

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0014-0100/Rev.1.00 June 2007 Page 1 of 18

SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Compiler use guide] SH-2A / SH2A-FPU

This document explains the coding techniques for SH-2A / SH2A-FPU, as well as
how to use C extended functions and compile options, for the SuperH RISC engine
C/C++ Compiler V.9.01.

1. Overview of SH-2A / SH2A-FPU .. 2
2. Features and Usage for New SH-2A Instructions... 2
2.1 20-bit Long Immediate Load..3
2.2 Relative Load/Store for 12-bit Registers with Disp ..5
2.3 Load Multi / Store Multi ..6
2.4 Auto-increment / decrement ..6
2.5 Division Instruction...7
2.6 Multiplication Instruction ..8
2.7 Saturation Value Comparison Instruction ..9
2.8 Bitwise Operation Instructions ...10
2.9 Branching Instruction without Delay Slots ...12
2.10 Barrel Shift Instruction ...12
3. Features and Usage of the New SH-2A Architecture ... 14
3.1 Register Bank ..14
3.2 Jump Table Base Register (TBR)..15

APPLICATION NOTE

1. Overview of SH-2A / SH2A-FPU
SH-2A / SH2A-FPU (herein as SH-2A) is a new SH microcomputer compatible on the object code level with SH-1 and
SH-2. SH-2A offers the following features:

• Newly added instructions, for improved calculation processing performance and reduced program size
• A register bank, for reduced interrupt response times
• A jump table base register (TBR), for faster subroutine calls
• A two-way superscalar, for concurrent execution of two instruction
• A new Harvard architecture
This document explains how to use these features with the SuperH RISC engine C/C++ compiler.

2. Features and Usage for New SH-2A Instructions
Table 1.1 lists the features of the new instructions for SH-2A.

Table 1.1 Features of the new instructions for SH-2A
Effects Item Contents

Speed Size

20-bit long immediate load
(32-bit fixed-length instruction)

An instruction that transfers 20-bit immediate data
within an instruction code to a register, effective for
loading addresses and constants.

Relative load/store for 12-bit
registers with disp
(32-bit fixed-length instruction)

An instruction for referencing memory by specifying
12-bit displacement, improving access efficiency for
structures.

Load multi / Store multi

An instruction that saves and restores multiple
consecutive registers to memory in one instruction,
reducing the code size for register save/restore
processing.

Auto-increment/decrement Performs auto-increment/decrement for pointers, as
used in consecutive array access.

Memory access
reduction

Up
Small

REJ06J0014-0100/Rev.1.00 June 2007 Page 2 of 18

Division instruction An instruction for performing 32-bit / 32-bit division,
allowing run-time routine calls to be eliminated.

Multiplication instruction

An instruction for performing 32-bit x 32-bit
multiplication, storing the lower 32 bits of the
calculation results in the general register Rn, to
reduce access to the MAC register.

Saturation value comparison
instruction

An instruction that performs comparison with a
saturation value, returning the maximum saturation
when the value is higher, or the maximum saturation
when the value is lower. Significantly improves
efficiency in determining processing for overflows
and underflows.

Bitwise operation instructions
(32-bit fixed-length instruction)

Performs 1-bit operations in memory, including logic
calculations, operations, acquisition, inverted
acquisition, and inverted logic calculations).

Branching instruction without
delay slots

A branching instruction without delay slots, for
deleting unnecessary NOP instructions to reduce
code size.

Barrel shift instruction Instructions for shifting arbitrary bits, including
arithmetic shifting and logical shifting.

Up

Up

Up

Up

Up

Up

Up

Even

Small

Small

Small

Small

Even

Small

Small

Small

Small

Small

APPLICATION NOTE

2.1 20-bit Long Immediate Load
Format: MOVI20 #imm20,Rn, MOVI20S #imm20,Rn

This instruction transfers 20-bit immediate data, such as addresses for constants and functions. For example, when a
constant longer than 8 bits is handled in SH-2, literal data needs to be used. Since SH-2A allows immediate data of up
to 20 bits to be embedded in an instruction, both code size and memory access can be reduced. Note that this instruction
is 32 bits long.

Example 2-1(1)

 S
int X;

void load20(void){

 X = 0x12345;

}

MOV.L L12,R2 ; H'00012345
MOV.L L12+4,R6 ; _X

L12:
 .DATA.L H'00012345
 .DATA.L _X

SH-2 SH-2A ource Program

MOVI20 #74565,R2 ; H'00012345
 MOV.L L12,R6 ; _X

L12:

 .DATA.L _X

Delete

REJ06J0014-0100/Rev.1.00 June 2007 Page 3 of 18

Since the addresses of functions and variables are also 32 bits, they are used with literal data. In Example 2-1(1), the
address for external variable X is used with literal data for both SH-2 and SH-2A. But when addresses for functions and
variables are expressed as 20 bits, #pragma abs20 or the -abs20 compile option can be specified to generate code
in which 20-bit immediate load instructions are used.

Example 2-1(2)

Using #pragma abs20
When #pragma abs20 id [,…] is specified before a variable or function is declared or defined, the address of
the specified variable or function is expressed in 20 bits. #pragma abs20 needs to be specified in all source
code in which the corresponding variable or function is referenced. We recommend that you specify #pragma
asb20 in header file included for all source files.

int X;

void func(void){

 X = 0x12345;

}

SH-2A
MOVI20 #74565,R2 ; H'00012345
MOV.L L12,R6 ; _X

L12:
 .DATA.L _X

Source Program

Literal data (X address)

SH-2A –abs20
MOVI20 #74565,R2 ; H'00012345
MOVI20 #_X, R6

L12:

Delete

Instruction containing X address

Constant data greater than 8 bits リテラルデータ参 Instruction containing
constant data

Literal data reference

APPLICATION NOTE

Example 2-1(3)

source1.c
#pragma abs20(X, func1)

extern int X;
extern void func1(void);

extern void func2(void);

common.h
#include “common.h”

int X;

void func1(void){
 X = 1;
}

#include “common.h”

void func2(void){
 func1();
}

source2.c

Variable X and
function func1
specified for abs20

About -abs20
The -abs20 compile option can be specified to change the address expressions for all functions and variables
in the corresponding source file to 20-bit expressions. The -abs20 option has the following subcommands:

Format: -abs20 = { Program | Const | Data | Bss | Run | All }

Program: Targets the program area
Const: Targets the constants area
Data: Targets the initialized data area
Bss: Targets the uninitialized data area
Run: Targets run-time routines
All: Targets all areas

Specifying -abs20 in High-performance Embedded Workshop (herein as HEW)
-abs20 can be specified in the Tool Chain dialog box.

Changed to 20 bits

REJ06J0014-0100/Rev.1.00 June 2007 Page 4 of 18

APPLICATION NOTE

Precautions regarding #pragma abs20 and -abs20 usage
Functions and variables for which #pragma abs20 or -abs20 is specified must be placed within the
following address space range.
Keep in mind that the program may malfunction if the function or variable is outside of this range.

Table 1-1 Range for 20-bit address expressions

Address range
Minimum Maximum
0x00000000 0x0007FFFF
0xFFF80000 0xFFFFFFFF

Note that if both -abs20 and #pragma abs16|abs20|abs28|abs32 are specified, the latter takes
effect.

2.2 Relative Load/Store for 12-bit Registers with Disp
Format: MOV.B Rm,@(disp 12,Rn), MOV.W Rm,@(disp 12,Rn), MOV.L Rm,@(disp 12,Rn)
 MOV.B @(disp 12,Rn),Rm, MOV.W @(disp 12,Rn),Rm, MOV.L @(disp 12,Rn),Rm

This is a transfer instruction with a 12-bit disp, and can be used for data access within arrays, structures, and stacks.
Since SH-2 only allows relative access instructions for registers with 8-bit disp, when array or other data placed more
than 8 bits out is accessed (which happens frequently), code in which an offset value is used as literal data is generated.
Since SH-2A allows offset values of up to 12 bits to be embedded in instructions, it can access data in a larger range
more efficiently than SH-2. Note that this instruction is 32 bits long.

Example 2-2

unsigned int p[2048];

void func(void){

 p[0] = 0;
 p[2000] = 0;

}

SH-2
MOV.L L13+2,R2 ; _p
MOV #0,R6 ;H'00000000
MOV.W L13,R0 ; H'1F40(=8000)
MOV.L R6,@R2
RTS
MOV.L R6,@(R0,R2)

L13
 .DATA.W H'1F40
 .DATA.L _p

Source Program

Relative position information
used in R0

SH-2A

MOV.L L13+2,R2 ; _p
MOV #0,R6 ; H'00000000
MOV.L R6,@R2

MOV.L R6,@(8000:12,R2)

 RTS/N

L13

 .DATA.L _p

Delete

 Instruction containing relative
position information

Access of data beyond 8 bits from the

start of an array

Access using R0 relative information

When using this instruction with a structure or array, make sure that it can fit within a size for which 12-bit disp can
be used (4,095 elements or fewer for an array). Note that no special #pragma specification is needed when this
instruction is used.

REJ06J0014-0100/Rev.1.00 June 2007 Page 5 of 18

APPLICATION NOTE

2.3 Load Multi / Store Multi
Format: MOVMUL.L Rm,@-R15, MOVMUL.L @R15+,Rn
 MOVMU.L Rm,@-R15, MOVMU.L @R15+,Rn

This instruction loads or stores multiple registers, in one instruction. The number of instruction execution states is not
different than that when each register is specified individually, but instruction size can be reduced because everything
can be specified in one instruction. This instruction can be used for saving or restoring registers during function calls.
The compiler uses this instruction automatically, and there are no particular items of concern about during coding.

Example 2-3

 Source Program SH-2 SH-2A

void func(void){

}

_func:
MOV.L R8,@-R15
MOV.L R9,@-R15
MOV.L R10,@-R15
MOV.L R11,@-R15
MOV.L R12,@-R15
MOV.L R13,@-R15
MOV.L R14,@-R15
STS.L PR,@-R15

_func:
MOVMU.L R8,@-R15

RTS

 LDS.L @R15+,PR
MOV.L @R15+,R14
MOV.L @R15+,R13
MOV.L @R15+,R12
MOV.L @R15+,R11
MOV.L @R15+,R10
MOV.L @R15+,R9

MOV.L @R15+,R8

 MOVMU.L R8,@-R15
RTS/N

2.4 Auto-increment / decrement
Format: (1) MOV.B R0,@Rn+, MOV.W R0,@Rn+, MOV.L R0,@Rn+
 (2) MOV.B @-Rn,R0, MOV.W @-Rn,R0, MOV.L @-Rn,R0

(1) The R0 register is transferred to the address indicated by the Rn register, and the value of the Rn register is
incremented by 1 for .B, 2 for .W, and 4 for .L.

(2) The data in the address indicated by the Rm register is transferred to the R0 register, and the value of the Rm register
is decremented by 1 for .B, 2 for .W, and 4 for .L.

This instruction can be used to access array elements sequentially. The compiler uses this instruction automatically, and
there are no particular items of concern about during coding.

Example 2-4

int array[20];

void gunc(int s[20]){
 int I;

 for(i=0, i<20, i++){
 array[i] = s[i];
 }
}

SH-2
_func:
 MOV #20,R5 ; H'00000014
 MOV.L L17,R6 ; _aray

L15:
 MOV.L @R4+,R2
 DT R5
 MOV.L R2,@R6
 BF/S L15
 ADD #4,R6
 RTS
 NOP

L17
 .DATA.L _aray

Source Program SH-2A -abs20

_func:
 MOV #20,R5 ; H'00000014
 MOVI20 #_aray,R6

L14:
 MOV.L @R4+,R0
 DT R5
 BF/S L14

 MOV.L R0,@R6+
 RTS/N

REJ06J0014-0100/Rev.1.00 June 2007 Page 6 of 18

APPLICATION NOTE

2.5 Division Instruction
Format: DIVS R0,Rn (36 execution states), DIVU R0,Rn (34 execution states)

This instruction divides the 32-bit contents of the Rn register (dividend) by the contents of the R0 register (divisor).
When 32-bit division is performed on SH-2, the result is calculated by calling a 1-bit division instruction multiple times.
The compiler provides a run-time routine (runtime library) to perform division processing by calling this 1-bit division
instruction multiple times. Since SH-2A supports 32-bit division instructions, it performs division processing by
instruction, instead of run-time routine, allowing improved execution speed and reduced program size.

Example 2-5(1)

REJ06J0014-0100/Rev.1.00 June 2007 Page 7 of 18

Division by integer constants
When the divisor is an integer constant, an optimization can be performed in which division is processed as
multiplication. SH-2A supports division instruction, but since the number of execution states for division
instructions is 34 or 36, processing using multiplication can be performed faster. Note that since there are more
instructions, the program size increases. Optimization in which processing is performed by multiple by the inverse
divisor can be specified by the DIvision=cpu= Inline | Runtime compile option. Note that the default
setting is different for speed and size optimizations. When speed first or size & speed is specified, this optimization
is applied by default. When size first is specified, this optimization is not applied by default (see Table 2-5). Note
that for SHC compiler V.9.00, optimization in which constant division is performed as multiplication cannot be
used. In this case, calculation is always performed using division instructions.

Table 2-5 Calculation method for constant division

CPU SH-2 SH-2A (SHC V.9.00) SH-2A (SHC V.9.01)
Size first (-size) Runtime Runtime Runtime
Size & speed Inline Runtime Inline
Speed first (-speed) Inline Runtime Inline

SH-2

Inline: Calculation in which constant division is converted to multiplication is performed. A run-time
routine is called for variable division.

Runtime: A run-time routine is called for constant division and variable division for which no shift
calculation is performed.

SH-2A
Inline: Calculation in which constant division is converted to multiplication is performed. Variable

division uses division instructions.
Runtime: Division instructions are used for constant division and variable division for which no shift

calculation is performed.

int A;

void func(int d){

 A = A / d;

}

SH-2
_func:
 STS.L PR,@-R15
 MOV.L L18,R6 ; _A

Source Program SH-2A -abs20

_func:
 MOVI20 #_A,R6
 MOV.L @R6,R2
 MOV R4,R0

 RTS
 MOV.L R2,@R6

MOV.L L18+4,R2 ; __divls
 MOV.L @R6,R1

JSR @R2
 MOV R4,R0
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R6

L18
 .DATA.L _A

.DATA.L __divls

 DIVS R0,R2

Run-time routine call

APPLICATION NOTE

Example 2-5(2)

unsigned int A;

void func(void){

 A = A / 10;

}

SH-2A -size -abs20

_func:
 MOVI20 #_A,R5
 MOV.L @R5,R6
 MOV #10,R0 ;H'0000000A
 DIVU R0,R6
 RTS
 MOV.L R6,@R5

Source Program SH-2A -speed -abs20 -macsave=0

_func:
 MOVI20 #_A,R6
 MOV.L L12+4,R1 ; H'CCCCCCCD
 MOV.L @R5,R6 ; A

 DMULU.L R6,R1
 STS MACH,R2
 MOV.L R2,@R6
 SHLR2 R2
 SHLR R2
 RTS
 MOV.L R2,@R5 ; A

L12:
 .DATA.L H'CCCCCCCD

2.6 Multiplication Instruction
Format: MULR R0,Rn

This instruction performs 32-bit multiplication of the contents of the R0 general register with Rn, and stores the bottom
32 bits of the results in the Rn general register. Since the multiplication instruction supported by SH-2 (MUL.L Rm,Rn)
stores the calculation results in the MACL register, code is required to copy the results from MACL to the general
register. Using MULR instructions makes such copy processing unnecessary, and can improve performance in both
speed and code size. This instruction is used automatically by the compiler, and there are no particular items of concern
about during coding.

Example 2-6

int A;

void func(int m){

 A = A / m;

}

SH-2

_func:
 STS.L MACL,@-R15
 MOV.L L18,R6 ; A
 MOV.L @R6,R1
 MUL.L R1,R4
 STS MACL,R5
 MOV R5,@R6
 RTS
 LDS.L @R15+,MACL

L18
 .DATA.L _A

Source Program SH-2A -abs20

_func:
 MOVI20 #_A,R5
 MOV.L @R5,R6
 MOV R6,R0

 MULR R0,R6
 RTS
 MOV.L R6,@R5

REJ06J0014-0100/Rev.1.00 June 2007 Page 8 of 18

APPLICATION NOTE

2.7 Saturation Value Comparison Instruction
Format: CLIPS.B Rn, CLIPS.W Rn, CLIPU.B Rn, CLIPU.W Rn

This instruction determines saturation. When the Rn general register is more than the maximum saturation, the
maximum saturation is stored in Rn. When the Rn general register is less than the minimum saturation, the minimum
saturation is stored in Rn. In both cases, the CS bit is set to 1. This instruction can be used to make saturation
determination processing significantly faster. Use the embedded function to use this instruction.

Embedded function Description Minimum Maximum

long clipsb (long data)

When the data is between -128 and 127, the value
is returned.
When the data is out of range, the maximum or
minimum is returned.

-128 127

long clipsw (long data)

When the data is between -32768 and 32767, the
value is returned.
When the data is out of range, the maximum or
minimum is returned.

-32768 32767

unsigned long clipub
(unsigned long data)

When the data is between 0 and 255, the value is
returned.
When the data is out of range, the maximum or
minimum is returned.

0 255

unsigned long clipuw
(unsigned long data)

When the data is between 0 and 65535, the value
is returned.
When the data is out of range, the maximum or
minimum is returned.

0 65535

Example 2-7

C source code

unsigned long result,x,y;

void func(void){

 result = x * y;
 if(result >255)
 result = 255;
}

SH-2

Generated code

 STS.L MACL,@-R15
 MOV.L L23+44,R1
 MOV #1,R6
 MOV.L @R1,R2
 MOV.L L23+48,R1
 MOV.L L23+52,R5
 MOV.L @R1,R4
 SHLL8 R6
 MUL.L R2,R4
 STS MACL,R7
 CMP/HI R6,R7
 BF/S L19
 MOV.L R7,@R5
 MOV #-1,R2
 EXTU.B R2,R2
 MOV.L R2,@R5
L19:
 RTS
 LDS.L @R15+,MACL

SH-2A (Embeded function usage)
C source code

#include <machine.h>
unsigned long result,x,y;

void func(void){

 result = clipub(x * y);
}

Generated code

 MOVI20 #_x,R1
 MOVI20 #_y,R4
 MOV.L @R1,R7
 MOV.L @R4,R0
 MOV.L L19+16,R2 ; _result
 MULR R0,R7

 CLIPU.B R7
 RTS
 MOV.L R7,@R2

REJ06J0014-0100/Rev.1.00 June 2007 Page 9 of 18

APPLICATION NOTE

REJ06J0014-0100/Rev.1.00 June 2007 Page 10 of 18

2.8 Bitwise Operation Instructions
Format:

Bitwise AND: BAND.B #imm3,@(disp12,Rn) (3 execution states)
Bitwise not AND: BANDNOT.B #imm3,@(disp12,Rn) (3 execution states)
Bitwise clear: BCLR.B #imm3,@(disp12,Rn) (3 execution states)
 16-bit instruction: BCLR #imm3,Rn (1 execution state)
Bitwise load: BLD.B #imm3,@(disp12,Rn) (3 execution states)
 16-bit instruction: BLD #imm3,Rn (3 execution states)
Bitwise not load: BLDNOT.B #imm3,@(disp12,Rn) (3 execution states)
Bitwise OR: BOR.B #imm3,@(disp12,Rn) (3 execution states)
Bitwise not OR: BORNOT.B #imm3,@(disp12,Rn) (3 execution states)
Bitwise set: BSET.B #imm3,@(disp12,Rn) (3 execution states)
 16-bit instruction: BSET #imm3,Rn (1 execution state)
Bitwise store: BST.B #imm3,@(disp12,Rn) (3 execution states)
 16-bit instruction: BST #imm3,Rn (1 execution state)
Bitwise XOR: XBOR.B #imm3,@(disp12,Rn) (3 execution states)

Bitwise operation calculations are executed in one instruction. Each calculation is performed for the bit specified by
imm3 in memory at the address indicated by (disp12+Rn). These instructions are 32 bits long (though some are 16
bits).

SH-2 performs the following three instructions when bitwise operations are performed:

1. It reads the memory value of the target address area.
2. It gets the bitwise operated value of the value read from memory using an AND instruction or OR instruction.
3. It writes the memory value obtained by calculation to the target address area.

If an interrupt occurs while these three instructions are being performed, and the value of a target address area for the
bitwise operation changes during interrupt processing, the results of the bitwise operation processing will be invalid. As
such, when bitwise operations are performed on address areas that might be overwritten within the interrupt function,
interrupts need to be prohibited before processing occurs. Note that since bitwise operations can be performed in one
operation when the bitwise operation instructions added to SH-2A are used, interrupts no longer need to be prohibited,
improving both processing speed and interrupt responsiveness.

Since these instructions are generated by optimization, keep in mind that bitwise operation instructions cannot be used
when optimization is not performed (optimize=0). Also, since the bitwise operation instruction has an access width
of 8 bits, keep in mind that bitwise operation instructions cannot be used for variables declared as volatile whose access
width is other than that of signed / unsigned char types.

APPLICATION NOTE

Example 2-8 Source Program

typedef union {
 unsigned char BYTE;
 struct{
 unsigned char B0:1;
 unsigned char B1:1;
 unsigned char B2:1;
 unsigned char B3:1;
 unsigned short W4:1;
 unsigned short W5:1;
 unsigned long L6:1;
 unsigned long L7:1;
 }BIT;
}REG;

volatile REG Reg;

void func1(void){

 Reg.BIT.B2 = 1;

}

void func2(void){

 Reg.BIT.W4 = 1;

}

REG Reg2;

void func3(void){

 Reg2.BIT.W4 = 1;

}

_func1:
 MOV.L L13+4,R6 ;Reg
 MOV.B @R6,R0
 OR #32,R0
 RTS
 MOV.B R0,@R6

_func2:
 MOV.L L13+4,R6 ;Reg
 MOV.W L13,R5 ; H'8000
 MOV.W @(2,R6),R0
 OR R5,R0
 RTS
 MOV.W R0,@(2,R6)

_func3:
 MOV.L L13+8,R6 ;Reg2
 MOV.B @(2,R6),R0
 OR #128,R0
 RTS
 MOV.B R0,@(2,R6)

L13:
 .DATA.W H'8000
 .RES.W 1
 .DATA.L _Reg
 .DATA.L _Reg2

_func1:
 MOVI20 #_Reg,R2

SH-2 SH-2A -abs20

 BSET.B #5,@(0,R2)

 BSET.B #7,@(2,R2)

REJ06J0014-0100/Rev.1.00 June 2007 Page 11 of 18

 RTS/N

_func2:
 MOVI20 #_Reg,R6
 MOV.W @(2,R6),R0
 MOVI20 #32768,R5 ; H'00008000
 OR R5,R0
 RTS
 MOV.W R0,@(2,R6)

_func3:
 MOVI20 #_Reg2,R2

 RTS/N

Bitwise operation
instruction

 Due to the volatile
declaration, the access width
is guaranteed, and bitwise
operation instructions cannot
be used.

Because no volatile
declaration exists, no access
width guarantee is needed,
and bitwise operation
instructions are used.

APPLICATION NOTE

2.9 Branching Instruction without Delay Slots
Format: RTS/N, RTV/N Rm

This instruction has no delay slots, and is returned from a subroutine procedure. Since SH-2 only has instructions
returning from subroutine procedures with delay slots, when no processing exists to be placed in the delay slot, NOP is
placed there instead. Since the NOP instruction can be deleted when RTS/N is used, the code size can be decreased.
Note that with the SHC compiler, the function return value is returned to the R0 register, but when the RTV/N
instruction is used, since return instruction from the subroutine procedure can contain a transfer of data to the R0
register, the code size can be decreased. The compiler uses this instruction automatically, and there are no particular
items of concern about during coding.

Example 2-9

int func(int a){

 return a;

}

SH-2

_func:
 RTS
 MOV.L R4,R0

Source Program SH-2A -abs20

_func:

RTV/N R4

2.10 Barrel Shift Instruction
Format: SHAD Rm,Rn, SHLD Rm,Rn

This instruction shifts the contents of the Rn general register arithmetically (SHAD) or logically (SHLD). Rm indicates
the shift direction and number of bits to be shifted. Since SH-2 does not have a barrel shift instruction, shift calculation
is performed by a run-time routine if the shift count is undetermined, or by a combination of fixed shift instructions if
the shift count is set. When a barrel shift instruction is used, both run-time routine calls and multiple calls for fixed shift
instructions become unnecessary, to improve size, speed, and efficiency. The compiler uses this instruction
automatically, and there are no particular items of concern about during coding.

Example 2-10 (1)

int A;

int func(int s){

 A = A << s;

}

SH-2

_func:
 STS.L PR,@-R15
 MOV.L L24,R5 ; _A
 MOV.L L24+4,R2 ; __sftl
 MOV.L @R5,R0
 JSR @R2
 MOV R4,R1
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R5

L24
 .DATA.L _A
 .DATA.L __sftl

Source Program SH-2A -abs20

_func:
 MOVI20 #_A,R6

 MOV.L @R6,R2
 SHAD R4,R2
 RTS
 MOV.L R2,@R6

Barrel shift instruction

 Run-time routine call

REJ06J0014-0100/Rev.1.00 June 2007 Page 12 of 18

APPLICATION NOTE

Example 2-10(2)

REJ06J0014-0100/Rev.1.00 June 2007 Page 13 of 18

int A;

int func(int s){

 A = A << 14;

}

SH-2

_func:
 MOV.L L25,R5 ; _A
 MOV.L @R5,R6
 SHLL8 R6
 SHLL2 R6
 SHLL2 R6
 SHLL2 R6
 RTS
 MOV.L R6,@R5

L25
 .DATA.L _A

Source Program SH-2A -abs20

_func:
 MOVI20 #_A,R5
 MOV.L @R5,R2
 MOV #14,R6 ; H'0000000E
 SHAD R6,R2
 RTS
 MOV.L R2,@R5

APPLICATION NOTE

3. Features and Usage of the New SH-2A Architecture
The following explains how to use the register bank and TBR of the new SH-2A architecture.

3.1 Register Bank
SH-2A comes with a register bank for speeding up save and restore processing for performing interrupt processing.
Figure 3-1 shows the register bank configuration.

REJ06J0014-0100/Rev.1.00 June 2007 Page 14 of 18

R15

R14

R1

R0

.
.
.

General register

Control register SR

GBR

VBR

TBR

MACH

MACL

PR

PC

Register Register bank

System register

Interrupt occurs
(save)

RESBANK
instruction (restore)

R1

R0

.
.
.

GBR

MACH

MACL

PR

R14

VTO

Bank 0
Bank 1

Bank N-1

IBCR

IBNR

Bank control register

Bank number register

Figure 3-1 Overview and configuration of the register bank

When an interrupt occurs, the values in the register used by interrupt processing need to be saved and then restores.
SH-2 used a stack to save and restore the necessary registers. This save and restore processing needs to be performed in
software. When C is used, code to perform register save and restore is generated before and after the interrupt function
(function specified by #pragma interrupt). SH-2A has a register bank system that uses hardware to speed up
register save and restore. This register bank can be used to improve interrupt response speed significantly.

To use the register bank, both the bank control register settings and interrupt function specification need to correspond
to the register bank.

For the bank control register settings, the bank number register (IBNR) and bank control register (IBCR) of the bank
control register need to have the register bank to be enabled. For the actual values set, see Register Bank in the
hardware documentation.

For the interrupt function specification, the register bank specification resbank needs to be performed for the
interrupt function specification #pragma interrupt. For interrupt functions with resbank specified, instead of
code that saves the register to the stack being generated at the start of the function, code that issues the resbank
instruction is generated before the RTE instruction returns. The resbank specification is not performed for interrupt
functions by the sample startup routine automatically generated by HEW for SH-2A. As such, an interrupt function that
does not use a register bank (the same as SH-2) is generated instead. To use the register bank functionality for SH-2A,

Bank control register (interrupt controller)
Note:

: Bank target register

VTO : Interrupt vector table address offset

The number of register
banks depends on the
device.

Note:

....

The hardware
performs save
automatically.

Note:

APPLICATION NOTE

add the resbank specification, and set the bank control register. For detailed specifications for #pragma
interrupt, see 10.3.1 #pragma extension in the Compiler User Manual.

Example 3-1

C source code
#pragma interrupt (func)
void func(void);

unsigned int A;

void func(void){

 A = 0;

}

SH-2A resbank not specified -abs20

_func:
 MOV.L R2,@-R15
 MOV.L R3,@-R15
 MOV #0,R2 ; H'00000000
 MOVI20 #_A,R3
 MOV.L R2,@R3
 MOV.L @R15+,R3
 MOV.L @R15+,R2
 RTE
 NOP

SH-2A resbank specified -abs20

C source code

 #pragma interrupt (func2(resbank))
void func2(void);

unsigned int A;

void func(void){

 A = 0;

}

resbank specified

 _func:

 MOV #0,R2 ; H'00000000
 MOVI20 #_A,R3
 MOV.L R2,@R3

 RTE
 NOP

 RESBANK

Delete

Delete

REJ06J0014-0100/Rev.1.00 June 2007 Page 15 of 18

3.2 Jump Table Base Register (TBR)
A jump table base register (TBR) has been added to the SH-2A control register. A TBR is a register that points to a
function table placed in memory (TBR function table), and is used by the table reference subroutine call instruction
JSR/N @@(disp8,TBR) (TBR register relative call). A TBR relative register call can be used to eliminate the need
to read the function address register, to reduce code size and improve speed. Also, there are limitations on the function
placement address range for function calls using 20-bit long immediate load (MOVI20) function, but not for subroutine
calls using the TBR. Since the instruction length is 16 bits for table reference subroutine calls and 32 bits for 20-bit
long immediate load, function calls using the TBR relative register call have a smaller code size.

To perform a function call using TBR, use the #pragma tbr (function-name) specification or TBR option. Function
calls for functions for which #pragma tbr (function-name) is specified are TBR relative register calls, so that if the
function is defined, the function address is output in the $TBR section. This $TBR section is the TBR function table.
Up to 255 functions can be specified in a single TBR function table. If more than 255 functions need to be used,
#pragma tbr (function-name (sn=section-name)) is used. Since the addresses of functions specified by #pragma
tbr (function-name (sn=section-name)) are output to the $TBRsection-name section, multiple TBR function tables
can be used. When a function with a different TBR function table is called, the TBR function table is placed in ROM
according to the linker section specification. When the TBR option is used, all functions in the file are TBR relative
register calls. For detailed specifications for #pragma tbr, see 10.3.1 #pragma extension in the Compiler User
Manual. For details about the TBR option, see 2.3.4 C/C++ compiler operation method - Object option.

スタックへの

退避・回復 削除

スタックへ退Save/restore to/from
stack Deletion of save/restore

to/from stack

APPLICATION NOTE

Example 3-2

Source Program SH-2A -abs20

(Function definition section)
#pragma tbr (test)
#pragma tbr (test2 (sn=_2))

unsigned int A;

void test(void);
void test2(void);

void test(void){

 A = 0;
}

void test2(void){

 A = 0;
}

(Function definition section)
 .EXPORT _A
 .EXPORT _test
 .EXPORT _test2
 .EXPORT $_test
 .EXPORT $_test2
_test:
 MOV #0,R2
 MOVI20 #_A,R3
 MOV.L R2,@R3
 RTS/N

_test2:
 MOV #0,R2
 MOVI20 #_A,R3
 MOV.L R2,@R3
 RTS/N
_A:
 .RES.L 1

 .SECTION

As an example, test
and test1 are
placed in different
TBR function tables

REJ06J0014-0100/Rev.1.00 June 2007 Page 16 of 18

$TBR,DATA,ALIGN=4
$_test:
 .DATA.L _test

 .SECTION $TBR_2,DATA,ALIGN=4
$_test2:
 .DATA.L _test2

The address for test is
output to the $TBR section

(Function call section)
#include <machine.h>

#pragma tbr (test)
#pragma tbr (test2 (sn=_2))

void test(void);
void test2(void);

void call(void)
{
 set_tbr(__sectop("$TBR"));

 set_tbr(__sectop("$TBR_2"));
 test2();
}

Always include this when
using set_tbr.

(Function call section)
_call:
 STS.L PR,@-R15

 MOV.L L12+2,R2 ; STARTOF $TBR
 LDC R2,TBR

 MOV.L L12+6,R2 ; STARTOF $TBR_2
 LDC R2,TBR

 JSR/N @@($_test2-(STARTOF $TBR_2),TBR)

 LDS.L @R15+,PR
 RTS/N
L12:

 .RES.W 1
 .DATA.L STARTOF $TBR
 .DATA.L STARTOF $TBR_2

The address for test2 is
output to the $TBR_2
section

TBR setting

The same #pragma tbr
as that for the caller
must be specified JSR/N @@($_test-(STARTOF $TBR),TBR)

test();

TBR relative register call

Sets the start address of
the TBR function table in
the TBR before the TBR
relative register call

Since a function with a
different TBR function
table is called, the TBR
needs to be re-set

APPLICATION NOTE

REJ06J0014-0100/Rev.1.00 June 2007 Page 17 of 18

Website and Support <website and support,ws>
Renesas Technology Website

http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry
csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary
1.00 Jun.01.07 — First edition issued

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2007. Renesas Technology Corp., All rights reserved.

REJ06J0014-0100/Rev.1.00 June 2007 Page 18 of 18

	1. Overview of SH-2A / SH2A-FPU
	2. Features and Usage for New SH-2A Instructions
	2.1 20-bit Long Immediate Load
	2.2 Relative Load/Store for 12-bit Registers with Disp
	2.3 Load Multi / Store Multi
	2.4 Auto-increment / decrement
	2.5 Division Instruction
	2.6 Multiplication Instruction
	2.7 Saturation Value Comparison Instruction
	2.8 Bitwise Operation Instructions
	2.9 Branching Instruction without Delay Slots
	2.10 Barrel Shift Instruction

	3. Features and Usage of the New SH-2A Architecture
	3.1 Register Bank
	3.2 Jump Table Base Register (TBR)

	 Website and Support <website and support,ws>

