
 Application Note

R11AN0897EU0100 Rev.1.00 Page 1 of 75

Nov.13.24

Renesas RA Family

Security Design using Arm TrustZone - Cortex M85

Introduction

The Renesas RA8 MCU Series has a Cortex-M85 core and implements Armv8.1-M architecture. This MCU
Series includes the Armv8-M Security Extension, which provides a foundation for improved system-level
security in a wide range of embedded applications. This application note explains the various RA8 MCU
TrustZone technology enabled hardware and software features and provides guidelines for using these
features. In addition, this application project provides step-by-step instructions to kickstart TrustZone
technology enabled secure system design with Renesas RA8 Family MCUs.

For fundamentals of Arm TrustZone Technology, users are encouraged to read the document Arm®
TrustZone Technology for the Armv8-M Architecture from Arm. This application project focuses on the
TrustZone technology implementation and features for RA8 Family MCUs with TrustZone support. At the
time of release, the RA8 MCU groups that are covered by this application project include the MCU groups
with support for both TrustZone and Device Lifecycle Management. Support for the RA Cortex-M33 MCU
TrustZone and Device Lifecycle Management, please refer to R11AN0467.

Creating a secure design involves using hardware enforced isolation to create a software architecture
specifically designed for security, supported by MCU tooling. For TrustZone based security design, tooling
plays a critical role for the development, production, and deployment of a product. For the tools support, refer
to the FSP User’s Manual section: Primer: TrustZone Project Development prior to proceeding to TrustZone
based development.

An EK-RA8M1 based application project implementing an IP protection use case for TrustZone technology is
provided as a reference project to start application development with the RA Family MCU TrustZone feature.
Implementations with e2 studio, IAR EWARM, and Keil MDK IDEs are provided with instructions on how to
import and run the example projects.

Required Resources

Target Devices

• RA8M1

• RA8D1

• RA8T1

• RA8E1

• RA8E2

Software and development tools

• e2 studio IDE v2024-10

• Renesas Flexible Software Package (FSP) v5.6.0

• Renesas Advanced Smart Configurator v5.6.0

• Renesas Advanced Smart Configurator v2024-10

The links to download the above software are available at https://github.com/renesas/fsp.

• IAR Embedded Workbench for Arm version v9.60.2

 (https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/)

• Keil MDK v5.41

(https://www.keil.com/download/product/)

• SEGGER J-Link® USB driver v7.98g (SEGGER J-Link)

• Renesas Flash Programmer (RFP) v3.17.00

Hardware

https://github.com/renesas/fsp
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/
https://www.keil.com/download/product/
https://www.segger.com/downloads/jlink/
https://www.renesas.com/en/software-tool/renesas-flash-programmer-programming-gui#downloads

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 2 of 75

Nov.13.24

• EK-RA8M1, Evaluation Kit for RA8M1 MCU Group (renesas.com/ra/ek-ra8m1)

• Workstation running Windows® 10 and the Tera Term console or similar application

• One USB device cable (type-A male to micro-B male)

Prerequisites and Intended Audience

This application project assumes that you have some experience with the Renesas e2 studio IDE, IAR
EWARM, or Keil MDK IDE. In addition, the user is expected to understand how to extract the generated
content from the FSP and the Renesas RA Smart Configurator. It is also recommended to read the first two
chapters of the application note R11AN0785 (Device Lifecycle Management for RA8 MCUs) to understand
the Device Lifecycle States for RA8 MCUs. Furthermore, users must know how to enter MCU boot mode
using the EK-RA8M1 and create a basic RFP project to communicate with the MCU. This application project
only provides necessary settings for the specific functions used in this application project. For more
information on the MCU boot mode and RFP, refer to the Renesas RA8M1 Group User’s Manual: Hardware
and Renesas Flash Programmer User’s Manual.

The intended audience is all users who are or will be developing Arm® TrustZone® based applications using
Renesas RA8 Family MCUs.

http://www.renesas.com/ra/ek-ra8m1

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 3 of 75

Nov.13.24

Contents

1. Introduction to Arm® TrustZone® and its Security Features .. 6

1.1 TrustZone Technology Overview .. 6

1.2 RA8 MCU Arm TrustZone Security Attribution .. 7

1.2.1 Implementation Defined Attribution Unit (IDAU) .. 8

1.2.2 Master Security Attribution Unit (MSAU) ... 10

1.2.3 Security Attribution Unit (SAU) .. 11

1.2.4 Region Number ... 12

1.2.5 Memory Security Attribution of TrustZone Filter .. 13

1.2.6 Peripheral Security Attribution of TrustZone Filters .. 15

1.3 Device Lifecycle Management .. 16

1.4 Example TrustZone Use Cases .. 17

1.4.1 Intellectual Property (IP) Protection... 17

1.4.2 Root of Trust Protection .. 18

2. Arm® TrustZone® Application Design Support .. 18

2.1 Renesas Advanced Smart Configurator .. 18

2.1.1 Using RASC with Renesas e2 studio ... 19

2.1.2 Using RASC with IAR Embedded Workbench for Arm ... 19

2.1.3 Using RASC with Arm Keil MDK ... 19

2.2 Transitioning from CM State to OEM_PL2 State .. 19

2.2.1 Developing with e2 studio .. 20

2.2.2 Developing with IAR EWARM ... 20

2.2.3 Developing with Keil MDK ... 20

2.3 Setting up the IDAU Region .. 20

2.3.1 Developing with e2 studio .. 21

2.3.2 Developing with IAR EWARM ... 21

2.3.3 Developing with Keil MDK ... 22

3. General Considerations in TrustZone® Application Design .. 22

3.1 Non-secure Callable Modules ... 22

3.2 Guard Function for Non-secure Callables ... 23

3.2.1 Limit Access to Selected Configurations and Controls ... 23

3.2.2 Test for Non-secure Buffer Locations ... 23

3.2.3 Handle Non-secure Data Input Structure as Volatile .. 23

3.2.4 Limit the Number of Arguments in an NSC Function .. 24

3.3 Creating User-Defined Non-secure Callable Functions .. 24

3.4 RTOS Support ... 25

3.5 Writing TrustZone Technology Enabled Software ... 25

3.5.1 Benefitting from CMSE Functions to Enhance System Level Security ... 25

3.5.2 Avoid Asynchronous Modifications to Currently Processed Data ... 26

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 4 of 75

Nov.13.24

3.5.3 Utilize the Armv8-M Stack Pointer Stack Limit Feature .. 26

4. Using Renesas RA Project Generator for TrustZone Development .. 26

4.1 Combined Project Development .. 28

4.1.1 Developing the Secure Project .. 28

4.1.2 Developing the Non-secure Project .. 34

4.1.3 Production Flow Overview ... 39

4.2 Split Project Development ... 40

4.2.1 Developing the Secure Bundle and Provisioning the MCU ... 40

4.2.2 Limitations and Workarounds for Developing in OEM_PL1 State .. 40

4.2.3 Developing the Non-secure Project in OEM_PL1 State ... 40

4.2.4 Production Flow Overview ... 43

4.3 Flat Project Development .. 43

4.3.1 Operational Flow ... 44

4.3.2 Ethernet Application .. Error! Bookmark not defined.

4.3.3 Production Flow Overview ... 44

5. Example Project for IP Protection .. 44

5.1 Overview .. 45

5.2 System Architecture .. 46

5.2.1 Software Components ... 46

5.2.2 Operational Flow ... 47

5.2.3 Simulated User’s IP Algorithm ... 48

5.2.4 User-Defined Non-secure Callable APIs ... 48

5.3 Setting up Hardware .. 49

5.4 Example Application with e2 studio IDE using Split Project Development Model 51

5.4.1 Import, Build, and Program the Secure Binary and Dummy Non-secure Binary 51

5.4.2 Import, Build, and Program the Non-secure Project ... 54

5.4.3 Verify the Example Application .. 57

5.5 Example Application with IAR EWARM using Combined Development Model 59

5.5.1 Import and Build the Example Projects ... 60

5.5.2 Download and Debug the Application Projects ... 61

5.6 Example Application with Keil MDK using Combined Development Model .. 63

5.6.1 Import and Build the Example Projects ... 64

5.6.2 Download and Debug the Application Project ... 66

6. Appendix A: Using Renesas Flash Programmer for Production Flow 67

6.1 Initialize the MCU .. 67

6.2 Download the Secure Binary ... 68

6.3 Download the Non-secure Binary .. 69

6.4 Specific Instructions to Support IAR EWARM Development Path .. 72

6.4.1 IAR I-jet and TrustZone Partition Boundary Setup .. 72

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 5 of 75

Nov.13.24

6.4.2 CMSIS-DAP and Trust Zone Partition Boundary Setup .. 72

7. Appendix B: Glossary .. 73

8. References .. 73

9. Website and Support ... 74

Revision History .. 75

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 6 of 75

Nov.13.24

1. Introduction to Arm® TrustZone® and its Security Features

1.1 TrustZone Technology Overview

Arm TrustZone technology is a hardware-enforced separation of MCU features. Arm TrustZone technology
enables the system and the software to be partitioned into Secure and Non-secure worlds. Secure software
can access both Secure and Non-secure memories and resources. Secure software must use Secure
transactions to access Secure memory and resources. Secure software must use Non-secure transactions to
access Non-secure memory and resources. Non-secure software can only access Non-secure memories
and resources using Non-secure transactions. Non-secure software cannot access Secure memory and
resources. Refer to Figure 3. for the definition on Secure Transaction and Non-secure Transaction. These
security states are orthogonal to the existing Thread and Handler modes, enabling both Thread and Handler
mode in both Secure and Non-secure states.

Figure 1. Processor States

The Armv8-M architecture with Security Extension is an optional architecture extension. If the Security
Extension is implemented, the system starts up in the Secure state by default. If the Security Extension is not
implemented, the system is always in the Non-secure state. Arm TrustZone technology does not cover all
aspects of security; for example, it does not include cryptography.

In applicationss with Armv8-M architecture with Security Extension, components that are critical to the
security of the system can be placed in the Secure world. These critical components include:

• A Secure boot loader

• Secret keys

• Flash programming support

• High value assets

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 7 of 75

Nov.13.24

The remaining components in an application are placed in the Non-secure world.

Figure 2. Secure and Non-secure Worlds

As mentioned in the Introduction section, for more details on the definition and usage of TrustZone®, see the
Arm document, Arm TrustZone Technology for the Armv8-M Architecture.

1.2 RA8 MCU Arm TrustZone Security Attribution

This section introduces how the TrustZone security attribution is defined and used on the RA Cortex-M85
MCUs. FSP does all of the configuration and transaction handling in the background. Configuring the
TrustZone attribution does not need handling from the user application code when using FSP. This section is
provided for your reference. Skip to section 2 to start developing TrustZone based applications using RASC
and FSP.

The TrustZone for Armv8.1-M implementation consists of the Security Attribution Unit (SAU) and
Implementation Defined Attribution Unit (IDAU). The 4 GB memory space is partitioned into Secure (S) and
Non-secure (NS) memory regions. The secure memory space is further divided into two types, Non-secure
Callable (NSC) and Secure.

In this Application Note, Secure Transaction and Non-secure Transaction are defined as follows. These
concepts are used throughout the rest of the Application Note:

• Secure Transaction: Access transaction that is issued with bit 28 in the address set to ‘0’.

• Non-secure Transaction: Access transaction that is issued with bit 28 in the address set to ‘1’.

Note that the physical address of the RA8 MCU is a continuous region. When bit 28 is manipulated to form a
Secure or Non-secure transaction, we refer to this updated address as the Alias address of the memory
area. Refer to section 1.2.5 for a pictorial memory map representation of the Alias memory map example for
the code and data flash in linear and dual bank modes.

On RA8 MCUs, the secure region can successfully issue both Secure and Non-secure transactions, but the
non-secure region can only successfully issue Non-secure transactions. Figure 3. Figure 3 illustrates what
transactions are allowed by the TrustZone filter.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 8 of 75

Nov.13.24

Figure 3. Transactions that Can be Issued by Each Master

1.2.1 Implementation Defined Attribution Unit (IDAU)

The IDAU defines the code, SRAM, and peripherals into the secure region and the non-secure region.

Portions of the secure code region and secure SRAM region can be assigned with the NSC security
attribute. The defined security map enforced by the IDAU is set in hardware and cannot be changed by
software.

For the code flash, one secure and one non-secure region can be defined in linear mode. In dual bank
mode, each bank can have one secure and one non-secure region. For the data flash, the SRAM and the
Standby SRAM, there can be one secure and one non-secure region. The external memory CS area
controller (CSC), the SDRAM region, and the OSPI region on the RA8 MCUs are always configured as non-
secure. Application code cannot change these secure properties.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 9 of 75

Nov.13.24

Figure 4. RA8M1 Memory map example of 2 MB flash product

Secure
Alias
Addresses

Bit 28 is 0

Non-
secure
Alias
Addresses

Bit 28 is 1

Secure
Alias
Addresses

Bit 28 is 0

Non-
secure

Alias
Addresses

Bit 28 is 1

Secure
Alias
Addresses

Bit 28 is 0

Non-
secure
Alias
Addresses

Bit 28 is 1

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 10 of 75

Nov.13.24

Code and Data Flash TrustZone® Based Security Features

Code and Data secure flash regions read from a Non-secure region will generate a TrustZone Secure Fault.
Per the MCU design, the Code and Data Flash Programming and Erasing (P/E) mode entry can be
configured to be available from only Secure software. The secure region can be accessed by the Non-secure
region through Non-secure callable functions. For example, the flash driver may be placed in the Secure
partition and may be configured as Non-secure Callable through the FSP to allow the Non-secure application
to perform flash P/E operations.

Table 1. Secure Flash Region Read/Write Protection

Access Violation Error Report

Flash read TrustZone Secure Fault: Reset or Non-Maskable Interrupt (NMI).

Flash P/E mode entry Flash P/E Error Flag: Handled by FSP flash driver.

RA8 Family MCUs support temporary and permanent Flash Block Protections for both the Secure region and
the Non-secure region. For more details on the Code and Data Flash TrustZone technology enabled
hardware features, see the Renesas RA8M1 Group User’s Manual: Hardware, Flash Memory section.

SRAM

SRAM memory, such as SRAM0, that includes an ECC region and Parity can be divided into Secure/Non-
secure Callable/Non-secure regions with Memory Security Attribution (MSA) and can be protected from Non-
secure access. When MSA indicates that an SRAM memory region is of Secure or Non-secure Callable
status, Non-secure access cannot overwrite that memory.

Table 2. Secure SRAM Region Read/Write Protection

Access Violation Error Report

SRAM read Arm® TrustZone Secure Fault: Reset or NMI

SRAM write Arm TrustZone Secure Fault: Reset or NMI

1.2.2 Master Security Attribution Unit (MSAU)

The MSAU defines the system-specific security address map for bus masters other than the CPU. The
MSAU defines secure and non-secure alias regions; it does not define Non-secure Callable (NSC) regions or
region number. Bus masters other than the CPU can issue a security transaction using the secure alias
address defined by the MSAU. However, non-secure masters are prohibited from issuing secure transactions
using an address in the secure alias region. The defined security map is enforced by the MSAU is fixed in
hardware and cannot be changed by software.

Although the security map as defined by the IDAU and the MSAU is fixed, the SAU can be used to vary the
security attributions of the regions following the rules defined in section 1.2.3.

Figure 5. IDAU and MSAU defined security map

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 11 of 75

Nov.13.24

1.2.3 Security Attribution Unit (SAU)

The SAU is a programmable unit that determines the security of an address. The SAU is programmable in
the Secure state and has a programmer’s model similar to the MPU. If an address maps to regions defined
by both IDAU and SAU, the region of the highest security level is granted. A secure master can issue secure
and non-secure transactions using the address of each security alias region. A non-secure master cannot
issue secure transactions using the address of the secure alias region.

When using TrustZone to perform secure and non-secure region separation, the SAU MUST be set
according to the following.

The regions set as NS attribute in IDAU MUST be set to NS in the SAU as well. The regions set to NS
attribute in IDAU are:

0x1000_0000 to 0x1FFF_FFFF (SAU Region 1 in Figure 6Figure 6.)

0x3000_0000 to 0x3FFF_FFFF (SAU Region 3 in Figure 6)

0x5000_0000 to 0xDFFF_FFFF (SAU Region 3 in Figure 6Figure 6.)

At least one NSC region MUST be created within any region defined as NSC by the IDAU. The regions set to
NSC attribute by the IDAU are:

0x0000_0000 to 0x0FFF_FFFF (SAU Region 0 in Figure 6)

0x2000_0000 to 0x2FFF_FFFF (SAU Region 2 in Figure 6)

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 12 of 75

Nov.13.24

Figure 6. SAU settings and resulting security attributes

1.2.4 Region Number

The IDAU also defines region numbers for each of the memory regions and security attributes. This region
number is used by software to determine if a contiguous range of memory shares common security
attributes. Figure 7 shows the defined region number of IDAU.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 13 of 75

Nov.13.24

Figure 7. IDAU defined region numbers

1.2.5 Memory Security Attribution of TrustZone Filter

The memory security attribution of code flash and data flash is stored into nonvolatile memory by a boot
firmware command when the device lifecycle is in the OEM state and the authentication level is AL2. These
memory security attributions are applied before application execution. They cannot be updated by the
application but are readable using dedicated registers. The memory security attributions of SRAM, standby
SRAM, and VBATT backup registers are set by a dedicated security attribution register writable only by
secure access.

The code flash can be divided into up to two regions in linear mode and four regions in dual mode. The
partitioning is the same between bank0 and bank1 in the dual mode. The data flash can be divided into up to
two regions. SRAM, standby SRAM, and VBATT backup registers can be divided into up to two regions.
Figure 8 shows the memory mapping. Figure 9 shows the size of the memory region.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 14 of 75

Nov.13.24

Figure 8. Memory mapping

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 15 of 75

Nov.13.24

Figure 9. Size of memory region

Note: BA is the setting of the security attribution boundary address register for each memory region.

It is prohibited to place Secure or Non-secure Callable regions in a block swappable area in linear mode
because the secure application would be placed in the non-secure region after block swapping.

The contents in Secure or Non-secure Callable regions must be the same in both bank0 and bank1 in the
dual mode. Otherwise, the contents of secure or non-secure regions may not be consistent after a field
update.

Table 3 is a summary of the memory access and error reporting for TrustZone based application based on
the definition of Secure Transaction and Non-secure Transaction defined in Figure 2.

Table 3. Access Permission and Error Reporting of the Memory Region

Memory Region Secure Transaction
Targeting Secure
Memory Regions

Secure Transaction
Targeting Non-secure
Memory Regions

Non-secure Transaction
Targeting Secure
Memory Regions

Non-secure
Transaction
Targeting Non-
secure Memory
Regions

Each memory region
configured as S or NSC

Allowed. Not Allowed. Write/Read
ignored. TrustZone
access error is
generated.

Not Allowed. Write/Read
ignored. TrustZone access
error is generated.

Allowed.

Each memory region
configured as NS

Not allowed.
Write/Read ignored.
TrustZone access
error is generated.

Not Allowed. Write/Read
ignored. TrustZone
access error is
generated.

Not Allowed. Write/Read
ignored. TrustZone access
error is generated.

Allowed.

1.2.6 Peripheral Security Attribution of TrustZone Filters

Each peripheral can be configured as secure or non-secure. Peripherals are divided into two types.

Type1 peripherals have one security attribution. Access to all registers is controlled by one security
attribution. The Type1 peripheral security attribution is written to the PSARx (x = B to E) register by the
secure application.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 16 of 75

Nov.13.24

Type2 peripherals have security attribution for each register or for each bit. Access to each register or bit
field is controlled according to these security attributions. Type2 peripheral security attributions are written to
the Security Attribution register in each module by the secure application.

For details on the Security Attribution register, see the corresponding sections in the Hardware User’s
Manual. e2 studio and the FSP provide configurability for most of these peripherals with several exceptions
where sensible default settings have been made to provide a better development experience. See the latest
FSP User’s Manual for details for each peripheral.

Table 4. List of Type-1 and Type-2 Peripherals

Type Peripheral

Type 1 SCI, SPI, OSPI, DOTF, ETHERC, EDMAC, USBHS, USBFS,
IIC, I3C, RSIP-E51A, CANFD, CEU, DOC, SDHI, SSIE, CRC,
CAC, ACMPHS, TSN, ADC12, DAC12, POEG, AGT, GPT,
ULPT, RTC, IWDT, and WDT

Type 2 System control (Resets, PVD, Clock Generation Circuit, Low Power
Modes, Battery Backup Function), Flash memory controller, Flash
cache, SRAM controller, CPU cache, DMAC, DTC, ICU, MPU, BUS,
Security setting, ELC, and I/O ports

Notes on Clock Generation Circuit (CGC)

The Clock Generation Circuit has individual security attributes for each of the clock tree controls. The current
release of the tooling and FSP provides flexibility of the following clock control schemes:

• Entire clock tree is controlled from the Secure project only and locked down in the Non-secure project.

• Entire clock tree is controllable from the Non-secure project as well as the Secure project.

Refer to Notes on Clock Control for the operational details.

Error! Reference source not found. is a summary of the memory access and error reporting for TrustZone
based application based on the definition of Secure Transaction and Non-secure Transaction defined in
Figure 2.

Table 5 Access Permission and Error Reporting for Type 1 Peripherals

Peripherals Secure Transaction
Targeting Secure
Peripherals

Secure Transaction
Targeting Non-secure
Peripherals

Non-secure Transaction
Targeting Secure
Peripherals

Non-secure
Transaction
Targeting Non-
secure Peripherals

Peripheral configured
as S

Allowed. Not Allowed. Write/Read
ignored. TrustZone
access error is
generated.

Not Allowed. Write/Read
ignored. TrustZone access
error is generated.

Allowed.

Peripheral configured
as NS

Not allowed.
Write/Read ignored.
TrustZone access
error is generated.

Not Allowed. Write/Read
ignored. TrustZone
access error is
generated.

Not Allowed. Write/Read
ignored. TrustZone access
error is generated.

Allowed.

1.3 Device Lifecycle Management and Debugging

The RA8 Family TrustZone technology enabled MCUs to incorporate an enhanced Device Lifecycle
Management System using TrustZone technology features and Renesas Secure IP (RSIP). Device Lifecycle
Management is important during TrustZone technology enabled application development, production, and
deployment stages.

For the Arm® TrustZone® technology enabled RA8 Family MCUs, the debug capability is determined by the
OEM Authentication Level (AL). The AL levels can be configured in three levels (AL0, AL1, and AL2) to

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 17 of 75

Nov.13.24

support TrustZone technology enabled debugging and provide security in development, production, and
deployed products:

• AL2: Non-secure and secure debug functions are enabled and accessible from the debugger.

• AL1: Only non-secure debug function is enabled, and the debugger can access only defined non-secure

debug accessible regions.

• AL0: No debug functions are available.

Debug level regression is possible through the Device Lifecycle Management system. See the application
note R11AN0785 for the corresponding operational flows. For creation, injection, and use of the Device
Lifecycle Management keys during development and production stages, see the Application Note
R11AN0785.

For Renesas RA TrustZone technology enabled MCUs, DLM usage with J-Link, E2, and E2 Lite debuggers
are supported.

1.4 Example TrustZone Use Cases

This application project explains two specific use cases for TrustZone technology and provides an example
software project for the IP Protection use case.

For additional attack scenarios where an attacker may attempt to access protected information and how the
TrustZone technology for ARMv8-M can prevent them, see Chapter 2, Security of Arm® TrustZone
Technology for the Armv8-M Architecture.

1.4.1 Intellectual Property (IP) Protection

IP protection is a common need for proprietary software algorithms and data protection. TrustZone
technology provides good hardware isolation for IP protection. TrustZone technology creates separation
between two regions: Secure (“trusted”) and Non-secure (“non-trusted”) code/data. Users who create
building blocks for others to integrate can take advantages of the TrustZone technology feature by storing
their software IP in the Secure (“trusted”) region.

Business Model

Not all software developers create end products. Some create building blocks, such as algorithms, for others
to integrate into an end product. One difficulty they face is the protection of their software IP. Their end
customers would prefer to receive source code, but source code can easily be copied and redistributed.
Even binary libraries are not complete protection, as there are tools that can disassemble binaries to
assembly and even C source code.

TrustZone® technology enables new business models for these developers in which they can program their
algorithms into the secure region of a TrustZone-enabled MCU and sell a value-added MCU, with their IP
protected by TrustZone and the Device Lifecycle Management (DLM) system of the RA MCU.

RA MCU Device Lifecycle Management Feature for IP Protection

During development, DLM state regression allows erasing the protected areas of flash (unless permanently
locked). This prevents reading of the protected area of the flash and hence protects the IP and eliminates
scrappage of devices in case the algorithms need to be modified.

In production, if the algorithm developer would like to retain the potential to debug algorithms with the
application in place, they can install DLM Authentical Level keys for the AL0/AL1 to AL2 and AL0 to AL1
transitions.

RA MCU Flash Block Locking Feature for IP Protection

RA MCUs supports temporary and permanent Flash Block Protections. This allows customer IP and Root of
Trust to be protected from accidental erasure and alteration.

IP Protection Development, Production and Deployment Flow

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 18 of 75

Nov.13.24

Figure 10. IP Protection using Arm® TrustZone®

Designing for IP protection uses the Split Project Development model. See section 4.2 for the operational
details.

1.4.2 Root of Trust Protection

The Root of Trust (RoT) is a product’s security foundation. All higher-level security is built on top of the RoT.
The RoT also implements recovery features for higher-level security breaches. When Root of Trust is
breached, recovery is not possible and can lead to serious consequences. For IoT applications, Root of Trust
may encapsulate authenticated firmware updates and secure internet communication.

To reduce the attack surface, the functionality included in the RoT should be as little as possible. Typical
services in the RoT are described in Figure 11.

Figure 11. Root of Trust Protection – Put as Little as Possible in the Secure Region

All other application code and device drivers should be considered for allocation to the Non-secure region. If
these other application code and device drivers access sensitive data or include IP algorithms, they can also
be allocated to the secure region.

2. Arm® TrustZone® Application Design Support

This chapter introduces several IDE features that are established to simplify software development when
using the TrustZone hardware isolation with support from other MCU hardware components, FSP software,
or tooling.

2.1 Renesas Advanced Smart Configurator

Renesas RA Smart Configurator (RASC) is a desktop application that allows the creation of projects for third-
party IDEs and allows the configuration of the software system (BSP, drivers, TrustZone, RTOS and

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 19 of 75

Nov.13.24

middleware) for Renesas RA microcontrollers. The RASC implements a project generator, which allows
TrustZone and Non-TrustZone template projects to be conveniently generated.

2.1.1 Using RASC with Renesas e2 studio

RASC is natively integrated with Renesas e2 studio IDE.

Section 4 explains how to use the Smart Configurator to start TrustZone development.

2.1.2 Using RASC with IAR Embedded Workbench for Arm

Create the initial secure project using RASC and choose IAR Compiler. This process will generate the initial
secure project for IAR EWARM. Once the initial IAR EWARM project is generated, user can open this project
from the IAR EWARM IDE.

Next, user should follow the rasc_quick_start.html file which is installed under \<RASC

installation root>\eclipse\. Refer to rasc_quick_start.html section Adding tools to a third-

party IDE to integrate RASC and the Renesas Device Partition Manager (RDPM) into the IAR EWARM IDE.

Once RASC is integrated in IAR EWARM, you can open RASC within the IAR EWARM IDE to further
develop the TrustZone based secure and non-secure project application project following the operations
explained in section 4.

2.1.3 Using RASC with Arm Keil MDK

The operation of using RASC and the RDPM with Arm Keil MDK to create TrustZone based application is
identical to the development process for using RASC with IAR EWARM in terms of the general flow. Section
5.6.2 demonstrated the usage of RASC as well as the RDPM.

2.2 Transitioning from CM State to OEM_PL2 State

There are some prerequisites prior to setting up the MCU TrustZone boundary. From the factory, RA MCUs
are delivered to the developer in CM (Chip Manufacturing) or OEM_PL2 lifecycle state. If the MCU is
delivered in CM state, the MCU must be transitioned to OEM (Original Equipment Manufacturer) lifecycle
state prior to setting up the TrustZone boundary.

Transitioning from CM State to OEM State and setting up the TrustZone boundary can only be achieved
using the MCU’s boot mode, which can be accessed using an SCI/USB or JTAG/SWD connection. To
access the boot mode via SCI boot pin over the JTAG connector, connect the P201/MD and SCI TXD, RXD
pin to the JTAG connector. Special debugger firmware has been developed to manage bringing the device
up in SCI boot mode to set up the TrustZone boundary (automatically drives MD pin) and then switch back to
debug mode as needed.

Hardware design must reference the EK-RA8M1 debug interface design (signals in red) to provide proper
connections to support the above functionality.

Figure 12. Debug Connection to Support TrustZone® Design

The operational flow when using this feature differs between e2 studio and the EWARM IDE.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 20 of 75

Nov.13.24

2.2.1 Developing with e2 studio

When developing with e2 studio and using Renesas evaluation kits for TrustZone MCUs, the MCU is

automatically transitioned from the CM state to the OEM state when the first secure program is downloaded

to the MCU if the above required connection is provided.

2.2.2 Developing with IAR EWARM

When developing with IAR EWARM, transitioning from CM to OEM needs to be performed manually using
RDPM or RFP. This is achieved by using the Initialize device back to factory default option as shown in
Figure 13.

2.2.3 Developing with Keil MDK

When developing with Keil MDK, transitioning from CM to OEM needs to be performed manually using
RDPM or RFP. This is achieved by using the Initialize device back to factory default option as shown in
Figure 13.

2.3 Setting up the TrustZone Boundary

Whether you are using e2 studio or a third-party IDE like Keil MDK or IAR EWARM, you can manually set up

the TrustZone boundary using RDPM. As shown in Figure 13, the functionalities of the RDPM are under the

Action area. To set up the TrustZone boundary, select Set TrustZone secure / non-secure boundaries

and provide the TrustZone region sizes.

Figure 13. Functionality of RDPM

Used when working
with IAR EWARM

IDAU region
configuration

Functionality of
RDPM

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 21 of 75

Nov.13.24

The RDPM also provides the following functionalities:

• Use Read current device information to read out the DLM and TrustZone boundary setup information.

• Use Change device lifecycle management state to transition to a different state.

• Use Initialize device back to factory default to transition the DLM state to OEM_PL2 if the device is in

OEM_PL1 or OEM_PL0 state.

When using e2 studio, the TrustZone boundary configuration is automatically loaded in the dialog box and
there are no additional actions needed to fill in the configuration data.

Pay special attention to the check box for Use Renesas Partition Data file. This check box is used when
setting up the IDAU region using IAR EWARM. You must use the generated .rpd fie to configure the

TrustZone boundary. This usage is described in section 5.5. Once an .rpd file is selected, the new IADU

region configuration information will be updated automatically based on the .rpd file.

Note: The .rpd filename is stored for future runs. When switching to another project, you must reselect

the .rpd file.

The operational flow for using the RDPM differs between e2 studio, EWARM IDE and Keil MDK, as detailed
in the following sections.

2.3.1 Developing with e2 studio

When using e2 studio, the necessary values to set up the TrustZone® memory partition are calculated after

the binary code to program into the Secure region is created by building the Secure project. The regions are

set up to ensure that they match the code and data sizes and keep the attack surface as small as possible. If

the hardware connection mentioned in Figure 12 is provided in the PCB design, there is no need to use the

RDPM manually to set up the TrustZone bounary. Setting up the TrustZone boundary when developing with

e2 studio is a transparent process for most applications.

2.3.2 Developing with IAR EWARM

Unlike e2 studio, setting up the TrustZone boundary when developing with IAR EWARM needs to be
performed semi-manually using the RDPM. As part of the debug configuration generated when the RASC
creates a project for EWARM, there is the invocation of a C-SPY macro file called
partition_device.mac as shown in Figure 14.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 22 of 75

Nov.13.24

Figure 14. Debug Configuration for TrustZone Boundary Setup

As part of the debug startup sequence, this file will invoke the RDPM integrated to check the target MCU’s
TrustZone partition boundaries and compare them against the settings calculated as part of the project build
sequence. If a mismatch is found, a dialog is displayed asking you whether to reconfigure the TrustZone
boundary. You can then choose to launch the RDPM and set up the TrustZone boundary.

Figure 15. Prompt to Launch the RDPM

2.3.3 Developing with Keil MDK

Unlike e2 studio, setting up the TrustZone boundary when developing with Keil MDK needs to be performed
manually using the RDPM. The walk through of setting up the TrustZone boundary when working with Keil
MDK is demonstrated in section 5.6.1.

3. General Considerations in TrustZone® Application Design

3.1 Non-secure Callable Modules

Some driver and middleware stacks in the Secure project may need to be accessed by the Non-secure
partition. To enable generation of NSC veneers, set Non-secure Callable from the right-click context menu
for the selected modules in the Configurator.

Note: It is only possible to configure top of stacks as NSC.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 23 of 75

Nov.13.24

Figure 16. Generate NSC Veneers

3.2 Guard Function for Non-secure Callables

Access to NSC drivers from a Non-secure project is possible through the Guard APIs. The FSP automatically
generates guard functions for all the top of stack/driver APIs configured in the Secure project as Non-secure
Callable.

Some best practices and guidelines for using the guard functions are listed as follows:

3.2.1 Limit Access to Selected Configurations and Controls

The default guard functions generated ignore p_ctrl and p_cfg arguments sent in from NS side. Instead,

the guard function provides static Secure region instances of these data structures based on the module
Instance.

BSP_CMSE_NONSECURE_ENTRY fsp_err_t g_uart0_open_guard(

 uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg) {

 /* TODO: add your own security checks here */

 FSP_PARAMETER_NOT_USED(p_api_ctrl);

 FSP_PARAMETER_NOT_USED(p_cfg);

 return R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);

}

Figure 17. Example Guard Function

3.2.2 Test for Non-secure Buffer Locations

• If the Non-secure region is providing input (such as by calling the write () function with data buffer),

then the guard functions should check that data buffer is entirely within an NS area.

• If the Non-secure region is providing a pointer to store output (such as by calling the read () function

with a pointer of where to store), then the guard functions should check that the data buffer is entirely

within a NS area.

See section 3.5.1 for examples of using the CMSE library to handle this requirement.

3.2.3 Handle Non-secure Data Input Structure as Volatile

If a Non-secure region is providing a data structure as input (for example, a typedef'd structure with 3

members), then guard functions should make a copy of the data structure in the Secure region before
passing to the Secure function. This is done because Non-secure data structure should be seen as volatile,
and the Non-secure region could alter contents after invoking the NSC function.

See section 3.5.2 for an example of how to handle this requirement.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 24 of 75

Nov.13.24

3.2.4 Limit the Number of Arguments in an NSC Function

The compiler uses registers R0 to R3 to pass parameters and return values. Registers R4 to R12 are used
during function execution. The called function restores registers R4 to R12. Therefore, if an NSC API is being
used for a Secure function with more than 4 arguments, the guard function should define a function with a
different prototype that will be a funnel to handle all of the arguments. The new function prototype should
take a data structure that has members to cover all parameters in the Secure function. This means that Non-
secure code will need to put the function arguments into the structure. The guard function will then expand
the data structure into separate arguments and pass them to the Secure function.

Figure 18 shows an FSP example for funneling the 5 arguments from the R_SPI_WriteRead function to 4

arguments in the NSC API guard function.

Figure 18. Handling Secure Functions with More than 4 Arguments

3.3 Creating User-Defined Non-secure Callable Functions

For IP protection purposes, you can create a customized NSC API in the Secure project to expose only the
top-level control of your algorithms and store the IP in the Secure Arm® TrustZone® region. Precautions
mentioned previously should be exercised during the creation of the user-defined NSC API.

Steps to create a customized NSC API are:

1. Create the Non-secure Callable custom function by declaring the function with
BSP_CMSE_NONSECURE_ENTRY.

2. Create a header file that includes all the customized NSC function prototypes, for example,
my_nsc_api.h.

3. Include the path to the NSC header using the Build Variable as shown in Figure 19.

4. Compile the Secure project to create the Secure bundle. The NSC header will be automatically extracted

in the Non-secure project for use.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 25 of 75

Nov.13.24

Figure 19. Link User-Defined Non-secure Callable API Header File

3.4 RTOS Support

Renesas tooling and the FSP support Non-secure partition RTOS integration with Secure region access
through Non-secure callable APIs. Secure projects can use the Secure TrustZone Support – Minimum
project type to add the Arm TrustZone Context RA port. For operation details, see section 4.1.1, Step 3 for
Secure Project handling and section 4.1.2, Step 5 Non-secure Project Handling.

3.5 Writing TrustZone Technology Enabled Software

Security design using TrustZone technology has some specific challenges that secure developers should
bear in mind and take corresponding actions when writing the secure application software.

This section provides several guidelines that secure software developers should consider following in order
to avoid Secure information leakage to the Non-secure region.

3.5.1 Benefitting from CMSE Functions to Enhance System Level Security

This subsection discusses how to benefit from the CMSE library to improve the secure software design.
Some examples of the CMSE functions are:

• cmse_check_address_range: For example, this function can be used to confirm the address range is

entirely in the Non-secure region.

• cmse_check_pointed_object: For example, this function can be used to confirm the memory

pointed to by the pointer is entirely in the Non-secure region.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 26 of 75

Nov.13.24

BSP_CMSE_NONSECURE_ENTRY fsp_err_t g_uart0_read_guard(uart_ctrl_t *const p_api_ctrl,

uint8_t *const p_dest,

 uint32_t const bytes)

{

 /* Verify all pointers are in non-secure memory. */

 uint8_t *const p_dest_checked = cmse_check_address_range ((void*) p_dest, bytes,

CMSE_AU_NONSECURE);

 FSP_ASSERT (p_dest == p_dest_checked);

 /* TODO: add your own security checks here */

 FSP_PARAMETER_NOT_USED (p_api_ctrl);

 return R_SCI_UART_Read (&g_uart0_ctrl, p_dest_checked, bytes);

}

Figure 20. Non-secure Buffer Address Range Check

3.5.2 Avoid Asynchronous Modifications to Currently Processed Data

An example of handling is shown in Figure 21. When the pointer p points to Non-secure memory, it is

possible for its value to change after the memory accesses used to perform the array bounds check, but
before the memory access is used to index the array. Such an asynchronous change to Non-secure memory
would render this array bounds check useless.

int array[N];

void foo(volatile int *p)

{

int i = *p;

if (i >= 0 && i < N) { array[i] = 0; }

}

Figure 21. Treat Non-secure Data as Volatile in Secure Code

3.5.3 Utilize the Armv8-M Stack Pointer Stack Limit Feature

The Armv8-M architecture introduces stack limit registers that trigger an exception on a stack overflow.

CM23 with Arm® TrustZone® technology has two stack limit registers in the Secure state:

• Stack Limit Register for Main Stack: MSPLIM_S

• Stack Limit Register for Process Stack: PSPLIM_S

CM33 and CM85 with TrustZone technology has two stack limit registers in the Secure state and two stack
limit registers in the Non-secure state:

• Stack Limit Register for Main Stack in Secure state: MSPLIM_S

• Stack Limit Register for Process Stack in Secure state: PSPLIM_S

• Stack Limit Register for Main Stack in Non-secure state: MSPLIM_NS

• Stack Limit Register for Process Stack in Non-secure state: PSPLIM_NS

Users can implement customized fault handlers to catch the stack limit overflow error.

Refer to Arm®v8-M Architecture Reference Manual section The Armv8-M Architecture Profile for more
information on the functionality of the stack limit registers.

4. Using Renesas RA Project Generator for TrustZone Development

The RASC is designed for TrustZone technology based applications. It provides ease of use based on the
following implementation features from the tools and FSP point of view:

• RA Project Generator guides you through the TrustZone project creation process.

• TrustZone boundary setup during Secure program download, calculated automatically based on the

Secure project. See section 2.1 for more details.

• The FSP provides a quick and versatile way to build secure connected IoT devices using Renesas RA

MCUs.

Note: FSP version information is removed from the following screen captures because these instructions

apply to all FSP versions 5.4.0 or later.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 27 of 75

Nov.13.24

RA Project Generator

The RA Project Generator provides three project types to create the initial template projects for developing
with Arm® TrustZone® technology enabled MCUs:

• A Secure Project and Non-secure Project Type pair which work with the Secure and Non-secure

partitions respectively.

• A Flat Project with which an application can be developed with no TrustZone partition awareness.

• Whether developing with a TrustZone enabled project or with a Flat project, the MCU needs to transit

from the CM state to the OEM state prior to proceeding with the development.

Figure 22. RA Project Generator

For RA TrustZone technology enabled MCUs, there are two development models:

• Combined Project Development

⎯ Secure and Non-secure applications are developed by one trusted team.

• Split Project Development

⎯ Secure and Non-secure applications are developed by two different teams.

⎯ The Non-secure application team does not have direct access to Secure partition assets. Access to

Secure partition is only possible via Non-secure Callable APIs.

The design process based on each of these two development models are introduced in the subsequent
subsections. The design process based on the Flat Project type is introduced in section 4.3.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 28 of 75

Nov.13.24

4.1 Combined Project Development

With the Combined Project Development Model, Secure and Non-secure projects are developed by a single
trusted team. A Secure project must reside in the same workspace as the Non-secure project and is typically
used when a design engineer has access to both the Secure and Non-secure project sources.

In addition, a Secure .elf file is referenced and included in the debug configuration for Debug build for

download to the target device. The development engineer has visibility of Secure and Non-secure project
source code and configuration.

4.1.1 Developing the Secure Project

Most peripherals and IO defined in the Secure project are configured as Secure with the exceptions of Clock,
QSPI, OSPI, and the CS Area. These peripherals can be used in the Secure project and be configured as
Non-secure.

The major IDE operational steps in developing the Secure project are explained in the following steps.

Step 1: Create a new project using the RA Project Generator template.

Renesas RA MCU tooling provides several project templates to help kickstart development.

Figure 23 to Figure 27 show some common steps when creating a new project with e2 studio regardless of
whether Secure or Non-secure projects are to be created with either the Split Project Development Model or
Combined Project Development Model.

• This step will be referenced in the context of Non-secure Project Development for the Combined Project

Development Model.

• This step will be referenced in context of Secure and Non-secure Project Development for the Split

Project Development Model.

Figure 23. Create New Project

Figure 24. Select “Renesas RA C/C++ Project”

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 29 of 75

Nov.13.24

Click Finish, then provide the Secure project name. It is helpful to attach “_s” (for Secure”) and “_ns” (for

Non-secure) to the end of the project name as a reminder of the security nature of this project.

Figure 25. Define the Name of the Secure Project

Click Next, then select the EK-RA8M1 BSP.

Figure 26. Select the BSP

Note: By default, the BSP functionality with regard to security control is only enabled in the Secure project.

Once the BSP is selected, click Next to view the summary for the hardware setup page.

Figure 27. Review the Configurations Prior to Proceeding to Next Step

Click Next and proceed to the following steps.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 30 of 75

Nov.13.24

Note: Step 2 to Step 7 below are common for the Split Project Development Model and Combined Project

Development Model. These steps are referred to in context of the Secure Project development for the

Split Project Development Model.

Step 2: Choose the TrustZone Secure Project as the Project Type.

Choose TrutZone Secure Project as the project type and take a moment to read the description on this

project type. All peripherals initialized in this project will be assumed to have the Secure

attribute with the exceptions indicated in

Table 4 as Always Non-secure. All code and data placed in this project will be initialized as Secure by the
FSP BSP and control will be passed to Non-secure project reset handler at the end of the Secure project
execution.

Figure 28. Choose the Secure Project Type

Click Next and choose the Project Template.

Step 3: Choose the project template.

As shown in Figure 29, there are two Secure project templates. You can choose which template to use
based on whether an RTOS is used in the Non-secure project.

• Bare Metal – Minimal

Secure project with MCU Initialization function with support on transitioning to Non-secure partition. This

application note uses the Bare Metal – Minimal project template as example to explain the general

steps creating a secure project.

• TrustZone Secure RTOS – Minimal

⎯ Secure projects will add the required RTOS context in the Secure region for the Thread that needs to

access the NSC APIs in an RTOS enabled project. When this project type is selected, the Arm

TrustZone Context RA Port will be added as shown in Figure 30.

⎯ The RTOS kernel and user tasks will reside in the Non-secure partition.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 31 of 75

Nov.13.24

Figure 29. Choose the Project Template

Figure 30. Adding the TrustZone Context RA Port

Click Finish to allow the Project Generator to populate the project template.

Notes on Clock Control

The clock is initialized in the Secure project to allow faster start up. By default, the FSP sets all the security
attributes of the Clock Generation Circuit (CGC) to be Non-secure as shown in Figure 31. Therefore, both
Secure and Non-secure projects can change the clock setting.

Users have the option to set all the security attributes of CGC as Secure, thus the Non-secure project
developer cannot override the secure project setting as shown in Figure 32.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 32 of 75

Nov.13.24

Details on the Lock Icon

Figure 31. Secure Project sets Clock as Secure

Figure 32. Non-secure Project Clock control “Override and Restore Default” Disabled

Step 4: Generate Project Content and compile the project template.

Double click Configuration.xml to open the configurator. Click Generate Project Content as shown in

Figure 33Figure 33. .

Figure 33. Generate Project Content

Right-click on the project and select Build Project.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 33 of 75

Nov.13.24

Figure 34. Compile the Template Project

Note: By default, the GPIO driver to control the Secure GPIO pins is included in the template. You can

remove the GPIO driver, if is not needed, to reduce the project footprint.

Figure 35 is an example of the compilation result based on Bare-Metal Minimum project template.

Figure 35. Compilation Result of the Bare-Metal Minimum Secure Template Project

Step 5: Review the initial Secure bundle generated.

After successful compilation, the Secure bundle <project_name>.sbd is generated as shown in Figure

36.

Figure 36. Secure Bundle Generated

Step 6: Develop the Secure application.

During the product development, it is likely that you will go through the following steps iteratively prior to
completing development:

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 34 of 75

Nov.13.24

• Add Needed FSP Modules:

⎯ Define NSC Modules if needed. See Section 3.1 for details.

⎯ Note: Ethernet cannot be used in the Secure Project. It is only available in the Non-secure Project.

• Create user-defined Non-secure Callable Functions if needed. See section 3.3 for details.

• Develop the Secure applications:

⎯ Design the code flow such that the Secure applications that are not Non-secure Callable are

executed prior to starting the Non-secure project execution: prior to function call

R_BSP_NonSecureEnter();

• Recompile and test the application.

Step 7: Debug the Secure project in isolation.

With the Combined Project Development Model, the Secure project is typically not debugged in isolation
from the Non-secure project. To debug a Secure project on its own, you can use the following options:

• Prepare a “dummy/test” Non-secure project. This approach offers the benefits of allowing the Non-secure

Callable APIs to be debugged in the test Non-secure project.

• Replace R_BSP_NonSecureEnter(); with while(1); in hal_entry.c and debug the Secure

project by itself. Be sure to restore the R_BSP_NonSecureEnter(); after debugging the Secure project

prior to provisioning the Secure project to the MCU.

Step 8: Debug the Secure project with the Non-secure project.

For the Combined Project Development Model, Secure and Non-secure project development can be
debugged in one workspace. Debugging the Secure project typically does not happen in an isolated manner
for the Combined Project Development Model. See Section 4.1.2, Step 7 for operational details.

4.1.2 Developing the Non-secure Project

Once the Secure template project is established and compiled, you can start the Non-secure template
project creation in the same workspace where the Secure project resides.

Step 1: Follow Step 1 in section 4.1.1 to start a new Non-secure project.

It is helpful to attach “_ns” to the end of the project name as a reminder of the security configuration of this

project.

Step 2: Choose Non-secure project as the Project Type.

Figure 37. Choose Non-secure Project as Project Type

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 35 of 75

Nov.13.24

Step 3: Establish linkage to the Secure project which resides in the same e2 studio workspace.

Click the down arrow and select the secure project bare_metal_minimum_s created in section 4.1.1.

Note: The Secure project must exist in the same workspace AND be open for it to be referenced in the

selection box. The Secure project must also be built to create the information used to set up the Non-

secure project.

Figure 38. Establish Linkage to the Secure Project

Click Next to proceed.

Step 4: Follow the prompt as shown below to choose whether the Non-secure project will have RTOS
support.

Figure 39. Choose Whether to Use FreeRTOS in the Non-secure Project

Click Next to proceed.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 36 of 75

Nov.13.24

Step 5: Select the project template to finish creating the Non-secure template project.

• If FreeRTOS is selected, the Project Generator provides the following two project templates. Choose the

project template based on the application needs. An example for FreeRTOS is shown as follows. Azure

RTOS has similar options.

Figure 40. Template Options for FreeRTOS Enabled Projects

Note: If FreeRTOS is selected and there is access to NSC functions from a Thread in the Non-secure

project, it is necessary to enable Allocate secure context for this thread in the configurator for that

Thread.

Figure 41. Enable Secure Context Allocation

• If No RTOS is selected, the Project Generator provides the following two project templates.

Note: The No RTOS selection must be selected if a new RTOS other than FreeRTOS is to be integrated in

the Non-secure project.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 37 of 75

Nov.13.24

Figure 42. Template Options for Non-FreeRTOS usage

• Click Finish to create the corresponding template project.

Note: Even though there are security properties allowed for configuration in the BSP Properties page, they

are not being enabled with the current IDE support. The following attributes cannot be configured from

the Non-secure project:

Figure 43. Attributes That Are Not Configurable from a Non-secure Project

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 38 of 75

Nov.13.24

• By default, the Non-secure project BSP can reconfigure the MCU clock. Refer to Notes on Clock Control.

Step 6: Follow Instructions from Step 1, Section 4.1.1 to Generate Project Content and compile the
Non-secure project.

Notice that both the Secure project bare_metal_minimun_s and bare_metal_minimum_ns reside in

the same workspace.

Figure 44. Compile the Non-secure Project (No RTOS, Bare-Metal Minimum)

Step 7: Debug both the Secure and Non-secure projects.

As shown in Figure 45, the debug configuration of the Non-secure project programs both the Secure and
Non-secure .elf files to the MCU by default to allow a unified debug session of both the Secure and Non-

secure projects.

Notice that <project_name> <build_configuration>_SSD.launch is generated, as debugging both

Secure and Non-secure projects are performed in device lifecycle state OEM_PL2.

Figure 45. Debug Both the Secure and Non-secure Projects

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 39 of 75

Nov.13.24

Note: The Secure project must be built each time it is changed to ensure that the connection to the Non-

Secure project is maintained. When the Secure bundle changes, there will be a popup window asking

you to take the latest Secure bundle. Click Yes, then recompile the Non-secure project so that the

updated <project_name>.sbd will be used.

Figure 46. Secure Bundle Update Notification

Tips on Ensuring Synchronization between Secure and Non-secure Project

To avoid accidental updates from the Secure Project being missed, you can also define the Secure project

as a reference to the Non-secure project so that compiling the Non-secure project will automatically trigger a
compilation to the Secure project.

Open the Properties page of the Non-secure project, click Project References and choose the
corresponding Secure project as the Reference project. Once this is set up, compiling the Non-secure project
will always trigger the Secure project to be recompiled.

Figure 47. Create Project Reference

4.1.3 Production Flow Overview

This step is for production flow; it is not a step needed during development. Once both Secure and Non-
secure project development is finished, you can send the following information to the production line for the
MCU to be provisioned prior to selling:

• Secure binary

• Non-secure binary

• TrustZone Boundary configuration

Refer to section 6.2 to program the Secure binary and section 6.3 to program the Non-secure binary and
transition the MCU state to one of the following device lifecycle states:

• LCK_BOOT (LoCKed BOOT interface): The debug interface and the serial programming interface are

permanently disabled.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 40 of 75

Nov.13.24

4.2 Split Project Development

Characteristics of the Split Project Development Model include:

• The Secure project and Non-secure projects are developed separately by two different teams.

• The Secure project will be developed first by the IP provider. The IP provider creates a Secure bundle.

• The Secure bundle is pre-programmed on the device prior to the Non-secure developer starting their

development. Only the Non-secure project and Non-secure partition are visible to the Non-secure

developer.

4.2.1 Developing the Secure Bundle and Provisioning the MCU

Developing the Secure project using the Split Project Development Model is very similar to the Combined
Project Development Model. However, several key differences are explained in this section.

Step 1: Follow Step 1 to Step 6 from Section 4.1.1 to establish the Secure template project and create
the applications.

Debugging the Secure project with the Split Project Development Model will not happen with the Non-secure
project for the product. As explained in Step 7, section 4.1.1, you can create a dummy Non-secure project for
the purpose of Secure project testing, for example to test the Non-secure callable APIs.

Step 2: Provision the MCU with the Secure project and change the device lifecycle state to OEM_PL1.

A major difference between Split Project Development and Combined Project Development is that the
Secure binary associated with the Secure bundle needs to be provisioned to the MCU prior to the Non-
secure project development for the Split Project Development. The Secure bundle contains the Secure
project IP in binary format and the NSC API interface from Secure project. In addition, the MCU device
lifecycle state needs to transition from OEM_PL2 to OEM_PL1 to protect the Secure content.

4.2.2 Limitations and Workarounds for Developing in OEM_PL1 State

There is a limitation with the current version of the tools in that a dummy Non-secure project must be
provisioned on the device in addition to the Secure binary prior to changing the MCU device lifecycle from
OEM_PL2 to OEM_PL1 with the Split Project Development Model. This is necessary to allow the Non-secure
development to resume in the OEM_PL1 state.

• In the development stage, follow the Combined Project Development Model to prepare a dummy Non-

secure project paired with the intended Secure project. Program the Secure binary and the dummy Non-

secure binary first and then change the device lifecycle state to OEM_PL1.

• In the production stage, send the following items to the production team:

⎯ Secure binary

⎯ TrustZone boundary information

RFP will be used to program the Secure binary and set up the TrustZone boundary. See section 6.2 for

the operational details.

• Note that the Secure developer also needs to provide the Secure bundle (<project_name>.sbd) to the

Non-secure developer to allow Non-secure project to proceed to development.

• See Figure 48 for details on the general flow to support Non-secure project development in the NSECSD

state.

4.2.3 Developing the Non-secure Project in OEM_PL1 State

Developing a Non-secure project using the Split Project Development Model has some key differences
compared with the Combined Project Development Model.

For the Split Project Development Model, the Non-secure application developer receives the MCU in the
OEM_PL1 state. As mentioned towards the end of last section, special handling is needed to enable
development in the OEM_PL1 state. Figure 48 is a summary of the general flow for developing in the
OEM_PL1 state.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 41 of 75

Nov.13.24

Figure 48. Development Flow for Developing in OEM_PL1 State

Once the Non-secure developers receive the MCU provisioned with the Secure binary, TrustZone boundary,
and the Non-secure dummy binary in the OEM_PL1 state, they can use the following steps to proceed to the
Non-secure project development:

1. Follow step 1 and step 2 in section 4.1.2 to start Non-secure project development.

Typically, the Non-secure project will be created in a different workspace from the Secure project as the
Secure project source file and .elf file will not be available for the Non-secure developer.

2. When the Secure Bundle Selection window opens, choose the secure bundle obtained from the Secure

developer.

This step is a key difference between Combined Project Development and Split Project Development

process.

The Secure Bundle contains the following information to allow Non-secure project development:

⎯ MCU startup code

⎯ TrustZone boundary configuration information

⎯ Details of locked Secure peripherals configuration settings

⎯ User-defined Non-secure Callable API interface header file (refer to section 3.3)

Figure 49. Create Linkage to Secure Bundle

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 42 of 75

Nov.13.24

Note: The Secure Bundle is linked in with an absolute path. Verify the Secure Bundle linkage whenever the

folder location of the <project_name>.sbd changes.

Follow the prompts to define RTOS usage and select the template project. Once the project is generated,
double click configuration.xml to open the smart configurator. Click Generate Project Content and

compile the project.

Figure 50. Compilation Result of Non RTOS Bare-Metal Minimum Non-secure Project Template

Notice that <project_name> <build_configuration>_NSECSD.launch is generated as the

development is carried out in the OEM_PL1 state.

4.2.3.1 Debug the Non-secure Project

Prior to debugging the Non-secure project, ensure that the Secure binary as well as the dummy Non-secure
binary are programmed on the MCU.

During Non-secure project debugging, only the Non-secure .elf file will be downloaded. There is only the

Non-secure project visible in the workspace for the Non-secure developer as opposed to both Secure and
Non-secure projects being visible with the Combined Project Development.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 43 of 75

Nov.13.24

Figure 51. Debug the Non-secure Project

Notes on updating the Secure Bundle:

• If during Non-secure project development, the Secure Bundle needs to be updated, the Non-secure

Developer would need to return the MCU to the Secure Development team for MCU update.

• See section Non-secure Debug in the document FSP User’s Manual section: Primer: Arm® TrustZone®

Project Development section Non-secure Debug to understand how the tools handle protection of the

Secure region when debugging the Non-secure project in the OEM_PL1 Device Lifecycle State.

4.2.3.2 Program the Non-secure Project and Transition to OEM_PL0 Device Lifecycle State

This step is for the production flow. It is not normally needed during Non-secure project development.

Once the Non-secure project is fully debugged, the Non-secure binary can be sent to the production line to
program the MCU and transition to the OEM_PL0 device lifecycle state. Refer to section 6.3 for operational
details.

See R11AN0785 (Device Lifecycle Management for RA8 MCUs) for information about other possible
deployment mechanisms (LCK_BOOT) as well as the state regression methods utilizing the DLM key
through an authenticated procedure.

4.2.4 Production Flow Overview

Refer to section 6 to understand the production flow example. For the Split Project Development Model,
there can be multiple vendors involved in the production flow:

• Secure image handling vendor: the production team programs the Secure image, sets up the TrustZone

boundary, injects the desired DLM and User Keys, and transitions the MCU to the OEM_PL1 state. The

production team also needs to provide the .sbd bundle to the Non-secure application production team.

• Non-secure image handling vendor: the production team programs the Non-secure image and transitions

the MCU to a deployment device lifecycle. See section 4.1.3 for the different possible states.

4.3 Flat Project Development

The Flat Project type in the RA Project Generator refers to the development model in which the developer
does not need to develop the application with TrustZone technology awareness:

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 44 of 75

Nov.13.24

• One single project handles the entire application.

• Development flow is identical to the Non-TrustZone technology part.

• The MCU operates in the OEM_PL2 device lifecycle state.

• All peripherals that support Secure and Non-secure attributes will operate in Secure mode.

• Peripherals as identified as Non-secure only in

• Table 4 will operate in Non-secure mode.

4.3.1 Operational Flow

1. Follow Step 1 and Step 2 from section 4.2.1 to start creating the Flat Project template project.

2. Select Flat Project as the project type from the Project Generator.

3. Choose the Build Artifact Selection and RTOS Selection (same interface as in Figure 39).

4. The rest of the development is same as the development for a Non-TrustZone technology enabled

MCUs and is out of scope of this application project.

5. Debug Flat Project.

Debugging the Flat Project follows the Non-TrustZone RA MCU Debugging model. The launch file
named: <program_name> <build_configuration>_Flat.launch.

Figure 52. Debug the Flat Project

4.3.2 Production Flow Overview

Production of the Flat Project development model will bring in TrustZone technology awareness. The Flat
Project development is carried out in the MCU lifecycle state OEM_PL2. For production deployment, you
have the same options as the TrustZone technology aware development model: Split Project Development
Model or Combined Project Development Model.

• Option one is to transition the MCU lifecycle state from OEM_PL2 to OEM_PL1, then transition to

OEM_PL0.

⎯ If desired, the MCU lifecycle state can then be transitioned further to LCK_BOOT.

• Option two is to transition the MCU state from OEM directly to LCK_BOOT.

Refer to section 4.1.3 for the different possible states.

5. Example Project for IP Protection

As discussed in section 1.4.1, IP Protection is a strong use case for TrustZone® technology. The project
accompanying this document utilizes the Split Project Development Model to provide an IP protection use
case with EK-RA8M1 using the e2 studio IDE. The Combined Project Development Model is used for the IAR
EWARM and Keil MDK projects.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 45 of 75

Nov.13.24

5.1 Overview

RA8M1 MCUs can be configured to use an ADC peripheral to monitor the on-chip temperature sensor. This
application project defines an algorithm to control the LED blinking pattern based on the temperature read
from the ADC. The following hardware components are configured as Secure by the Secure project:

• ADC channel for on-chip temperature sensor reading

• GPIO 107, 414, and 600

• TrustZone boundary setup for the Secure flash and Secure SRAM

The following software components are configured as Secure by the Secure project:

• The FSP ADC HAL driver

• The FSP GPIO HAL driver for the corresponding LED driving pins

• The application code that starts, scans, and stops the ADC

• The application code that controls the LED blinking pattern based on the temperature reading

• The API that starts the monitoring and reacting algorithm

⎯ This API is defined as Non-secure Callable API and its veneer is exposed to the Non-secure

partition.

• The API that stops the monitoring and reacting algorithm

⎯ This API is defined as Non-secure Callable API and its veneer is exposed to the Non-secure

partition.

Figure 53. Sensor Algorithm IP Protection

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 46 of 75

Nov.13.24

5.2 System Architecture

5.2.1 Software Components

Figure 54 shows the Secure, Non-secure, and Non-secure Callable hardware and software partition scheme
in this example project.

Figure 54. Software Architecture Block Diagram

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 47 of 75

Nov.13.24

5.2.2 Operational Flow

Figure 55 shows the system-level operational flow of the example project.

Figure 55. Operational Flow

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 48 of 75

Nov.13.24

5.2.3 Simulated User’s IP Algorithm

The simulated user’s IP algorithm is described in Figure 56.

Note: In Figure 56, TSN means on-chip Temperature Sensor.

Figure 56. Simulated Sensor IP Algorithms (Running in Secure Partition)

5.2.4 User-Defined Non-secure Callable APIs

The Non-secure callable functions exposed to the Non-secure partition are defined in
sensor_algorithm_nsc.h from the Secure project.

Figure 57. User-Defined NSC APIs

To share the user-defined NSC calls, this header file is linked to e2 studio by a Build Variable.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 49 of 75

Nov.13.24

The path to this header file is added using the Build Variable UserNscApiFiles as shown in Figure 58.

Figure 58. User Build Variable to Link User NSC Header File (Secure Project Setting) in e2 studio

The Build Variable approach does not exist when using IAR EWARM and Keil MDK; you need to manually
share this header file with the Non-secure project. This is demonstrated in the included IAR EWARM and
Keil MDK example project.

5.3 Setting up Hardware

• Jumper setting – default EK-RA8M1 setting

⎯ See EK-RA8M1 User’s Manual.

• Connect J10 using USB macro to B cable from EK-RA8M1 to the development PC to provide power and

debugging capability using the on-board debugger.

Initialize the MCU

This step is optional but recommended. Prior to downloading the example application, it is recommended to
initialize the device to the OEM_PL2 state. Unlocked flash content will be erased during this process. This
step can be achieved using the RDPM or RFP. This is particularly helpful if the device was previously used in
the OEM_PL1 state or has a certain flash block locked up temporarily.

For instructions on how to use RFP to perform this function, see section 6.1.

Use RDPM and J-Link Debugger to initialize the MCU.

Establish the following connection prior to using the RDPM and the Onboard J-Link debugger to perform
Initialize device back to factory default. Note that Initialize device back to factory default performs the
same functionality as Initialize Device when using RFP:

• EK-RA8M1 jumper setting: J6 closed, J9 open. Other jumpers keep out-of-box setting.

• USB cable connected between J10 and development PC

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 50 of 75

Nov.13.24

Note: You must power cycle the board prior to working with the RDPM after a debug session if using J-Link

as connection interface.

Open RDPM

Figure 59. Open the RDPM

Next, check Initialize device back to factory default, choose the connection method, then click Run.

Figure 60. Initialize RA8M1 using RDPM

After the MCU is initialized, proceed to the project importing and verification based on the IDE selected.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 51 of 75

Nov.13.24

5.4 Example Application with e2 studio IDE using Split Project Development Model

The e2 studio project utilizes the Split Project Development Model to establish an application for IP
protection. The assumption is that the Secure and Non-secure applications are developed by separate
teams.

5.4.1 Import, Build, and Program the Secure Binary and Dummy Non-secure Binary

Use the following steps to provision the MCU with the Secure binary and a dummy Non-secure binary.

5.4.1.1 Import the Secure Project and Dummy Non-secure Project

Unzip e2studio.zip, which is included in this application project, to reveal the folders shown in Figure 61.

Figure 61. e2studio Software Project Content

Next, follow FSP User’s Manual section, Importing an Existing Project into e2 studio to import the Secure
project and the dummy Non-secure project into the same workspace.

Figure 62. Import the Secure Project and Dummy Non-secure Project

Click Finish.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 52 of 75

Nov.13.24

5.4.1.2 Compile the Secure Binary and Dummy Non-secure Binary using e2 studio

• Compile the Secure project first. Double click to open the configuration.xml in the Secure project.

Click Generation Project Content. Compile the Secure project. Ensure

pre_programmed_sensor_algorithm_s.srec and

pre_programmed_sensor_algorithm_s.sbd are generated.

• Next, compile the Dummy Non-secure project. Double click to open the configuration.xml in the

Dummy Non-secure project. Click Generate Project Content. Compile the Non-secure project. Ensure

pre_programmed_sensor_algorithm_dummy_ns.srec is generated.

5.4.1.3 Download the Secure Binary and Dummy Non-secure Binary using e2 studio

Prior to downloading and running the example project, user should first follow section 5.3 to set up the MCU.

Right-click on the pre_programmed_sensor_algorithm_dummy_ns project and select Debug As >

Renesas GDB Hardware Debug. Click Resume twice to run the Secure and dummy Non-secure project.
Click Pause and confirm the execution pauses at the while(true) loop in the hal_entry() function in

hal_entry.c of the dummy Non-secure project.

Figure 63. Program and Run the Secure and Dummy Non-secure Projects

Stop the debug session.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 53 of 75

Nov.13.24

5.4.1.4 Transition MCU Device Lifecycle State to OEM_PL1

After both the Secure binary and dummy Non-secure binary are downloaded to the MCU, you can use the
RDPM to transition the MCU from the OEM_PL2 device lifecycle state to the OEM_PL1 device lifecycle
state.

First, power cycle the board. Next, launch RDPM and configure to transit to OEM_PL1.

Figure 64. Transition from PL2 to PL1 using RDPM

Click Run and ensure the transition is successful.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 54 of 75

Nov.13.24

Figure 65. Result: Transition from PL2 to PL1

Refer to section 6.1 and section 6.2 for the operational steps of downloading the Secure binary and setting
up the TrustZone boundary using RFP during production stage.

5.4.2 Import, Build, and Program the Non-secure Project

Once the DLM transitions to PL1, you can proceed to download the real Non-secure project.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 55 of 75

Nov.13.24

5.4.2.1 Import the Non-secure Project

Follow the FSP User’s Manual section, Importing an Existing Project into e2 studio to import the Non-secure
project into the workspace. You can import into the workspace where the Secure project is imported for
purpose of verifying the example project.

Figure 66. Import the Non-secure Project

Note: You must update the Build Variable SecureBundle by selecting the

pre_programmed_sensor_algorithm_s.sbd based on your local file structure, prior to moving

forward to the other steps. This is a limitation with the current tools.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 56 of 75

Nov.13.24

Figure 67. Referencing the Secure Bundle

5.4.2.2 Compile and Download the Non-secure Project

• Double click to open the configuration.xml in the Non-secure project. Click Generation Project

Content. Compile the Non-secure project.

• Download and run the Non-secure project.

1.

2. 3.

4.

5.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 57 of 75

Nov.13.24

Figure 68. Download and Run the Non-secure Project

Note: For the Split Project Development model, the debug session of the Non-secure project created by

referencing the Secure Bundle rather than the Secure Project (as with the case for the dummy Non-

secure project) only downloads the .elf file of the Non-secure project.

5.4.3 Verify the Example Application

The projects are now loaded, and the debugger should be paused in the Reset_Handler() at the

SystemInit() call in the Non-secure project.

Figure 69. Running the Non-secure Project

Open the J-Link RTT Viewer 7.96j. First, click “…” and select R7FA8M1AH from Renesas as the Target
Device. Next, set the connection to J-Link to Existing Session and the RTT Control Block to Search
Range. Set the search range to 0x32000000 0xE0000 and then click OK to start RTT Viewer. Note the the
RTT related embedded code is in the Non-secure application and the RTT buffer address is using the Non-
secure alias address with bit 28 set to 1.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 58 of 75

Nov.13.24

Figure 70. Start the RTT Viewer

Next, click twice to run the project.

The user menu is then output, and the system waits for user input.

Figure 71. User Menu

Input 1 to start the IP algorithm. You will see the green LED start to blink after couple of seconds.

You can warm up the MCU (for example, touch the MCU using grouped fingers) and see that the green LED
stops blinking and the red LED starts to blink after about 1 minutes.

Figure 72. User Input ‘1’

Input 2 to stop the IP algorithm. The green or red LED stops blinking. The blue LED blinks twice and stops
blinking.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 59 of 75

Nov.13.24

Figure 73. User Input ‘2’

You can repeatedly input 1 to restart the IP algorithm and input 2 to stop.

Notes on Running the Application in Standalone Mode

After the MCU is programmed with the application code, you can run the application in standalone mode
(with no debugging session). In this case, choose USB as the Connection to J-Link.

Figure 74. SEGGER RTT Viewer Connection Setup when MCU Running in Standalone Mode

5.5 Example Application with IAR EWARM using Combined Development Model

The IAR based projects use the Combined Development model. The assumption is that the Secure and Non-
secure applications are developed by one team.

Unzip IAR.zip to explore the IAR project contents.

Figure 75. IAR EWARM Software Project Content

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 60 of 75

Nov.13.24

5.5.1 Import and Build the Example Projects

Use the following steps to build the IAR example project:

1. Double-click on \IAR\sensor_trustzone.eww to launch the IAR EWARM. There are two projects in

this workspace. Click on the Secure project \sensor_s to make it the active project.

2. Notice that the header file sensor_algorithm_nsc.h, which includes the user-defined NSC functions,

is included in both the Secure project and Non-secure project.

3. Select Tools > RA Smart Configurator.

Figure 76. Launch RA Smart Configurator from IAR

4. Once the RA Smart Configurator is launched, click Generate Project Content.

5. Close the RA Smart Configurator.

6. Return to the EWARM IDE, right-click on sensor_s and select Rebuild All. The Secure project will be

compiled.

7. Select the Non-secure project sensor_ns to make it the active project.

8. Select Tools > RA Smart Configurator.

9. Click Generate Project Content.

10. Return to the EWARM IDE and check if there is a \Objects folder under \Flex_Software and

secure.o exists in the \Objects folder. If yes, the non-secure project will compile with no issue. If no,

then the non-secure project will need to be compiled twice. The first compile may issue an error

message similar to Figure 78. The second compile process will succeed. This is because there is a

timing issue between EWARM and RSAC operation.

Figure 77. Check that the secure.o is included in the project

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 61 of 75

Nov.13.24

Figure 78. Potential Error Message

5.5.2 Download and Debug the Application Projects

Prior to downloading and running the example project, user should first follow section 5.3 to set up the MCU.

Then, use the following steps:

1. Click on the Project tab Project > Options > Debugger > Setup and notice that
partition_device.mac is selected. This macro defines the TrustZone boundary setting generated.

2. Switch to the Debugger > Download window and notice that the Secure image is also downloaded.

Figure 79. Non-secure Project Debug Configuration to Download the Secure Project

3. Click Download and Debug .

4. If the current MCU TrustZone boundary differs from the boundary calculated from the Secure project, the

window shown in Figure 80 will appear, prompting you to set up the TrustZone boundary.

Figure 80. Select Launch RDPM

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 62 of 75

Nov.13.24

Once the RDPM is launched, configure the settings as shown in Figure 81. Use Browse to select
the .rpd file generated from the secure project (sensor_s.rpd) as the input for the User Renesas

Partition Data file entry.

Figure 81. Configure the RDPM

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 63 of 75

Nov.13.24

5. Click Run to set up the TrustZone boundary.

Figure 82. TrustZone Boundary is Set up using RDPM

6. Click Close to close the RDPM.

7. Navigate to the EWARM IDE, click Download and Debug , to program the Secure and Non-secure

applications. When the execution stops at Reset_Handler, click the Go button to resume the

execution.

8. See section 5.4.3 to verify the functionality of the project.

5.6 Example Application with Keil MDK using Combined Development Model

The Keil MDK based projects utilizes the Combined Development model. The assumption is that the Secure
and Non-secure applications are developed by one team.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 64 of 75

Nov.13.24

Unzip Keil.zip to explore the IAR project contents.

Figure 83. Keil MDK Software Project Content

5.6.1 Import and Build the Example Projects

Follow the steps below to build the Keil example projects:

1. Launch Keil MDK with Administrator authority. Right click on and select Run as administrator.

2. Open the multi-project Workspace sensor_trustzone.uvmpw.

Figure 84. Open the Keil Multi-project Workspace

3. Set the sensor_s as the Active Project and then launch the RA Smart Configurator.

Figure 85. Launch RA Smart Configurator from Keil MDK

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 65 of 75

Nov.13.24

4. Once the RA Smart Configurator is launched, click Generate Project Content.

5. Close the RA Smart Configurator.

6. Return to the MDK IDE, click Project > Build ‘sensor_s’.

Figure 86. Build the Secure Project

7. The Secure project will be compiled.

8. Follow section 5.3 to set up the MCU.

9. Set the TrustZone boundary using the sensor_s.rpd file generated during the compilation process in a
similar way as shown in Figure 81.

10. Ensure that the TrustZone Boundary is successfully set up.

Figure 87. TrustZone Boundary is Configured Correctly

11. Close the RDPM.

12. Right click on the Non-secure project sensor_ns and set it is as the Active Project.

Figure 88. Set the Non-secure Project as the Active Project

13. Select Tools > RA Smart Configurator.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 66 of 75

Nov.13.24

14. Click Generate Project Content.

15. Close the RA Smart Configurator

16. Return to the Keil MDK IDE and select Project > Build ‘sensor_ns’.

Figure 89. Build the Non-secure Project

17. The non-secure project will compile successfully with no issue.

5.6.2 Download and Debug the Application Project

Follow the steps in this section to debug the system.

1. With sensor_ns as the Active Project, click the Start/Stop Debug Session button.

Figure 90. Start Debug with Keil MDK

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 67 of 75

Nov.13.24

2. Click Run and then follow section 5.4.3 to verify the functionality of the application project.

Figure 91. Run the Application Project

3. Follow section 5.4.3 to verify the functionality of the example projects.

6. Appendix A: Using RFP for Production Flow

• All instructions in this section are based on connection to RFP using J-Link debugger over USB. For

other connections, refer to the RFP User’s Manual for instructions.

• All the instructions provided in this section are for supporting the production flow of the e2 studio example

application explained in section 5.4. The difference in the production operation between Combined

Project Development model and the Split Project Development model will be pointed out. However,

providing detailed instructions on the production flow of the Combined Project Development model is out

of scope of this application project. Users need to adjust these RFP projects with the TrustZone

boundary setup if different projects are used.

6.1 Initialize the MCU

Follow the steps in section 5.3 to establish the hardware connections. Then, launch RFP, open
“\RFP_projects\initialize_mcu\initialize_mcu.rpj”, go to the tab Device Information, and

select Initialize Device.

Figure 92. Initialize using RFP

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 68 of 75

Nov.13.24

Figure 93. MCU is Successfully Initialized

6.2 Download the Secure Binary

Open the attached RFP project
\RFP_projects\pre_programmed_sensor_algorithm_s\pre_programmed_sensor_algorithm_

s.rpj to perform the following functions:

• Program the Secure binary.

• Set up TrustZone boundary.

• Transition to OEM_PL1.

Note that the demonstration in this section is based on the configuration in the e2 studio projects
demonstrated in section 5.4.

Figure 94. shows the settings for the Operation Settings tab:

• Choose Program and Verify so that the Secure binary can be programmed and verified.

• Choose Program Flash Option and Verify Flash Option so that the TrustZone boundary and device

lifecycle state can be set up and verified.

• Erase is not selected as this has been taken care of with the Initialize command as shown in section 6.1.

Figure 94. Set up Operation Settings (RFP)

Figure 95 shows the setup for the DLM state transition and TrustZone boundary setup for this example
application.

Note: With RFP, you can directly transition the MCU device lifecycle state from OEM_PL2 to OEM_PL1

without needing to download the dummy Non-secure binary. The dummy Non-secure binary is only

needed for starting Non-secure project development.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 69 of 75

Nov.13.24

Figure 95. Setup for the TrustZone Boundary

Settings for the connection interface are shown in Figure 96.

Figure 96. Setup for the Connection

Select the Secure project binary (.srec or .hex) generated in to be programmed into the MCU. Select the

binary generated from section 5.4.1.2.

Figure 97. Select the Secure Binary to Program into the MCU

With all settings in place, click Start to download the Secure binary and set up the TrustZone boundary.

6.3 Download the Non-secure Binary

Use RFP to download the Non-secure project binaries using the provided RFP project:
\RFP_projects\pre_programmed_sensor_algorithm_ns\pre_programmed_sensor_algorithm

_ns.rpj.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 70 of 75

Nov.13.24

Check Program Flash and Verify Flash, uncheck Program Flash Option and Verify Flash Option from
the Operation Settings tab.

Figure 98. Operation Settings for Non-secure Project Binary Download

Transition to DPL is not selected. Change from Do Nothing to Set in production flow. Once the device
lifecycle state is transitioned to DPL, the JTAG interface will be disabled (no SEGGER RTT Viewer
input/output functionality).

Figure 99. Operation Settings for Non-secure Project Binary Download

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 71 of 75

Nov.13.24

The Connect Settings should use the same setup as shown in Figure 100.

Select the Non-secure binary generated from section 5.4.2.2.

Figure 100. Select the Non-secure Binary

With all the above settings, click Start to download the Non-secure binary.

The production flow of the IP protection use case also requires advancing the device lifecycle state from
OEM to LCK_BOOT. However, once the device lifecycle state advances to LCK_BOOT, the serial
programming interface will be permanently locked. To avoid accidental MCU debug and serial programming
interface locking, do not transition the device lifecycle state to LCK_BOOT unless you are doing so for
production usage.

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 72 of 75

Nov.13.24

6.4 Specific Instructions to Support IAR EWARM Development Path

6.4.1 IAR I-jet and TrustZone Partition Boundary Setup

IAR’s I-jet debug probe does not provide support for setting the TrustZone partition boundaries, as it does
not have the ability to interface with the RA MCU’s boot mode through the debug header.

It is therefore necessary to set the TrustZone partition boundaries appropriately using alternative means
before debugging through I-jet. Typically, this will need to be done using an SCI connection to the
board/MCU and the RFP application available from:

https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui

Figure 101. shows RFP configured to read the TrustZone partition boundaries from a .rpd file.

Figure 101. Configure TrustZone® Partition

6.4.2 CMSIS-DAP and Trust Zone Partition Boundary Setup

EWARM also supports the use of CMSIS-DAP based debug probes. These do not have the ability to
interface with the RA MCU’s boot mode through the debug header.

https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 73 of 75

Nov.13.24

7. Appendix B: Glossary

Term Meaning

OEM Original Equipment Manufacturer.

AL Authentication Level.

RSIP Renesas Secure IP: An isolated subsystem within the MCU protected by an Access
Management Circuit. Performs Cryptographic operations.

8. References

1. Renesas RA8M1 Group User’s Manual: Hardware

2. Flexible Software Package (FSP) User’s Manual

3. Arm® TrustZone® Technology for the Armv8-M Architecture

4. Renesas RA Family Installing and Utilizing the Device Lifecycle Management Keys (R11AN0469)

5. Renesas RA Family Securing Data at Rest using Arm TrustZone (R11AN0468)

6. Arm®v8-M Architecture Reference Manual

7. Arm® Cortex®-M85 Processor Technical Reference Manual

8. Arm® Cortex®-M85 Processor Devices Generic User Guide

https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ra8m1-480-mhz-arm-cortex-m85-based-microcontroller-helium-and-trustzone#documents
https://www.renesas.com/us/en/products/software-tools/software-os-middleware-driver/software-package/ra-fsp.html#documents
https://developer.arm.com/documentation/100690/0201
https://developer.arm.com/documentation/100690/0201
https://developer.arm.com/documentation/ddi0553/bl/
https://developer.arm.com/documentation/101924/latest/
https://developer.arm.com/documentation/101928/latest/

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 74 of 75

Nov.13.24

9. Website and Support

Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA8M1 Resources renesas.com/ra/ek-ra8m1

RA Product Information renesas.com/ra

Flexible Software Package (FSP) renesas.com/ra/fsp

RA Product Support Forum renesas.com/ra/forum

Renesas Support renesas.com/support

https://www.renesas.com/ra/ek-ra8m1
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Security Design using Arm TrustZone - Cortex M85

R11AN0897EU0100 Rev.1.00 Page 75 of 75

Nov.13.24

Revision History

Rev. Date

Description

Page Summary

1.00 Nov.13.24 — Initial release

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states

of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in

terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Arm® TrustZone® and its Security Features
	1.1 TrustZone Technology Overview
	1.2 RA8 MCU Arm TrustZone Security Attribution
	1.2.1 Implementation Defined Attribution Unit (IDAU)
	1.2.2 Master Security Attribution Unit (MSAU)
	1.2.3 Security Attribution Unit (SAU)
	1.2.4 Region Number
	1.2.5 Memory Security Attribution of TrustZone Filter
	1.2.6 Peripheral Security Attribution of TrustZone Filters

	1.3 Device Lifecycle Management and Debugging
	1.4 Example TrustZone Use Cases
	1.4.1 Intellectual Property (IP) Protection
	1.4.2 Root of Trust Protection

	2. Arm® TrustZone® Application Design Support
	2.1 Renesas Advanced Smart Configurator
	2.1.1 Using RASC with Renesas e2 studio
	2.1.2 Using RASC with IAR Embedded Workbench for Arm
	2.1.3 Using RASC with Arm Keil MDK

	2.2 Transitioning from CM State to OEM_PL2 State
	2.2.1 Developing with e2 studio
	2.2.2 Developing with IAR EWARM
	2.2.3 Developing with Keil MDK

	2.3 Setting up the TrustZone Boundary
	2.3.1 Developing with e2 studio
	2.3.2 Developing with IAR EWARM
	2.3.3 Developing with Keil MDK

	3. General Considerations in TrustZone® Application Design
	3.1 Non-secure Callable Modules
	3.2 Guard Function for Non-secure Callables
	3.2.1 Limit Access to Selected Configurations and Controls
	3.2.2 Test for Non-secure Buffer Locations
	3.2.3 Handle Non-secure Data Input Structure as Volatile
	3.2.4 Limit the Number of Arguments in an NSC Function

	3.3 Creating User-Defined Non-secure Callable Functions
	3.4 RTOS Support
	3.5 Writing TrustZone Technology Enabled Software
	3.5.1 Benefitting from CMSE Functions to Enhance System Level Security
	3.5.2 Avoid Asynchronous Modifications to Currently Processed Data
	3.5.3 Utilize the Armv8-M Stack Pointer Stack Limit Feature

	4. Using Renesas RA Project Generator for TrustZone Development
	4.1 Combined Project Development
	4.1.1 Developing the Secure Project
	4.1.2 Developing the Non-secure Project
	4.1.3 Production Flow Overview

	4.2 Split Project Development
	4.2.1 Developing the Secure Bundle and Provisioning the MCU
	4.2.2 Limitations and Workarounds for Developing in OEM_PL1 State
	4.2.3 Developing the Non-secure Project in OEM_PL1 State
	4.2.3.1 Debug the Non-secure Project
	4.2.3.2 Program the Non-secure Project and Transition to OEM_PL0 Device Lifecycle State

	4.2.4 Production Flow Overview

	4.3 Flat Project Development
	4.3.1 Operational Flow
	4.3.2 Production Flow Overview

	5. Example Project for IP Protection
	5.1 Overview
	5.2 System Architecture
	5.2.1 Software Components
	5.2.2 Operational Flow
	5.2.3 Simulated User’s IP Algorithm
	5.2.4 User-Defined Non-secure Callable APIs

	5.3 Setting up Hardware
	5.4 Example Application with e2 studio IDE using Split Project Development Model
	5.4.1 Import, Build, and Program the Secure Binary and Dummy Non-secure Binary
	5.4.1.1 Import the Secure Project and Dummy Non-secure Project
	5.4.1.2 Compile the Secure Binary and Dummy Non-secure Binary using e2 studio
	5.4.1.3 Download the Secure Binary and Dummy Non-secure Binary using e2 studio
	5.4.1.4 Transition MCU Device Lifecycle State to OEM_PL1

	5.4.2 Import, Build, and Program the Non-secure Project
	5.4.2.1 Import the Non-secure Project
	5.4.2.2 Compile and Download the Non-secure Project

	5.4.3 Verify the Example Application

	5.5 Example Application with IAR EWARM using Combined Development Model
	5.5.1 Import and Build the Example Projects
	5.5.2 Download and Debug the Application Projects

	5.6 Example Application with Keil MDK using Combined Development Model
	5.6.1 Import and Build the Example Projects
	5.6.2 Download and Debug the Application Project

	6. Appendix A: Using RFP for Production Flow
	6.1 Initialize the MCU
	6.2 Download the Secure Binary
	6.3 Download the Non-secure Binary
	6.4 Specific Instructions to Support IAR EWARM Development Path
	6.4.1 IAR I-jet and TrustZone Partition Boundary Setup
	6.4.2 CMSIS-DAP and Trust Zone Partition Boundary Setup

	7. Appendix B: Glossary
	8. References
	9. Website and Support
	Revision History

