1LENESAS Application Note

Renesas RA Family
Secure Bootloader for RA2 MCU Series

Introduction

MCUboot is a secure bootloader for 32-bit MCUSs. It defines a common infrastructure for the bootloader, defines
system flash layout on microcontroller systems, and provides a secure bootloader that enables easy software
update. MCUboot is operating system and hardware independent and relies on hardware porting layers from
the operating system it works with. MCUboot is maintained by Linaro in the GitHub mcu-tools page
https://github.com/mcu-tools/mcuboot. There is a /docs folder that holds the documentation for MCUboot
in _md file format. This application note refers to those documents wherever possible.

The Renesas Flexible Software Package (FSP) integrates an MCUboot port across the entire RA MCU Family
starting from FSP v3.0.0. The Renesas RA2 MCU series is based on the Arm® Cortex®-M23 core and has
limited flash and RAM memory. This application project is created to address the unique challenges and
provide guidelines on the optimization of the RA2 MCU bootloader memory size. For the MCUboot
cryptographic support for RA2 MCU groups, TinyCrypt (https://github.com/intel/tinycrypt/) is integrated with the
FSP MCUboot module to provide a smaller memory footprint compared with Mbed Crypto. Refer to the GitHub
folder /tinycrypt/documentation/ for details on the TinyCrypt cryptographic algorithm usage.

This application note guides you through secure bootloader creation using the MCUboot Module with TinyCrypt
for enhanced security on the Renesas EK-RA2E1 kit. In addition, examples of how to configure the application
project to use the bootloader are provided. The Overwrite, Swap and Direct XIP upgrade modes are discussed
and example projects are provided to support these upgrade modes.

For the Renesas RA6 and RA4 MCU Series, Renesas provides an application project Using MCUboot with
Renesas RA MCU Application Project, which guides you through using MCUboot with RA6 and RA4 MCU
groups with Mbed Crypto module. See the References section for information on that application project.

Required Resources
Development Tools and Software

e e?studio IDE v2024-01
e Renesas Flexible Software Package (FSP) v5.2.0
e SEGGER J-link® USB driver v7.94g

The above three software components: the FSP, J-Link USB drivers, and e? studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

Hardware

o EK-RAZ2E1 Evaluation Kit for RA2E1 MCU Group (http://www.renesas.com/ra/ek-ra2el).
e Workstation running Windows® 10 and Tera Term console, or similar application.
e One USB device cable (type-A male to micro-B male).

Prerequisites and Intended Audience

This application note assumes that you have some experience with the Renesas e? studio IDE. You should
read the entire MCUboot Port section in the FSP User’'s Manual prior to moving forward with this application
project. In addition, the application note assumes that you have some knowledge of cryptography. Prior
knowledge of Python usage is also helpful.

The intended audience are product developers, product manufacturers, product support, and end users who
are involved with designing application systems involving use of a secure bootloader with the Renesas RA2
MCU family.

R11ANO516EU0140 Rev.1.40 Page 1 of 45
May.01.24 RENESAS

https://github.com/mcu-tools/mcuboot
https://github.com/intel/tinycrypt/
http://www.renesas.com/fsp
http://www.renesas.com/ra/ek-ra2e1

Renesas RA Family Secure Bootloader for RA2 MCU Series

Using this Application Note

Section 1 presents a general overview of MCUboot and the application upgrade methods supported by
MCUDboot.

Section 2 describes the general flow of using the FSP MCUboot module to establish bootloader-based
application systems.

Section 3 to Section 6 are the walk-throughs of how to create bootloader projects using Overwrite, Swap, and
Direct XIP upgrade modes, how to configure the application projects to use the bootloader, and how to boot
the primary and secondary images.

Section 7 provides instructions on how to directly run the included example projects without going through
Sections 3 to 6. For a quick evaluation of the included example projects, you can go directly to Section 7.

Contents

1. OVErVIEW Of MCUDOOL........ueiiiiiiiiiiiiii e e e 4
1.1.1 Overview of Application BOOLING PrOCESScooivieiieieieieriee e 4
1.1.2 Application UPAate Strat@gieScoiiiiiiiiieeie ettt e e e ettt e e e e e s e sabb et e e e e e e e s nbbbeeeaaaeeeannbnneeas 4
2. Architecting an Application with MCUboot Module using FSP for RA2 MCUs...........cccoeeevvven. 6
2.1 Secure Booting With TINYCIYPueeiie e e e s s e e e e e e s st e e e e e e s snnba e e e e e e e e e snntnnneeeeesaannnes 6
2.2 Designing Bootloader and the Initial Primary Application OVEIVIEWcccoeiiiiiiiiiiiieanniiiiiieeeeee e 6
2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUS ...t 6
2.3.1 Customizing the RA2 BOOUOAUETuuuiiiiiieiiiiiiie ettt e et e e e e e e e snbbeeeeaae e e e aanes 6
2.3.2 Time Usage in an Application IMage UPAAte...........uueeiieiiiiiiiiiiieee e icciiieee e e e s ssteeeee e e e e s snrrane e e e e e s e nnnes 7
2.4 Production Recommendations for RA2 MCUccciiiiiiiiiiiienic et 7
2.4.1 Making the Bootloader IMmULABIE.............ooiiii i e e e e e e e e 7
2.4.2 Disabling the Debug and Serial Programming Interface Prior to Deployment...........cccccoiiiiiiiineeennnns 7
3. Creating the BOOtloader PrOJECE..........uiii i e e e e s 7
3.1 Including the MCUboot Module in the Bootloader Projectcuvvieiiiiiiieiiiie e e e e 8
3.2 Further Optimizing for the Bootloader ProjECt SIZe.........cooiiiiiiiiiiiiiiiiiie e 18
3.3 Compiling the BOOLIOAEN PrOJECT......cci ettt e e e e e e ab e e e e e e e e e e anes 20
3.4 Configuring the Python Signing ENVIFONMENTuiiiiiiiiiii et e e e 21
3.5 Review the Signing COMMEANGcoiiiiuiiiiiiie e s s e e e s e s e e e e e e sarne e e e eeeessnnstereeeeeessannnes 22
G T T U 1= = o =0 o) (=P PPPPPRPNt 22
3.6.1 Using Customized IMage SigNING KEYcuiiiiiiiiciiiiiee e e csiiee et e e e s s s e e e e e s ssenbe e e e e e e e s snnrereeeeeeesennnes 22
3.6.2 Migrating the Bootloader to other FSP VEISIONSccoiiiiiiiiiiiiiiae e 25
3.6.3 Migrating from One Upgrade Mode to Another Upgrade Modeooeiiiiiiiiiiiiiiiieiniiiieee e 26
3.6.4 Use the Memory Usage Window to Select Functions to Put in the Gap Areaccccccvviiiiieiiiaennnnns 26
4. Using the Bootloader with a New Application or Existing Application ..., 26
4.1 Generate the Initial APPlICAtION PrOJECTueiiiiii i a e 26
4.2 Configure the Existing Application to Use the Bootloader Projectcccuveeviiiiiiiiiiiieieeeiiieeeeen 27
V/C T ST o VT aTo I { g TSR aY o] o] o= Ux o] o I [4= o = SRR 28
5. Booting the Initial APPHCALION PrOJECT.uiiiiiiii s 30
5.1 SEtUP the HAIAWAIEcciiiiiiee ettt e ettt e e e e e s kb bttt e e e e e e e s aanbbbeeeaaeeeesnnbbseeeaaeeaaannnes 30
R11ANO516EU0140 Rev.1.40 Page 2 of 45

May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

72 O o1 To [0 Tg= 1 aT=TNIT=T o 10 o o = PR 30
6. Mastering and Delivering a New AppPlICAtioNcoviiiiiiiiiiiiii e, 34
L% R O == | (- W AN (=T A AN o o [T Y[PSS 34
6.2 Configure the SWaP TESt MOUEcciiiiiiiiir e e e e s e s e e e e e s et e e e e e e e s snnrereeeeeesannnnes 38
6.2.1 Confirming the New Application at Compile TIMe........ccoiiiiiiiiiiia e 39
6.2.2 Confirming the New Application at RUN-TIMEoooiiiiiiiii e e e e 39
6.3 Downloading and Booting the New APPIICALIONcoiiiiiiiiii e 40

7. Appendix: Compile and Exercise the Included Example Bootloader and Application Projects42

7.1 Running the Example Projects with Overwrite Upgrade MOdecccuveiiiiiiiiiiiiiiiiieeeee e 42
7.1.1 Without SIgnature VerifiCAtiONo uiiiiiii ettt e e e e e e e re e e e e e e e anes 42
7.1.2 With SIgnature VErifiCatiONceeeeiiiiiiiiriec s ee e e e e s s s e e e e e s s st e e e e e e e s snnrerneeeeeenannnes 42
7.2 Running the Example Projects with Swap Upgrade MOAEcoceeiiiiiiiiiieee e ssireeee e 43
7.2.1 Without SIgnature VerifiCatiONocieriiiiie e e e e s s e e e e e s s r e e e e e e e snnrereeeeeeesannnes 43
7.2.2 With SIgNature VerifiCatiONooo ittt e e e ettt e e e e e e sbbereeeaeeeaannes 43
7.3 Running the Example Project with Direct XIP Upgrade Mode Without Signaturecccvveeeeeeennnns 44
8. REIEIBNCESttt 44
LS T VT =T o 1S (= T To ST o] oL A 44
Y] o] g T 11 (o Y 45
R11ANO516EU0140 Rev.1.40 Page 3 of 45

May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

1. Overview of MCUboot

MCUboot is an open-source project hosted at mcu-tools github project. It is currently managed by the Linaro
Community Project.

MCUboot handles the firmware integrity and authenticity check after startup and the firmware switch part of
the firmware update process. The operation of switching the firmware from the original image to a new image
depends on the image upgrade method. The image upgrade methods are described in section 1.1.2.
Downloading the new version of the firmware is out of scope for MCUboot. Typically, downloading the new
version of the firmware is functionality that is provided by the application project itself.

1.1.1 Overview of Application Booting Process

For applications using MCUboot, the MCU memory is separated into MCUboot, Primary App, Secondary App,
and the Scratch Area. The following is an example of the single-image MCUboot memory map.

Scratch Area

Secondary App

Primary App

MCUboot

Figure 1. Single Image MCUboot Memory Flash Map
The functionality of MCUboot during booting and updating follows the process below:

1. The bootloader is started when the CPU is released from reset.

2. If there are images in the Secondary App memory marked as to be updated, the bootloader performs the
following actions:
A. The bootloader verifies the integrity and authenticity of the Secondary image.
B. Upon successful authentication, the bootloader switches to the new image based on the update

method selected.

C. The bootloader boots the new image.

3. If there is no new image in the Secondary App memory region, the bootloader authenticates the Primary
applications and boots the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. The firmware image can be authenticated by hash (SHA-256)
and digital signature validation.

1.1.2 Application Update Strategies

The following update strategies are supported by MCUboot. The Renesas FSP MCUboot Module supports
one or more of the following strategies depending on the FSP version. The analysis of pros and cons is
based on the MCUboot functionality, not the FSP version specific MCUboot Module functionality. In addition,
this application note is not intended to provide all details on the MCUboot application update strategies. We
recommend acquiring more details on these update strategies by referring to the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

R11ANO516EU0140 Rev.1.40 Page 4 of 45
May.01.24 RENESAS

https://github.com/mcu-tools/mcuboot
https://www.linaro.org/community-projects/
https://www.linaro.org/community-projects/
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family Secure Bootloader for RA2 MCU Series

Overwrite
In the Overwrite update mode, the active firmware image is always executed from the Primary slot, and
the Secondary slot is a staging area for new images. Before the new firmware image is executed, the
entire contents of the Primary slot are overwritten with the contents of the Secondary slot (the new firmware
image).
e Pros:

o Fail-safe and resistant to power-cut failures.

e Less memory overhead, with a smaller MCUboot trailer and no Scratch Area.

e Encrypted image support is available when using external flash.
e Cons:

e Does not support pre-testing of the new image prior to overwrite.

e Does not support automatic application fallback mechanism.
Overwrite upgrade mode is supported by Renesas RA FSP v3.0.0 or later. However, encrypted image
support using external flash is not currently supported.

Swap
In the Swap image upgrade mode, the active image is also stored in the Primary slot and is always started
by the bootloader. If the bootloader finds a valid image in the Secondary slot that is marked for upgrade,
then contents of the Primary slot and the Secondary slot are swapped. The new image then starts from
the Primary slot.
e Pros:

e The bootloader can revert the swapping as a fallback mechanism to recover the previous working

firmware version after a faulty update.

e The application can perform a self-test to mark itself permanent.

e Fail-safe and resistant to power-cut failures.

e Encrypted image support is available when using external flash.
e Cons:

¢ Need to allocate a Scratch Area.

e Larger memory overhead, due to a larger image trailer and additional Scratch Area.

e Larger number of write cycles in the Scratch Area, wearing the Scratch sectors out faster.
Swap upgrade mode is supported by Renesas RA FSP v3.0.0 or later. However, encrypted images using
external flash is not supported. Runtime image testing is supported from FSP v3.4.0 or later.

Direct execute-in-place (XIP)
In the direct execute-in-place mode, the active image slot alternates with each firmware update. If this
update method is used, then two firmware update images must be generated: one of them is linked to be
executed from the Primary slot memory region, and the other is linked to be executed from the Secondary
slot.
e Pros:
e Faster boot time, as there is no overwrite or swap of application images needed.
e Fail-safe and resistant to power-cut failures.
e Cons:
e Added application-level complexity to determine which firmware image needs to be downloaded.
e Encrypted image support is not available.
Direct execute-in-place is supported by Renesas FSP v3.4.0 or later.

RAM loading firmware update

Like the direct execute-in-place mode, RAM loading firmware update mode selects the newest image by
reading the image version numbers in the image headers. However, instead of executing it in place, the
newest image is copied to RAM for execution. The load address (the location in RAM where the image is
copied to) is stored in the image header. This upgrade method is not typically used in an MCU environment.
This image update mode does not support encrypted images. Refer to the MCUboot Design Page for more
information on this update strategy.

RAM loading update mode is not supported by the Renesas RA FSP.

R11ANO516EU0140 Rev.1.40 Page 5 of 45
May.01.24 RENESAS

https://docs.mcuboot.com/design.html

Renesas RA Family Secure Bootloader for RA2 MCU Series
2. Architecting an Application with MCUboot Module using FSP for RA2 MCUs

This section provides an overview of the FSP MCUboot Module, the available application image upgrade
modes, memory architecture design, and guidelines for mastering the new image. In addition, this section
describes how the lightweight TinyCrypt is used in the RA2 bootloader design. We recommend reviewing the
MCUboot Port section of the FSP User’s Manual to understand the build time configurations for MCUboot.

2.1 Secure Booting with TinyCrypt

TinyCrypt is a small-footprint cryptography library targeting constrained devices. Its minimal set of standard
cryptographic primitives are designed to provide secure messages, basic encryption, and random number
generation, which are all needed to secure the small footprint of 10T devices. For the RA2 bootloader design,
SHA256 and ECDSA from TinyCrypt are used to ensure the application image integrity and authenticity.
TinyCrypt does not support RSA.

The FSP TinyCrypt port module does not provide any interfaces to the user. Consult the documentation at
https://qgithub.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst for further information on use of the
TinyCrypt port. The software only module is available in FSP on all RA devices. Hardware acceleration for
AES-128 through FSP TinyCrypt port is provided for the RA2 family.

2.2 Designing Bootloader and the Initial Primary Application Overview

A bootloader is typically designed with the initial primary application. The following are the general guidelines
for designing the bootloader and the initial primary application:

e Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader and
the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image, as well as the cryptographic library used.

e Develop the initial primary application, perform the memory usage analysis, and compare with the
bootloader memory allocation for consistency and adjust as needed.

e Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in adjustment of the memory allocated definition in the bootloader project.

e Sign the application image. The signing command is output to the <bootloader project>
\Debug\<bootloader project>.bld file. The application image can use a BuildVariable to access
this .bld file. The IDE tools will use the signing command to sign the application and generate a binary file
for downloading to the MCU.

e Test the bootloader and the initial primary application.

The above guidelines are demonstrated in the walk-through sections in this application note.

2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUs

The MCUboot Module is supported on all RA Family MCUs. For the Renesas RA2 Cortex-M23 MCU series,
image hashing and image authentication are supported in FSP v3.4.0 and later.

2.3.1 Customizing the RA2 Bootloader
Customizing the bootloader involves the following main aspects:

e Customized method to download the application. This is very application specific and is not discussed in
this application project.
e Bootloader size optimization.
Some of the bootloader size optimization actions that can be taken are summarized as follows:
e Disable application image validation to reduce code size.
e Disable image signing to reduce code size.
e Update the linker script to optimize memory usage.
e Disable unused FSP components to reduce code size.
e Compile the bootloader with Optimization for Size (-Os).
e Use pin configurations that initialize fewer peripheral and 10 pins.
Details on the operational flow of these optimization are described in section 3.
e Details on the RA2 bootloader memory optimization are introduced in later sections.

R11ANO516EU0140 Rev.1.40 Page 6 of 45
May.01.24 RENESAS

https://github.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst

Renesas RA Family Secure Bootloader for RA2 MCU Series

2.3.2 Time Usage in an Application Image Update

There are several major factors that can influence how much time an application image update takes. This
section will discuss some of the major factors that can influence the time used in an application image update.

First, during an image update, if image verification using ECC or RSA is used, the larger the application image
size, the longer it takes to verify the image for a given cryptographic algorithm.

Secondly, the larger the size of the application image, the longer it takes to erase and program the flash during
the image upgrade process (for Overwrite and Swap upgrade mode where flash erase and programming are
involved). User can reference the MCU Hardware User’s manual section Electrical Characteristics to calculate
the flash erase and programming time based on the table for code flash characteristics located in the sub
section Flash Memory Characteristics.

Thirdly, the upgrade mode itself influences the time used to upgrade an application image. Assuming a new
image is already downloaded and programmed to the update slot, the following erase and program events will
happen after the MCU comes out from a reset.

For overwrite upgrade mode, the upgrade process involves:

e 2 x erase time (both primary and secondary slot).
e 1 x programming time (primary slot only).
For swap upgrade mode, the upgrade mode involves:

e 2 x erase time (both primary and secondary slot).
e The erase and program time used for erasing and programming the scratch area multiple times (with
a total flash area equals the size of the application image on a scratch area size boundary).
e 2 x programming time (both primary and secondary slot).
For Direct XIP mode, the upgrade process does not involve any flash erasing or programming:

e Since the image update in the Direct XIP mode does not involve any flash erasing and programming
operation, this is the best upgrade mode in terms reducing the system downtime.
The fourth factor is related to the usage of different signature algorithms. RSA typically takes longer verification
times compared with ECC for the same image size. Currently, only ECC is supported for RA2 signature
verification.

2.4 Production Recommendations for RA2 MCU

2.4.1 Making the Bootloader Immutable

Refer to the Renesas RA MCU Family Securing Data at Rest Utilizing the Renesas Security MPU application
project section Permanent Locking of the FAW Region to understand how to make the bootloader immutable.
The PC Application to Permanently Lock the FAW section in the same application note describes how to
handle flash locking in production mode.

2.4.2 Disabling the Debug and Serial Programming Interface Prior to Deployment
Once the bootloader development is finished, you may want to set up ID Code protection on the Renesas RA2
MCU to lock down the debugger and the serial programming interface.

Refer to the Securing Data at Rest Utilizing the Renesas Security MPU Application Project section Setting up
the Security Control for Debugging for the desired settings to control the device lifecycle management of the
RA2 MCUs using the ID Code protection method.

3. Creating the Bootloader Project
This section guides you through the creation process of the RA2 bootloader provided in this application project.

The example bootloader that you will create by following this section is provided in the
RA2_secure_bootloader.zip. You can follow section 7 to exercise the example bootloader and
application projects without going through the creation process in this section.

R11ANO516EU0140 Rev.1.40 Page 7 of 45
May.01.24 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

3.1

Including the MCUboot Module in the Bootloader Project

1. Launch e? studio and start to establish a new C/C++ Project. Click File > New > Renesas C/C++ Project

> Renesas RA.

ﬁ workspace_520 - €° studio

Edit Source Refactor Navigate Search Project Renesas Views Run Renesas Al Window Help
[New | Alt+Shift+N > Renesas C/C++ Project >

Renesas Debug

Open File... &5 Makefile Project with Existing Code |
4 Open Projects from File System... [€] C/C++ Project
Recent Files > ™ Project...
Ct [&] Convert to a C/C++ Project (Adds C/C++ Nature)
trl+Shif 6 Source Folder
1 Folder
" € Source File
Al h Header File
ort File from Template
(& Class
™ Example..
e, L.
Refresh 5 [Other. Ctrl+N
Figure 2. Start a New Project
2. Choose Renesas RA C/C++ Project. Click Next.
& New C/C++ Project m] x
Templates for Renesas RA Project
Renesas RA C/C++ Project
C/C++ I Create an executable or static library C/C++ project for Renesas RA.
< >

Figure 3. Choose Renesas RA C/C++ Project

3. Provide a project name in the next screen. Select a project name based on the upgrade mode and
authentication method. The name will persist in the instructions used in this application note. Table 1 shows
the name and intended application image update strategy of each bootloader project. Note that magic
number and SHA256 integrity check are included in all of the systems.

Table 1. Description of the Bootloader Projects

Name of the project to be used

Intended application update strategy

ra_mcuboot_ ra2el

Overwrite update mode with no signature
verification.

ra_mcuboot_ra2el overwrite with_signature

Overwrite update mode with signature
verification.

ra_mcuboot_ra2el swap

Swap update mode with no signature verification.
Swap test prior to confirm is not supported.

ra_mcuboot ra2el swap_ with_signature

Swap update mode with signature verification,
Swap test prior to confirm is supported.

ra_mcuboot ra2el dxip

Direct XIP update mode with signature
verification.

R11ANO516EU0140 Rev.1.40
May.01.24

Page 8 of 45

RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

Figure 4 is an example of setting the project name to ra_mcuboot_ra2el.

a Renesas RA C/C++ Project

Renesas RA C/C++ Project

Project Name and Location

Project name
I ra,m(uboot,raleﬂ I

Use default location

< Back MNext = Finish Cancel

Figure 4. Name the Bootloader Project

Click Next. If you choose another name for the bootloader, adapt the corresponding instructions in this
application note to the project name used.

4. In the next screen, choose EK-RAZ2E1 for Board and click Next.

Device Selection

FSP Version: 5.2.0 - Board Description
= = — Evaluation kit for RA2E1 MCU Group
poard: | (ESVER) al
. Visit httpsy/fwww.renesas.com/ra/ek-ra2el to get kit user's manual, quick
Device: RIFAZE1A92DFM start guide, errata, design package, example projects, etc
Core: cM23
language: (@ C () C++
Device Details
TrustZone No
Pins 64
Processor Cortex-M23
Toolchains Debugger
GNU ARM Embedded J-Link ARM .
LLVM Embedded Toolchain for Arm
13.2.1.arm-13-7

Figure 5. Select the Board
5. Choose Executable for Build Artifact Selection and No RTOS. Click Next.

a Renesas RA C/C++ Project

Renesas RA, C/C++ Project
Build Artifact and RTOS Selection

Build Artifact Selection RIS Selection

(@) Executable Mo RTOS

v
* Project builds to an executable file

() Static Library
* Project builds to a static library file

() Executable Using an RA Static Library
* Project builds to an executable file
* Project uses an existing RA static library project

< Back Finish Cancel

Figure 6. Choose to Build Executable and No RTOS

R11ANO516EU0140 Rev.1.40 Page 9 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

6. Choose Bare Metal — Minimal for the Project Template in the next screen and click Finish to establish
the initial project.

® /} Bare Metal - Minimal

Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks, and the C runtime environment.

Figure 7. Choose the Project Template

7. When the following prompt opens, click Open Perspective.

ﬁ Open &ssociated Perspective? b4

3 1 Open the FSP Configuration perspective?

DRemembermy decision

Open Perspective | MNa

Figure 8. Choose Open the FSP Configuration Perspective

8. The project is now created, and the bootloader project configuration is displayed.
Select the Pins tab and uncheck Generate data for RA2E1 EK.

(¥

Pin Configuration
9 Generate Project Content

Select Pin Configuration _d Export to CSV file |s-) Configure Pin Driver Warnings

RAZE1 EK ~ | Manage configurations... |I Generate data: | g _bsp_pin_cfg I

Figure 9. Uncheck Generate data for RA2E1 EK Pin Configuration

Use the pull-down menu to switch from RA2E1 EK to R7FA2E1A92DFM.pincfg for the Select Pin
Configuration option, then select the Generate data check box and enter g_bsp_pin_cfg. Note that here
we choose to use this configuration, which has fewer peripherals/pins configured, since the bootloader
does not use the extra peripheral or GPIO pins configured in the RA2E1 EK configuration. This change
also reduces the bootloader memory usage and is highly recommended.

Select Pin Configuration 4-1‘ Export to CSV file & Configure Pin Driver Warnings

| R7FA2E1A92DFM.pincfg v ! Manage configurations... Generate data: | g_bsp_pin_cfg |

Figure 10. Select R7TFA2E1A92DFM.pincfg and Generate data g_bsp_pin_cfg

9. Once the project is created, click the Stacks tab on the RA configurator. Add New Stack > Bootloader >
MCUboot.

HAL/Common Stacks % | New Stark

Al > iiii
4 g_ioport 1/O Port Analog >
(r_ioport) Audio b .
=y
® CapTouch > 4 MCUboot Image Utilities
Connectivity > [_TT-

Figure 11. Add the MCUboot Port

R11ANO516EU0140 Rev.1.40 Page 10 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

10. Next, configure the General properties of MCUboot.

e For project ra_mcuboot_ra2el and ra_mcuboot_ra2el overwrite_with_signature, use
the settings in Figure 12.

e For project ra_mcuboot ra2el swap and ra_mcuboot_ra2el swap with_signature,
update the following properties in Figure 12:
e Change the Upgrade Mode to Swap.
e Set the Downgrade Prevention (Overwrite Only) to Disabled.

e For project ra_mcuboot_ra2el_dxip update the following properties in Figure 12:
e Change the Upgrade Mode to Direct XIP.
e Set the Downgrade Prevention (Overwrite Only) to Disabled.

HAL/Common Stacks & New Stack > = Extenc
S -+ MCUboot
AL/Comman ~
! gioport I/ v @
) > Y
I
& MCUboot Port for RA (rm_me uboot_paort) 4 MCUboot logging

<

BSP Clocks | Pins | Interrupts Event Links | Stacks Components

ms & Console m Smart Browser == Smart Manual 4 Search

ot

Property Value
» Common
~ General

Customn meuboot_configh
Upgrade Mode Owverwrite Only
Validate Primary Image Enabled
Downgrade Prevention (Overwrite Only) Enabled
Mumber of Images Per Application 1

Figure 12. General Properties for MCUboot

Figure 13 is a more detailed application image format that can be referenced to understand the various
MCUboot property definitions.

e The header magic number is used for image validation sanity check (refer to the description of Validate
Primary Image).

e The image_ok byte is a flag used by the bootloader for swap test mode confirmation (refer to section 6.2
for more details).

e The trailer magic number is written after the image upgrade is finished.

Scratch Area (swap
upgrade mode only)

Trailer
L pady e
Slecondafy Type Length Value (TLV)
slot
Application 2

__Header _

<— Trailer Magic number
Trailer *— image_ok

Primary | (pad)
slot Type Length Value (TLV)

Application 1

-y

X Header magic number

Bootloader Bootloader

Figure 13. General Configuration for MCUboot Module

R11ANO516EU0140 Rev.1.40 Page 11 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

The properties configured include:

e Custom mcuboot_config.h: The default mcuboot config.h file contains the MCUboot Module
configuration that you select from the RA configurator. You can create a custom version of this file to
achieve additional bootloader functionalities available in MCUboot.

e Upgrade Mode: This property configures the application image upgrade method. The available
options are Overwrite Only, Overwrite Only Fast, Swap, and Direct XIP.

e Validate Primary Image: When Enabled, the bootloader will perform a hash or signature verification,

depending on the verification method chosen, in addition to the MCUboot sanity check based on the
image header magic number. The header magic number is always checked as part of the sanity
checking prior to the integrity checking and the signature verification.
When this property is Disabled, only sanity check is performed based on the MCUboot header magic
numbers. It is highly recommended to always enable this property. The additional code used when
this property is enabled is less than 30 bytes, while it adds critical security handling to the bootloader.
Note that the image magic number is not part of the image validation, it is a reference value that can
be used for sanity check during application upgrade debugging process. This image magic number is
written to the flash after a successful image upgrade.

e Number of Images Per Application: This property allows you to choose one image for Non-
TrustZone-based applications and two images for TrustZone-based applications. RA2 MCU groups
do not support TrustZone, so this property is set to 1.

e Downgrade Prevention (Overwrite Only): This property applies to Overwrite upgrade mode only.
When this property is Enabled, a new firmware with a lower version number will not overwrite the
existing application. To see how to set the version number of an image, refer to Figure 52.

11. Configure the Signing Options and Flash Layout of the MCUboot module based on Table 2.

Table 2. Bootloader Configurations

Bootloader Project Name Screenshots for Detailed Configuration
ra_mcuboot_ ra2el Figure 14
ra_mcuboot ra2el overwrite with_signature Figure 15
ra_mcuboot_ra2el swap Figure 16
ra_mcuboot_ra2el swap with_signature Figure 17
Ra_mcuboot_ra2el dxip Figure 18

mcuboot_ralel HAL/Common Stacks

:dudas 42 g_ioport /0 Port 4 MCUboot

:;gen | (r_ioport) I]

Debug @ L

ra_cfg] [

script f
RS =TS S — &

> Summary | BSP | Clocks | Pins | Interrupts | Event Links | € Stacks | Comp
ms | @ Smart Browser |] Properties X
ot

Property Value
v Common
General
~ Signing and Encrypticn Options
TrustZone
Signature Type None
Boot Record
Custom
Python gl
Encryption Scheme Encryption Disabled
~ Flash Layout
TrustZone
Bootloader Flash Area Size (Bytes) 02000
Image 1 Header Size (Bytes) 0100
Image 1 Flash Area Size (Bytes) 0x 2000
Scratch Flash Area Size (Bytes) 00

Figure 14. Update Configurations for Project ra_mcuboot_ra2el

R11ANO516EU0140 Rev.1.40 Page 12 of 45
May.01.24 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

~ Common

General
w Signing and Encryption Options
TrustZone
Signature Type
Boot Record
Custom
Python
Encryption Scheme
w Flash Layout
Trust{one
Bootloader Flash Area Size (Bytes)
Image 1 Header Size (Bytes)
Image 1 Flash Area Size (Bytes)
Scratch Flash Area Size (Bytes)

python
Encryption Disabled

(03800
0100
(2000

Figure 15. Update Configurations for Project ra_mcuboot_ra2el_overwrite_with_signature

k Property
~ Common

General
» Signing Qptions
TrustZone
Sighature Type
Boot Record
Custom
Python
Debugging
w Flash Layout
Trustlone
Bootloader Flash &rea Size (Bytes)
Irmage 1 Header Size (Bytes)
Irmage 1 Flash &rea Size (Bytes)
Scratch Flash Area Size (Bytes)
Data Sharing

Walue

Mone

python

33000
=100
(<2000
2800

Figure 16. Update Configurations for ra_mcuboot_ra2el swap

Property

v Commeon

General
w Signing Options
TrustZone
Signature Type
Boot Record
Custom
Python
Debugging
w Flash Layout
TrustZone
Bootloader Flash Area Size (Bytes)
Image 1 Header Size (Bytes)
Image 1 Flash Area Size (Bytes)
Scratch Flash Area Size (Bytes)

Value

Cecosapzse |
Lo 1

python

Oxc4000
Ox 100
02800
0x800

Figure 17. Update Configurations for ra_mcuboot_ra2el _swap_with_signature

R11ANO516EU0140 Rev.1.40
May.01.24

RENESAS

Page 13 of 45

Renesas RA Family Secure Bootloader for RA2 MCU Series

Property Yalue
w Common
General
w Signing and Encryption Options

Trust{one

Signature Type Mone

Boot Record

Custom

Python pythaon

Encryption Scheme Encrypticn Disabled
w Flash Layout

Trust{one

Bootloader Flash Area Size (Bytes) (Ore 2000

Image 1 Header Size (Bytes) 100

Image 1 Flash Area Size (Bytes) (e 2000

Scratch Flash Area Size (Bytes) (w0

Data Sharing

Figure 18. Update Configurations for ra_mcuboot_ra2el_dxip

Explanation of the Above Configurations
For both single-image and two-image configurations, the following properties need to be defined:

Bootloader Flash Area: Size of the flash area allocated for the bootloader with a boundary of 0x800

since 0x800 is the minimum erase size for code flash.

Image 1 Header Size: Size of the flash area allocated for the application header for single-image

configuration. For Arm Cortex-M23 MCUSs, this should be set to 0x100.

Image 1 Flash Area Size: Size of the flash area allocated for the application image for single-image

configuration. This area needs to be equal or larger than the application image with a boundary of

0x800.

Scratch Flash Area Size: This property is only needed for Swap mode. The Scratch Area must be

large enough to store the largest sector that is going to be swapped. For all RA2 MCUs, the Scratch

Area should be set up to 0x800 when Swap mode is used.

Signature Type is the signing algorithm selection. Application images using MCUboot must be signed

to work with MCUboot. At a minimum, this involves adding a hash and an MCUboot-specific constant

value in the image trailer. Note that when using TinyCrypt as the cryptographic support for MCUboot,

RSA signature verification is not supported. The choices are:

o NONE: This option is selected for the bootloaders that do not support signature verification as
shown in Figure 14 and Figure 16.

e ECDSA P-256: This option is selected for the example bootloaders that support signature
verification included in this application project as shown in Figure 15 and Figure 17.

e RSA 2048 and RSA 3072: Not supported.

Custom: This property allows you to input any specific arguments for the signing command. By default

—-—confirmis set for this property, which has the following influence on the Secondary image:

e For Overwrite upgrade mode, the new image will always overwrite the original application image
upon successful verification.

e For Swap upgrade mode, the Primary image slot will be marked as Confirmed after the swap
update. No swap happens upon the next reset after the swap update.

If the Custom property is set to —-—-pad, the system behavior is:

e For Overwrite upgrade mode, the system behavior is same as when —-confirm is set.

e For Swap upgrade mode, the system behavior depends on whether the application has routines
to mark the Primary image slot as Confirmed. The details about the system behavior are explained
in section 6.2.2.

The Primary image boot behavior is not influenced by the choice between --confirm or --pad.

R11ANO516EU0140 Rev.1.40 Page 14 of 45
May.01.24 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Properties that vary based on the Upgrade Mode Selection
See Table 3 for the configuration used in the various bootloader projects introduced in this application
project:

Different authentication methods and different Image Upgrade mode use different amounts of flash
memory. Select the most suitable configurations based on your specific application project
requirement.

The Image 1 Flash Area size is based on a simple blinky project. Adjust this memory configuration
based on the specific application project you want to use with the bootloader.

The Swap upgrade application project uses a larger flash area because the swap test mode is
configured in the example project. For details on the swap test mode, refer to section 6.2.2.

Note that there is no difference in the bootloader flash memory usage whether --confirm or --pad
is defined for the Custom property. However, the new image which includes the MCUboot Image
Utilities modules will need to allocate about 2kB flash for the added functionality.

Table 3. Configurations for Different Upgrade Modes

Properties ra_mcuboot_ | ra_mcuboot_ra2el_ove | ra_mcuboot_ | ra_mcuboot_ra2 | ra_mcuboot_ra2

ra2el rwrite_with_signature ra2el_swap el _swap_with_ | el _dxip
sighature

Bootloader 0x2000 0x3800 0x3000 0x4000 0x2000

Flash Area Size

Image 1 Flash 0x2000 0x2000 0x2000 0x2800 0x2000

Area Size

Signature Type | NONE ECDSA P256 NONE ECDSA P256 NONE

Custom --confirm -—confirm --confirm --pad --confirm

12.

The properties under TrustZone are not used for RA2 MCUs since they do not have TrustZone. For other
properties shown in this step, refer to the FSP User’s Manual section on MCUboot port.

Next, add the TinyCrypt module under MCUboot Port for RA. TinyCrypt (H/W Accelerated) includes
hardware accelerated AES functionality, which is not used in the bootloader, so TinyCrypt (S/W Only) is
used. The MbedTLS (Crypto Only) module has a larger memory footprint compared with TinyCrypt and
is not used in this bootloader design.

HAL/Common Stacks % | New Stack >

@ MCUboot

®

A
I |

@ MCUboot Port for RA (rm_mcuboot_port) 4 MCUboot logging

&1

@ @

% Add Requires Flash

fg:j Add Requires a crypto
stack

New > 4 MCUboot TinyCrypt (H/W Accelerated)
] H-{* MCUboot TinyCrypt (/W Only) |
K

MbedTLS (Crypto Only)

Figure 19. Select TinyCrypt Module

13. If the user is creating a bootloader with signature verification support, then the ASN.1 Parser stack

and the MCUboot Example Keys stack will be required. For example, if user wants to recreate the
following example bootloaders, user needs to add the ASN.1 Parser stack and the MCUboot
Example Keys stack.

0 ra_mcuboot_overwrite_with_signature

R11ANO516EU0140 Rev.1.40
May.01.24

Re Page 15 of 45
KENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

0 ra_mcuboot_ra2el swap_with_signature
Click on the Add ASN.1 parser stack and select New to add the ASN.1 Parser.

_with_signature_new] FSP Configuration ';:‘2} *[ra_mcuboot_ra2el] FSP Configuration X

&) New Stack > =

T T T Y
MCUboot logging %9 Add [Optional] Add 5. Add ASN.1 parser if

Example Keys using TinyCrypt or
Custom Crypto
(Protected Mode)

New >4 MCUboot ASN.1 Parser

Figure 20. Add the ASN.1 Parser

Click on the Add [Optional] Add Example Keys stack and choose New -> MCUboot Example Keys
[NOT FOR PRODUCTION].

T 1 !
%' Add [Optional] Add 4 MCUboot ASN.1 Parser
Example Keys

®
New 5] 4 MCUboot Example Keys (NOTFOR PRODUCTION) |

Figure 21. Add the Example Image Signing Key

Note that the example key is open to public access from MCUboot port, customers should not use them for
production purposes. Customer can follow the procedure in section 3.6.1 to create and use customized signing
key.

14. Update the BSP Main Stack size to 0x800.

Summary| B5P) Clocks | Pins | Interrupts | Event Links | Stacks | Components
[#] Problems Bl Console [R ==l @ Smart Browser [} Smart Manual
EK-RAZE1
Settings Property Value

D Code Mode Unlocked (Ignore DY)

ID Code (32 Hex Characters) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

w RA Common
I Main stack size (bytes) (e B00 I
Heap size (bytes) 0
Figure 22. Update the BSP Main Stack Size
R11ANO516EU0140 Rev.1.40 Page 16 of 45

May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

15. Click on Add Required Flash stack and add Flash (r_flash_Ip).

16. Click on the Flash Driver block and set the Code Flash Programming to Enabled. As Data Flash
Programming and Data Flash Background Operation are not used in the bootloader, select Disabled
for these two properties to reduce the bootloader memory footprint.

¥ g_ioport I/, I T 4 I |
‘ > 4 MCUboot TinyCrypt (S/W 25 g_flash0 Flash (r_flash_lp)

Only)

i @ (i)
1 ¥

y | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

lems & Console | T Properties X |& Smart Browser L) Smart Manual 4 Search
10 Flash (r_flash_Ip)

s Property Value

v Common
Parameter Checking Default (BSP
Code Flash Programming Enabled
Data Flash Programming Disabled
Data Flash Background Operation Support Disabled

v Module g_flashO Flash (r_flash_Ip)
Name g_flash0
Data Flash Background Operation

Figure 23. Enable Code Flash programming

17. Save Configuration.xml and click Generate Project Content. Next, expand the Developer
Assistance > HAL/Common > MCUboot > Quick Setup and drag Call Quick Setup to the top of the
hal_entry.c of the bootloader project.

Add the following function call to the top of the hal _entry() function:
mcuboot_quick setup(Q);

18. Notice that by default the I/O Port Driver is brought into the project when the project is established.
Because the 1/0O Port Driver is not used in the bootloader project, this stack can be removed to reduce
the bootloader project size. Right click on the 1/0 Port stack and choose Delete.

HAL/Common Stacks
B
- -4 g_ioport /O Port 4 MCUboot
(rioport)
r_i
(i) m
Team >
- —
Resource Configurations > lort)
& Validate
of Cut Ctrl+ X
& Copy Cl+C
| . —
Paste Ctrl+V .
— D Flash
I 30 Delete l Delete | Ip)
Mon-secure Callable
Import...
g Export.

Figure 24. Remove the I/O Port Stack

R11ANO516EU0140 Rev.1.40 Page 17 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

After the I/O Port is deleted, remove all sections of code referencing the I/O Port API. For example, remove
the two sections of the code in the red boxes in the function R_BSP_WarmStart in hal_entry.c as

shown in Figure 25.

I fe
* This functien is called at various points during the startup process. This implementaticn uses the event that is
* called right before main{) to set up the pins.
®
®

[in] ewvent Where at in the start up process the cede is currently at

void R_BSP_Warmstart(bsp warm start_event_t event)

if (BSP_WARM START_RESET == event)
s

#if BSP_FEATURE_FLASH_LP_YERSION l= @

/* Enable reading from data flash. */
R_FACI_LP->CFLCTL = 1U;

S* Would normally have to wait tDSTOR(Eus) for data flash recowery. Placing the enable here, before cleck and
* C runtime initializatien, sheould negate the need for a delay since the initialization will typically take more than Gus. */
sendif
H

if (BSP_WARM START_PGST_C == ewent)

S C runtime envirenment and system clocks are setup. *f

/* configure pins. */

R_IOPCRT Open (&g ioport ctrl, &g bsp_pin_cfg);
e e ——

Figure 25. Remove Unused Code in hal_entry.c

3.2 Further Optimizing for the Bootloader Project Size

To further optimize the bootloader project for size, you can put some application code in the gap area between
the interrupt vector and the RA2E1 ROM registers. We can use a section (. flash_gap) in the linker script to
store some application code in this section.

Note that the bootloader image size optimization methods introduced in this section apply to any application
project, regardless of whether a bootloader is used. You can use the methods described in this section to save
code space for any RA2 application.

0x400

0x40

0x0

Figure 26. First Flash Sector

Note that there is a section for .mcuboot_sce9 key, which is not used for RA2 MCUs. We can safely
comment this section out as shown in Figure 27.

KEEP(*(.fixed_vectors*))
KEEP(*(.application_vectors*))
_ Vectors_End = .;

/* Some devices have a gap of code flash between the vector table and ROM Registers.

* Ihe flash gap section allows applications to place code and data in this section. */
(.flash_gap)

/* ROM Registers start at address ©x00000408@ for devices that do not have the OPTION_SETTING region. */
. = OPTION_SETTING_LENGTH » @ ? . : _ ROM_Start + ©x400;
KEEP(*(.rom_registers*))

/* Allocate flash write-boundary-aligned
* space for sce9 wrapped public keys for mcuboot if the module is used.
*

| *KEEP (* (.mcuboot_sced_key*))*/|

Figure 27. Linker Script Update

R11ANO516EU0140 Rev.1.40 Page 18 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

Next, you can choose some functions to put in the . flash_gap section in order to reduce the flash usage.
What functions to put in the . flash_gap section is your choice.

For all five bootloaders introduced in this application project, the following two functions are put in the gap area.
For the ra_mcuboot_ra2el dxip bootloader, there is no need to add more functions to the gap area.

e Update function prototype R_BSP_WarmStart shown in Figure 28.
e Add function prototype definition for mcuboot_quick_setup as shown in Figure 28 right before this
function’s implementation (refer to the sample code for an example).

In \src\hal_entry.c:
void R_BSP_WarmStart(bsp_warm_start_event_t event) BSP_PLACE_IN_SECTION(".flash_gap*");
void mcuboot_quick_setup() BSP_PLACE_IN_SECTION(".flash_gap*');

In \ra\mcu-tools\MCUboot\boot\bootutiI\include\bootutil\bootutil.h:

fih_ret context_boot_go(struct boot_loader_state *state, struct boot_rsp *rsp)
BSP_PLACE_IN_SECTION(" . flash_gap*');

Figure 28. Common Functions to Put in the .flash_gap Section

Figure 29 shows the additional function in image.h that is put in the gap area for bootloader
ra_mcuboot_ra2el in addition to the common functions mentioned in Figure 28.

In \ra\mcu-tools\MCUboot\boot\bootutiI\include\bootutil\image.h:

fih_ret bootutil_img_validate(struct enc_key data *enc_state, int image_index,
struct image_header *hdr,
const struct flash_area *fap,
uint8_t *tmp_buf, uint32_t tmp_buf sz,

uint8_t *seed, iInt seed_len, uint8_t *out_hash)
BSP_PLACE_IN_SECTION(" . flash_gap*');

Figure 29. Functions to Put in the .flash_gap Section for ra_mcuboot_ra2el

Figure 30 shows the two additional functions in image.h that are put in the gap area for bootloader
ra_mcuboot ra2el overwrite with_signature in addition to the common functions mentioned in
Figure 28.

In \ra\mcu-tools\MCUboot\boot\bootutiI\include\bootutil\image.h

int bootutil_tlv_iter_begin(struct image_tlv_iter *it,
const struct image_header *hdr,
const struct flash_area *fap, uintl6_t type,
bool prot) BSP_PLACE_IN_SECTION(".flash_gap*");

Figure 30. Functions to Putin the .code_in_gap Section for
ra_mcuboot_ra2el overwrite_with_signature

Figure 31 shows the addition function in image . h that is put in the gap area for ra_mcuboot_ra2el swap
in addition to the common functions mentioned in Figure 28.

In \ra\mcu-tools\MCUboot\boot\bootutiI\include\bootutil\image.h

fih_ret bootutil_img_validate(struct enc_key data *enc_state, int image_index,
struct image_header *hdr,
const struct flash_area *fap,
uint8_t *tmp_buf, uint32_t tmp_buf sz,

uint8_t *seed, int seed_len, uint8_t *out_hash)
BSP_PLACE_IN_SECTION(" . flash_gap*');

Figure 31. Functions to Putin the .code_in_gap Section for ra_mcuboot_ra2el swap

R11ANO516EU0140 Rev.1.40 Page 19 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

Figure 32 shows the addition function in image . h that is put in the gap area for
ra_mcuboot_ra2el swap with_signature in addition to the common functions mentioned in Figure 28.

In \ra\mcu-tools\MCUboot\boot\bootutiI\include\bootutil\image.h
int bootutil_tlv_iter_begin(struct image_tlv_iter *it,

const struct image_header *hdr,
const struct flash_area *fap, uintl6_t type,
bool prot) BSP_PLACE_IN_SECTION(".flash_gap*");

Figure 32. Functions to Putin the .code_in_gap Section for
ra_mcuboot_ra2el swap_with_signature
3.3 Compiling the Bootloader Project

When all the above updates are done, change the compiling optimization to Optimize size (-Os) and
compile the project.

type filter text Settings
Resource ~
~
Builders
v (/C++ Build Configuration: Debug [Active | ~ Manage Configurations...
Build Variables
Environment

Loggin) Tool Settings | & Toolchain| & Build Steps Build Artifact| a1 Binary Parsers| @ Error Parsers
:
T Editor 3 Target Processor Optimization Level Optimize size (-0s)

C/C++ General =1 Optimization
MCuU

[+/] Message length (-fmessage-length=0)

Warnmings :
9 [s] ‘char' is signed (-fsigned-char)

Debugging

Project Natures - 2 : : =

A %) GNU Arm Cross Assembler [Function sections (-ffunction-sections)

Renesas QF < (= Preprocessor [¥] Data sections (-fdata-sections))
? Apply and Close Cancel

Figure 33. Optimize Bootloader Size

Depending on which upgrade mode you have selected, Figure 34 - Figure 38 show the compilation results. If
you have migrated the projects to a later FSP version, the size may have some minor difference.

Building target: ra_mcuboot_raZel.elf
arm-none-eabi-objcopy -0 srec "ra_mcuboot_ra2el.elf" “ra_mcuboot_ra2el.srec"
arm-none-eabi-size --format=berkeley "ra_mcuboot_ra2el.elf"

text data bss dec hex filename

7708 2] 3680 11388 2c7¢c ra_mcuboot_ra2el.elf

11:17:56 Build Finished. © errors, © warnings. (took 13s.585ms)

Figure 34. Compile the Bootloader ra_mcuboot_ra2el

Building target: ra_mcuboot_ra2el_overwrite_with_signature.elf
arm-none-eabi-objcopy -0 srec "ra_mcuboot_ra2el overwrite_with_signature.elf" ™ra_mcuboot_ra2el_overwrite_with_signature.srec"
arm-none-eabi-size --format=berkeley "ra_mcuboot_ra2el_overwrite_with_signature.elf"

text data bss dec hex filename

12628 2] 3680 16308 3fb4 ra_mcuboot_ra2el_overwrite_with_signature.elf

11:21:24 Build Finished. @ errors, © warnings. (took 8s.765ms)

Figure 35. Compile the Bootloader ra_mcuboot_ra2el overwrite_with_signature

Building target: ra_mcuboot_ra2el_swap.elf
arm-none-eabi-objcopy -0 srec "ra_mcuboot_ra2el_swap.elf" "ra_mcuboot_ra2el_swap.srec"
arm-none-eabi-size --format=berkeley "ra_mcuboot_ra2el_swap.elf"

text data bss dec hex filename

11220 2] 3732 14952 3a68 ra_mcuboot_ra2el_swap.elf

11:22:47 Build Finished. @ errors, @ warnings. (took 11s.867ms)

Figure 36. Compile the Bootloader ra_mcuboot_ra2el swap

R11ANO516EU0140 Rev.1.40 Page 20 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

Building target: ra_mcuboot_ra2el_swap_with_signature.elf

arm-none-eabi-objcopy -0 srec "ra_mcuboot_ra2el_swap_with_signature.elf" "ra_mcuboot_ra2el_swap_with_signature.srec"
arm-none-eabi-size --format=berkeley "ra_mcuboot_ra2el_swap_with_signature.elf"
text data bss dec hex filename

161480 2] 3756 19896 4db8 ra_mcuboot_ra2el_swap_with_signature.elf

11:26:01 Build Finished. © errors, © warnings. (took 7s.958ms)

Figure 37. Compile the Bootloader ra_mcuboot_ra2el swap_with_signature

Building target: ra_mcuboot_ra2el_dxip.elf
arm-none-eabi-objcopy -0 srec "ra_mcuboot_ra2el_dxip.elf" "ra_mcuboot_ra2el_dxip.srec"
arm-none-eabi-size --format=berkeley "ra_mcuboot_ra2el dxip.elf"

text data bss dec hex filename

7172 e 2608 9780 2634 ra_mcuboot_ra2el_dxip.elf

11:30:59 Build Finished. @ errors, @ warnings. (took 8s.497ms)

Figure 38. Compile the Bootloader ra_mcuboot_ra2el_dxip

3.4 Configuring the Python Signing Environment

Signing the application image can be done using a post-build step in e? studio using the image signing tool
Imgtool . py, which is included with MCUboot. This tool is integrated as a post-build tool in e? studio to sign
the application image. If this is NOT the first time you have used the python script signing tool on your computer,
you can skip to section 3.5.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work. Navigate to the <boot_project>\ra\mcu-tools\MCUboot
folder in the Project Explorer, right click and select Command Prompt. This will open a command window
with the path set to the \mcu-tools\MCUboot folder.

‘,Vb Binaries
i Icludes Project Summary
v fra
i o Board: EK-RAZE1
@ bosd Device: RIFAZE1A92DFM
"t i::gl Toolchain: GCC ARM Embedde]
=3 L__ mcusools Teolchain Version: 93120200408
s 5 MCUBoC FSP Version: 310
2 ra_gen New H Flat
B e Go Inte
=, Debug rare components
% s racfy Qpen in New Window
> B fap.cf Showln Altsshiftew > cation that blinks an LED. N
v P . mc:--:ools art Package Common Files
v @ include | B Y S
v = meut Past trl Version 5 - Core (M)

¢ m 3 Delete Delete =
& m Source s B oo
- ‘YSEI. Monse... DO
= sCript

Rename... F2 .
< acks | Pins | Interrupts | Event Lirg
— M L Import. &

1 Properties 51 I®/ F r® 3

Export...

/ra_mcuboot raZe))
Build Project Crl+E
Resource Property Refresh FS
w Info
der Index]
edit Build Targets »
last Resource Configurations »
limk
loc: Team ? tions\application_projectsir 1
nar Compare With >
pat Restare from Local Histary... wutooliMCUboot

3 C/C++ Project Setting 0oan Command Pro mpt
Change Device

% Run C/C++ Code Analysis

W Systern Explorer

.

| Ainlidsts

Figure 39. Open the Command Prompt

R11ANO516EU0140 Rev.1.40
May.01.24

Re Page 21 of 45
KENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

We recommend upgrading pip prior to installing the dependencies. Enter the following command to update
pip:

python -m pip install --upgrade pip

Next, in the command window, enter the following command line to install all the MCUboot dependencies:
pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required.

3.5 Review the Signing Command

The signing command for the application image is automatically generated when the bootloader is compiled.
In the Project Explorer, navigate to the <boot_ project>\Debug\<boot_ project >.bld file and open
this _bld file. The signing command is under the section <image >. For RA2 MCU groups, the entry
immediately after <images> is the signing command for the application image.

The application image uses a Build Variable to link with the bl d file. This process is explained in detail in the
next section. The signing command is automatically executed when the application image is compiled.

<images>

<image path=""${BuildArtifactFileBaseName}.bin.signed">python
${workspace_loc:ra_mcuboot_ra2el}/ra/fsp/src/rm_mcuboot_port/rm_mcuboot_port_sign.py sign --
header-size 0x100 --align 8 --max-align 8 --slot-size 0x2000 --max-sectors 4 --overwrite-only -
-confirm --pad-header ${BuildArtifactFileName} ${BuildArtifactFileBaseName}.bin.signed</image>

<image path="${BuildArtifactFileBaseName}.bin.signed" security="n">python
${workspace_loc:ra_mcuboot_ra2el}/ra/fsp/src/rm_mcuboot_port/rm_mcuboot_port_sign.py sign --
header-size 0x100 --align 8 --max-align 8 --slot-size 0Ox0 --max-sectors 4 --overwrite-only --
confirm --pad-header ${BuildArtifactFileName} ${BuildArtifactFileBaseName}.bin.signed</image>

</images>

Figure 40. Signing Command (in bold) in the .bld File

3.6 Usage Notes

3.6.1 Using Customized Image Sighing Key

In this section, you will generate two sets of ECDSA SECP256R1 keys using the imgtool.py tool included with
MCUDboot.

The stack MCUboot Example Keys stack imports the example keys included in the MCUboot public port to
use in the image signing/verifying. The custom keys generated in this section replace these example keys.

The root_pub_der array is the public key for image verification which is located in \{bootloader
project}\ra\mcu-tools\MCUboot\sim\mcuboot-sys\csupport\keys.c. For ECDSA P-256, the
public key for image verification is shown as the following (from keys.c).

const unsigned char root_pub_der[] = {
©x30, ©x59, ex38, oxl3, exee, exe7, ox2a, ©x86,
ex48, exce, ©x3d, Oxe2, Ox0l, exee, exes, exa,
Ox86, ©x48, Oxce, ©x3d, 6x03, exel, exe7, exe3,
ex42, exee, exed, ox2a, Oxcb, ex4e, ex3c, Oxes,
exfe, ©xed, @x5b, @xad, 6x49, ex95, exal, exa9,
@xld, ©xae, @xe8, Oxdb, exbe, @x19, ex37, excd,
ex14, exfb, ex2f, ex24, ex57, ex37, exe5, ex9s5,
©x39, ©x88, exd9, ex94, exb9, exdé, ex5a, exeb,
exd7, excd, exd5, ex3@, ex8a, exdé, exfe, 0x48,
©xb2, ©xd4a, ©xba, ©x8l, @xee, ©xe5, ©xfe, ox7d,
©x8b, ©x68, ©x34, ©xcc, ©@x3a, ©@x6a, ©xfc, ©x53,
@x8e, ©@xfa, Oxcl, };

const unsigned int root_pub_der_len = 91;

Figure 41. Public Key used for Image Verification (from keys.c)

R11ANO516EU0140 Rev.1.40 Page 22 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

The matching private key for the public key root_pub_der is root-ec-p256.pem. This example is used
in the image signing process in the example bootloaders created in this section.

v £ mau-tools
+ = MCUboot
= boot
= ext
= scripts
v [sim
¥ [mcuboot-sys
v = csupport
L] keys.c
Iﬂ enc-ec256-priv.pem
Iﬂ enc-ec256-pub.pem
I -”1 enc-rsa2048-priv.pem

root-rsa-2048.pem
I -"1 root-rsa-3072.pem

Figure 42. Example Image Signing Private Key

We will generate a custom private key ecc_sign_private._.pem to replace the usage of root-ec-
p256 . pem following the below steps using any of the bootloader example using signature:

1. Inthe bootloader project, copy keys.c from the MCUboot folder to the \src folder of the bootloader project.

v [ra
\' arm
= board
= fsp
v 22 meu-tools
v = MCUboot
(= boot
= ext
= scripts
v = sim
v = mcuboot-sys
v (= csuppert

& enc-ec256-priv.pem ail Includes

E enc-ec256-pub.pem = B

& enc-rsa2(48-priv.pem . (3 ra_gen

£ enc-rsa2(48-pub.pem v (2 sre

B root-ec-p236.pem [€) hal_entry.c
=

8

root-rsa-2048.pem

root-rsa-3072.pem

Figure 43. Copy the example Keys.c

2. Open the configurator for the bootloader project, right click on MCUboot Example Keys stack and select

Delete.
— I L I Soft Edges
@ MCUboot logging 4+ MCUboot Example)
Keys (NOTFOR I* 3-D Format
PRODUCTION)
®© (i) |
— Team »
] Resource Configurations ¥
~| Validate
of Cut Ctrl+X
= = Copy Ctrl+C
= Paste Ctrl+V
| % oeiete Delete
N Callak
= G Brpor.
(@ Module Resources...
Figure 44. Delete the MCUboot Example Keys Stack
R11ANO516EU0140 Rev.1.40 Page 23 of 45

May.01.24 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

3. Extend the booloader project and navigate to foler \ra\mcu-tools\MCUboot\scripts\. Right click
on this folder and select Command Prompt.

v Iz> ra_mcuboot_ra2e1 [Debug]
> [l Includes HAL/Common Stacks
v [ra
> @ arm 4 MCUboot
> (= board -
> = fsp
v 25 mcu-tools @
v (= MCUbcot
(= boot
s (= ext & MCUboot Port for RA (rm_mcuboot_po)
» (= scripts
» (= sim MNew b3 ®
8 enc-e Go Inte
£ enc-e I
8 enc-rs Open in New Window 42 MCUbecot TinyCrypt @& g_flash0
2 encts Showln Alt+Shift+ W > (3/W Only) (r_flash_|
£ root-e
2 rootr 2 Copy Ctrl+C (€)) ®
o root-r Paste Crl+V
> 2 ra_gen 3 Delete Delete
v [src
» [8 hal entrv.c BoUIEE & ary |BSP | Clocks | Pins | Interrupts | Event Link
= Move...
. Problems Q Smart Rename... B2
fra_mcuboot_ra2e1 . i
e Import...
Resource Propetty iy Export. Value
v Info " Build Project Ctrl+B
derin false
edit; Refresh F5 true
last Index 5 August 1,
linke false
I1d T: >
loca Eulcjleigss C:\ra2_bog
nam Resource Configurations > scripts
path Team 3 fra_mcubg
Compare With >
Restore from Local Hist(Open Command Prompt
% C/C++ Project Settings Ctrl+Alt+P
Renesas C/C++ Project Settings >
#7 Run C/C++ Code Analysis
M System Explorer
@ Command Prompt I
Validate
Source >
Properties Alt+Enter

Figure 45. Start Command Prompt under the \MCUboot\scripts Folder
4. Under the command window, execute command:

python imgtool._py keygen -k ecc_sign_private.pem -t ecdsa-p256

5. Copy the generated ecc_sign_private.pem to folder \ra_mcuboot_ra2el\src. This is new
image signing key.

6. Extract the public key from ecc_sign_private.pem.
Execute command:

python imgtool.py getpub -k ecc_sign private.pem

R11ANO516EU0140 Rev.1.40
May.01.24

Re Page 24 of 45
KENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

\scripts>python imgtool.py getpub -k ecc_sign_private.pem

/* Autogenerated by imgtool.py, do not edit. */

const unsigned char ecdsa pub key[] = {
ex30, 8x59, ©x30, Ox13, 6xe6, oxe7,
Ox48, Oxce, ©Bx3d, ©x02, Ox91l, oxes6,
©x86, @x48, oxce, ©x3d, ©xe3, oxel,
ox42, Ox00, oxe4, ©x9a, Ox4l, ox49,
@x74, ox15, exe2, oxfa, Oxbs, ©Ox93,
ox46, oxb8, ©x3e, ©xf4, 6xe5, ex7b,
©x39, exSb, exea, ©x38, oxf4, oxf7,
©xca, @xfb, exlf, oxde, ©x4b, ©xc4,
8x32, ex%b, exc7, exe3, exb7, exe9,
@xal, exbf, ©x54, oOxdd, exa7, ©xed,
exd9, ex12, ex2d, ©x87, ©x8e, ©xeb,
exdl, ex32, exde,

ex2a,
oxes,
exe7,
exdc,
exe9,
ex76,
exe9,
exfo,
ox2e,
exeb,
Oxea,

ox86,
ex2a,
CER
ex21,
oxas,
exbe,
exdd,
exod,
ex15,
oxdl,
exc2,

|5

const unsigned int ecdsa_pub_key_len

91;

Figure 46. Start Command Prompt under the \MCUboot\scripts Folder

7. Copy the content of ecdsa_pub_key to keys.cto replarray root_pub_der keys.c. Replace
the original root_pub_der content.
8. Click Generate Project Content and compile the bootloader project.
9. To use the new image signing key, user needs to update the signing key configuration of the application
projects.
Environment v - §

Configuration: |Debug [Active] ~ | | Manage Configurations...

Environment variables to set Add...

Variable
CWD

Value Origi

BUILI

Select...
C\ra2_bootloader\r11an0516eu0120-ra2-bootloader\RA2 secure_bootloader_orghoverwrite_with_signature),...
Edit...

GCC_VERSION
MCUBOOT_IMAGE_SIGNING_KEY

1031
S{workspace_loc:ra_mcuboot_ra2el_overwrite_with_signature}/src/|

BUILI

@ Edit variable

MCUBOOT_IMAGE_VERSION 1.00
PATH Ci\Renesas\RA\e2studio_v2022-10_fsp_v4.2.0\toalchains\gee_armig Name:)| MCUBOOT_IMAGE_SIGNING_KEY
PWD Ci\ra2_bootloader\r11an0516eu0120-ra2-bootloader\RA2 secure_by . — — " .
) Value: J§ rerwrite_with_signature}/ sr:aecc_slgn_pnvate.peﬂ Variables
TCINSTALL C:\Renesas\RA\e2studio_v2022-10_fsp_v4.2.0\toolchains\gecc_army;
TC_VERSION 10.3.1.20210824
< T
(®) Append variables to native envirenment
() Replace native environment with specified one
Restore Defaults Apply

Apply and Close

Cancel

Figure 47. Configure the Application Project to use the Custom Image Signing
Recompile the application projects and following the instructions in section 7 to exercise the system.

3.6.2 Migrating the Bootloader to other FSP versions

When migrating the bootloader project to a new FSP version, the updated contents in the \ra folder will be
overwritten by the extracted new FSP content. Hence, the functions that are put in the gap area need to be
reconfigured by updating the corresponding header files described in section 3.2.

The linker script is not automatically updated when user performs Generate Project Content, for applications
using MCUboot as bootloader, in most cases, user may not need to update the linker script to boot the new
application projects. However, there may be other linker script updates that are related to other application
areas or new features related with MCUboot. Therefore, user is recommended to extract the new linker script
by deleting the included linker script and apply similar updates to the linker script accordingly section 3.2.

Note that the instructions included in this release only apply to FSP v5.2.0, migration to other versions may
need more customization. User needs to review the FSP release note on other potential updates needed.

R11ANO516EU0140 Rev.1.40
May.01.24

Re Page 25 of 45
KENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

3.6.3 Migrating from One Upgrade Mode to Another Upgrade Mode

As shown in section 3.2, a different set of functions need to be putin the gap area. The configurations selected
in this application can be used as reference.

3.6.4 Use the Memory Usage Window to Select Functions to Put in the Gap Area

After compiling the bootloader project, you can open the Memory Usage view to select the functions of suitable
size to put in the gap area.

Open the Memory Usage view from the e? studio top menu Windows tab: Window > Show View > Other >
C/C++ > Memory Usage > Symbol.

& show view O bt
gL Problems [Console [T Properties @& Smart Browser L} Smart Manual
| type filter text . Memary Region Usage |
Section | Object] Symbal
(= General i Symbal Start address End address Saze (oyted D
swap_run 0D000154C 0:00001888 88D --
€8 C/C++ Index WECC_verify 000002480 0D000F 737 696 -
,?E.I C/C++ F'I’OJECtS context_boot_go CeDO0000TC OD0002FE B0 -
- . boatustil_img_validate :00000BC0 00000057 a7 -
- Call Hierarchy vii_mmod_fast_secp25611 000001 C48 0<00001DFE 436 -
¥ FSP Wisualization double_jacobian_default Ox0000FBC 000002113 LS
‘_T Include Browser Systeminit (000031 CC CODO032ER 288 -
I i‘i Memor\,-' Usaqe I uECC i mimod D0000ESD CeDOOOTFEY 280 -
uECC_di_rmodlmes 000002170 0000022 7F -
Peripheral Register Calculator bootutil verify_sig (00000404 (+D0000BEF 57 -
E-’ Problern Details boot_read_saap_state CeDOO00TAC (eDO000BTS Me -

Figure 48. Memory Usage View
4. Using the Bootloader with a New Application or Existing Application

Developing an initial application to use a bootloader starts with developing and testing the application and the
bootloader independently. Using the bootloader with an existing application or developing a new application
to use the bootloader involves the following common steps:

e Adjust the memory map of the bootloader to allow the application and bootloader to fit the available MCU
memory area.

e Configure the application to use the bootloader.

e Sign the application image.

e Developing an application to use a bootloader typically requires the application to have the capability to
download a new application. This aspect is not demonstrated in this application project. Customers
typically have customized image download method which differs from one customer to another.

This section uses a simple blinky project to demonstrate how to use the bootloader with the blinky application.
After the initial blinky project is established, we need to configure the blinky project to the use of the bootloader
project generated in the previous section. We also need to sign the blinky project using the signing command
generated in the bootloader project. Detailed instructions are provided in this section.

Note: You can also follow section 7 to exercise the example bootloader and application projects without going
through the application creation and configuration process to use with the bootloader. This section
provides references for users to understand how to customize the project for their specific application.

4.1 Generate the Initial Application Project

Follow the steps below to create a blinky application project as the Initial Application Project. The steps in
section 4.1 are identical when generating a blinky project whether the application uses a bootloader or not.
Launch e? studio and open a Workspace, click File > New > C/C++ Project and select Renesas RA and
Renesas RA C/C++ Project.

R11ANO516EU0140 Rev.1.40 Page 26 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

1. Assign the project name based on Table 4.
Table 4. Name the Initial Application Project

Bootloader project name Initial application project name
ra_mcuboot_ra2el blinky

ra_mcuboot_ra2el overwrite_with_signature | blinky with_signature
ra_mcuboot_ra2el_swap blinky_swap
ra_mcuboot_ra2el_swap_with_signature blinky_swap_with_signature
ra_mcuboot_ra2el_dxip blinky_primary

2. Click Next and choose EK-RA2E1 as the Board from the drop-down menu. Then click Next.
3. Inthe next screen, select Executable as the Build Artifact and No RTOS for the RTOS Selection. Then
click Next.

B Renesas RA C/C++ Project m} X

Renesas RA C/C++ Project —

Build Artifact and RTOS Selection
1
Build Artifact Selection RTOS Selection

No RTOS

* Project builds to an executable file
() Static Library
* Project builds to a static library file

() Executable Using an RA Static Library
| * Project builds to an executable file
® Project uses an existing RA static library project

| @ < Back nis Cancel

Figure 49. Choose to Build Executable with No RTOS

4. Select the Bare Metal - Blinky as the Project Template for the board and click Finish. The initial
application project is now created.

BB renesas RA C/CH+ Project O >
Renesas RA C/C++ Project —

Project Template Selection

Project Template Selection
|
| = n

| e sy | Bare Metal - Blinky |
w* . Bare metal FSP project that includes BSP and will blink LEDs if available. This project will initialize dlocks, pins,
stacks, and the C runtime environment.

Figure 50. Choose Bare Metal — Blinky as Project Template
4.2 Configure the Existing Application to Use the Bootloader Project

The steps described in this section can be applied to any other existing application projects to configure the
application project using the bootloader. Care should be taken to consider the size the application project.
When using the bootloader with a different application project, the Image 1 Flash Area Size property should
be adjusted accordingly.

Right-click on the application project folder in the Project Explorer and select Properties. Select the C/C++
Build > Build Variables, click Add and set the Variable name to BootloaderDataFile and check the Apply
to all configurations box. Change the Type to File and enter the relative path to the .bld files for the
bootloader project <boot_project_name>:

o Set ${workspace_loc:<boot_project _name>}/Debug/<boot_project_name>._bld for Value.
e For example, for bootloader project ra_mcuboot_ra2el (see Figure 51), Value will be:
${workspace_loc:ra_mcuboot_ra2el}/Debug/ra_mcuboot_ra2el.bld

R11ANO516EU0140 Rev.1.40 Page 27 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

|
@
| type filter text Build Variables CR AR
Resource
I Builders
s (Cf/C++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...

Environment

Legging
Settings ‘ Marme Type Value Add...
Tool Chain Editor {8 Edit Existing Build Variable ® [P Edit...
C/C++ General
MU Variable name:| BootloaderDataFile Delete
Project Matures Type: File o
Project References
Renesas QF Value: SYworkspace_locra_mcuboot_ra2el}/Debug/ra_mcuboot || Browse
Run/Debug Settings
Task Tags
Validation
1
! ing external builder
configuration, such as emvirenment vanable value or command line parameter in form of ${VAR}, internal
builder may use them directly.
Restore Defaults Apply
'i?:' Apply and Close Cancel

Figure 51. Configure the Build Variable to Use the Bootloader
Click Apply and then Apply and Close.

4.3 Signing the Application Image

Note: If you rebuild the bootloader project after changing any of the signing and signature Properties of the
MCUboot module, you will need to select Generate Project Content again to bring in the updated .bld
file.

Each application can have a defined version number. This version number can be used in the overwrite
upgrade mode when Downgrade Prevention is Enabled. This is achieved by defining an Environment
Variable: MCUBOOT_IMAGE_VERSION.

For applications that support signature verification, meaning for the applications that will work with bootloader
ra_mcuboot_ra2el overwrite with_signhature and

ra_mcuboot ra2el swap_ with_signature, the signing key can be configured using another
Environment Variable: MCUBOOT_IMAGE_SIGNING_KEY.

Figure 52 is an example of setting the above two mentioned Environment Variables for the application
project used with bootloader ra_mcuboot_ra2el overwrite_with_signature and
ra_mcuboot _ra2el swap_with_signature.

In this example, the Value of MCUBOOT_IMAGE_SIGNING_KEY is configured to:
${workspace_loc:ra_mcuboot_ra2el_overwrite_with_signature}/ra/mcu-
tools/MCUboot/root-ec-p256.pem

If there is no signature verification, then it is not necessary to set the Environment Variable:
MCUBOOT _IMAGE_SIGNING_KEY as are the cases for ra_mcuboot_ra2el and
ra_mcuboot_ra2l swap.

R11ANO516EU0140 Rev.1.40 Page 28 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

&) Properties for blinky_with_signature m] X
Environment o - - 8
Resource
Builders
~ C/C++ Build Configuration: | Debug [Active] ~ | | Manage Configurations...
o999 Environment variables to set
Settings Add...
Tool Chain Editor Variable Value Select
C/C++ General C:\ra2_bootloader\demos_11_06\demos\overwrite_with_signature\blinky_with_signature\Debug
Mcu i Edit..

Project Natures
Project References
Renesas OF
Run/Debug Settings

S{workspace_locira_mcuboot _ra2e]_overwrite with_signature}/ra/mcu-tools/MCUboot/root-ec-p256.pem
1.0.0

C\Renesas\RA\e2studio_v2021-10_fsp_v3.4.0_pure\toolchains\gce_arm\9_2020g2\bin';C:\Users\xianghuiwangl.ec| Lndefine
Ci\ra2_bootloader\demos_11_06\demos\avenwrite_with_signature\blinky_with_signature\Debug

Delete

Task Tags TCINSTALL Ci\Renesas\RA\e2studlio_v2021-10_fsp_v3.40_pure\toolchains\gee_arm\3_2020q2\
Validlation TC_VERSION 9.3.1.20200408
< >

(®) Append variables te native environment

(O Replace native enviranment with specified one

Restore Defaults Apply
@ | Apply and Close Cancel

Figure 52. Configure the Application Image Version Number and Signing Key

To be able to always recompile the project when the Environment Variables or the linker script are updated, it
is recommended add a Pre-build step to always delete the el f file as shown in Figure 53.

rm - ${ProjName}.elf

type filter text Settings

Resource

Builders
v C/C++ Build Configuration: Debug [Active]

Build Variables

Environment
S05i0g ¥ Tool Settings % Toolchain | #* Build Steps Build Artifact

ool Chain Editor Pre-build steps

C/C++ General MI .
Mcu || rm -f §{ProjName}.elf I
Project Natures T

ription:

Project References
Renesas QF |

Figure 53. Configure the Pre-build Command

Next, you can add the RTT Viewer usage related application code to the primary application project. Unzip
RA2_secure_bootloader.zip, open the
RA_secure_bootloader\<boot_project_name>\<Initial application project name>\src

folder and copy all files under \src to the \src folder for the newly established project.

At this point, you can click Generate Project Content and compile the newly created application project and
ensure \debug\<Initial application project name>_bin.signed is generated.

Note: With the blinky_primary of ra_mcuboot_ra2el_dxip you need to add a configuration

“--defsym=XIP_SECONDARY_SLOT_IMAGE=0" as Figure 54 below:

R11ANO516EU0140 Rev.1.40 Page 29 of 45
May.01.24 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

I8 preperties for blinky_primary

Settings

Rescurce
Builders
v CJC++ Build
Busld Vanables
Environment

Loggin:
Toal Chain Editor
v CfC++ General

Mcu
Project Matutes
Project References
Refactaring Histony
Renesas OF
Fun/Debug Settings

Task Tags

Vakdation

) Tool Satfings | %) Toolchain| # Build Steps

Configuration: Debug [Active |

~ | Manage Configurations. .,

Build Astifact, i} Binary Parsers| @ Ervor Parsers

1 Target Processor

Linker flags {-Xlnker [option]) £] W

Optimization

DARY SLOT IMAGE=0

Wamings
Debugging
GHU Arm Cross Assembles

Tepromssor

(B Wamings
(& Miscellanecus

v 1) GNU Arm Cross € Compier Other objects

g scless
(2! Optimiration
38 Wanings

(& Miscellanacus

Generale map | “$BuldAntifactFileBaseNarnelmap”

[Cross reference (-Xlinker --cref)

senral

w B GNU Arm Cross Print Size [_] Print ink map (-Xlinker --print-map)
I General 1

e e i i 3 iy

| Apply and Close | Cancel

Figure 54. Configuration of blinky_primary project in DXIP mode

5. Booting the Initial Application Project

5.1 Set Up the Hardware

Connect J10 using a USB micro to B cable from EK-RA2EL to the development PC to provide power and
debug connection using the on-board debugger.

5.2 Configure the Debugger
Open the Debug Configurations: blinky > Debug As > Debug Configurations

Optional Step: Set Allow caching of flash contents to No, as shown in Figure 55. Otherwise, the debugging
bootloader applications memory window information may show wrong information.

8 Debug Configurations

FeoRX o7

type filter text

[C] C/C++ Application

[] C/C++ Rerote Applic

= EASE Script

[E] GDB Harduare Debug,

[£] GDB OpenOCD Debug

[£7 GDB Sirnulator Debug,

1 Java Applet

7] Java Application

2 Launch Group

T, Remote Java Applicati
+ &7 Renesas GD
Eilblinke cen Debyo
&7 ra_mcuboot_raZel
[E7] Renesas Simulator Dek

E Hardwar
e

< >

Filter matched 15 of 17 iterns

'\
@/.

Create, manage, and run configurations

[m] ped
MNarme: | blinky Debug_Flat | I
5 Mai 5 Startup | - Source|] Cornmon r
Debug hardware: 1-Link 8RM | Target Device: RTFAZE1AD
GDB Settings Connection Settings Debug Tool Settings
Flash Memary Type A
WorkRam Start
WorkRarn End
Erase on-chip program flash before download No v
Erase on-chip data flash before download Mo W
Use CFl-Flash Mo v
CFI Start o0
CFlEnd o0
~ Semihosting
Sernihosting breakpoint address
~ RTOS
RTOS Inte gration in Debug Wiew Mo v
RTOS Debugging - Large Murnber of Threads, Mo v
A v
w Time Measurement
Run Rreak Time Measurerment Yes v v
Revert Apply

Figure 55. Disable Flash Content Caching

R11ANO516EU0140 Rev.1.40
May.01.24

Re Page 30 of 45
KENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

Make sure the <initial_application_project_name > Debug_Flat is selected and select the Startup tab.

ﬁ Debug Caonfigurations

Create, , and run confi ions
B @ 2 K| B 7 ~ || Name: [Dlinky Debug Flat |
|ty'pe filker text ‘ [E Main | #s DehuggerlD Startup I Common | - Source
[[E] C/C++ Application Initialization Comrands ~
[] C/C++ Remote Application []Reset and Delay (seconds): 3
=/ EASE Script
[©] GDB Hardware Debugging [

[€] GDB OpenOCD Debugging
[E7] GDB Simulator Debugging {
[Java &pplet

[Java Application

g Launch Group Load image and syrbals
T Remote Java Application

Filenarme Load type Offset (hex) On connect|

w [£7] Renesas GDB Hardware Deb Add...
W Prograrm Binary [blinky.elf] Irmage and Symhbols Yes
E] TarrCUD OOt rage o thyct Edit...
[7] Renesas Simulator Debuggit Remove .
< >
Rewert Apply

Filter rnatched 14 of 16 items

Figure 56. Configure the Primary Project Debug Startup

Click Add... and then Workspace and navigate to the <boot_project_name> and select the
<boot_project_name>.elf file from the debug folder. Click OK.

@) Debug Configurations O

Create, manage, and run configurations

ICFeEX BT~ Mame: | blinky Debug_Flat |
|typefi|tertext | Main ﬁDebugger / Source | [] Commaon h
++ Application hitialization Commands
. C/C++ Applicat Initial c d .
[E] C/C++ Remote Application [JReset and Delay (seconds): 3
=/ EASE Script
[E] GDE Hardware Debugging ClHale

[E] GDB OpenQOCD Debugging
[£7] GDE Simulator Debugging |
E Java Spplet

[T Java Application

1 Launch Group Load image and symbols
T Rernote Java &pplication -
v [E e OB Hacdocce Tieh Filename Load type Offset thex) On connect Add..
7 blinky Debug Flat Program Binary [blinky.. lmage and Symbols es
[c7 ra_meuboot_raZel Debu g Edit download module X Ed..
[E7] Renesas Simulator Debuggit F—

Specify download module name:

| B{kaspace_loc:\ra_mcuboot_raE!‘I\Debug\ra_mcuboot_raEe‘I.elf}I tave up
hove d
Wariables. Search Praject... File Systerm... B

i OK ‘ Cancel
[] Set breakpaint at: main

v
f— Y

£ >
. i Rewvert Apply
|| Filter rnatched 14 of 16 iterns

L .

Figure 57. Add the Bootloader Project to Debug Configuration

Change the load type of the Program Binaries for the <initial_application_project_name> project to
Symbols only by clicking on the cell for load type and selecting Symbols only from the drop-down menu.

R11ANO516EU0140 Rev.1.40 Page 31 of 45
May.01.24 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Q Debug Configurations

T FeER X B Y-

Create, manage, and run configurations

| type filter text

[©] C/C++ Application

= EASE Script

1 Java Lpplet

[T Jawa Application

2 Launch Group

T Remate Java Application

[£7|fblinky Debug_Flat

£
Filter matched 14 of 16 iterns

3
(?/.

[E] C#C++ Rernote Application
[E] GDB Hardware Debugging

GDE OpenOCD Debuggin
p gging
[£7] GDE Sirnulator Debugging ¢

w [£7 Renesas GOB Hardware Deb

[E7 ra_rmcuboot_radel Debut
[E7] Renesas Simulator Debuggir

Initialization Commands
[Reset and Delay (seconds)i 3

[Halt

MName: | blinky Debug_Flat
| ain #g? Debugger E_/ Source | [] Commaon

Load image and symbals

Filename Load type
Pragram Binary [blinky...} Symbals onl

ra_rncuboot_razel.elf [Image and Symbaols

Offset thex) On connect
s
0 Yes
Reswert

Add..
Edit...
Rernove

Pdoeve up

Apply

Debug

Close

Figure 58.

Next, configure the Debug Configuration to include the Raw Binary of the signed primary application for

Select to Load Symbols Only for the Application Project

download. Click Add... and then Workspace and navigate to the <boot_project_name> and select the
<boot_project_name>.bin.signed file from the debug folder. Click OK. Then, change the Load type to Raw
Binary. Note that the Offset (hex) setting of the signed primary image is the size of the bootloader (refer to
Table 3). Figure 59 is an example of downloading the signed primary image for the overwrite without signature

project.

P X B2V~

[©] C/C++ Application

[c] C/C++ Remote Application
= EASE Script

[] GDB Hardware Debugging

[£] GDB OpenOCD Debugging
[£7] GDB Simulator Debugging (
Java Applet

[T Java Application

& Launch Group

Zl Remote Java Application -
+ [Renesas GDB Hardware Deb Filename Load type Offset (hex) On connect Add...
[£7 blinky_new Debug_Flat Program Binary [blinky... Symbols only Yes
[t blinky Debug_Flat ra_mcuboot_raZel.elf [.. e and Symbols 0 Yes Edit...
[£7 ra_mcuboot_ra2el Debur blinky.bin.signed [C\U.§ Raw Binary 2000 Yes I T

Marne: | blinky Debug_Flat

Main | %5 Debugger _] Common | & Source

Initializatiocn Commands

[[]Reset and Delay (seconds):
[IHalt

(%)

Load image and symbols

Figure 59.

Include the Raw Binary of the signed image in the download

Click Debug. The debugger should hit the reset handler in the bootloader.

R11ANO516EU0140 Rev.1.40
May.01.24

RENESAS

Page 32 of 45

Renesas RA Family Secure Bootloader for RA2 MCU Series

iz-" [ra_rmcuboot_ra2el] FSP Configuration 23 i:_-" [blinky] FEP Configuration B startup.c X
—woid Reset_Handler (void)

{
#* Initialize system using BSP. */
ope@la7e | SwstemInit();
#* Call user application. */
57 20201482 maini);

Figure 60. Start the Application Execution

Click Resume U™ twice to run the project. The bootloader and the primary application project will be
programmed and then the primary application project will be booted, the Red, Blue, and Green LEDs on the
EK-RAZ2E1 should now be blinking.

Press to pause the program. Note that the program counter is in the application image. Click Resume [*
to run again.

Open the JLink RTT Viewer and set up the following configurations.

Connection to JHink
|© UsE [serial Mo

) TCRfIP
O Existing Session

Spedify Target Device

RTFAZE1AS ~

|:| Force go on connect

Script file {optional)

Target Interface & Speed
SWD v | 4000kHz -

RTT Control Block

(O) Auto Detection () Address (® Search Range

Enter one or more address range(s) the RTT Control block can be loc
Syntax: <RangeStart [Hex] > <RangeSize>[, <RangelStart [Hex]>
Example: 0x 10000000 0x 1000, 0:2000000 0x 1000

0x20000000 0x8000 | |

Figure 61. Configure the RTT Viewer

Click OK and observe the following output on the RTT Viewer. This output shows that the Primary application
is being executed and all three LEDs are blinking. The message displayed indicates the upgrade mode and
whether the Primary or the Secondary image is running.

2&: Running the Primary application with overwrite update mode without signature authentication.
All three LEDs are blinking.

Figure 62. RTT Viewer Output from the Primary Application

R11ANO516EU0140 Rev.1.40 Page 33 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

6. Mastering and Delivering a New Application

This section provides instructions on how to master and deliver a new application that will be loaded into the
Secondary image slot.

Note that the example bootloader, the example Primary application as well the example Secondary
applications are provided in the RA2_secure_bootloader.zip. You can also follow section 7 to exercise
these projects without going through the new application creation and mastering process described in this
section if desired.

6.1 Create a New Application

The new application can be created by modifying the existing application. Import the initial project to the same
workspace and rename the new project.

Right-click in the white space in the Project Explorer area and select Import.

Q Import O x

Select \

Choose import wizard, E “‘5 I

Select an import wizard:

[type filter text \

v (= General ~
T Archive File
) CMSIS Pack
't Project Explorer &2 BES Y & = O @ ramcub L‘ E-xisting Projects into Workspace
blinky [Debisal () File Systerm

Prefi
3 ! [_] Preferences
> ra_mcubo ey > .)
B () Prajects fram Folder ar Archive

Gollnto tg Renamne & Import Existing C/C++ Project into Wurkspacel
=% Renesas Co+ Project for

Open in New Window | 5 J
Show In Alt+ShiftsW > * T Renesas CS+ Project for CC-RX and CC-RL
y

(= C/C++
[E Copy Ctrl+C = Install
Paste Ctrl+V = :cm;ghb
1 (= Run/Debu
3 Delete Delete LA Toam ? v
Source >
Moave...
Rename... F2
e Bport. ol

Figure 63. Select Rename and Import the Primary Application

Once the Import window opens, name the project and click Browse for Select root directory as shown in
Figure 64.

R11ANO516EU0140 Rev.1.40 Page 34 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

e

Rename & Import Project —

_ -
Select a directory to search for existing Eclipse projects. i’ A

Project name:ll blirky_rew I |

Use default lacation
CihraZ_bootloaderirepo_devtra_solutionshapplicati Bravise..,

Create Directory for Project

default
Import from:
(®) Select root directons V|I Brownse... I
() Select archive file: Browvse...
| Projects:
Cptions

[Jkeep build configuration output folders

(?;' < Back PMext = Finish Cancel

C:PFOIDEMS » (C:) PCI0 » raZ_bootloader » K2 » RAZ_secure_bootloader »

Marme Date modified Type
.metadata 127272027 251 PM File falde
blinky 12/2/2021 2:56 PM File falde
ra_rmcuboot_raZel 12#2/2021 2:53 P File folde

Figure 64. Rename the Project
Name the new project based on Table 5.

Table 5. Project Naming

Bootloader Project Name Initial Application Project New Application Project Name
Name

ra_mcuboot ra2el blinky blinky new

ra_mcuboot_ra2el overwrite | blinky with_signature blinky with_signature_new

_with_signature

ra_mcuboot ra2el swap blinky_ swap blinky swap_ new

ra_mcuboot_ra2el swap with | blinky swap with_signatu | blinky swap with_signatur

_signature re e_new

ra_mcuboot_ra2el dxip blinky primary blinky secondary

R11ANO516EU0140 Rev.1.40 Page 35 of 45

May.01.24 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Figure 65 is an example screenshot when importing the blinky project as blinky _new.

& Import

Rename & Import Project

Select a directory to search for existing Eclipse projects,

O X

I
L" /

Project name:l blinky_nen I

lse default location
CivraZ_bootloaderl2WRA2 secure_bootloaderowe
Create Directary for Project

default

Import fram:

(®) Select root directory: | Civra2_bootoader\K2WRAZ secure_bootlec

() Select archive file:

Frojects:

Browse...

Browyse, .,

Browse...

<

lblinky tral_bootloader kW RaZ_secure_bootloaderyowvennrite_no_signaturetblinky)
ra_tncuboot_ra?el (Cihra2_bootloaderK2WRAZ _secure_bootloaderhovernrite_no_signat

Options
[Keep build configuration output folders

\£) < Back Mext = | Finish
S ——

Cancel

Figure 65. Import blinky Project as blinky_new

Click Finish, and the new application project will be created.

Update Existing Application to a New Application

To demonstrate that the application is updated, portions of the code can be updated, for example:

e Update the application to blink one blue LED only.

e Update the RTT Viewer message to show this is the update image.

For simplicity, user can unzip RA2_secure_bootloader.zip, open the \<boot project name>\<new
application project name>\src folder and copy all files under \src to the newly established project

\src folder.

When importing the primary application, the Build Variable and the Environment Variables as well as the Debug
configurations are automatically imported. Click Generate Project Content and compile the new application.
The signed binary for the new application is now created. In this example, blinky _new_bin_signed will be

created.

For cleanness of the project, user can delete the . jJlink file of the old project under the root of the newly

created project structure.

Note: For blinky _secondary of ra_mcuboot_ra2el_ dxip you need to add a configuration

“--defsym=XIP_SECONDARY_SLOT_IMAGE=1" as Figure 66 below:

R11ANO516EU0140 Rev.1.40
May.01.24

Page 36 of 45

RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

Q Properties for blinky_secondary O X
‘ type filter text | Settings © i
Resource
A
Builders
v C/C++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...

Build Variables
Environment
Logging) Tool Settings | B3 Toolchain| #* Build Steps Build Artifact [sb Binary Parsers| €3 Error Parsers

7

Tool Chain Editor =2 Target Processor Linker flags (-Xlinker [option]) ¢ %) &

C/C++ General =
McU 2 Warnings

Project Natures

d

4V

Optimization
O A O

&

G

[

23 Debugging

3 GNU Arm Cross Assembler
bk
Refactoring History %?’ Preprocessor
=
Renesas QF E! Includes

= .

Run/Debug Settings (=2 Warnings

g
Task Tags (2 Miscellaneous

53]]
Validation ~ 5 GNU Arm Cross C Compiler

<
@

Project References -

Other objects L3

(% Preprocessor

(% Includes

(% Optimization

(% Warnings

(5 Miscellaneous

VIE\IB GNU Arm Cross C Linkerl

(2 General

=T
= Libraries

(% Miscellaneous

v 18 GNU Arm Cross Create Flash Image
(% General [Cross reference (-Xlinker --cref)
¥ 1 GNU Arm Cross Print Size [Print link map (-Xlinker --print-map)

.
(=2 General [0 e e oo oo G A

Apply and Close Cancel

Generate map "${BuildArtifactFileBaseName}l.map"

(&)

Figure 66. Configuration of blinky_secondary project in DXIP mode
Debug the New Application
To boot the new image, there is no need to update the debug configuration.

However, in most cases, user needs to debug the new application. It is recommended user debug the new
application as a primary application, which means to initiate the debug process using the debug configuration
of the new application. To debug the new image as a primary image, we need to update the debug
configuration of the newly created application to use the signed binary of the bl inky_new application rather
than the signed binary of the old blinky application.

For example, when using the application projects for the ra_mcuboot_ra2el, we want to change the debug
configuration of the bl inky_new project from the imported result shown in Figure 68:

Mameg | blinky new Debug Flat
Main | %5 Debuggel m . Source| [C] Common

Initialization Commands

[[]Reset and Delay (seconds): | 3
[T Halt

Load image and symbols

Filename Load type Offset (hex)
Program Binary [blinky_new.elf] Symbols only
blinky.bin.signed [C:\ra2_bootloader\RAZ_secure_bootloader_orghovenwrite_no_signature\blinky\Debug] Raw Binary 2000

Figure 67. Debug Configuration of blinky new initially imported

R11ANO516EU0140 Rev.1.40 Page 37 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

In the imported configuration, the signed binary of the blinky project is used. We need to change that to the
signed binary of bl inky_new as shown in Figure 68.

Narne: | blinky_new Debug_Flat

[Z) Main | %5 Debugger = Startup) t . Source| [F] Common

Initialization Commands
[] Reset and Delay (seconds): 3
[Halt

Load image and symbols

Filename Load type Offset (hex) On connect
Program Binary [blinky_new.elf] Symbols only Yes
LA ra mcuboot radelelf [Chrad bootloader\RA2 cecure bootloader org\ovenwrite no signaturelra mcuboot radel\Debug age a

blinky_new.bin.signed [C\ra_bootloader\RA2_secure_bootloader_orghoverwrite_no_signature\blinky_new\Debug] Raw Binary 2000

Figure 68. Debug Configuration of blinky_new to use for debugging

Note that in order to debug the new image as a primary image, for overwrite and swap mode, we want to set
the download address of the signed new image binary to the location of the primary slot. For Direct XIP, we
can set the download address of the signed new image binary to the location of the intended slot.

To create a brand-new application when using the overwrite, swap or Direct XIP upgrade mode without
importing the previous application, you can follow section 4.2 to configure the application to use the bootloader
and section 4.3 to sign the application image.

6.2 Configure the Swap Test Mode

Prior to introducing the swap test mode, it helps to introduce the image_ok byte as part of the application image
trailer. The image_ok byte resides in the image trailer area. It is a flag byte that is used in Swap and Direct XIP
upgrade modes. This byte is used to determine whether the new image will be swapped or not after the next
reset following an image update. Please refer to Figure 13 for the location of the image trailer and the image_ok
byte.

When using the Swap update mode, after the new image is loaded to the Secondary slot and authenticated
successfully, the old image and the new image are swapped. At the next system reset, the system behavior
differs based on whether the image_ok byte which resides in the primary slot is 0x01 or OxFF.

If the image_ok byte is 0x01, after the next reset, there will be no swapping and hence the new image still
stays in the Primary slot and will be booted. If the image_ok byte is OxFF, after the next reset, the new image
and the old image is swapped again and the old image is booted. This is the rollback feature of swap mode.

Setting the image in the Primary slot as Confirmed can be achieved at the new image compile time or runtime.
This is explained in section 6.2.1 and 6.2.2.

R11ANO516EU0140 Rev.1.40 Page 38 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

Boot primary
(App1)

Download secondary
(App2) and Boot secondary

¥

IMAGE_OK
= 0x01?
no

yes

Boot primary

(App1)

Figure 69. Swap Test Mode

6.2.1 Confirming the New Application at Compile Time

FSP 3.4.0 or earlier only supports confirming the new image at compile time. FSP 3.5.0 or later supports
runtime image confirmation of flat projects.

Confirming the new image (which will be loaded to the primary slot) at compile time requires setting the Custom
Signing Options to ——confirm as shown in Figure 16. This usage is demonstrated in the example bootloader
blinky_swap_ new.

6.2.2 Confirming the New Application at Run-time

Confirming the new application at runtime requires the bootloader to use --pad for the Custom signing
command as shown in Figure 17. In addition, confirming the new image at runtime requires the MCUboot
Image Utilities module to be included in the new application image and configure the system to use several
files from the bootloader project. The example project demonstrate this feature. This module is included in the
example bootloader blinky swap_with_signature_new.

Open the Secondary application project blinky swap_with_signature_new, and navigate to the Stacks
tab, click New stack > Bootloader > MCUboot Image Utilities. Then, configure the properties of MCUboot
Image Utilities module as shown in Figure 71. Adding this module adds about 2 kB of flash usage in the
application.

4+ MCUboot Image
Litilities
Generate Project Content
%

e .D Remove - .

Arm 3 4 g_flash0 Flash Driver

I Bootloader I » & MCUboot on r_flash_lp
Driver » I MCUboot Image Utilities @
Intel » |

Figure 70. Include the MCUboot Image Utilties Module

Configure the path of the header files needed.

R11ANO516EU0140 Rev.1.40 Page 39 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

HAL/Common Stacks % | Mew Stack > % Extend Sta
42 g_ioport 1/0 Port “+ MCUboot Image
fil/Common (_ioport) Utilities
g_iopert /0 Port (r_ioport)
MCUboot Image Utilities @ (i)
T

&+ g_flashD Flash
(r_flash_lp)

®

BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

s [E Console | [Properties < |@ Smart Browser L5} Smart Manual 4" Search

it Image Utilities

Property Value
w Common
~ General
Bootloader meubeot_cenfig.h Wfufra_mecuboot_razel_swap_with_signature/ra_cfg/mcu-tools/include/mcuboot_config/mcuboot_config.h
Bootloader sysflash.h fwfra_mecuboot_raZel_swap_with_signature/ra_cfg/mcu-tools/include/sysflash/sysflash.h
Bootloader mcuboot_logging.h W wfra_mecuboot_raZel_swap_with_signature/ra_cfg/mcu-tools/include/mcuboot_config/mcuboot_logging.h

Figure 71. Include the Bootloader Header Files
Next configure the r_flash_Ip module in the same way as in Figure 23.

In the secondary application project, insert the following function call to activate the confirmation of the
application image. This function call can be added at a user chosen location after the desired testing of the
application project is finished.

In the included example project, this function is demonstrated in the hal _entry() function located in
\swap_with_signature\blinky swap with_signature_new\hal _entry.c.

[* Confirm the image in the primary slot.
* This is required after a test update in swap mode.
* This makes the swap permanent, and prevents MCUboot from reverting to the previous image at the next reset.
*
assert(0 == boot_set_confirmed());

Figure 72. Confirm the Update Image

6.3 Downloading and Booting the New Application
Assume the Primary application blinky is now up and running and the three LEDs are blinking.

For testing purpose, user can click Pause and use the Ancillary Download @ button (which is available
under the e2studio Debug view) to load the compiled Secondary Application blinky new.bin.signed
Select the new application image and set the download address. The download address depends on the
bootloader flash memory allocation.

The download address should be the sum of Bootloader Flash Area Size + Image 1 Flash Area Size based on
update mode shown in Table 3. For example, for the overwrite only without signature bootloader
ra_mcuboot_ra2el, the download address should be 0x4000.

R11ANO516EU0140 Rev.1.40 Page 40 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

a8 X

Lead Ancillary File

Select an ancillary file for loading

File: |${w0rkspace_Ioc:\hIinky_new\DehugIhlinky_new.bin.signed} wf [orkspace... | | File System...

oad a3 rawe binary image
Address: 000004000 |

Cancel

Figure 73. Download the Secondary Application Image

Note that for user-created customized applications, the download address needs to be adjusted by referencing
the specific flash layout. User can reference Table 3 to learn how to come up the download address.

Notes on using the Load Ancillary File Download

When we use the Load Ancillary File to download a new image during a debug session, the GDB server
reconnects with the target, downloads the image, and restarts the debug session as shown in the following
Console window outpult.

* generated main source file - do not edit */
#include "hal_data.h”
= int main(void)

-
=t 1

hal_entry ();
return 9;

{

1* | Problems E) Console X Properties @ Smart Browser | &) Smart Manual 4 Search
blinky Debug_Flat [Renesas GDB Hardware Debugging] [pid: 40]

GDB Server for Renesas targets.
Version 9.1.0.v20238405-115727 [dd3207d3] (Apr 6 2823 16:06:04)

Starting server with the following options:
Raw options : C:\Users\a5@99@44\.eclipse\com.renesas.platform_101687614
Using J-Link version V7.88d - C:\Users\a5099@44\.eclipse\com.renesas.platform_1016876100\Debug

Connecting to R7FA2E1A9, ARM Target
GDBServer endian : little
Target power from emulator : Off
Starting target connection
Unable to read the connected device ID (device ID address not specified).
Finished target connection
GDB: 56755
Target connection status - OK
Target connection status - OK
Starting download
Option Function Select, writing to address @x0000048@ with data ffffffffdfceffff
SECMPUxxx, writing to address exeeeee4e8 with data fcffefeeffffefeefcffefeeffffefee...
Finished download
Hardware breakpoint set at address @x494
Hardware breakpoint set at address @x2dce
GDB action 'read memory', has failed with error code, @xffffffff
Starting download
Finished download

Figure 74. GDB Actions when using the Load Ancillary File Button

R11ANO516EU0140 Rev.1.40 Page 41 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

After the new image is downloaded and the GDB debug session is restarted, user can click Resume ® to
allow the system to perform image overwrite and the new image will be booted. Only the blue LED should be
blinking now, which indicates the new image is flashed to the Primary slot of the application area.

On the RTT Viewer, information on the secondary application execution is displayed including the upgrade
mode, whether signature authentication is supported as well as what LEDs are blinking. Below is an example
when blinky overwrite_with_signature_new is booted.

28> Running the Secondary (New) application with owerwrite update mode without signature authentication.

@2 Only the blue LED is E-lirul-'..ing.

Figure 75. RTT Viewer Output from the New Application

Prior to deployment, a system with bootloader solution would typically need to include an image downloader
and programmer in the application (primary and secondary applications), so a new application can be
downloaded in the field.

Application project RA6 Secure Firmware Update using MCUboot and Flash Dual Bank (R11ANO0570) includes
an image downloader using XModem over UART interface. User can reference that to create an image
downloader.

7. Appendix: Compile and Exercise the Included Example Bootloader and
Application Projects

Unzip RA2_secure_bootloader.zip to access the included bootloader and example application projects.

RAZ2 secure bootloader

Name

direct_xip_no_signature
overwrite_no_signature
overwrite_with_signature

swap_no_signature

swap_with_signature

Figure 76. Example Projects Included

7.1 Running the Example Projects with Overwrite Upgrade Mode
7.1.1 Without Signature Verification

Follow the steps below to run the example projects under folder \overwrite no_signature:

1. Import projects to a workspace.

2. Open the configuration.xml file from project ra_mcuboot_raZ2el.
3. Click Generate Project Content.

4. Compile the project ra_mcuboot_ra2el.

5. Open the configuration.xml file from project bl inky.

6. Click Generate Project Content.

7. Compile the bl'inky project.

8. Open the configuration.xml file from project blinky new.

9. Click Generate Project Content.

10. Compile the bl inky_new project.

11. Debug the application from project bl inky.

12. Resume the program execution twice. All LEDs should be blinking.

13. Pause the execution.

14. Download the blinky new.bin.signed using Load Ancillary File to address 0x4000.
15. Resume the program execution. The blue LED should be blinking.

7.1.2 With Signature Verification
Follow the steps below to run the example projects under folder \overwrite_with_signature:

R11ANO516EU0140 Rev.1.40 Page 42 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

© XN OA®WDNE

e ol =
AWNPRFRO

Import projects to a workspace.

Open the configuration.xml file from project ra_mcuboot_ra2el overwrite_with_signature.
Click Generate Project Content.

Compile the project ra_mcuboot_ra2el overwrite with_signature.

Open the configuration.xml file from project blinky with_signature.

Click Generate Project Content.

Compile the blinky _with_signature project.

Open the configuration.xml file from project blinky _with_signature_new.

Click Generate Project Content.

. Compile the blinky _with_signhature_new project.

. Debug the application from project blinky with_signature.

. Resume the program execution twice. All LEDs should be blinking.

. Pause the execution.

. Download the blinky with_signature_new.bin.signed to address 0x5800.
15.

Resume the program execution, the blue LED should be blinking.

7.2 Running the Example Projects with Swap Upgrade Mode

7.2.1 Without Signature Verification
Follow the steps below to run the example projects under folder \swap_no_signature:

© 0N Ok~wDNPRE

N e
NoOo U WNR O

Import projects to a workspace.

Open the configuration.xml file from project ra_mcuboot_ra2el_swap.
Click Generate Project Content.

Compile the project ra_mcuboot_ra2el swap.

Open the configuration.xml file from project bl inky swap.

Click Generate Project Content.

Compile the blinky_swap project.

Open the configuration.xml file from project blinky swap_ new.

Click Generate Project Content.

. Compile the bl inky _swap_new project.

. Debug the application from project bl inky swap.

. Resume the program execution twice. All LEDs should be blinking.

. Pause the execution.

. Download the blinky_swap_new.bin.signed using the Load Ancillary File to address 0x5000.
. Resume the program execution. The blue LED should be blinking.

. Reset the program execution from e? studio.

. Run the application. The blue LED should be blinking.

7.2.2 With Signature Verification

Follow the steps below to run the example projects under folder \swap_with_signature:

o g krwhE

Import projects to a workspace.

Open the configuration.xml file from project ra_mcuboot_ra2el swap with_signature.
Click Generate Project Content.

Compile the project ra_mcuboot_ra2el swap_with_signature.

Open the configuration.xml file from project blinky swap_ with_signature.

Click Generate Project Content.

R11ANO516EU0140 Rev.1.40 Page 43 of 45
May.01.24 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

15.
16.
17.

Compile the blinky_swap_with_signature project.
Open the configuration.xml file from project blinky swap with_signature_new.
Click Generate Project Content.

. Compile the blinky swap_with_signature_new project.

. Debug the application from project blinky swap with_signature.

. Resume the program execution twice. All LEDs should be blinking.

. Pause the execution.

. Download the blinky swap_with_signature_new.bin.signed using Load Ancillary File to

address 0x6800.

Resume the program execution. The blue LED should be blinking.
Reset the program execution from e? studio.

Run the application. The blue LED should be blinking.

7.3 Running the Example Project with Direct XIP Upgrade Mode Without Signature

Follow the steps below to run the example projects under folder \direct_xip_no_signature:

© XN OAR®DNE

PR R PR R R R
NoO Ul AWN RO

o

9.

Import projects to a workspace.

Open the configuration.xml file from project ra_mcuboot_ra2el_dxip.
Click Generate Project Content.

Compile the project ra_mcuboot_ra2el_dxip.

Open the configuration.xml file from project blinky_primary.

Click Generate Project Content.

Compile the blinky primary.

Open the configuration.xml file from project blinky secondary.

Click Generate Project Content.

. Compile the blinky secondary.

. Debug the application from project blinky primary.

. Resume the program execution twice. All LEDs should be blinking.

. Pause the execution.

. Download the blinky _secondary.bin._signed using Load Ancillary File to address 0x4000.
. Resume the program execution. The blue LED should be blinking.

. Reset the program execution from e? studio.

. Run the application. The blue LED should be blinking.

References

Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project (R11AN0416)
RA6 Secure Bootloader Using MCUboot and Internal Code Flash Application Project (R11AN0497)

Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support:

EK-RA2E1 Resources renesas.com/ra/ek-ra2el
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11ANO516EU0140 Rev.1.40 Page 44 of 45

May.01.24 RENESAS

https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/ra/ek-ra2e1
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Revision History

Description

Rev. Date Page Summary

1.00 Jul.26.21 - First release document

1.10 Dec.09.21 - Update to add swap mode and signature verification support

1.2.0 Apr.07.23 - Update to FSP v4.2.0. Add Direct XIP mode and use new e?
studio features

1.3.0 Sep.07.23 - Update to usage mode based on FSP v4.5.0. Correct project
recreation missing steps.

1.4.0 May.01.24 - Update to FSP v5.2.0. Update functions to put in the flash

gap section.

R11ANO516EU0140 Rev.1.40

May.01.24

Re Page 45 of 45
KENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quiality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
Www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview of MCUboot
	1.1.1 Overview of Application Booting Process
	1.1.2 Application Update Strategies

	2. Architecting an Application with MCUboot Module using FSP for RA2 MCUs
	2.1 Secure Booting with TinyCrypt
	2.2 Designing Bootloader and the Initial Primary Application Overview
	2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUs
	2.3.1 Customizing the RA2 Bootloader
	2.3.2 Time Usage in an Application Image Update

	2.4 Production Recommendations for RA2 MCU
	2.4.1 Making the Bootloader Immutable
	2.4.2 Disabling the Debug and Serial Programming Interface Prior to Deployment

	3. Creating the Bootloader Project
	3.1 Including the MCUboot Module in the Bootloader Project
	3.2 Further Optimizing for the Bootloader Project Size
	3.3 Compiling the Bootloader Project
	3.4 Configuring the Python Signing Environment
	3.5 Review the Signing Command
	3.6 Usage Notes
	3.6.1 Using Customized Image Signing Key
	3.6.2 Migrating the Bootloader to other FSP versions
	3.6.3 Migrating from One Upgrade Mode to Another Upgrade Mode
	3.6.4 Use the Memory Usage Window to Select Functions to Put in the Gap Area

	4. Using the Bootloader with a New Application or Existing Application
	4.1 Generate the Initial Application Project
	4.2 Configure the Existing Application to Use the Bootloader Project
	4.3 Signing the Application Image

	5. Booting the Initial Application Project
	5.1 Set Up the Hardware
	5.2 Configure the Debugger

	6. Mastering and Delivering a New Application
	6.1 Create a New Application
	6.2 Configure the Swap Test Mode
	6.2.1 Confirming the New Application at Compile Time
	6.2.2 Confirming the New Application at Run-time

	6.3 Downloading and Booting the New Application

	7. Appendix: Compile and Exercise the Included Example Bootloader and Application Projects
	7.1 Running the Example Projects with Overwrite Upgrade Mode
	7.1.1 Without Signature Verification
	7.1.2 With Signature Verification

	7.2 Running the Example Projects with Swap Upgrade Mode
	7.2.1 Without Signature Verification
	7.2.2 With Signature Verification

	7.3 Running the Example Project with Direct XIP Upgrade Mode Without Signature

	8. References
	9. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

