11, 2018

Contents

1. Outline of the Software Package ... 6
1.1 Folder Structure .. 6

2. Description of the System .. 7
2.1 Hardware .. 8

2.1.1 Programming and Serial Console ... 8
2.1.2 Connectivity .. 8
2.1.3 HMI .. 8
2.1.4 Memory .. 8
2.1.5 USB ... 8
2.1.6 Analog .. 8
2.1.7 Audio .. 8

3. System Software ... 9
3.1 Configuration ... 9
3.2 Loading the Software Package .. 10
3.3 Operating System ... 11
3.4 STDIO ... 12

3.4.1 Stream configuration example .. 14
3.4.2 STDIO Files .. 14
3.4.3 STDIO Include files ... 14
3.4.4 STDIO lowsrc.c file ... 15
3.4.5 STDIO devlink.c file .. 15
3.4.6 Device Driver Function Table .. 16
3.4.7 Dynamic Device List ... 16
3.4.8 Dynamic Device Link Table ... 16
3.4.9 Static Device Mount Table ... 17

3.5 System Commands ... 18
3.6 Doxygen ... 19

4. Applications .. 20
4.1 ADC... 20

4.1.1 Software Configuration .. 20
4.1.2 Commands .. 20
4.1.3 Application .. 20
4.1.4 ADC Driver ... 20

4.2 Switch ... 21
4.2.1 Switch Driver ... 21

4.3 LED ... 21
4.3.1 Commands .. 21

RZ/A1LU group Software Package

R01AN4427EG0000 Rev.1.0 Page 4 of 64
Jul 11, 2018

4.3.2 LED Driver ... 21
4.4 PMOD.. 22

4.4.1 Software Configuration .. 22
4.4.2 Commands .. 22
4.4.3 Application .. 22
4.4.4 PMOD Middleware ... 23
4.4.5 RSPI .. 23

4.5 USB Mass Storage .. 24
4.5.1 Software Configuration .. 24
4.5.2 Commands .. 25
4.5.3 FATFS ... 25
4.5.4 USB Host Stack ... 26
4.5.5 Hardware Layer ... 29

4.6 Website .. 39
4.6.1 Software Configuration .. 39
4.6.2 Commands .. 39
4.6.3 Application .. 40
4.6.4 Ethernet Stack ... 42
4.6.5 WebIO Server and Files .. 49
4.6.6 WebIF ... 49
4.6.7 Website Files ... 49

4.7 Camera ... 50
4.7.1 Software Configuration .. 50
4.7.2 Commands .. 51
4.7.3 Menu ... 52

4.8 USB HID ... 55
4.8.1 Software Configuration .. 55
4.8.2 Commands .. 55
4.8.3 USB HID Mouse ... 55
4.8.4 USB HID Keyboard .. 56

4.9 USB CDC .. 57
4.9.1 Software Configuration .. 57
4.9.2 CDC Driver ... 57

4.10 Sound Application .. 58
4.10.1 Software Configuration .. 58
4.10.2 Commands .. 58
4.10.3 Audio Software Configuration ... 58
4.10.4 Playback Software Application ... 59
4.10.5 Record Software Application ... 60

4.11 Touchscreen Application ... 61

RZ/A1LU group Software Package

R01AN4427EG0000 Rev.1.0 Page 5 of 64
Jul 11, 2018

4.11.1 Software Configuration .. 61
4.11.2 Commands .. 61
4.11.3 Touchscreen Software ... 61

4.12 TES GUILIANI .. 62
4.12.1 Commands .. 62
4.12.2 GUI Software ... 62

Website and Support ... 63

RZ/A1LU group Software Package

R01AN4427EG0000 Rev.1.0 Page 6 of 64
Jul 11, 2018

1. Outline of the Software Package
The RZ/A1LU Software Package consists of drivers, middleware and applications. The software package is
designed so that the user can easily create their own bespoke applications using the RZ/A1LU Stream it! V2.3
development kit.

The main features of the software package include:

- Using a DHCP Server to create a Dynamic Webpage.

- Displays Images from a CMOS camera onto a TFT Touchscreen.

- USB functionality – Mass Storage, CDC, and HID (Keyboard and Mouse).

- Sound Interface provides a record and play functionality.

- TES Guiliani Graphics Display.

- All the above features are integrated with a FreeRTOS operating system.

1.1 Folder Structure
The Software Package’s folder structure allows for easy navigation of the source code. All source is included in
the ‘src’ folder.

Figure 1-1 ‘src’ Folder

The first level includes third party source arm, FreeRTOS, lwip1.4.1, TES and Webio. All of which are utilized
from the ‘Renesas’ Folder.

Figure 1-2 ‘renesas’ folder

The Renesas folder is made up of application, compiler, configuration, driver and middleware specific modules.
These modules make up the system. Application holds all of the high layer application level, the compiler holds
all of the compiler specifics, allowing for users to easily port the software package between different toolchains.
The configuration folder holds the configuration for the application, stdio interface, and OS abstraction layer. The
driver holds hardware specific code that control the microcontroller peripherals, whilst the middleware holds code
that is hardware independent.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 7 of 64
Jul 11, 2018

2. Description of the System
The following image provides a holistic view of the RZ/A1LU Stream-it! V2.3.

 Programming and Serial Console Connectivity

Figure 2-1 Overall System

EEPROM

(U7)

QSPI

(U14 & U16)

HID

Mouse

Keyboard

CDC

J-Link Lite
Debugger

(JTAG)
Serial USB

(CN10)
PHY

(U5)

Ethernet
Jack

(CN6)

Touchscreen

LCD

(CN7)

Camera

(CMOS)

Switch

(USER)

LED
(USER
LED)

RZ/A1LU MCU

Mass
Storage

SSIF

(CN14)

Audio Analog

ADC

(P1)

External Memory

HMI USB

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 8 of 64
Jul 11, 2018

2.1 Hardware
2.1.1 Programming and Serial Console
The board is powered through the USB function connector, CN10. This also provides a serial communication port to a
PC. A USB-A to USB mini-B is required for the for the PC connection and for the board to be powered.

To program the board a J-Link Lite debugger is required to connect to the connector labelled ‘JTAG’.

2.1.2 Connectivity
The RZ/A1LU Stream it! Development Kit has built-in ethernet connectivity. To use this the user will required to
connect a RJ45 Cable from CN6 to a Local Area Network.

2.1.3 HMI
The platform includes a TFT LCD Touchscreen which connects to CN7, and a camera TD7470 which connects to
CN12. The development board also includes a user-switch and a LED.

2.1.4 Memory
On board the platform includes an EEPROM and QSPI.

2.1.5 USB
A USB Hub (not supplied) will allow for multiple devices to be connected to the platform making full use of the USB
HID, Mouse and Keyboard and CDC. It is advised that the hub should be self-powered.

2.1.6 Analog
The variable resistor, P1 on the Stream it! board allows a user controllable analog voltage to be presented to the
microcontroller’s ADC input.

2.1.7 Audio
The RZ/A1LU Stream it! board uses a CODEC IC, MAX9856 (U13) to manage the acquisition and playback of audio
information via the 3.5mm audio jack CN14. The analogue sound output is passed to the jack from the CODEC headphone
connection and the microphone input on the jack is connected to the MIC input on the CODEC. The audio data connection
from the CODEC is connected to the MCU SSIF interface channel 0. There is also a separate IIC connection (on IIC
channel 1) to allow the MCU to configure the CODEC appropriately.

Figure 2-2 System Use

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 9 of 64
Jul 11, 2018

3. System Software
This section will describe the software that is common throughout the system. This includes information on the
operating system, STDIO interface and the system commands.

3.1 Configuration
The software allows for multiple applications to be used through the use of the configuration_app.h file. In this file the
user may enable or disable some of the features of the Application.

The file is located in src/Renesas/configuration/application_cfg.h and can be seen below. Note that this may differ from
the default state of configuration_app.h.
/* Enable support for stdio.h in application */
#define R_USE_ANSI_STDIO_MODE_CFG (R_OPTION_ENABLE)

/* Enable blink LED task in main.c */
#define R_SELF_BLINK_TASK_CREATION (R_OPTION_DISABLE)

/* Enable Ethernet drivers, WebServer Support */
#define R_SELF_LOAD_MIDDLEWARE_ETHERNET_MODULES (R_OPTION_DISABLE)

/* Enable control for src/application/app_adc sample application */
#define R_SELF_INSERT_APP_ADC (R_OPTION_DISABLE)

/* Enable PMOD RPSI src/application/app_pmod sample application */
#define R_SELF_INSERT_APP_PMOD (R_OPTION_DISABLE)

/* Enable control for src/application/app_sound sample application */
#define R_SELF_INSERT_APP_SOUND (R_OPTION_DISABLE)

/* Enable control for src/application/app_touchscreen sample application */
#define R_SELF_INSERT_APP_TOUCH_SCREEN (R_OPTION_DISABLE)

/* Enable control for src/application/app_sdk_camera sample application */
#define R_SELF_INSERT_APP_SDK_CAMERA (R_OPTION_DISABLE)

/* Enable control for GUI sample application */
#define R_SELF_INSERT_APP_GUI (R_OPTION_ENABLE)

/* Enable control to load /src/renesas/middleware/usb_host_controller */
#define R_SELF_LOAD_MIDDLEWARE_USB_HOST_CONTROLLER (R_OPTION_DISABLE)

/** Enable control to load /src/renesas/middleware/usb_host_controller */
#if R_SELF_LOAD_MIDDLEWARE_USB_HOST_CONTROLLER

/* Enable file system support when R_SELF_LOAD_MIDDLEWARE_USB_HOST_CONTROLLER is enabled */
#define INCLUDE_FILE_SYSTEM (R_OPTION_ENABLE)

/** Enable USB CDC Control via console if R_SELF_LOAD_MIDDLEWARE_USB_HOST_CONTROLLER is enabled*/
#define R_SELF_INSERT_APP_HOST_CDC_CONSOLE (R_OPTION_ENABLE)

#endif /* R_SELF_LOAD_MIDDLEWARE_USB_HOST_CONTROLLER */

/* Enable control for src/application/app_hid_mouse application */
#define R_SELF_INSERT_APP_HID_MOUSE (R_OPTION_DISABLE)

/* Enable control for src/application/app_cdc_serial_port application */
#define R_SELF_INSERT_APP_CDC_SERIAL_PORT (R_OPTION_DISABLE)

#if R_SELF_INSERT_APP_CDC_SERIAL_PORT

/* Configure driver mode when R_SELF_INSERT_APP_CDC_SERIAL_PORT is enabled */
/* R_SELF_APP_CDC_ASYNC_MODE (R_OPTION_ENABLE) = I/O in this mode is non-blocking */
/* R_SELF_APP_CDC_ASYNC_MODE (R_OPTION_DISABLE) = I/O in this mode is blocking */
 #define R_SELF_APP_CDC_ASYNC_ENABLE (R_OPTION_ENABLE)
#endif

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 10 of 64
Jul 11, 2018

There are some features which cannot coexist in the same program. Table 3-1 shows the features that are not
recommended to be enabled concurrently.

Feature one Feature two Reason

R_SELF_BLINK_TASK_CRE
ATION

LED commands Both features utilize the RZ/A1LU
Stream it!’s ‘USER’ LED.

R_SELF_BLINK_TASK_CRE
ATION

R_SELF_LOAD_MIDDLEWARE_
ETHERNET_MODULES

Both features utilize the RZ/A1LU
Stream it!’s ‘USER’ LED. The Welcome
Page on the Website will not be able to
control the LED.

R_SELF_LOAD_MIDDLEWARE
_ETHERNET_MODULES

R_SELF_INSERT_APP_GUI The Ethernet and LCD shares the
following pins:

P8.14, P8.13, P8.10 down to P8.0.

R_SELF_LOAD_MIDDLEWARE
_ETHERNET_MODULES

R_SELF_INSERT_APP_TOUCH_
SCREEN

The Ethernet and LCD shares the
following pins:

P8.14, P8.13, P8.10 down to P8.0.

R_SELF_INSERT_APP_CDC_S
ERIAL_PORT

R_SELF_APP_CDC_ASYNC_EN
ABLE

Both features use the USB function.

Table 3-1 Feature Conflicts

3.2 Loading the Software Package
QSPI flash is a serial peripheral interface with multiple data lines. A key feature of this interface is the ability to connect
two serial flash memories to a channel. The data bus size for each channel can be specified as 1-bit, 2-bits or 4-bits. The
RZ/A1LU device supports a single channel of QSPI memory.

To successfully run the software package a first program is required to be executed following a system reset. This
program is required to configure the device to a known state and then load’s the RZ/A1LU Software Package to
memory at 0x18080000.

For more information regarding the bootloader please refer to the Application Note ‘RZ/A1LU QSPI Flash Boot
Loader’ (R11AN0084EG).

To ensure the QSPI device has the correct QSPI loader simply run the ‘Program_RZ_A1LU_boot.bat’ found in the
util/dos_scripts/Program_RZ_A1LU_boot.bat.

Note that this script must be run from windows explorer.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 11 of 64
Jul 11, 2018

3.3 Operating System
The RZ/A1LU Software Package utilizes FreeRTOS V10.0.0 to provide an OS environment. FreeRTOS is a third-party
software package which allows for an OS functionality.

The following image provides the software architecture for the OS.

Figure 3-1 OS Hierarchical Software Layers

To allow for easy portability between different OS’ an operating system abstraction layer has been created which
encapsulates all of the common features between operating systems. The source code for the os_abstraction can be found
in src/Renesas/configuration/os_abstraction.

Using the operating system abstraction layer allows for OS objects such as tasks, mutexes, semaphores, events and
message queues to be created, with minimal changes to the application code using them if the underlying operating system
is changed.

os_abstraction

FreeRTOS

Application

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 12 of 64
Jul 11, 2018

3.4 STDIO
The implementation of this interface is based on the ANSI Standards with some differences made to suit operation in an
embedded system where specific parts of the ANSI standard may not be available such as the memory management
features and multitasking on an operating system.

The STDIO implementation provides a method for selecting a Device Driver to support any resource available in any
system. The main aim is to ensure that Device Drivers are portable and the appropriate Driver is selected for any Device
or Devices in, or attached to, the system.

There are two types of Device which are described in the document,

• Static Devices

• Dynamic Devices

Any of these devices may be opened when the exact symbolic link name is used. Dynamic devices need to be assessed to
find out the class of device.

The selection of the class of device is done externally usually by the application or stack that knows how to connect to
the device and returns a Class Name. This name is then compared to a Driver Name and causes the first capable driver to
be opened if it is not already opened.

This structured code implementation provides the developer with the opportunity to write a specific driver for a “resource”
and re-use it in any number of other systems. An example of this would be a USB device that could be used on multiple
systems using different architectures. It utilises the C language standard to ensure compatibility.

For the purposes of this document a resource can be considered as any item that provides a service or that can perform
read / write functions. Examples could be a peripheral device, a protocol library, or an entire protocol Stack
implementation. There are many other examples please review the supplied sample code. There are three layers to
consider.

• Application

The Application is written by the developer and uses the resources controlled by this implementation. Note that the
resources can also be used by other device drivers for example a EEPROM driver would implement the I2C protocol.

• Device Drivers

Device Drivers provide all the functionality required to use the device without needing to know how that support is
implemented. This is a form of abstraction.

• Hardware Layer

Device Drivers that access hardware or peripheral interfaces can (and should) be abstracted from the physical nature of
the device. This allows the Device Driver to remain constant handling the flow of information or controls, while the
hardware layer accesses the peripherals.

The Hardware layer is still part of the Device Driver as the interface is defined by the Device Driver implementation. The
hardware layer needs to be changed when porting the Driver to another device.

The Driver layer provides a common interface to the application and specific functionality to the device being controlled.
The hardware layer provides the specific configuration and control codes required for the physical hardware to be used
by the driver. This layer is intended to change between systems and architectures.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 13 of 64
Jul 11, 2018

Hardware Layer

Device Driver

STDIO API

Application

Device Selection

Device Driver

STDIO API

Hardware Layer

Device Driver

STDIO API

Device Driver

STDIO API

Abstracted Interface

Software Device
Driver

Hardware Device
Driver

Hardware
Device Driver
with multiple

Instances
Figure 3-2 Architecture Overview

The terms Abstraction and Object Orientation apply to this application note in that the device driver is defined and
contains the principles of an Object. The use of a hardware layer implements abstraction in that the Device driver is
abstracted from the specifics of the hardware being used by this layer. This means that the device driver becomes portable
between systems and architectures allowing maximum re-use of code that is available for a minimal amount of effort to
port the code between systems. Object orientation is not directly part of the C language, but the concept is the same in
this implementation.

Figure 3-2 shows the architecture of a system where there are different implementations of Device Drivers, all of these
have the common STDIO interface.

The ANSI IO library is based on streams. Each of the IO functions we will describe later contains a reference to the
stream in use. A stream can be considered as a river of information flowing from one point to the next. Each stream has
a source and a termination (or terminal). The number of streams that can be supported by the ANSI library will control
the maximum number of open files and devices at any one time.

There are three standard streams in UNIX and ‘C’ language implementations. These are commonly known as stdin, stdout
and stderr. Each of these relate to the base terminal interface that may or may not be available in any system.

Each stream that is supported requires some system resources. The number of streams that are supported in the
demonstration is defined in lowsrc.c

 /* Define the number of ANSI IO Streams */

#define IOSTREAM 32

Figure 3-2 Number of Streams

The value of this definition should be increased to allow the opening of all devices in the system and an additional number
relating to the number of open files required in the system.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 14 of 64
Jul 11, 2018

3.4.1 Stream configuration example
The demonstration application may use:

Device Streams In Use
The standard terminal (in, out and error) 3
Host Stack 1
Mass Storage device driver 1
Audio Device Driver 1
HID Mouse Device Driver 1
HID Keyboard Device Driver 1
Number of Files opened F
Total Streams 8+F

Table 3-2 Configuration Example

The default value of IOSTREAM is 32 to provide scope to add more devices or open more files. If memory optimisation
is required then reduce this number to the limits needed in your application.

3.4.2 STDIO Files
To implement the STDIO functionality in your system there are some additional files that need to be included in the
application. For normal STDIO operation these would be the stdio.h header file and lowsrc.c code file. When generating
a new application project that includes STDIO support the Renesas project generator will create an example lowsrc.c file
in the project for you. This file provides an example of the minimum support for STDIO. The details of the file and its
contents are described later. For this enhanced implementation a further file is added to the standard files this is devlink.c
and is described later.

3.4.3 STDIO Include files
Each C compiler will provide a standard library header to support the STDIO functionality. For renesas this file is called
stdio.h. this header file is included by the toolchain but can be opened and viewed by browsing to the toolchain include
file location.

To use the STDIO library the developer must include the stdio.h file in the application code. Other files may also need to
be included. For our implementation the files below are required.

 /* Standard IO library include file for STDIO support */

#include <stdio.h>

/* Standard library helper functions providing memory managaemnt functions. */

#include <stdlib.h>

/* Standard library string handling functions for selecting devices by name. */

#include <string.h>

Figure 3-3 System Include Files for a Device Driver

As part of the STDIO implementation in our example there are four other files that assist the implementation.

 /* Helper utility to allow opening of device drviers by name */

#include "r_devlink_wrapper.h"

/* Header file for devie driver configuration */

#include "r_devlink_wrapper_cfg.h"

/* Endian swapping and support utilities if required */

#include "endian.h"

Figure 3-4 Application Include Helper Files

Device linkage is covered later in this chapter, the other header files do not relate to this document but are worth
mentioning in context.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 15 of 64
Jul 11, 2018

3.4.4 STDIO lowsrc.c file
In the Renesas implementation of STDIO there are two files. The standard lowsrc.c file is required in all STDIO
implementations. This implementation adds another file r_devlink_wrapper.c which provides the additional linkage to
specify devices as well as files by using the same underlying structure. For more information please refer to the source
files in src/renesas/application/system.

3.4.5 STDIO devlink.c file
The enhancement to the ANSI STDIO implementation to support Device Drivers requires that the Application has a way
of opening a Device Driver by name. To achieve this a distinction is required between Files and Devices. To achieve this,
the File name is pre-pended with a DEVICE_INDENTIFIER string as shown in Figure 3-5 below.

Figure 3-5 Device identifier string definition

There are two types of devices that are supported in the system, static and dynamic devices. Static devices are devices
that physically exist either as a software driver or a hardware interface in the system and that can be ‘mounted’ when it
is running. These devices are always available. Dynamic devices are those that can be added and removed from the system.
The easiest description of this is a USB device connected to a USB Host system. Everyone can see how a user may add
a Mass Storage device and use it and then remove it frm the system. This can also be applied to other devices, such as
plug in cards, Devices connected to CAN busses or Ethernet terminals.

Device Drivers are opened by name by the Application, this results in a function pointer being made available to allow
access to the Device Driver function table. The architecture of this is shown in the diagram below:

devLink.c

_DEVICELINK Structure
Device Name : Driver Name Device function Table

Drv_YOUR_Device.c

Open

Close

Read

Write

Control

Application Open Device
by name

Driver
Implemen

tation
Provided by Application

Modification Required

Users Implementation
(Described in this document)

Figure 3-6 Device Linkage

To support this functionality the device link module maintains a list of static devices with a link to the Device Function
Table for each, and supported dynamic devices using a common link name that can be used to select the Device Driver.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 16 of 64
Jul 11, 2018

3.4.6 Device Driver Function Table
All Device Drivers must contain a Device Driver Function Table that contains the Device Driver name and pointers
to the standard open, close, read, write and control functions. This list is a constant data structure that is defined
at compilation. The devlink.c file supports stub functions for all of these standard functions to allow a device driver
that does not have one of the functions (e.g. IO) to specify the stub function to ensure that there is known
functionality in case of an erroneous call by the application to a uninitialized pointer.

An example of how this may be implemented is below. Note that the Keyboard driver implementation does not
have a ‘write’ function so the default stub has been specified.

 /* Define the driver function table for this device */

 const DEVICE gHidKeyboardDriver =

{

 "HID Boot Mode Keyboard Device Driver",

 kbdOpen,

 kbdClose,

 kbdRead,

 nodevIO,

 kbdControl

};

Figure 3-7 Sample Hid Keyboard Device Driver Function Table

The Device Driver Name as shown in Figure 3-7 is used by the Dynamic Device Link Table to match a Device Driver to
a Device Driver Link Name that is passed to the ‘open’ function by the application.

3.4.7 Dynamic Device List
The Dynamic Device List provides the system with a database of all dynamically connected devices. The method for
detecting and adding / removing devices is dependant upon the application and cannot be described here.

It is very important to realise that this Dynamic Device List must be protected from concurrent access throughout the
system and must therefore only be accessed through this API. The API must also utilise appropriate system locking
implementation to enforce this restriction.

3.4.8 Dynamic Device Link Table
The Dynamic Device Link Table is written by the developer for the application and provides connectivity between the
Device Driver Name an application (or another driver) passes to the open function and the Device Driver Link Name.

 static const struct _DEVICELINK

{

 /* The link name passed to the open function */

 const int8_t *const pszClassLinkName;

 /* The pszDeviceName member in the DEVICE structure */

 const int8_t *const pszDriverName;

} gDeviceLinkTable[] =

{

 { /* USB Mass Storage Class devices */

 "Mass Storage",

 "MS BULK Only Device Driver",

 },

 { /* USB HID Class keyboard devices */

 "HID Keyboard",

 "HID Boot Mode Keyboard Device Driver",

 }

 /* TODO: Add in other supported class drivers here */

};

Figure 3-8 Sample Dynamic Device Link Table

This table is a constant structure that is resident and created on compilation. All Dynamic devices that the system needs
to support must be added to this list by the developer at the same time as adding the device driver code into the link map.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 17 of 64
Jul 11, 2018

3.4.9 Static Device Mount Table
The Static Device Mount Table does not need to support the complexity of a managed list as all the Devices and associated
Drivers are known to be present in the system. The table therefore provides a direct correlation between the Symbolic
Link Name passed by the open function and the Device Driver Function Table Pointer.

A sample Mount Table is shown below.

 static const struct _MOUNTTABLE

{

 int8_t *pszStreamName;

 DEVICE *pDeviceDriver;

} gMountTable[] =

{

 /* ANSI Standard IO Devices */

 "stdin", &gScif3Driver,

 "stdout", &gScif3Driver,

 "stderr", &gScif3Driver,

 /* System specific devices */

 "swtimer", &gTimerDriver,

 "usbh", &gUsbHostDriver,

 "rtc", &gRtcDriver,

 "kbd", &gStdInDriver,

 "lcd", &gLcdDriver,

 "eeprom", &gAT24C16Driver,

 "ether0", &gEtherCDriver,

 "socket", &gSocketDriver,

 "fsocket", &gFileSocketDriver,

 "udpecho", &gUdpSocketDriver

 /* TODO: Add other devices in here */

};

Figure 3-9 Sample Static Device Linkage List

This table includes software devices such as the Ethernet Socket Driver along with hardware Drivers for example the
LCD Driver. All of these dvices are present in the system at comilation time. The DEVICE pointers specifed are added
to the table by the compiler.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 18 of 64
Jul 11, 2018

3.5 System Commands
All of the systems applications and features can be accessed via the command line interface. This interface operates via
a Communication Port to the PC. The function USB (CN10) allows for a USB to Mini-B wire to be connected to a PC.
To access the serial line a serial terminal is requires such as PuTTY or Tera Term. The serial command works on the
following set up:

- Baud Rate: 115200
- Data Bits: 8
- Parity: None
- Stop Bits: 1
- Flow Control: None
- COM Port: As shown in Windows™ Device Manager.

Once accessed the user should see the following message:

 RZ/ALU RZ/A Software Package Ver X.XX.XXX
 Copyright (C) Renesas Electronics Europe.

 REE>

Where X.XX.XXX is the release version of the software.
Following this the user may enter any system commands. Following this the user may then explore the application
commands. The system commands can be seen in the below table:

Command Description

?
F1
help

Displays the complete supported command list to the terminal window.
All supported commands and associated help text will be output.

F2 Retypes the last command line so it can be changed or repeated.
F3 Repeats the last command exactly as typed.
sys Shows the system resource usage information.
task List tasks from the task list.
mperf Executes a memory performance test.

Generates a buffer in the available RAM and executes the highest performance copy available to
the system. If a DMA channel is available and supported then this will be used.

led a s Turn LED on (s=1), off (s=0) or toggle (s=^). Note that the Stream It! Development Kit only has one
user LED, so the letter ‘a’ should be replaced with a ‘0’. For example, to toggle the user LED, type
“led 0 ^”.

restart Invokes a restart of the MCU. This is usually achieved by allowing the watchdog timer to time out,
creating an MCU reset.
Note: This is only applicable to code run from ROM. Restart will not operate correctly if using an E1 debugger.

mem a l Read any memory locations in the system memory map – intended as a debugging tool.
No address checking is performed – ensure address entered is a valid memory location.
a = address (HEX)
l = length in lines of 16 bytes.

logout Exit the current login shell.
Note that on exiting the serial console a new console will immediately be launched.

date
DD/MM/YYYY

Set the date.

time hh:mm:ss Set the time.
ver Shows the version of the software package.
handles Lists the opened driver information.
drivers Lists the driver table.

Table 3-3 System Commands

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 19 of 64
Jul 11, 2018

3.6 Doxygen
Doxygen is a third-party tool used for generating documentation from the source code. The RZ/A1LU software supports
this tool, allowing users to generate document to further their understanding of the source code.

For further information regarding Doxygen please refer to their website. The Doxygen output for the RZ/A1LU, in html
form, can be found in the doc folder in the root folder of the software package source, compressed into file html.zip. The
following sections will refer to Doxygen for more information regarding drivers, middleware and applications.

When unzipped, the homepage for Doxygen can be found relative to the root of the zip file at: html/index.html

Figure 3-10 Index.html

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 20 of 64
Jul 11, 2018

4. Applications
The following sections will provide information on each application that is included in the software package. Each
subsection will contain a block diagram containing hierarchical software layers.

4.1 ADC
The ADC demo allows for ADC Port 1 Pin 10 to be used as ADC Channel 2 and read the pin’s associated voltage. The
pin that can be altered by varying the potentiometer P1.

Figure 4-1 ADC Hierarchical Software Layer

4.1.1 Software Configuration
To enable, set R_SELF_INSERT_APP_ADC to R_OPTION_ENABLE. To disable, set it to R_OPTION_DISABLE. See 3.1
Configuration for further details.

/** Enable control for src/application/app_adc sample application */
#define R_SELF_INSERT_APP_ADC (R_OPTION_ENABLE)

4.1.2 Commands
The RZ/A1LU Stream it! Board ADC application has the following ADC commands:

Command Description

Adcdemo Executes the ADC Application
Table 4-1 ADC Commands

4.1.3 Application
The application displays the real time value of the 12-bit ADC. To terminate the demo press any key.

Figure 4-2 ADC Application

4.1.4 ADC Driver
The ADC Driver API can be seen in Doxygen under RZ/A1LU Software Package -> Modules -> Drivers (Not POSIX)
-> ADC RZA1LU Driver

ADC Command

ADC Application

ADC Driver

Potentiometer (P1)

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 21 of 64
Jul 11, 2018

4.2 Switch
The switch is connected Port 7 pin 9 can be used at any time. Pressing the USER switch results in the following
message.

Figure 4-3 Switch Application

The switch pin is initialized as an interrupt on start up.

4.2.1 Switch Driver
The switch Driver API can be seen in Doxygen under RZ/A1LU Software Package -> Modules -> Drivers (Not POSIX)
-> SWITCH RZA1LU Driver

4.3 LED
The ‘USER’ LED is connected to the Port 7 Pin 8 and is active high. To control the LED the following commands are
available.

Figure 4-4 LED Hierarchical Software Layer

4.3.1 Commands
Table 4-2 shows the commands available for the LED.

Command Description

led a s <CR> Turn LED on (s=1), off (s=0) or toggle (s=^). Note that the Stream It! Development Kit only has
one user LED, so the letter ‘a’ should be replaced with a ‘0’. For example, to toggle the user LED,
type “led 0 ^”.

Table 4-2 LED Commands

4.3.2 LED Driver
The LED driver uses the interface as discussed in section 3.4. The LED Driver allows for the control of numerous LEDs
although the RZ/A1LU Stream it! only has one.

The LED Driver API can be seen in Doxygen under RZ/A1LU Software Package -> Modules -> Drivers(POSIX) ->
RZA1LU Stream-IT LED driver.

LED Commands

LED Driver

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 22 of 64
Jul 11, 2018

4.4 PMOD
The PMODTM Application allows for three different images to be displayed on the Okaya PMOD LCD.

Figure 4-5 PMOD Hierarchical Software Layer

4.4.1 Software Configuration
To enable, set R_SELF_INSERT_APP_PMOD to R_OPTION_ENABLE. To disable, set it to R_OPTION_DISABLE. See 3.1
Configuration for further details.

/** Enable PMOD RPSI src/application/app_pmod sample application */
#define R_SELF_INSERT_APP_PMOD (R_OPTION_ENABLE)

4.4.2 Commands
The PMOD application has the following commands:

Command Description

pmoddemo Executes the PMOD Application
Table 4-3 PMOD Commands

4.4.3 Application
The USER may attach any PMOD compatible device to the connector, this will require for the user to create their own
bespoke application. This software package is geared to display three images: a desert, hydrangeas and penguins on the
Okaya Pmod LCD.

Figure 4-6 ADC Application

PMOD Command

PMOD Application

PMOD Middleware

RSPI Driver

OKAYA PMOD LCD

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 23 of 64
Jul 11, 2018

The application can be found in src/renesas /application/app_pmod. The images are stored int bitmap image files in the
‘graphics’ folder. The BMP file format is capable of storing two-dimensional digital photo images both in monochrome
and corolur in various depths.

The bitmap image file consists of fixed-size structures (headers) as well as variable-size structures appearing in a
predetermined sequence. Many different versions of some of these structures can appear in the file, due to the long
evolution of this file format.

The format used in this application can be seen in Table 4-4. These bitmaps are then passed to a PMOD Driver.

Structure
name Optional Size Purpose Comments

Bitmap
file
header

No 14 bytes To store general information about the
bitmap image file

Not needed after the file is loaded in
memory

DIB
header No

Fixed-size
(7 different versions
exist)

To store detailed information about
the bitmap image and define the pixel
format

Immediately follows the Bitmap file
header

Extra bit
masks Yes 3 or 4 DWORDs

(12 or 16 bytes) To define the pixel format

Present only in case the DIB header is
the BITMAPINFOHEADER and the
Compression Method member is set to
either BI_BITFIELDS or
BI_ALPHABITFIELDS

Color
table

Semi-
optional Variable-size To define colors used by the bitmap

image data (Pixel array) Mandatory for color depths ≤ 8 bits

Gap1 Yes Variable-size Structure alignment An artifact of the File offset to Pixel
array in the Bitmap file header

Pixel
array No Variable-size To define the actual values of the

pixels

The pixel format is defined by the DIB
header or Extra bit masks. Each row in
the Pixel array is padded to a multiple
of 4 bytes in size

Gap2 Yes Variable-size Structure alignment An artifact of the ICC profile data
offset field in the DIB header

ICC color
profile Yes Variable-size To define the color profile for color

management

Can also contain a path to an external
file containing the color profile. When
loaded in memory as "non-packed
DIB", it is located between the color
table and Gap1.

Table 4-4 Bitmap Structure

4.4.4 PMOD Middleware
The pmod_lcd driver supports the OKAYA LCD. The middleware can be found at: src/renesas/middleware. The
middleware allows for the control of the PMOD Driver and allows for STDIO interface as described in section 3.4.

The PMOD Middleware API can be seen in Doxygen under RZ/A1LU Software Package -> Modules -> Middleware
(POSIX) -> PMOD API.

4.4.5 RSPI
The RSPI Driver API can be seen in Doxygen under RZ/A1LU Software Package -> Modules -> Drivers (Not POSIX)
-> RSPI RZA1LU Driver.

https://en.wikipedia.org/wiki/DWORD
https://en.wikipedia.org/wiki/Color_depth

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 24 of 64
Jul 11, 2018

4.5 USB Mass Storage
USB mass storage device class (MSC) is a set of computing communication protocols that allows for the USB device to
be accessible from a host PC. This allows the host to transfer data to the USB device.

The software package makes use of the FAT file system, to allow files to be transferred from the RZA1LU to the USB
Drive. This can either be done through the command line or through the website as described in section 4.6.

Figure 4-7 USB Hierarchical Software Layer

4.5.1 Software Configuration
To enable, set R_SELF_LOAD_MIDDLEWARE_USB_HOST_CONTROLLER to R_OPTION_ENABLE. To disable, set it to
R_OPTION_DISABLE. See 3.1 Configuration for further details.

/** Enable control to load /src/renesas/middleware/usb_host_controller */
#define R_SELF_LOAD_MIDDLEWARE_USB_HOST_CONTROLLER (R_OPTION_ENABLE)

Ethernet Application

USB Commands

FATFS

USB Host Stack

Peripheral Device Driver

USB Device

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 25 of 64
Jul 11, 2018

4.5.2 Commands
These commands can be called from the serial terminal and allow for file and USB MSC manipulation.

Command Description

n: Multiple derives are supported in the implementation. Each drive is allocated a letter starting form
a. This command allows the user to select a working disk drive to "n".

Vol Interrogate the working drive and provide details of the volume information.
type f Reads a text based file and output the characters to the current console. Do not use this command

on files that include non-alphanumeric characters.
copy s d Copies file "s" to destination "d". The full path can be specified. If no path is specified the current

working drive directory will be used.
view f Similar to the type command; however, this will output any type of file and display the contents in

mixed hex and character format.
dir List the working directory contents to the current terminal.
pwd Print the working directory to the current terminal.
cd d Change working directory to "d" where “d” is the full path or a subdirectory or ‘..’ to return to the

parent directory.
del f Delete file "f" from the specified path. If no path is specified then the current directory is used. There

is no confirmation of this command.
md n Make a new directory "n" in the working directory. Full paths cannot be used.
rd d Delete directory "d" from the specified path. If no path is specified then the current directory is used.

There is no confirmation of this command.
ren s d Rename / move file "s" to "d".
disk List the available disk drives attached to the system.
eject d Eject disk "d". Ensures all files are closed on the disk.
dismount Dismount all mounted drives. This ensures all files are closed on all drives and their allocated

resources are released.
mount Mount all Mass Storage devices that are detected in the system. This is normally done when the

device is detected. This would be needed if the drives have been “dismounted”.
Table 4-5 USB MSC Commands

4.5.3 FATFS
FatFs is a free source third party file system. The files system is a generic FAT/exFAT filesystem module for embedded
systems. The FatFs module is written in compliance with ANSI C (C89) and completely separated from the disk I/O layer.
Therefore, it is device independent.

As a result, FATFS may be used on various memory devices such as QSPI, NAND, NOR, etc. The software package
implements this on USB Mass storage.

The FATFS source can be found at; src/renesas/middleware/fatfs. In this folder an abstraction layer is implemented in the
r_fatfs_abstraction.c to allow for users to easily port another File system (such as VFAT and FullFAT). Functions from
this file are called in the application.

The FATFS interfaces with the USB manipulation through the diskio.c file.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 26 of 64
Jul 11, 2018

4.5.4 USB Host Stack
The USB Host Stack is comprised of a Protocol Driver, Peripheral Driver, and a Hardware Interface. The diagram below
shows a simplified block diagram of the USB stack detailing the source files used. The USB Host Protocol Driver is
abstracted from the hardware driver by the interface functions defined in usbHostApi.h. Class or application specific
device drivers interface with the USB Host Protocol Driver through the functions defined in usbhDeviceApi.h.

USB Class Driver USB Class Driver

h

usbhHostApi
Lower level

device driver
interface
functions

c

usbhClass
USB Device

indentification
and driver
association

c

usbhEnum
USB Device
enumeration

c
ddusbhMain
USB Device
information

database and
transfer list

management

h

usbhDeviceApi
Upper level

device driver
interface
functions

h

usb110
USB protocol

definitions and
data structures.

h

ddusbh
USB Host

protocol driver
common

header file

USB Host Protocol Driver

c

usbhInterrupt
Interrupt
transfer
handling
functions

c

usbhControl
Control transfer

handling
functions

c

usbhBulk
Bulk transfer

handling
functions

h

usbhDriverApi
Lower level

device driver
interface
functions

h
usbhDriverInter

nal
Host driver
common

function header
file

USB Host Peripheral Driver

c
usbhDriver

Initialisation,
interrupt and
data transfer

handling
functions

c
usbhIsochronou

s
Isochronous

transfer
handling
functions

c

usbhPipe
Pipe utility
functions

h

devLink
Device driver

static and
dynamic linking

functions

h

vect
Interrupt vector

table entry
functions

USB Host Hardware Interface

c

hwUsbXh_Platform
Hardware interface functions

for the peripheral driver

h

hwDmaIf
DMA interface

functions

h

hwTimer_xxxx
Timer functions

h

Optional
cache

Cache control
functions

Driver Stack Main Entry Point
usbHostOpen() in hwUsbh.c

G
en

er
ic

 S
ou

rc
e

co
de

H
ar

dw
ar

e
Sp

ec
ifi

c
So

ur
ce

 C
od

e

c/h

r_usbh_driver
Hardware

Abstraction and
Peripheral

Driver

Figure 4-8 USB Host Stack

The Host Stack has some key configuration definitions that need to be set to suit the target hardware and the
peripheral in the device. These definitions can be found in the usbConfig.h header file. Care must be taken to ensure
that the configuration selected matches the capability of the peripheral. For the R8A66597 device the following
configuration is valid for a single port implementation:

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 27 of 64
Jul 11, 2018

 /* Define the number of root ports 1 or 2 */

#define USBH_NUM_ROOT_PORTS 1

/* Define high speed support (1 or 0)*/

#define USBH_HIGH_SPEED_SUPPORT 1

/* Define the FIFO access size only 32 and 16 are valid */

#define USBH_FIFO_BIT_WIDTH 32

/* The maximum number of host controllers supported */

#define USBH_MAX_CONTROLLERS 1

/* The number of tiers of hubs supported */

#define USBH_MAX_TIER 1

/* The maximum number of hubs that can be connected */

#define USBH_MAX_HUBS 1

/* The maximum number of ports */

#define USBH_MAX_PORTS 5

/* The maximum number of devices */

#define USBH_MAX_DEVICES 5

/* The maximum number of endpoints */

#define USBH_MAX_ENDPOINTS 32

Figure 4-9 Single Port example configuration settings

The following configuration is valid for a dual root port implementation of the peripheral:

 /* Define the number of root ports 1 or 2 */

#define USBH_NUM_ROOT_PORTS 2

/* Define high speed support (1 or 0)*/

#define USBH_HIGH_SPEED_SUPPORT 1

/* Define the FIFO access size only 32 and 16 are valid */

#define USBH_FIFO_BIT_WIDTH 32

/* The maximum number of host controllers supported */

#define USBH_MAX_CONTROLLERS 1

/* The number of tiers of hubs supported */

#define USBH_MAX_TIER 1

/* The maximum number of hubs that can be connected */

#define USBH_MAX_HUBS 2

/* The maximum number of ports */

#define USBH_MAX_PORTS 10

/* The maximum number of devices */

#define USBH_MAX_DEVICES 10

/* The maximum number of endpoints */

#define USBH_MAX_ENDPOINTS 64

Figure 4-10 Dual Port example configuration settings

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 28 of 64
Jul 11, 2018

The following configuration is valid for a multiple device implementation of the R8A66597 peripheral:

/* Define the number of root ports 1 or 2 */

#define USBH_NUM_ROOT_PORTS 2

/* Define high speed support (1 or 0)*/

#define USBH_HIGH_SPEED_SUPPORT 1

/* Define the FIFO access size only 32 and 16 are valid */

#define USBH_FIFO_BIT_WIDTH 32

/* The maximum number of host controllers supported */

#define USBH_MAX_CONTROLLERS 2

/* The number of tiers of hubs supported */

#define USBH_MAX_TIER 1

/* The maximum number of hubs that can be connected */

#define USBH_MAX_HUBS 4

/* The maximum number of ports */

#define USBH_MAX_PORTS 20

/* The maximum number of devices */

#define USBH_MAX_DEVICES 20

/* The maximum number of endpoints */

#define USBH_MAX_ENDPOINTS 128

Figure 4-11 R8A66597 peripheral example configuration settings

The USBH_MAX_ENDPOINTS is an educated guess at the total number of endpoints of all attached devices. Under
some circumstances this value may need to be increased as some devices may have a number of endpoints with only one
physical connection.

To estimate the required number of endpoints the following information is required:

By design in the USB Stack, every device will require three Control Endpoints. Added to this is one endpoint for each
endpoint in the device.

An example of the calculation for common devices is below:

A single Mass Storage Device will require:

3 (OSFUSB Control Pipe Endpoints) + 2 (Bulk IN Endpoint+ Bulk OUT endpoint) = 5 MSD Endpoints

A single Hub will require:

3 (OSFUSB Control Pipe Endpoints) + 1 (Hub information Endpoint) = 4 Hub Endpoints

Therefore a single four port Hub with four Mass Storage Devices will require:

4 (ports) x 5(MSD Endpoints) + 4 (Hub Endpoints) = 24 Endpoints

For two root ports configured as above the number is doubled to 48 Endpoints.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 29 of 64
Jul 11, 2018

4.5.5 Hardware Layer
The hardware interface controls peripheral functions that should be supported on the target platform or device. The key
features to be included are the Timer, DMA and Host Port controls.

4.5.5.1 Timer
The Host Stack does not require an operating system or scheduler. Many of the functions of USB are time critical and
therefore one system timer must be allocated to provide a timing reference. The USB peripheral is responsible for the
critical USB timing and requires no user configuration. However some higher level functions of the stack need to be
completed within a specified time. To enforce this timing, many of the stack core functions will run in interrupt space.
To ensure compatibility with your application, please review the interruptPriority.h file.

The key timing definitions are in the file usbhEnum.c. All definitions in this file assume a timer count of 1mS. If the base
hardware timer rate is changed these definitions must be updated to preserve the timing.

 /* Times are related to enumRun call frequency. This should be called at 1kHz so

 delay times will be in mS */

#define ENUM_PORT_POLL_DELAY_COUNT 100UL

#define ENUM_PORT_POWER_DELAY_COUNT 100UL

#define ENUM_PORT_ENABLE_DELAY_COUNT 50UL

#define ENUM_ROOT_PORT_RESET_COUNT 50UL

#define ENUM_HUB_PORT_RESET_COUNT 10UL

#define ENUM_DEV_REQUEST_COUNT_OUT 500UL

Figure 4-12 Coded Timer Settings

The hardware level physical timer functions provide Start, Stop and Interrupt functions that link directly to the hardware
timer. These functions are called during the initialisation of the stack and can be found in hwtimer_xxx.c

The stack also includes a timer module that allows multiple virtual timers to be registered in a linked list. These functions
can be found in timer.c. These virtual timers can be used in the users end application by calling the timerStart() and
timerStop() functions and providing a pointer to locally defined timer structure storage.

HW_Timer

Sy
st

em
St

ac
k

Pe
rip

he
ra

l
H

ar
dw

ar
e

Ap
pl

ic
at

io
n

Start Timer
xxx

timerStart

hostOpen

Reset

Open Stack

Interrupt

timertick

CallBackFunction

Timeout

Figure 4-13 Base Hardware Timer Operation

The hardware timer must be configured to provide a 1mS interrupt for correct operation of the stack. The timer uses a
DWORD value to count milliseconds giving a maximum time of over 49 days.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 30 of 64
Jul 11, 2018

4.5.5.2 DMA
The DMA configuration in the stack uses two DMA channels. One DMA channel is designated for incoming data (device
to host) and another channel is configured for outgoing data (host to device).

The DMA functionality is used to transfer data to and from the stack in large quantities, quickly. This type of transfer is
used by the Bulk transport in USB. As part of the Bulk transport the amount of data to be transferred is checked. The
DMA transfer is started so that it is configured to send or receive full packets of data. Any data left over from the
transaction, or transactions smaller than the endpoint packet size, are completed using the FIFO. All transfers performed
by the DMA are aligned to two or four byte boundaries (Dependant upon the processor implementation) and at least one
packet size (8, 32, 64, 512) to make the data handling simple in the Stack code.

The DMA module can be used to service many peripherals within the system, the firmware may want to use one channel
for more than one application or even disable the Stack from using the DMA functionality. In each case the DMA must
be used mutually exclusively which would require run time assignment. Operating systems provide MUTEX events for
this purpose. This USB stack provides a bit map (giChannelMap) to ensure that the USB Stack only uses channels that
are available, see the file hwDmaIf.c for implementation. Alternatively, in cases where the DMA is completely disabled
the performance of the USB host stack will be severely limited. The DMA functionality can be disabled by setting the
#if statement in the “dmaAlloc” function, found in “hwDmaIf.c” to 0. This will prevent a DMA channel being allocated
and the stack will default to performing FIFO based transfers.

 int32_t dmaAlloc (uint32_t ichannel)
{
 uint32_t i_channel_loc;
 int_t imask = R_OS_SysLock(NULL);

 if (ichannel < MAX_DMA_CHANNELS)
 {
 i_channel_loc = (uint32_t)(1 << ichannel);

 /* Check for channel already in use */
 if (gi_channel_map & i_channel_loc)
 {
 R_OS_SysUnlock(NULL, imask);
 TRACE(("dmaAlloc: DMA Channel %d already in use\r\n",
ichannel));
 return -1;
 }

 /* Assign the channel */
 gi_channel_map |= i_channel_loc;

 R_OS_SysUnlock(NULL, imask);

 TRACE(("dmaAlloc: DMA Channel %d allocated\r\n", ichannel));
 return 0;
 }

 return -1;
}

Figure 4-14 DMA Allocation Code

If the users application is going to use the DMA channels then before configuring a channel the user should call
dmaAlloc() to reserve a DMA channel. The return value will confirm whether the DMA channel is free to be used. When
finished with the DMA Channel, preferable after every transfer, the user should call dmaFree() to release the DMA
channel and make it available to other functions. This configuration is left to the user to match the needs of their system.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 31 of 64
Jul 11, 2018

HW_DMA
Sy

st
em

St
ac

k
Pe

rip
he

ra
l

H
ar

dw
ar

e
Ap

pl
ic

at
io

n

Allocate DMA

Protocol
Processing

Transfer Request

Channel Allocated

Process Transfer

Access USB

Transfer Complete

Free DMA

Release Channel

Transfer Complete

Figure 4-15 DMA Allocation operation

4.5.5.3 Host Ports
The IP supports two root USB ports, however in some microcontroller devices where this IP has been used only
one USB root port is available, also some devices have dual instances of the IP but with only one port available on
each (to support two OTG channels).

To support the case when two or more instances of the IP are used, including when the external ASSP device is
used in a discrete system design the USB Host stack has been designed to be Object Orientated. This means that to
use more than one Instance of the R8A66597 IP the only changes required are to create a new Host controller
structure and a Root Port structure for each Root Port Available

The core IP has two limitations:

• Each individual root port on this IP can support one hub only.

• A maximum of 10 devices can be addressed (two hubs and 8 devices).

The Host Driver interface file ‘hwusbh.c’ includes the lowest level hardware configuration and interface functions.
The ANSI open, close IO and control functions are provided in this file. Also included are the low level interrupt
functions for the USB module and the over-current detection.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 32 of 64
Jul 11, 2018

HW_RootPorts
Sy

st
em

St
ac

k
Pe

rip
he

ra
l

H
ar

dw
ar

e
Ap

pl
ic

at
io

n

hostOpen

Open Stack

Interrupt

timertick

EnumerationAdd Root Ports to
port list

Configure
Enumeration timer

Initialise Hardware

Figure 4-16 Host Port

The Universal Serial Bus forms a tree network of devices, each device has a physical port and each port supports
multiple communication endpoints. The trunk of the tree is formed by the Root Port(s) special devices called hubs
provide additional ports to form the branches of the tree. This port structure is maintained in the USB Host Stack
by defining a tree of Port Information Structures (USBPI). The definition of this is below:

 typedef struct _USBPI

{

 PUSBPI pNext; /* Pointer to the next port */

 PUSBPC pRoot; /* Pointer to root-port control functions */

 PUSBHI pHub; /* Pointer to the hub that this port is on */

 PUSBDI pDevice; /* Pointer to a device attached to the port

 NULL if no device attached */

 uint32_t uiPortIndex; /* The index of the port */

 uint32_t dwPortStatus; /* The current status of the port */

 PUSB pUSB; /* Pointer to the Host Controller to which

 the port is attached */

 PUSBHC pUsbHc; /* Pointer to the host controller data */

 _Bool bfAllocated; /* true if allocated */

} USBPI;

Figure 4-17 Port Information Structure

The root port(s) only, will have the pRoot member with a non-zero value as described. The USB Host Protocol
driver maintains a linked list of all of the ports attached to the controller. Root ports are controlled through the
functions defined in the _USBPC structure and ports on hubs are controlled through the protocol defined in chapter
11 of the USB 2.0 specifications.

This means that the port status request to a normal port will return a status word as defined in the USB specifications.
When requesting the port status of the root port(s) the stack will call the functions in the _USBPC structure. These
functions will return the same format status word as a standard port status request. Therefore the calling function will
not see any difference in the return value. A Root port will look like any other port.

Root ports are added to the Stack by calling the AddRootPort() function call passing in the table of function pointers.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 33 of 64
Jul 11, 2018

4.5.5.4 Host Port Power Control
Depending upon the design of the target the support for root port power control may or may not be available. It is not
necessary to be able to control the power output of the root port, however this should be provided to fully meet the USB
specification.

The Port control functions are provided in the hwusbh_platform.c file in a function table:
 const USBPC gcRootPortx =

{

 hwResetPortx,

 hwEnablePortx,

 hwSuspendPortx,

 hwStatusPortx,

 hwPowerPortx,

 x,

 &USB

};

Figure 4-18 Port Control Functions Structure

The power control function provides the ability to control the power state of a Root Host port. In this example
the power of root port ‘z’ is controlled by a port pin on port ‘x’ pin ‘y’.

 /**

Function Name: hwPowerPortz

Description: Function to control the power to port z

Parameters: IN bfState - TRUE to switch the power ON

Return value: none

**/

void hwPowerPortz(BOOL bfState)

{

 gbfOverCurrentPortz = FALSE;

 PORT.PxDRL.BIT.PxyDR = bfState;

}

/**

End of function hwPowerPortz

**/

Figure 4-19 Port Power Control Sample

When power control is not available then the over current variable is still set in the interrupt routine, however
there is no way to control the supply of power so operation is not guaranteed as it is dependent upon the
physical power control device connected to the processor. When power control is implemented, the code
should ensure the power is turned off in this error state. An example form the code is given below.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 34 of 64
Jul 11, 2018

 /**

Function Name: INT_IRQa

Description: Over current interrupt for root port x

Parameters: none

Return value: none

**/

void INT_IRQa(void)

{

 /* Check the state of the OC detect line */

 if (PORT.PxPRL.BIT.PxyPR == 0)

 {

 /* Switch the power to the port off */

 PORT.PuDRL.BIT.PuvDR = 0;

 gbfOverCurrentPortx = TRUE;

 }

 /* Clear the interrupt flag */

 INTC.C0IRQRR.BIT.IRQaF = 0;

}

/**

End of function INT_IRQa

**/

Figure 4-20 Port Over-current Sample

When there is no monitoring of the status of the USB power supply from the external devices, this interrupt is not required.
The code can be configured to assume that power is always applied by setting the gbfOverCurrentPortx variable to FALSE.
The interrupt code can be removed in this case.

4.5.5.5 Host Database

The host driver contains a structure that provides a database of the current USB connection topology. This database is
updated whenever a relevant event occurs including device attach and removal events and at the end of each transfer for
the Data PID. The database is global to the stack but only accessed via the pointers contained in the root Host Controller
structure. This provides all layers with access to the information needed during operation.

The code structure of the database root can be found in ddusb.h.

This database is not visible outside of the core stack code. No user code may attempt to modify this database in any
way.

As shown in the diagram above the Host Stack Database is effectively in three sections. Each of these is described
below:

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 35 of 64
Jul 11, 2018

4.5.5.6 Device Management
The USB specification defines Ports, Hubs, Devices and Endpoints. To describe this, we can consider a Hub.

A Hub can have four ports. Common configurations are for four or seven ports. A seven-port hub is formed by internally
connecting two hubs together therefore resulting in seven and not eight ports. The IP only supports one tier of hubs so
seven port hubs will not be supported. The host will have one or more root ports. Each root port can support either a
normal device or a special device called a Hub. The Hub will be connected to the root Port and will provide additional
port resources.

A device connected to any Port will contain at least one End-Point. The Control endpoint must exist and is used to
enumerate the device on the USB. Other endpoints may be provided in the device to support one or more destinations for
USB Data class transfers.

HUB

D
ev

ic
e

D
ev

ic
e

D
ev

ic
e

D
ev

ic
e

Port Port Port Port

C
la

ss
En

dp
oi

nt

C
on

tro
l

En
dp

oi
nt

HOST
Port

C
on

tro
l

En
dp

oi
nt

C
on

tro
l

En
dp

oi
nt

C
on

tro
l

En
dp

oi
nt

0+
 O

th
er

En
dp

oi
nt

s

Control
Endpoint

C
la

ss
En

dp
oi

nt
0+

 O
th

er
En

dp
oi

nt
s

C
la

ss
En

dp
oi

nt
0+

 O
th

er
En

dp
oi

nt
s

C
la

ss
En

dp
oi

nt
0+

 O
th

er
En

dp
oi

nt
s

Figure 4-21 HUB Topology

The database maintains various lists. Devices and Hubs are referenced to a specific Port. Ports and Endpoints are added
and configured to a list dynamically depending upon the device attached.

4.5.5.7 Transfer Management
The transfer of data to a device is achieved using the Endpoints discovered in the device during enumeration. There are
four classes of transfer in the USB specification. Control transfers are used to configure a device. The other three
classes are used to transfer data that has different Quality of Service Requirements.

Bulk Transfers are designed to transfer large quantities of data reliably between two endpoints.

Interrupt transfers are designed to transfer very small packets of data with guaranteed latency. This is commonly used in
user interface transfers.

Isochronous transfers are designed to transfer data that is time critical. Transfers that fail for any reason are never re-
tried. This is suitable for streaming applications such as Audio playback. Missing data results in a “glitch” in the
playback but is not critical to the application.

For each of these four transfer types the Stack maintains a list of transfers waiting to happen. The stack will send the
next data block as soon as possible considering the priority of the transfer type.

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 36 of 64
Jul 11, 2018

4.5.5.8 Scheduling Transfers
Transfers are generated in a transfer request structure. This data structure is added to the specific transfer type list using
a “Start Transfer” function call in the Device API. When a transfer request is made the Stack can be forced to schedule
the new transfer by calling a call back function from the appropriate device driver. This will happen anyway during the
1mS Start of Frame interrupt service.

4.5.5.9 Hardware Driver
This layer of the stack provides interface form the processing level of the stack to the hardware peripheral interface. It
submits the transfer requests provided by upper level to the host/function peripheral. The API is defined in the file
“usbhHostApi.h”.

The hardware driver is provided with pointers to the head of four linked lists of transfer requests, one for each of the
different transfer types. The driver processes the requests, updating the member variables stIdx, uiTransferLength,
errorCode and bfComplete. When the transfer has completed or an error occurs the request is removed from the list by
calling the function usbhComplete. It is the responsibility of the Hardware Driver to schedule the transfers on the USB
bus in accordance with the USB specifications.

usbhClass.c / usbhEnum.c / usbhMain.c

text hwDmaIf.cHwusbh.c

usbhPipe.c

usbhDriver.c

usbhBulk.c usbhControl.c

Abstracted
USB Driver

Hardware
Driver

Hardware Platform

usbHostApi.h

usbhInterrupt.c usbhIsochronous.c

R_USBH_Driver.c Host Peripheral Driver / Hardware Abstraction Layer
Peripheral

Driver

Figure 4-22 Hardware Driver Overview

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 37 of 64
Jul 11, 2018

4.5.5.10 USB Pipes
The following description comes from the USB Specification Version 2.0:

“A USB pipe is an association between an endpoint on a device and software on the host. Pipes represent the ability to
move data between software on the host via a memory buffer and an endpoint on a device.”

It is worth noting in addition that each Pipe is unidirectional and can either be used to send or receive data to / from a
device depending upon its configuration. The Host Controller Driver is provided with controlled access to USB pipes by
the APIs provided in usbhPipe.c.

The hardware driver provides a method to assign any available Pipes to the Stack for any particular transfer. In this
specific case nine pipes can be allocated a transfer type. Pipe zero is fixed function and cannot be allocated. Options for
pipes are defined in the USB specification as Interrupt, Isochronous and Bulk. Control transfers are always completed on
the reserved pipe zero. Some pipes have limitations to the transfer types supported on each. The limitations specific to
this device are:

PIPE0: Control transfer (default control pipe: DCP), 64-byte fixed single buffer

PIPE1 and PIPE2: Bulk transfers/isochronous transfer, continuous transfer mode, programmable buffer size.
(up to 2-kbytes: double buffer can be specified)

PIPE3 to PIPE5: Bulk transfer, continuous transfer mode, programmable buffer size.

(up to 2-kbytes: double buffer can be specified)

PIPE6 to PIPE9: Interrupt transfer, 64-byte fixed single buffer

The selection of the pipe to use for a transfer is abstracted in this module so that the user has no need to be aware of these
limitations. The function usbhAllocPipeNumber will attempt to allocate an appropriate pipe on demand according to the
transfer type stored in the transfer request. It will then return a reference to the allocated pipe if one is available. Note that
control transfers are not included. In this way multiple devices can share the limited Pipe resources.

A pipe is configured by allocating it to an end-point. An end-point is configured from a class driver and provides routing
information for the data to be sent or received through a pipe. The end-point information is passed to the pipe
configuration functions in a structure called _USBEI defined in ddusbh.h. The structure is given below:

Size Name Description
PUSBEI pNext Forward reference to the next endpoint entry in a list
PUSBDI pDevice Pointer to the device the endpoint belongs to.
WORD wPacketSize The endpoint packet size
BYTE byEndpointNumber The device endpoint number
BYTE byInterval The polling interval for interrupt transfers
USBTT transferType The type of transfer
USBDIR transferDirection; The direction of transfer
USBDP dataPID The DATA0/1 PID
BOOL bfAllocated TRUE if allocated

Table 4-6 USB Endpoint Structure

4.5.5.11 USB Bulk Transfers
The Bulk data transfer method provides the ability to transfer large quantities of data to and from an endpoint. These
transfers are detailed in a transfer request data structure. The transfer is routed to a specific pipe to an endpoint. When the
transfer is configured a pipe will be allocated. This pipe reference is then provided to the bulk data handling functions.

To provide efficiency in data transfers the bulk driver will attempt to start a DMA transfer for any bulk data transaction.
As long as there is an available DMA channel, the DMA will be used for the majority of the transfer. DMA transfers will
only be used when the quantity of data is greater than four times the USB endpoint packet size. These full packets will be
sent using the DMA controller. Data that is smaller than two times the USB Endpoint Packet Size, such as at the end of
a bulk transfer or if the Bulk transfer is too small then the driver will process the data by directly loading the FIFO (FIFO
configuration is completed in the usbhPipe module).

RZ/A1LU Group Software Package

R01AN4427EG0000 Rev.1.0 Page 38 of 64
Jul 11, 2018

4.5.5.12 USB Control Transfers
The following description comes from the USB Specification Version 2.0:

“Control transfers allow access to different parts of a device. Control transfers are intended to support
configuration/command/status type communication flows between client software and its function. A control transfer is
composed of a Setup bus transaction moving request information from host to function, zero or more Data transactions
sending data in the direction indicated by the Setup transaction, and a Status transaction returning status information
from function to host. The Status transaction returns “success” when the endpoint has successfully completed processing
the requested operation.”

Control functions are scheduled along with all other transfers by the USB Host Driver function. Critically only one control
transaction is permitted at any time on the USB bus by the USB IP. This exclusion is enforced in the USB Host Driver.

The USB Control module (usbhControl.c) provides the control pipe transactions. The functions are directly related to
request, setup, data in, data out and completion with error processing for failed transactions. Each function requires the
request data structure to be provided.

4.5.5.13 USB Interrupt Transfers
The following description comes from the USB 2.0 Specification

“The interrupt transfer type is designed to support those devices that need to send or receive data infrequently but with
bounded service periods. Requesting a pipe with an interrupt transfer type provides the requester with the following:

• Guaranteed maximum service period for the pipe

• Retry of transfer attempts at the next period, in the case of occasional delivery failure due to error on the bus

Interrupt transfers will occur on the USB when the transfer request is made with the appropriate transfer type selected.
The process for starting and stopping a interrupt transfer is the same as for the Bulk transport.”

4.5.5.14 USB Isochronous Transfers
The following description comes from the USB specification version 2.0

“In non-USB environments, isochronous transfers have the general implication of constant-rate, error tolerant
transfers. In the USB environment, requesting an isochronous transfer type provides the requester with the following:

• Guaranteed access to USB bandwidth with bounded latency

• Guaranteed constant data rate through the pipe as long as data is provided to the pipe

In the case of a delivery failure due to error, no retrying of the attempt to deliver the data

The sample application provided with the stack uses the isochronous transfer type to stream audio data to a basic USB
Audio compliant endpoint. The process for starting and stopping a interrupt transfer is the same as for the Bulk
transport. As per the specification any errors in the transfer will not be retried.”

An additional driver API function is also provided for this transfer type. This API provides the ability to specify an
average transfer rate for cases where the number of bytes transferred on each successive.

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 39 of 64
Jul 11, 2018

4.6 Website
The RZ/A1LU Software package allows for a website shows an implementation of the open source lwIP TCP/IP Ethernet
stack. Alongside the Ethernet Stack is the implementation of the Open Source Web Server. The below image shows the
software architecture for the Website.

Figure 4-23 Website Hierarchical Software Layer

4.6.1 Software Configuration
To enable, set R_SELF_LOAD_MIDDLEWARE_ETHERNET_MODULES to R_OPTION_ENABLE. To disable, set it to
R_OPTION_DISABLE. See 3.1 Configuration for further details.

/** Enable Ethernet drivers, WebServer Support */
#define R_SELF_LOAD_MIDDLEWARE_ETHERNET_MODULES (R_OPTION_ENABLE)

4.6.2 Commands
The Ethernet commands are split into two sections. This first section provides the normal configuration required to
suit the infrastructure available at the point of installation. This provides the ability force the IP addressing settings.

Command Description
ipconfig –o

ifconfig –o

Where o is one of the or more following options
-r = Reset to default settings
-i:xxx:xxx:xxx:xxx = Set IP address
-m:xxx:xxx:xxx:xxx = Set IP address mask
-g:xxx:xxx:xxx:xxx = Set DHCP server gateway address
-on = Enable DCHP
-off = Disable DCHP
-s = Save current settings (Must follow the settings to be saved)
-all = Display current settings
(no option) = Command list display

setmacaddress
–o

Caution - Changing the MAC address should not be completed unless you are restoring the
allocated number or have your own address range allocated from the relevant
authority.

Where o is one or more of the following options
-a:xx.xx.xx.xx.xx.xx = Set MAC address
-s = Save current settings (Must follow the settings to be saved)
(no option) = Command list display

readrom Read’s the on-board EEPROM
rstrom Reset’s all the user data in the EEPROM.

Table 4-7 Ethernet Commands

Application

Ethernet Drive

Website Files Web Server Ethernet
Stack

Hardware

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 40 of 64
Jul 11, 2018

4.6.3 Application
Ensure that the Stream it! Platform is connected to a Local Area Network and that the Software package is configured.

The Application uses a DHCP protocol to retrieve the IP Address. If configured correctly the details of the connection
will be displayed on the terminal on the start-up of the device.

Figure 4-24 Website Application

Once the Address is retrieved, ‘192.168.2.102’ in the
above example the user may access the address on
their local network.

The first page of the website is the welcome page.
This page provides the user with the information
about this product and allows navigation to other
pages. The left-hand side widget gives the user the
time and date retrieved from the RZ/A1LU device.
Furthermore, the user may toggle the ‘USER’ LED
through enabling and disabling tick box.

Figure 4-25 Welcome page

The ‘Mass Storage’ page allows for the user to interact with the connected mass storage device. In the image below, the
Folders 1 to 5 and file 1 to 5 may be manipulated.

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 41 of 64
Jul 11, 2018

Figure 4-26 Mass Storage Page

The user may also go into the Administration Page. This page requires for the user to have a user name and password.
The username and password is stored in the on-board EEPROM.

The default details are:

Username: Admin

Password: Password

Once successfully logged in the user may then configure the clock, username and password.

Figure 4-27 Administration Page

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 42 of 64
Jul 11, 2018

4.6.4 Ethernet Stack
The Ethernet Stack provided by the lwIP TCP/IP is accessed through Berkeley sockets Application Programming
Interface (BSD socket API). This BSD-API comprises a library for developing applications in the C programming
language that perform communications across a computer network.

Note: When lwIP is configured to provide the BSD socket API it is not as efficient with memory and it requires a multi-
tasking system.

The software application uses lwIP with the BSD socket API enabled. The demonstration uses the Renesas abstraction
layer to provide the multi-tasking function required by lwIP.

The file “lwIP_interface.c” provides the interface between the open source lwIP stack, the network driver(s) and the
application. The application interface provides functions to control and reconfigure the IP connection (MAC address, IP
Address, Gateway Addresses and Address Mask). This interface is object oriented to support more than one network
driver.

The Ethernet adapter has two configuration objects to describe the fundamental configuration of the Ethernet controller
which are the MAC address and the IP configuration. The MAC address should be unique to each Ethernet controller and
a unique valid MAC address is supplied with each hardware kit.

The IP configuration data type NVDHCP is used by the lwIP interface, among others, to transport the current IP
configuration from function to function within the application. The data members for this object are as follows:

• pbyIpAddress: local device IP Address

• pbyAddressMask: local device Subnet Mask

• pbyGatewayAddress: local device Gateway Address

• byEnableDHCP: overide local settings with configuration from DHCP server flag.

When byEnableDHCP is non-zero, the local configuration as described by pbyIpAddress, pbyAddressMask and
pbyGatewayAddress are ignored and instead lwIP will request an assignment of IP address from the local DHCP server.
If there is no DHCP configured to assign IP addresses the Ethernet control will fail to initialise.

 /* Define the data structure for the NVDT_DHCP_SETTINGS_V1 data type */

typedef struct _NVDHCP

{

 uint8_t pbyIpAddress[4]; // IP Address e.g. 192.168.1.1

 uint8_t pbyAddressMask[4]; // Subnet Mask e.g. 255.255.255.0

 uint8_t pbyGatewayAddress[4]; // Gateway Address e.g. 192.168.1.10

 uint8_t byEnableDHCP; // Use DHCP assigned settings

} NVDHCP,

*PNVDHCP;

Figure 4-28: Configuration object

During the initialisation of the lwIP stack, the scheduler creates four specific tasks to interface with the network driver.

LwIP tcpip_task – lwIP main task, handles all lwIP activity (see lwIP open source documentation for operation of this
task)

• EtherC Link Mon: Link monitor task, handles changes in state of the network connection

• EtherC Input: Read task, handles reading data from the network driver

• EtherC Output: Write task, handles writing data to the network driver

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 43 of 64
Jul 11, 2018

4.6.3.1 Interaction between read/writing tasks and the lwIP task
All data is passed between the controller and the lwIP task in the form of buffers (known as PBuffs) created and
managed by lwIP. Task ‘ipInputTask’ is responsible for reading data from the controller and passing it to the lwIP
stack. Task ‘ipOutputStatus’ is responsible for requesting lwip to free the PBuffs when the network driver has
transmitted the data. The lwIP task is responsible for creating and destroying the PBuffs. The ipOutput function
(called by lwIP) is responsible for writing the PBuffs to the network driver (see Figure 4-29 Relationship of tasks).

LwIP tcpip task

ipLinkMonitor
“EtherC Link Mon”

ipOutputStatus
“EtherC Output”

ipInputTask
“EtherC Input”

Link status changes

Request to Free Write Data Buffers

Ethernet
Driver

ipOutput Function

Read Data Buffers

Figure 4-29 Relationship of tasks

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 44 of 64
Jul 11, 2018

4.6.3.2 IpLinkMonitorTask Details
The IpLinkMonitor task waits for the driver layer to set an event which signifies that the status of the network connection
has changed. In response to this event the task decides what actions need to be taken with the lwIP interface (see Figure
4-30 IpLinkMonitor task Overview, note that messages sent to initiate action within the lwIP task have a ‘MSG lwip:’
pre-fix).

Wait for event trigger
link status change from driver

ipLinkMonitor()
EtherC Link Mon Task()

Check Status
Link Up ?

Link status change event triggered
from Ethernet Driver

Inform lwip that link goes up Bring the interface down and inform
driver

Check Status
DCHP enabled ?

DHCP negotiation for a
network configuration Bring an interface up

Check Status
DCHP enabled ?

Release a DHCP lease

MSG lwip:
link status has

changed

 Figure 4-30 IpLinkMonitor task Overview

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 45 of 64
Jul 11, 2018

4.6.3.3 IpInputTask Details
The ipInputTask task allocates and submits the buffers (PBuffs) to the Ethernet driver. The task waits for the
ETHERNET_SIMULTANEOUS_READS event, which signifies that at least one read has completed. Once the event
has been set the task will check that the read completed without error and then pass it to lwIP for processing.

The Ethernet controller supports a number of simultaneous read events, definition is called _NET_MAX_RX_ defined in
file inc\hwethernet.h, to increase throughput (see, Figure 4-31 IpInputtask Overview note that messages sent to initiate
action within the lwIP task have a ‘MSG lwip:’ pre-fix).

ipInputTask()
“EtherC Input”

Simultaneous read event triggered from
Ethernet Driver read completion callback

Set up all the
pending reads

& matching events

Wait for simultaneous Read
event from driver

check read completion
event

Error
Unexpected

overlapped read

Until all available read
events have been processed

Get the input buffer
associated with this event

Decouple the data buffer
from the read event
& hand data to lwip

Allocate a new buffer to this
read event and start another

read

Read event is
available ?

MSG lwip:
data available

 Figure 4-31 IpInputtask Overview

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 46 of 64
Jul 11, 2018

4.6.3.4 IpOutputStatus Details
The IpOutputStatus function frees the buffers (PBuffs) which have been allocated by lwIP after the Ethernet driver has
completed sending the data. The task waits for the network interface driver to signal an event which signifies that at
least one buffer has been written. Once the event occurs the task will delete the buffer (PBuff) associated with the data.
It should be noted that every buffer has a reference count and the memory is freed when the reference count reaches
zero. Although the output status task has freed the buffer it is not until an ACK is received that the reference count will
reach zero and the memory will be freed.

The Ethernet controller supports a number of simultaneous write events, definition is called _NET_MAX_TX_ defined
in file “inc\hwethernet.h”, to increase throughput (see Figure 4-32 IpOutputStatus Overview, note that messages sent to
initiate action within the lwIP task have a ‘MSG lwip:’ pre-fix).

ipOutputStatus()
“EtherC Output”

Simultaneous write event triggered from
Ethernet Driver

Wait for simultaneous write
event from driver

check write completion
event

Error
Unexpected

write

Loop until all available write
events have been processed

Free the buffer

Mark as being ready
for re-use

Write event is
available ?

MSG lwip:
Request to free

buffer

 Figure 4-32 IpOutputStatus Overview

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 47 of 64
Jul 11, 2018

4.6.3.5 Stack Initialization Sequence
The Ethernet stack is initialised by opening the interface using the STDIO open function and the device name ‘Ether0’.
This is performed by the function StartOnChipController. The function reads the existing configuration, stored in non-
volatile storage, performs some basic sanity checking on the supplied MAC address and if the MAC address is acceptable
the function proceeds to load the network configuration from non-volatile storage and uses the stored configuration to
start the lwIP task.

Main Program

Start OnChip
Controller attach
output to stdout

Open eeprom &
read MAC address

Check valid ID

Invalid MAC stop
Process Load network

settings from
eeprom

Start lwip using
config sourced
from eeprom

ipStart

Figure 4-33 Initialisation Sequence

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 48 of 64
Jul 11, 2018

4.6.3.6 Callback function ipInitialise
One of the parameters passed to the netif_add function that is used by ipStart to initialise the lwIP driver interface is the
function ipInitialise(). The purpose of this function is to initialise the lwIP device interface. The function ipInitialise is
responsible for creating the interface tasks (‘ipInputTask’, ‘ipOutputStatus’ and ‘ipLinkMonitor’). It also tells lwIP the
host name, the link capabilities and provides a pointer to a function that lwIP can use to write data to the network driver.

4.6.3.7 Purpose of the interface
This interface is to allow the BSD sockets API to be used with the file descriptors to allow the use of the ANSI IO library.
The effect of this change is to enable an internet socket to be treated as a file stream like “stdin” and “stdout”. The main
application of this is so the command line console code can be re-use for the passive telnet server. The file drvSocket.c is
a driver that wraps the lwIP BSD socket API functions lwip_close, lwip_read and lwip_write. This allows the ANSI C
standard IO library functions to read and write to a socket. A special function called faccept wraps the function
lwip_accept and returns a file pointer instead of a socket. This allows the standard C input and output file formatting
function to be used directly on the socket.

4.6.3.8 Berkeley socket interface
lwIP uses a subset of the Berkeley socket interface is an application programming interface (API) to code applications
performing communication between hosts or between processes on one computer, using the concept of an Internet socket.
It can work with many different Input/output devices, although support for these depends on the operating-system
implementation. This interface implementation is the original API of the Internet Protocol Suite (TCP/IP). The wrapper
interface is defined in the following files:

File name: src\socket.c – Wrapper source code

File name: src\drvSocket.h – Wrapper driver

File name: inc\socket.h – Wrapper interface

4.3.6.9 Socket API Wrapper Functions
These functions are used by the user process to send or receive packets and to do other socket operations.

socket(): Creates a new socket of specified type and allocates system resources for it.
bind(): Associates a socket with a specified socket address structure, i.e. specified local port number and

creates a new socket of specified type and allocates system resources for it.
listen(): Causes a bound TCP socket to enter a listening state.
connect(): Assigns a free local port number to a socket. With TCP sockets, attempts to establish new
connection.
accept(): Accepts a received incoming attempt to create a new TCP connection from the remote client, and

creates a new socket associated with the socket address pair of this connection.
faccept(): Identical to accept() function but returns a file pointer instead of a socket ID.
setsocketopt(): Sets a particular socket option for the specified socket.
getsocketopt(): Retrieves the current value for a particular socket option for the specified socket.
getpeername(): Retrieves the name of the connected peer socket.
getsockname(): Retrieves the name of the socket.
ioctl(): Control of additional commands not supported by socketopt() (only FIONREAD &

FIONWRITE) are implemented in this stack.
select(): Classify the list of sockets into three lists (ready to read, ready to write, sockets with exceptions).
send(): Send data to a remote known socket, can only be used when socket is in connected state.
sendto(): Send data to a remote specified socket.
recv(): Receives data from a remote known socket, can only be used when socket is in connected state.
recvfrom(): Receives data to a remote specified socket.
shutdown(): Closes connection, causing system to release resources. Terminates a TCP connection.

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 49 of 64
Jul 11, 2018

4.6.5 WebIO Server and Files
The webio server is a third party small portable web server designed as a library for inclusion in embedded systems or as
a Browser-based GUI in applications.

For more details about the Webio please refer to the program.html found at: src\webio:

4.6.6 WebIF
The software package includes an interface with webio. This middleware can be found at: src\renesas\middleware\Webif.
The interface allows for the dynamic content to be created by CGI and SSI. An overview of the files.

Webif.c – This file initiates the server and the webif task.

webSSI.c – Allows for time and date to be shown on the website.

cgiMsExplore.c, efsWebSites.c efsFile.c – Implements the browsing of the files and folders found on the USB mass
storage.

4.6.7 Website Files
For static web development the html, css and javascript for the website is included in the folder
src/renesas/Application/WebSite.

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 50 of 64
Jul 11, 2018

4.7 Camera
The RZ/A1LU which supports camera input has peripheral devices VDC5, and CEU. The VDC5 and CEU are for digital
camera input. The VDC5 also supports image output to display devices. This sample program offers sample applications
for camera input which involves using those peripheral devices. For details about these peripheral devices, refer to the
User’s Manual (Hardware).

This sample program has two tasks, Graphics processing task that performs initial setting of camera input, display output,
and image adjustment, and CUI (Character User Interface) task for performing image adjustment.

Figure 4-34 Camera Hierarchical Software Layer

4.7.1 Software Configuration
To enable, set R_SELF_INSERT_APP_SDK_CAMERA to R_OPTION_ENABLE. To disable, set it to R_OPTION_DISABLE.
See 3.1 Configuration for further details.

/** Enable control for src/application/app_sdk_camera sample application */
#define R_SELF_INSERT_APP_SDK_CAMERA (R_OPTION_ENABLE)

Camera Commands

Graphics Task

Video (RVAPI)

RZA1LU Hardware

VDC5 and CEU

CUI Tasks

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 51 of 64
Jul 11, 2018

4.7.2 Commands
The commands for the Camera Applications are described in Table 4-8.

Command Operation
Numerical value Operations in each menu

- Selection of image adjustment content
- Selection of image adjustment position (selection of H/W block for image
adjustment)
- Selection of presets
- Input custom value

C, c Custom setting selection
(Selected when user want to set a preset other than the various
adjustment items)

D, d Set image adjustment to default
(Default value of each register described in H/W manual)

B, b Return to the previous menu
R, r Output current image adjustment value
T, t Return to the Top menu
Enter Determine contents inputted
Delete / Backspace Delete one character from the input character

Table 4-8 Camera Commands

This sample program implements CUI task which can perform image adjustment in real time with Terminal Application
on PC. The CUI task operates the register value of VDC5 by command input from PC's Terminal Application to realize
image adjustment.

This chapter describes the screen operation method and commands from Terminal Application.

Note, however, that in case of adjusting images with QE for Display, it is not allowed to combine use of CUI and QE for
Display.

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 52 of 64
Jul 11, 2018

4.7.3 Menu
Display menu of Terminal Application and operation overview shown in Figure 4-35.

Figure 4-35 Display menu and operation overview

4.7.3.1 Acquisition of image adjustment value
The user can acquire various image adjustment values set by preset selection or custom by executing the R command.
When the R command is executed, the current values of the various adjustment parameters are output on the Terminal
Application in a format that can be directly applied to the C language source code. (header format) To apply the output
setting value when initializing this sample, overwrite the contents outputted on the Terminal Application to the following
file the CUI operation commands on the Terminal Application.

Top menu
-Select setting item

Preset selection menu

-Preset selection of various
adjustments

Adjustment position selection menu

-Select H/W block for image adjustment

Custom register selection menu

-Selection of operation target register

Custom value setting menu

-Set value of operation target register

: Menu transition by command input

 ex) The B means “Push enter after inputting the “B”

0 to 1

2 to 4

C

0 to 1

Numerical
value

B

B

B

B

B

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 53 of 64
Jul 11, 2018

4.7.3.2 Process Sequence
Figure 4-36 shows the process sequence of this sample program.

Figure 4-36 Process Sequence of SDK for Camera

4.7.3.3 Image Adjustment Effects and Adjustment Methods
This sample program provides preset values for various possible image adjustments. This section describes the adjustment
effects and preset values. It also shows which blocks in the H/W configuration for RZ/A1 image input/output are
responsible for adjustments.

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 54 of 64
Jul 11, 2018

4.7.3.4 Overall Configuration
Figure 4-37 shows the H/W configuration for RZ/A1 image input/output.

Figure 4-37 Block Diagram of the H/W Configuration for RZ/A1 Image Input/Output

For more information regarding the camera please refer to the Application Note: SDK for Camera Sample Program
(R01AN4312EJ)

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 55 of 64
Jul 11, 2018

4.8 USB HID
The USB function allows for HID.

USB Human Interface Device class specifies a class for devices such as keyboards, mice, game controllers and display
devices. It allows for manufactures to design a product to USB HID specification and expect it to work with software of
the same specifications.

The two most popular HID devices are keyboards and mice. The software package allows for processing both of these
devices.

Figure 4-38 USB Function Hierarchical Software Layer

4.8.1 Software Configuration
To enable, set R_SELF_INSERT_APP_HID_MOUSE to R_OPTION_ENABLE. To disable, set it to R_OPTION_DISABLE.
See 3.1 Configuration for further details.

/** Enable control for src/application/app_hid_mouse application */
#define R_SELF_INSERT_APP_HID_MOUSE (R_OPTION_ENABLE)

4.8.2 Commands
Table 4-9 shows the USB Functions commands.

Command Description

usbm Provides access to the USB mouse application
usbk Provides access to the USB keyboard application

Table 4-9 USB HID Commands

4.8.3 USB HID Mouse
The USB HID Mouse application allows for the user to visualize the coordinates and scroll of the mouse as well as
highlighting which mouse button is pressed. Figure 4-39 shows the application of the USB HID Mouse.

Figure 4-39 USB HID Mouse Application

USB Application

USB Commands

HID Driver

Class Device

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 56 of 64
Jul 11, 2018

The USB HID Mouse application is included as part of the cmd_usb.c found at src/renesas/application/console/cmd.

Here the function cmdMonitorMouse makes use of the HID Mouse driver to access the mouse data. The HID Mouse
Driver uses the STDIO interface as discussed in section 3.4. The driver utilises a small state machine to poll mouse data
and then uses the circular buffer to store the data. The API for the driver is shown below.

4.8.4 USB HID Keyboard

The USB HID Keyboard application displays key pressed on a connected keyboard. Figure 4-40 shows the application
of the USB HID Mouse.

Figure 4-40 USB HID Keyboard Application
The USB HID keyboard application is included as part of the cmd_usb.c found at src/renesas/application/console/cmd.
Similarly to the USB HID mouse, the function cmdConsoledUSB makes use of the HID Keyboard driver to access the
data gathered from the keyboard.

The HID Middleware API can be seen in Doxygen under RZ/A1LU Software Package -> Modules -> Middleware
(POSIX) -> USB HID.

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 57 of 64
Jul 11, 2018

4.9 USB CDC
USB Communication device class may include more than one interface. Such as a custom control interface, data interface,
audio, mass storage related interfaces.

The software package allows for communication with any CDC device, through a range of commands.

Figure 4-41 USB Function Hierarchical Software Layer

4.9.1 Software Configuration
To enable, set R_SELF_INSERT_APP_CDC_SERIAL_PORT to R_OPTION_ENABLE. To disable, set it to
R_OPTION_DISABLE. See 3.1 Configuration for further details.

/** Enable control for src/application/app_cdc_serial_port application */
#define R_SELF_INSERT_APP_CDC_SERIAL_PORT (R_OPTION_ENABLE)

Commands Table 4-9 shows the USB CDC commands.

Command Description

sopen Opens a CDC device
sclose Closes a CDC device
sctltst Performs control API test for the connected CDC device
sttx n Transmit n, k bytes of data through the CDC device
sloop Loops-back received characters through the CDC device
sbaud n Sets the baudrate to n
Scontrol n Controls the RTS and DTR signals
sparity p Sets the parity, p to N = none, E = Even, O = odd.
sstop s Sets the number of stop bits to 1, 1.5 or 2.
sline Returns the line status
sbreak n Sets/ clears the break signal.
stest Tests all CDC driver function with a loo-back connector
sloopall Performs a loop-back test on a maximum of 4 CDC devices (at a constant baudrate)

Table 4-10 USB CDC Commands

4.9.2 CDC Driver
The CDC Middleware API can be seen in Doxygen under RZ/A1LU Software Package -> Modules -> Middleware
(POSIX) -> USB CDC.

USB Commands

CDC Driver

Communication Device

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 58 of 64
Jul 11, 2018

4.10 Sound Application
The sound application allows the user to play sound and to playback sound through a microphone. To achieve this a single
jack headset (headphones and a mic) will be needed to connect to CN14.

4.10.1 Software Configuration
The software architecture for this application can be seen below. The R_SOUND driver manages the configuration of the
audio on the RZ/A1LU Stream it! Board, allowing control of the headphone and microphone volume, sampling frequency
etc. Audio data to and from the CODEC is sent via the SSIF driver, using DMA channels to minimize CPU overheads.

Figure 4-42 Sound Function Hierarchical Software Layer

4.10.2 Commands
The RZ/A1LU Stream it! Board sound demo has the following sound demonstrations available on the console:

Command Description

play This command allows for pre-recorded sound to come out of the audio jack. The prerecorded sound
provides sound from both the left and right channels. The left headphone is a male saying ‘左-
Hidari’ and a right headphone is a female saying’右-Migi’ which mean “left” and “right” in English.

record Allows for the sound picked up by the mic to be played through the headphones.
Table 4-11 Sound Commands

4.10.3 Audio Software Configuration
To enable, set R_SELF_INSERT_APP_SOUND to R_OPTION_ENABLE. To disable, set it to R_OPTION_DISABLE. See 3.1
Configuration for further details.

/** Enable control for src/application/app_sound sample application */
#define R_SELF_INSERT_APP_SOUND (R_OPTION_ENABLE)

Sound Commands

Play

RAM

IIC

Playback Record

SSIF Driver

DMA4

Sound

DMA5

Codec

Record Play

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 59 of 64
Jul 11, 2018

4.10.4 Playback Software Application
The playback software application plays a pre-recorded audio file through the headphone connection. The audio file is
directly included in the source code, in file LR_44_1K16B_S.dat. This file is encoded in stereo 16bit, 44.1kHz format.

The playback application starts in the function R_SOUND_PlaySample, which is run when the command “play” is entered
in to the console. This function initializes a control structure for the sound playback and calls a function play_file_data to
manage the audio playback.

The function play_file_data creates a task for the playback, task_play_sound_demo, then waits for completion or a user
keypress before finishing. The playback task, task_play_sound_demo, opens the SSIF and sound drivers. It then loops
through the audio file, sending blocks of audio data via DMA to the SSIF peripheral to be sent to the CODEC. When
playback is complete, the audio is closed and an event is set to signal for the calling function, play_file_data, to close the
task and finish.

The streaming of the audio data to the SSIF is organized using a number of buffers (set by #define
NUM_AUDIO_BUFFER_BLOCKS_PRV_, set to 3). DMA transfers from the audio file to the SSIF peripheral are managed by
the SSIF driver using an array of AIOCB messaging blocks, which define the access control semaphore and callback
function for each block of data to be transferred. The appropriate AIOCB messaging block is registered with the SSIF
driver and a write initiates the transfer of data to the SSIF peripheral from the relevant point of the audio file. Once the
transfer is complete, the access semaphore is released and the next block is set to transfer, until the whole file has been
transferred. When complete, the SOUND driver and SSIF drivers are closed and the calling function notified via the event
to close the task.

Play_sound_demo_task
R_SOUND_PlaySample

Initialise data structure
Set event to show

playback in progress

Play_file_data
Start

play_sound_demo_task

R_SOUND
Initialise CODEC

R_SOUND
Set Sample rate

Set Volume

Setup access
semaphore and
transfer DMA

callback

SSIF
Write block of
data to codec

via DMA
channel 4

Next Block

SSIF
open

End

Wait for event
 to show playback

completed

Play_file_data
Delete

play_sound_demo_task
Close SSIF Audio file write

complete?

Complete – signal
task completed

Figure 4-43 Play Application Flowchart

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 60 of 64
Jul 11, 2018

4.10.5 Record Software Application
The record software application reads the input from a microphone connected to the audio jack and outputs it to the
headphone connection in a software “loopback” mode.

The record application starts in the function R_SOUND_RecordSample, which is run when the command “record” is
entered in to the console. This function initializes a control structure for the audio operation and calls a function
play_recorded. The function play_recorded creates a buffer area, initializes access control semaphores, and configures
the SOUND driver, before creating a task; task_record_sound_demo, then waits for a user keypress before closing the
task and finishing.

The task, task_record_sound_demo, initializes the SSIF messaging structures for the transmit and receive operations,
before entering a loop, receiving and transmitting audio information when transfers have completed, when indicated by
flagging from end-of transfer callback functions. This continues until a keypress is detected in the parent function, which
then closes the task and completes.

The streaming of the audio data to/from the SSIF peripheral is organized using a number of buffers (set by #define
NUM_AUDIO_BUFFER_BLOCKS_PRV_, set to 3). DMA transfers to and from the SSIF peripheral are managed by the SSIF
driver using an array of AIOCB messaging blocks, for each receive and transmit channel. These define the access control
semaphores and callback functions for each block of data to be transferred. When a SSIF read or write is ready to be setup,
the SSIF driver is configured with the relevant AIOCB messaging block and the SSIF driver read or write command
initiates the transfer of data. Once the transfer is complete, the access semaphore is released and the next block is set to
transfer. As the read and write operations are working on the same data area, they are sharing the same semaphore
accessing.

task_record_sound_demo task

R_SOUND_RecordSample

Initialise data structure
Set event to show

operation in progress

play_recorded
Set Buffer and
semaphores

Initialise SSIF messaging
and callbacks for receive &
fill buffer with audio from

SSIF

Ready to transmit?

Initialise array of messaging
and callbacks for SSIF

transmit dma transfers

End

Wait for console
keypress

play_recorded
Open SSIF

play_recorded
Initialise CODEC

play_recorded
Set Sample rate

Set Volume

play_recorded
Start

task_record_sound_demo
task

Ready to receive?

Start of loop

Read audio data from SSIF
dma into current receive
block in buffer. Update

block pointers.

Write audio data from
current transmit block to

SSIF. Update block pointers.

Loop complete

Figure 4-44 Record Application Flowchart

RZ/A1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 61 of 64
Jul 11, 2018

4.11 Touchscreen Application
The touchscreen application allows for the touch capability of the RZ/A1LU Stream IT! Development Kit LCD to be
used. This is achieved through using the RIIC peripheral (channel 1) on the RZ/A1LU.

The software architecture is seen below.

Figure 4-45 Sound Function Hierarchical Software Layer

4.11.1 Software Configuration
To enable, set R_SELF_INSERT_APP_TOUCH_SCREEN to R_OPTION_ENABLE. To disable, set it to
R_OPTION_DISABLE. See 3.1 Configuration for further details.

/** Enable control for src/application/app_touchscreen sample application */
#define R_SELF_INSERT_APP_TOUCH_SCREEN (R_OPTION_ENABLE)

4.11.2 Commands
Table 4-12 shows the USB Functions commands.

Command Description

tsdemo Enables the touch screen application
Table 4-12 Touch Screen Command

4.11.3 Touchscreen Software
For more information regarding the Touchscreen Application please refer to the Application Note RZ/A1LU Touch
Panel Utility (R01AN4314EJ).

R_TOUCHApplicationMain

Touch Panel Task

RIIC Driver INTC

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 62 of 64
Jul 11, 2018

4.12 TES GUILIANI
Guiliani is a third party easy-to-use framework for the quick and uncomplicated creation of visually appealing graphical
user interfaces on embedded systems.

It combines the comfort of a PC based development toolchain with the benefits of a highly-optimized software framework,
specifically designed for the use on resource-limited embedded hardware.

The GUI Sample on the RZ/A1LU Stream it! V2.3 board shows a sample application that indicates how to connect the
Stream-it! Platform to the Guiliani library. This sample provides shows how to control and LED and show the value of
the RTC.

Following figure shows the image of the screen displayed on Stream it! board.

Figure 4-46 Sample Guiliani Application

4.12.1 Commands
Table 4-13 shows the Guiliani command.

Command Description

gui Enables the TES Guiliani application
Table 4-13 Guiliani Command

4.12.2 GUI Software
For more information regarding the Guiliani Development please refer to the GUI Sample Program Application Note
(R01AN4413EJ).

GUI→H/W H/W→GUI

Real time clock value is
displayed to GUI

LED on the board is
controlled by this button

RZA1LU Group Software Package

R01AN4427EG0100 Rev.1.0 Page 63 of 64
Jul 11, 2018

Website and Support
Renesas Electronics website

https://www.renesas.com/

Inquiries

https://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 Jul 11, 2018 All Created document.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
¾ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
¾ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
¾ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
¾ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
¾ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
http://www.renesas.com/

	1. Outline of the Software Package
	1.1 Folder Structure

	2. Description of the System
	2.1 Hardware
	2.1.1 Programming and Serial Console
	2.1.2 Connectivity
	2.1.3 HMI
	2.1.4 Memory
	2.1.5 USB
	2.1.6 Analog
	2.1.7 Audio

	3. System Software
	3.1 Configuration
	3.2 Loading the Software Package
	3.3 Operating System
	3.4 STDIO
	3.4.1 Stream configuration example
	3.4.2 STDIO Files
	3.4.3 STDIO Include files
	3.4.4 STDIO lowsrc.c file
	3.4.5 STDIO devlink.c file
	3.4.6 Device Driver Function Table
	3.4.7 Dynamic Device List
	3.4.8 Dynamic Device Link Table
	3.4.9 Static Device Mount Table

	3.5 System Commands
	3.6 Doxygen

	4. Applications
	4.1 ADC
	4.1.1 Software Configuration
	4.1.2 Commands
	4.1.3 Application
	4.1.4 ADC Driver

	4.2 Switch
	4.2.1 Switch Driver

	4.3 LED
	4.3.1 Commands
	4.3.2 LED Driver

	4.4 PMOD
	4.4.1 Software Configuration
	4.4.2 Commands
	4.4.3 Application
	4.4.4 PMOD Middleware
	4.4.5 RSPI

	4.5 USB Mass Storage
	4.5.1 Software Configuration
	4.5.2 Commands
	4.5.3 FATFS
	4.5.4 USB Host Stack
	4.5.5 Hardware Layer
	4.5.5.1 Timer
	4.5.5.2 DMA
	4.5.5.3 Host Ports
	4.5.5.4 Host Port Power Control
	4.5.5.6 Device Management
	4.5.5.7 Transfer Management
	4.5.5.8 Scheduling Transfers
	4.5.5.9 Hardware Driver
	4.5.5.10 USB Pipes
	4.5.5.11 USB Bulk Transfers
	4.5.5.12 USB Control Transfers
	4.5.5.13 USB Interrupt Transfers
	4.5.5.14 USB Isochronous Transfers

	4.6 Website
	4.6.1 Software Configuration
	4.6.2 Commands
	4.6.3 Application
	4.6.4 Ethernet Stack
	4.6.3.1 Interaction between read/writing tasks and the lwIP task
	4.6.3.2 IpLinkMonitorTask Details
	4.6.3.3 IpInputTask Details
	4.6.3.4 IpOutputStatus Details
	4.6.3.5 Stack Initialization Sequence
	4.6.3.6 Callback function ipInitialise
	4.6.3.7 Purpose of the interface
	4.6.3.8 Berkeley socket interface
	4.3.6.9 Socket API Wrapper Functions

	4.6.5 WebIO Server and Files
	4.6.6 WebIF
	4.6.7 Website Files

	4.7 Camera
	4.7.1 Software Configuration
	4.7.2 Commands
	4.7.3 Menu
	4.7.3.1 Acquisition of image adjustment value
	4.7.3.2 Process Sequence
	4.7.3.3 Image Adjustment Effects and Adjustment Methods
	4.7.3.4 Overall Configuration

	4.8 USB HID
	4.8.1 Software Configuration
	4.8.2 Commands
	4.8.3 USB HID Mouse
	4.8.4 USB HID Keyboard

	4.9 USB CDC
	4.9.1 Software Configuration
	4.9.2 CDC Driver

	4.10 Sound Application
	4.10.1 Software Configuration
	4.10.2 Commands
	4.10.3 Audio Software Configuration
	4.10.4 Playback Software Application
	4.10.5 Record Software Application

	4.11 Touchscreen Application
	4.11.1 Software Configuration
	4.11.2 Commands
	4.11.3 Touchscreen Software

	4.12 TES GUILIANI
	4.12.1 Commands
	4.12.2 GUI Software

	Website and Support

