
 APPLICATION NOTE

R01AN0663EJ0101 Rev. 1.01 Page 1 of 58
Feb 16, 2012

SH7268/SH7269 Group
Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

Summary
SH7268/SH7269 SPI multi I/O bus controller (SPIBSC) has the function to directly fetch the program data on a serial
flash memory and execute them (external address space read mode). This application note offers explanations

Target Device
SH7268/SH7269 MCU (In this document, SH7268/SH7269 are described as "SH7269".)

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Contents

1. Introduction.. 2

2. Overview of the Serial Flash Boot... 3

3. Applications ... 8

4. Sample Program Listing.. 26

5. Using the Downloader... 52

6. References .. 57

R01AN0663EJ0101
Rev. 1.01

Feb 16, 2012

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 2 of 58
Feb 16, 2012

1. Introduction

1.1 Specifications
Boot mode 3 allows booting the SH7269 from its serial flash memory (herein after called serial flash boot). The serial
flash boot progresses and executes the loader programs in the high-speed internal RAM. At this time the external
address space read mode for the SPI multi I/O bus controller (SPIBSC) is invalid. This mode is enabled by the loader
program.

This application note describes about the loader program and application program examples using the serial flash boot
as well as about the downloader to write the loader program and application to serial flash memory.

1.2 Modules Used
• Boot mode (serial flash boot)
• Renesas Serial Peripheral Interface (RSPI)
• SPI multi I/O bus controller (SPIBSC)

1.3 Applicable Conditions
MCU SH72268/SH7269
Operating Frequency Internal clock (Iφ) : 266.67 MHz
 Internal bus clock (Bφ) : 133.33 MHz
 Peripheral clock 1 (P1φ) : 66.67 MHz
 Peripheral clock 0 (P0φ) : 33.33 MHz
Integrated Development
Environment

Renesas Electronics Corporation
High-performance Embedded Workshop Ver.4.07.00

C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ compiler package Ver.9.03 Release 02

Compiler Options Default setting in the High-performance Embedded Workshop
(-cpu=sh2afpu -fpu=single -object="$(CONFIGDIR)\$(FILELEAF).obj"
-debug -gbr=auto -chgincpath -errorpath -global_volatile=0 -opt_range=all
-infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1 –nologo)

Serial Flash Memory S25FL032P (Spansion) x 1

1.4 Related Application Note
The application note relating to this application note is introduced below. Refer to it along with this application note.

• SPI multi I/O bus controller serial flash memory connection example.

1.5 About Active-low Pins (Signals)
The symbol "#" suffixed to the pin (or signal) names indicates that the pins (or signals) are active-low.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 3 of 58
Feb 16, 2012

2. Overview of the Serial Flash Boot
This chapter describes an overview of the serial flash boot.

2.1 Words and Terms
Table 1 lists the words and terms used in this application note to describe the serial flash boot.

Table 1 Terms to Describe the Serial Flash Boot

Term Description
Internal ROM program to boot Transfers the loader program stored in the beginning of the serial flash

memory to the high-speed internal RAM, and branches to the loader
program when the MCU is booted in boot mode 3. This program does not
need to be created as it is already stored in the internal ROM to boot in
CPU.

Loader program Enables the application program allocated in the external address space as
SPI multi I/O bus space of the SPI multi I/O bus controller (SPIBSC).
Branches into the entry function of the application program retaining the
external address space read mode of SPIBSC enabled. The size of the
loader program is fixed to 8 KB. Create it according to the user’s system.

Application program A program that is created by user according to the user’s system. In this
application note, the application program is supposed to be allocated in the
external address space of SPIBSC as SPI multi I/O bus space.

Downloader A program to write the loader program and the application program to the
serial flash memory. Create it according to the user’s system.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 4 of 58
Feb 16, 2012

2.2 The Serial Flash Boot Operation
Table 2 lists the external pins (MD_BOOT2 to MD_BOOT0) to decide the boot mode.

Table 2 Relationship between the External Pin Settings and Serial Flash Boot Mode

MD_BOOT2 MD_BOOT1 MD_BOOT0 Boot Mode Description
1 0 1 Boot mode 3 Boots the MCU from serial flash memory

connected to Renesas Serial Peripheral
Interface channel 0

In boot mode 3, an internal ROM program to boot transfers the loader program from the serial flash memory connected
to Renesas Serial Peripheral Interface channel 0 (RSPI0) to the high-speed internal RAM after the power-on reset is
canceled. After transferring, SH7269 branches to the beginning of the loader program. Figure 1 shows the operation
image of the ROM program. A series of the processing is automatically executed.

Figure 1 Operation Image of the Internal ROM Program to Boot

Application program

Loader program

（ 8KB）

SH7269

Internal ROM program
to boot

Internal ROM to boot

High- speed internal RAM

Renesas Serial

Peripheral

Interface

Channel 0

（ RSPI0 ）

Serial flash memory

H’FFF 80000
Loader program

（ 8KB）

(4) Transfer to the internal
high speed RAM

(5) Branch to the beginning
of the loader program

(2) Read request
(3) Read

(1) Execute the internal ROM program to boot

SPI multi I/O
 bus controller

（ SPIBSC）

H’FFF 8 1FFF

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 5 of 58
Feb 16, 2012

The loader program enables the read mode in the external address space of SPIBSC. By this setting, the application
program stored in the serial flash memory can be allocated in the external address space. After this setting, the SH7269
branches to the entry function of the application program. Figure 2 shows the operation image of the loader program.

Figure 2 Operation Image of the Loader Program

Application program

Loader program

（ 8KB）

SH7269

Internal ROM program
to boot

Internal ROM to boot

Internal high- speed RAM

Serial flash memory

(7) Set the external address
space to read mode

H’FFF 8 0000
Loader program

（ 8KB）

(8) Fetch the application program
mapped in the SPI multi I/O
bus space （ Read request）

(10) Execute the read instruction

(6) Execute the loader program

（ SPIBSC）
(9) Read the corresponding area to

store in the read buffer of SPIBSC

Renesas Serial

Peripheral

Interface

Channel 0

(RSPI 0)

H’FFF 8 1FFF

SPI multi I/O
 bus controller

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 6 of 58
Feb 16, 2012

2.3 Downloader Operation
The downloader writes the loader program on the high-speed internal RAM and application program on RAM to the
serial flash memory. Figure 3 shows the operation image of the downloader.

For more information, refer to “3.3 Downloader Example”.

Application program

Serial flash memoryRAM

Loader program

Downloader

Loader program

Application program

Write

Write

Figure 3 Operation Image of the Downloader

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 7 of 58
Feb 16, 2012

2.4 Serial Flash Memory Connection
Figure 4 shows an example of serial flash memory connection circuit and SPIBSC connection circuit. The internal
ROM program to boot uses the Renesas Peripheral Interface channel 0 (RSPI0). Therefore the serial flash memory
should be connected to RSPI0.

Figure 4 Serial Flash Memory Circuit

Boot mode 3

SH7269

PB20/QMI_0/QIO1_0/MISO0/SPBMI_0/SPBIO1_0

PB19/QMO_0/QIO0_0/MOSI0/SPBMO_0/SPBIO0_0

PB18/QSSL_0/SSL00/SPBSSL

PB17/QSPCLK_0/RSPCK0/SPBCLK

PB16/QIO3_0/SPBIO3_0

PB15/QIO2_0/SPBIO2_0

SCK

SI/IO0

W#/ACC/IO2

CS#

SO/IO1

HOLD#/IO3

3.3V

3.3V

3.3V

3.3V

3.3V

3.3V

MD_BOOT0

MD_BOOT1

MD_BOOT23.3V

3.3V

Serial flash memory

S25FL 032P（4M bytes ）

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 8 of 58
Feb 16, 2012

3. Applications
This chapter describes about the loader program, the application program, and the downloader.

3.1 Loader Program Specifications
The loader program enables read mode in the external address space of the SPI multi I/O bus controller (SPIBSC), and
branches to the entry function in the application program.

3.1.1 Memory Map
Figure 5 shows the memory map of the loader program.

The loader program is transferred from the serial flash memory to the high-speed external RAM by the internal ROM
program to boot. The source area in the serial flash memory is for 8KB from address H’0000 0000 to H’0000 1FFF.

The destination area is from address H’FFF8 0000 to H’FFF8 1FFF in which high-speed internal RAM is allocated.

Loader program

Program area

H ' FFF 8 1 FFF
Stack area

High-speed internal RAM

H ' 0000 0000

H ' 0000 1 FFF
H ' 0000 2000

Tentative vector table for
exception handling

H ' FFF 8 1 B 00

H ' 1800 0000
SPI multi I/O bus space

Application
program

H ' 1800 2000

Application program

H '1 BFF FFFF

Unavailable

Unavailable

H ' FFF 8 0000

External address area in the CPU

Serial flash memory

Figure 5 Loader Program Memory Map

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 9 of 58
Feb 16, 2012

3.1.2 Flow Chart of the Loader Program

Figure 6 shows the flow chart of the loader program. For more information, refer to sections 3.1.3 to 3.1.11.

Figure 6 Loader Program Flow Chart

Start

Set the stack pointer for the loader rogram

Mask the interrupt

Set the frequency control register（ FRQCR ）

Set the vector base register（ VBR ）

→ Refer to 3.1.3

→

→

→

→

Set the floating-point status/control register （ FPSCR ）

Read transfer information in the application program

Enable read ode in the external address space

Set the stack pointer in the application program

Branch to the entry functions of the application program

End

Set SPI multi I/O bus controller

→

→

→

→

→

Set standby control registers 3-10 → Enable functions of the
peripheral modules

Write-enable the large-capacity internal RAM →

Refer to 3.1.7

Refer to 3.1.6

Refer to 3.1.5

Refer to 3.1.4

Refer to 3.1.8

Refer to 3.1.7

Refer to 3.1.7

Refer to 3.1.11

Refer to 3.1.10

Refer to 3.1.9

（ SPIBSC ）

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 10 of 58
Feb 16, 2012

3.1.3 Stack Pointer Setting
Set the address H'FFF8 2000 in the stack pointer (R15) . The loader program is allocated at the address H'FFF8 0000 in
the assembly language to avoid the loader program using the undefined stack pointer. C can be used after configuring
the stack pointer. Then, the loader program jumps to the entry function.

3.1.4 Floating-Point Status/Control Register (FPSCR) Setting
In the FPSCR, H'0004 0001 is set (single-precision operation, round to zero).

3.1.5 Vector Base Register (VBR) Setting
The loader program sets the tentative exception vector table in VBR to support the exceptional operation during the
loader program is running. The exceptions or interrupts should not be generated before setting the VBR as the
exception vector table is undefined., Only vector numbers 0 to 18 are defined in the tentative exception vector table as
the loader program does not use interrupts. To embed exceptional operations such as an external interrupt during the
loader program is operating, the tentative exception vector table need to be extended.

Note: Before executing exceptions, the exception vector table should be stored in the memory to allow the CPU to
access the memory. For more information, refer to 6.9.4 "Note before Exception Handling Begins Running" in
the SH7268 Group, SH7269 Group User’s Manual for Hardware.

3.1.6 Interrupt Mask
B'1111 is specified in the interrupt mask level bit of the Status register (SR) as the loader program does not support
interrupts in operation.

3.1.7 Initial Configuration
Initial configuration is necessary in the peripheral functions to read the application program from the serial flash
memory.

3.1.8 Reading Transfer Information of Application Programs
The loader program refers to the transfer information (appinfo) of application program in the serial flash memory to
obtain the external address in which the application program is allocated. Table 3 lists the detailed transfer information
(appinfo) of application program .It is allocated at the address H'0000 2000 in the serial flash memory. The loader
program handles the information in the address H'0000 2000 to H'0000 2007 in the serial flash memory as the transfer
information of application program.

To access to the serial flash memory, SPI mode of SPIBSC is adopted.

Table 3 Transfer Information (appinfo) of Application Program

Item Address Size
Start address in transfer destination H'0000 2000 4
End address in transfer destination H'0000 2004 4

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 11 of 58
Feb 16, 2012

3.1.9 Enabling Read Mode in External Address Space
Read mode should be enabled in SPIBSC external address space to allocate application program in the SPI multi I/O
bus space.

3.1.10 Application Program Stack Pointer Setting
The loader program specifies the value stored in the first 12 to 15 bytes in the application program in the stack pointer
(R15).

3.1.11 Application Program Jump to the Entry Function Address
The loader program jumps to the entry function address stored in the first 8 to 11 bytes in the application program.

3.1.12 Register State after Executing Loader Program
 Table 4 lists the each register state after executing the loader program. The unlisted registers are set the same value as
described in SH7268 Group, SH7269 Group User’s Manual for Hardware.

Table 4 Resister State after Executing Loader Programs (1)

Register Abbreviated Setting value Remarks
General register R0 to R14 Indefinite
Program counter PC Depends on the

setting
Entry function address of the
application program

Stack pointer SP（R15） Depends on the
setting

Stack pointer setting value of
the application program

Status register SR Indefinite IMASK bit is B’1111
Vector base register VBR H'FFF8 1B00
Floating-point status/
Control register

FPSCR H'0004 0001 Single precision operation
Round mode : to 0

Frequency control register FRQCR H'1015
Standby control register 3 STBCR3 H'1A
Standby control register 4 STBCR4 H'00
Standby control register 5 STBCR5 H'00
Standby control register 6 STBCR6 H'00
Standby control register 7 STBCR7 H'12
Standby control register 8 STBCR8 H'09
System control register 5 SYSCR5 H'0F Enables writing in large -

capacity internal RAM
Common control register CMNCR H'00FF F320
Bit rate setting register SPBCR H'0000 0100
Data read control register DRCR H'0001 0101
Data read command register DRCMR H'00EB 0000
Data read enable setting register DRENR H'0222 47E0
SPI mode control register SMCR H'0000 0004
SPI mode command register SMCMR H'006B 0000

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 12 of 58
Feb 16, 2012

Table 5 Resister State after Executing Loader Programs (2)

Register Abbreviated Setting Value Remarks
SPI mode address setting register SMADR H'0002 0004
SPI mode option setting register SMOPR H'0003 0000
SPI mode inable setting register SMENR H'0002 000F
Common status register CMNSR H'0000 0003
Port B control register 5 PBCR5 H'0006
Port B control register 4 PBCR4 H'6666
Port B control register 3 PBCR3 H'6000

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 13 of 58
Feb 16, 2012

3.2 Application Program Example
Application program should be allocated in the SPI multi I/O bus space as it reads in external address space read mode.
Also note that the application program must include the address information that is referred to by the loader program.

This section explains the procedure to create an application program special for serial flash boot.

3.2.1 Section Alignment
The section alignment in the application program is explained in this section.

1. Application program is executed using external address space read mode. Therefore in this application program
example, the section of the application program is allocated in the SPI multi I/O bus space.

2. The application program transfer information (appinfo) referred to by loader program, the entry function address
of the application program and the setting value of stack pointer should be aligned the section in the fixed address.
The transfer information of application program (appinfo) should be aligned in DAPPINF section and the entry
function address of the application program in DVECTTBL section.. DAPPINFO section and DVECTTBL section
should be allocated in turn from the beginning of the application program.

3. The area in the serial flash memory corresponding to H’1800 0000 to H’1800 1FFF in the SPI multi I/O bus space
is used by the loader program. The program area of the application program, defined area, initialized data area
should be allocated later than H’1800 2000 .

4. A reset vector table RESET_Vectors should be located in the start address of DVECTTBL section.

Figure 7 shows an example of the section alignment.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 14 of 58
Feb 16, 2012

Uninitialized data area
（ Section B ）

Stack area
（ Section S ）

These sections can be allocated
at random addresses.

High-speed internal RAM

（ RINTTBL section ）

（ RPCACHE section ）

Loader program

H' 0000 0000

H' 0000 1FFF
H' 0000 2000

H' 1800 0000

SPI multi I/O bus space

Application

Program

H' 1800 2000

H'1 BFF FFFF

appinfo

Unavailable

External address space in the CPU

Serial flash memory

Transfer information of application
program (DAPPINFO section)

Cache operation program area
（ PCACHE section ）

Exception vector table (Reset)
（ DVECTTBL section ）

(DINTTBL section)

Program area

(PResetPRG section, PIntPRG
 section, Section P)

Constant area
（ C$ BSEC section, C$DSEC section,

section C ）

Initialized data area
（ section D ）

Unused

Reallocate in the high-
speed internal RAM to
boot interrupt in high
speed.

H'FFF8 0000

H'FFF8 FFFF

Exception vector table
(other than reset)

Reallocate the cache
operation in the high-speed
internal RAM as the cache
operation should be executed
in the cache-disabled space.

Figure 7 Application Program Section Alignment

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 15 of 58
Feb 16, 2012

3.2.2 Flow Chart
The application program in this application transmits character strings to channel 2 in the Serial Communication
Interface with FIFO (SCIF2), then sets switching on LED using the channel 0 in compare match timer.

Figure 8 shows the flow chart of the application program.

Figure 8 Application Program Flow Chart

Start

Jump to main function

End

resetprg. c / PowerON_ Reset_PC function

Set VBR register

Mask interrupt

Initialize section

Disable interrupt

Set register bank

main. c / main function

Start

Transmit character data to SCIF2

Configure standard I/O library (_INT_IOLIB)

Infinite loop

End

【 SCIF2 setting】

Baud rate : 115200bps
Parity bit : None

Stop bit length : 1

Set floating- point status/control register

Set cache (enable)

Initialize LED (set general I/ port)

Set compare match timer (cmt 0)

Enable interrpt （ cmt0）

main. c / int_cmt_cmi0 function

Start

Switch on/off on LED

End

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 16 of 58
Feb 16, 2012

3.2.3 Entry Function Setting
The entry function address of the application program is set to table number 0 of the reset vector table RESET_Vectors.
Table 6 lists the entry function settings.

Table 6 Entry Function Address Settings

Item Description
File Name vecttbl.c
Placement section name DVECTTBL
Table name RESET_Vectors
Table number 0
Default PowerON_Reset_PC

Note: PowerON_Reset_PC is an entry function of the application program.

3.2.4 Stack Pointer Setting
The stack pointer of the application program is set to table number 1 of the reset vector table RESET_Vectors. Table 7
lists the setting.

Table 7 Stack Pointer Settings

Item Description
File name vecttbl.c
Placement section name DVECTTBL
Table name RESET_Vectors
Table number 1
Default _secend ("S")

3.2.5 Section Initialization
The section is initialized by executing the section initialization routine (INITSCT function) using values stored in
section initialization tables (DTBL and BTBL) described in the file dbsct.c. After the execution, write-back operation of
the cache to guarantee the coherency between the cache memory and the large-capacity internal RAM.

3.2.6 Cache Setting (Enable)
Setting cache control register 1 validates the instruction cache and the operand cache..

3.2.7 Vector Base Register (VBR) Setting
The vector table of exceptional operation of the application program is set in VBR.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 17 of 58
Feb 16, 2012

3.2.8 Generating the Application Program Transfer Information (appinfo)
Table 8 describes about the structure to generate the transfer information (appinfo) of application program. The
beginning and the end address of the application program is obtained by section address operators (sectop, secend).
The following structure is allocated in section DAPPINFO. The start address of the application program (program area,
constant area, and initialized data area) should be registered in the app_top, and the end address of the application
program in the app_end.

Table 8 Application Program Transfer Information (appinfo)

Item Description
File name appinfo.c
Structure name appinfo

Member Name Value Description
void *app_top _sectop ("DAPPINFO") Start address of the application

program

Structure member

void *app_end _secend ("PCACHE") End address of the application
program +1

The section to place DAPPINFO

Note: The amount of size of the loader program (8 KB) and application program must not exceed the capacity of the
 serial flash memory.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 18 of 58
Feb 16, 2012

Beginning section

（ DAPPINFOSection ）

End section

（ Section PCACHE ）

Uninitialized area

(Section B)

Section xxx_1

Stack area

(Section S)

・
・
・

Program area in the application
program, constant area, initialized
data area are the targets to be
controlled by transfer information
by the application program.

Uninitialized area (section B)
should be allocated in a random
area.

__ sectop(" DAPPINFO")

__ secend(" PCACHE")

Start address of the application program

（ Program area, constant area, initialized data area)

app_top

app_end

Application program

transfer information
(appinfo)

Second section

（ DVECTTBLSection ）

Memory map

Section xxx_2

Section xxx_n

Stack area (section S) should
be allocated in a random area.

End address of the application program

（ Program area, constant area, initialized data area)

Figure 9 shows the generation image of transfer information of application program (appinfo).

Figure 9 Generation image of Transfer Information (appinfo) of Application Program

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 19 of 58
Feb 16, 2012

3.3 Downloader Example
This section describes the downloader in this application.

3.3.1 Operation Overview
Before executing downloader, the downloader and the loader program should be transferred from the development
environment to the high-speed internal RAM on system, and the application program to the large-capacity internal
RAM by using the debugger. Figure 10 shows an operation image of the downloader.

The application program is allocated in SPI multi I/O bus space area, but the debugger cannot transfer programs to SPI
multi I/O bus space. So only the debug information of abs file in the SPI multi I/O bus area while mot file is
downloaded in the large-capacity RAM.

Serial flash memory
H' 0000 0000

H' 0000 1FFF

Development environment

Application program

*.abs file

Loader program

*.abs file

Downloader

*.abs file

High-speed internal RAM
H'FFF8 0000

H'FFF8 1FFF

Loader program

Downloader H'FFF8 2000
H'FFF8 3FFF

Application program

H' 0000 2000

Large-capacity internal RAM

Debug information of
application program*

SPI multi I/O bus space

Application program

*.mot file

Note: When debug is not necessary, downloading is not necessary.

Debug information
only

H'1C 00 2000

H' 1800 2000

Download with offset

（ +H' 0400 0000）

Figure 10 Downloader Operation Image (1)

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 20 of 58
Feb 16, 2012

The loader program and the application program are written in the serial flash memory by executing downloader. The
downloader writes the loader program from H'0000 0000 to H'0000 1FFF address in the serial flash memory, and the
application program from H'0000 2000.

Figure 11 shows another operation image of the downloader.

Serial flash memory
H' 0000 0000

H' 0000 1FFF

Development environment

Application program

*.abs file

Loader program

*.abs file

Downloader

*.abs file

High-speed internal RAM
H'FFF8 0000

H'FFF8 1FFF

Loader program

Downloader H'FFF8 2000
H'FFF8 3FFF

Application program

H' 0000 2000

Large－capacity internal RAM

Debug information of the
application program *

SPI multi I/O bus space

Application program

*.mot file

Note: When debug is not necessary, downloading is not necessary.

H' 1800 2000

Loader program

Application program

H'1C 00 2000

Figure 11 Downloader Operation Image

3.3.2 Areas Used by the Downloader
The downloader occupies the addresses from H'FFF8 2000 to H'FFF8 3FFF. When the loader program, application
program and downloader occupy the same section, the programs do not operate properly.

3.3.3 Flow Chart
Figure 12 shows the flow chart of the downloader. Executing the downloader placed in the high-speed internal RAM
enables writing in the serial flash memory. For more information, refer to the sections 3.3.4 to 3.3.8.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 21 of 58
Feb 16, 2012

 Figure 12 Downloader Flow Chart

Write OK?

Write OK?

End in _ haltEnd in _error

No

No

Yes

Start

Mask the interrupt

Initialize multi I/ bus controller (SPIBSC)

Set stack pointer (R15) → Refer to 3.3.4.

→

Release serial flash memory software protect

→

→

→

Write the loader program

Write application program

Yes

Set the serial flash memory software protect

→

Refer to 3.3.6

Refer to 3.3.6

Refer to 3.3.5

Refer to 3.3.7 and Figure 14

Refer to 3.3.8 and Figure 15

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 22 of 58
Feb 16, 2012

Figure 13 shows the flow chart of writing the loader program and application program.

Figure 13 Flow Chart of Writing

Set the write destination address

Sector erased ?
Yes

No

Write OK

Erase the target sector.

Write by sectors (program command)

Set the write size

Update the write destination address

Update the write size

Write size is 0 ?

Yes

No

Calculate the target sector number
from the write address

Verify data (examine writing)

Verify OK ?

Yes

No

Write error

Write the loader program
Write the application program

・
Erase the target sector before writing . When the
sector is not erased, erase it by the Sector Erase
command (H’D8) by the unit of 64KB

・
Issue the Page Programming command (H’02) or the
Quad Page Programming command (H’32) to write
data by 1 byte.

・
To verify that the writing is completed
successfully, read the data in the serial flash
memory and compare them with the provided data .

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 23 of 58
Feb 16, 2012

3.3.4 Stack Pointer Setting
H’FF8 4000 is allocated in the number in the stack pointer(R15). This processing should be allocated at the address
H'FFF8 2000, and use the assembly language to avoid the downloader using the undefined stack pointer. C can be used
after configuring the stack pointer. Then, the downloader jumps to the entry function of the downloader.

3.3.5 Interrupt Mask
B'1111 is specified in the interrupt mask level bit of the Status Register (SR) as the downloader does not support the
interrupt in an operation.

3.3.6 Initialization
The following initial setting should be given to the serial flash memory before accessing.

1. Configure SPIBSC
2. Issue the Write Enable command to the serial flash memory to cancel the software protection.

3.3.7 Writing the Loader Program
The downloader reads the loader program that has been transferred at the address from H'FFF8 0000 to H'FFF8 1FFF in
the high-speed internal RAM, and writes the loader program at the address from H'0000 0000 to H'0000 1FFF in the
serial flash memory. Table 9 lists the loader program writing.

Table 9 Loader Program Writing

Item Description
Loader program transfer source address (high-speed
internal RAM)

H'FFF8 0000 (fixed)

Loader program transfer destination address (serial
flash memory)

H'0000 0000 (fixed)

Transfer size H'2000 (fixed)
Writing procedures 1. Check if the destination address has already

been erased
2. Erase the data when the address has not been

erased
3. Issue the program command to write

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 24 of 58
Feb 16, 2012

3.3.8 Writing the Application Program
The downloader writes the application program from the address H'0000 2000 in the large-capacity internal RAM.
Table 10 lists the application program writing.

Table 10 Application Program Writing

Item Description
Application program transfer source address (large-
capacity internal RAM)

H’1C00 2000 (download address in mot file)

Application program transfer destination address
(serial flash memory)

H'0000 2000 (fixed)

Transfer size Extracts from the appinfo in the application program
(depends on the application program)

Writing procedures 1. Check if the destination address has already
been erased

2. Erase the data when the address has not been
erased

3. Issue the program command to write.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 25 of 58
Feb 16, 2012

・ Execute the downloader

Start

Reset CPU

Set the frequency control register (FRQCR)

Transfer programs to RAM

Insert a software breakpoint at the _halt
Insert a software breakpoint to stop the
program when the downloader terminates.

・

_halt is a function in the downloader which is
called when the downloader ends successfully.

・

_error is a function in the downloader which
is called when the downloader ends in an
error.

Execute downloader

Wait until the downloader is completed

Remove the software breakpoint at the _halt

End

・ When the downloader terminates, remove the
 software breakpoint to recover the original
 environment.

Transfer the loader program and downloader to
the high-speed internal RAM, and the application
program to the large-capakcity internal RAM.

Remove the software breakpoint at the _error

Insert a software breakpoint at the _error

Set system control register 5 (SYSCR5) ・ Write-enable in the large-capacity internal RAM

・

・

3.3.9 Batch File
Before executing the downloader, the loader program and the downloader must be transferred to the high-speed internal
RAM, and the application program must be transferred to the large-capacity internal RAM to write the loader program
and the application program in the serial flash memory.

This application note uses the command batch file in the High-performance Embedded Workshop to execute a series of
processing automatically though manual process possible.

Figure 14 shows the flow chart of the command batch file. The command batch file is used to transfer programs to the
high-speed internal RAM and the large-capacity internal RAM, and write programs in the serial flash memory.

Figure 14 Command Batch File Flow Chart

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 26 of 58
Feb 16, 2012

4. Sample Program Listing

4.1 Loader Program
4.1.1 Loader Program Listing “loader.src” (1)

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

;/**

;* DISCLAIMER

;*

;* This software is supplied by Renesas Electronics Corporation and is only

;* intended for use with Renesas products. No other uses are authorized.

;*

;* This software is owned by Renesas Electronics Corporation and is protected under

;* all applicable laws, including copyright laws.

;*

;* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

;* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

;* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

;* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

;* DISCLAIMED.

;*

;* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

;* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

;* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

;* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

;* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

;*

;* Renesas reserves the right, without notice, to make changes to this

;* software and to discontinue the availability of this software.

;* By using this software, you agree to the additional terms and

;* conditions found by accessing the following link:

;* http://www.renesas.com/disclaimer

;**

;* Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.

;**************************** Technical reference data **************************

;* System Name : SH7268/SH7269 Firm Update Sample Program

;* File Name : ld_loader.src

;* Abstract : Loader program preprocessing/jump processing to the application

;* : program

;* Version : 1.00.00

;* Device : SH7268/SH7269

;* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

;* : C/C++ compiler package for the SuperH RISC engine family

;* : (Ver.9.03Release02).

;* OS : None

;* H/W Platform: R0K57269(CPU board)

;* Description :

;**

;* History : Jul.06,2011 Ver.1.00.00

;*""FILE COMMENT END""**/

 .SECTION LOADER_ENTRY,CODE,ALIGN = 4

 .IMPORT _main

 .EXPORT _jmp_app_prog

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 27 of 58
Feb 16, 2012

4.1.2 Loader Program Listing "loader.src" (2)

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

_loader_prog:

 MOV.L L2,R15 ; Sets the stack pointer

 MOV.L L1,R0 ; Retrieves the entry function of the loader program

 JMP @R0 ; Jumps to the entry function of the loader program

 NOP

;/*""FUNC COMMENT""**

; * ID :

; * Outline : Jump to the application program

; *--

; * Include :

; *--

; * Declaration : _jmp_app_prog

; *--

; * Description : 1. Retrieves the stack pointer value stored in the first 12 to

; * : 15 bytes in the application program.

; * : 2. Specifies the stack pointer (R15).

; * : 3. Retrieves the entry function address stored in the first 8 to

; * : 11 bytes in the application program.

; * : 4. Jumps to the entry function.

; *--

; * Argument : R4 ; I : Start address of the application program

; *--

; * Return Value: none

; *""FUNC COMMENT END""**/

_jmp_app_prog:

 MOV.L R4,R0 ; Substitutes the start address of the application program for R0

 ADD #12,R0 ; Calculates the address storing the stack pointer value and

 ; substitutes the address for R0

 MOV.L @R0,R15 ; Sets the stack pointer

 MOV.L R4,R0 ; Substitutes the start address of the application program for R0

 ADD #8,R0 ; Calculates the address storing the entry function of the application

 ; program and substitutes the address for R0

 MOV.L @R0,R0 ; Substitutes the entry function address of the application

 ; program for R0

 JMP @R0 ; Jumps to the entry function of the application program

 NOP

 .ALIGN 4

L1:

 .DATA.L _main ; Entry function address of the loader program

L2:

 .DATA.L H'FFF82000 ; Stack pointer (R15) value of the loader program

 .pool

 .end

;/* End of File */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 28 of 58
Feb 16, 2012

4.1.3 Loader Program Listing "ld_main.c" (1)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.

**************************** Technical reference data **************************

* System Name : SH7268/SH7269 Firm Update Sample Program

* File Name : ld_main.c

* Abstract : loader main

* Version : 1.00.00

* Device : SH7268/SH7269

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release02).

* OS : None

* H/W Platform: R0K57269(CPU board)

* Description :

**

* History : Jul.06,2011 Ver.1.00.00

***/

#include <stdio.h>

#include <string.h>

#include <machine.h>

#include "iodefine.h"

#include "serial_flash.h"

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 29 of 58
Feb 16, 2012

4.1.4 Loader Program Listing "ld_main.c" (2)

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

/* ==== macro defined ==== */

#define FPSCR_INIT 0x00040001 /* Value to set in the FPSCR register */

#define INT_MASK 0x000000F0 /* Value to set in the SR register

 (for masking the interrupt) */

#define APROG_TOP_SFLASH 0x00002000 /* Start address of the application program */

 /* (serial flash memory) */

#define APPINFO_TOP APROG_TOP_SFLASH /* Address the appinfo.app_top is located */

#define APPINFO_END (APROG_TOP_SFLASH + 4) /* Address the appinfo.app_end is located */

/* ==== prototype declaration ==== */

void main(void);

void get_appinfo(unsigned long *app_top_addr,unsigned long *app_end_addr);

void app_prog_transfer(unsigned long app_top_addr,unsigned long app_end_addr);

void system_down(void);

extern void jmp_app_prog(unsigned long app_top_addr);

extern void io_set_cpg(void);

extern void sf_byte_read_long(unsigned long addr, unsigned long *buf, int size);

/* ==== external data ==== */

extern unsigned long DUMMY_Vectors;

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 30 of 58
Feb 16, 2012

4.1.5 Loader Program Listing "ld_main.c" (3)
76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

/***

 * ID :

 * Outline : Loader program main

 * Include : #include "serial_flash.h"

 * Declaration : void main(void);

 * Description : Refers the data in the appinfo to transfer the application program

 * : to the large-capacity internal RAM, and jumps to the entry function

 * : of the application program.

 * Argument : void

 * Return Value: void

 **/

void main(void)

{

 unsigned long app_top,app_end;

 /* Sets the FPSCR */

 set_fpscr(FPSCR_INIT);

 /* Sets the tentative VBR */

 set_vbr((void *)(&DUMMY_Vectors));

 /* Masks the interrupt */

 set_cr(INT_MASK);

 /* Sets the CPG */

 io_set_cpg();

 /* Sets the SPIBSC */

 sf_init_serial_flash_spibsc();

 /* Retrieves the appinfo */

 get_appinfo(&app_top,&app_end);

 sf_allocate_exspace_spibsc();

 /* Jumps to the application program */

 jmp_app_prog(app_top);

 while(1){

 /* LOOP */

 }

}

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 31 of 58
Feb 16, 2012

4.1.6 Loader Program Listing "ld_main.c" (4)

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

/***

 * ID :

 * Outline : Retrieve the appinfo

 * Include : #include "serial_flash.h"

 * Declaration : void get_appinfo (unsigned long *app_top_addr,

 * : unsigned long *app_end_addr);

 * Description : Retrieves the appinfo.

 * : Retrieves the appinfo.top from H'2000 to H'2003 in serial flash

 * : memory, and stores it in the address specified by the first

 * : argument. This function also retrieves the appinfo.end from

 * : H'2004 to H'2007 in serial flash memory, and stores it in the

 * : address specified by the second argument.

 * Argument : unsigned long app_top_addr ; O : Start address of the application

 * : program at destination

 * : unsigned long app_end_addr ; O : End address of the application

 * : program at destination

 * Return Value: void

 **/

void get_appinfo(unsigned long *app_top_addr,unsigned long *app_end_addr)

{

 /* Retrieves the appinfo.top */

 sf_byte_read_spibsc(APPINFO_TOP, (unsigned char *)app_top_addr, 4);

 /* Retrieves the appinfo.end */

 sf_byte_read_spibsc(APPINFO_END, (unsigned char *)app_end_addr, 4);

}

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 32 of 58
Feb 16, 2012

4.1.7 Loader Program Listing "ld_main.c" (5)
149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

/***

 * ID :

 * Outline : Transfer the application program

 * Include : #include "serial_flash.h"

 * Declaration : void app_prog_transfer(unsigned long app_top_addr,

 * : unsigned long app_end_addr);

 * Description : Calculates the size of the application program, and transfers

 * : the application program from serial flash memory to the

 * : large-capacity internal RAM. (Rounds up the allocation size of the

 * : application program to multiples of 4 to transfer in longword.)

 * Argument : unsigned long app_top_addr ; I : Start address of the application

 * : program at destination

 * : unsigned long app_end_addr ; I : End address of the application

 * : at destination

 * Return Value: void

 **/

void app_prog_transfer(unsigned long app_top_addr,unsigned long app_end_addr)

{

 unsigned long app_prog_size;

 /* Calculates the size of the application program */

 app_prog_size = app_end_addr - app_top_addr;

 if((app_prog_size & 0x00000003) != 0){

 app_prog_size &= 0xFFFFFFFC;

 app_prog_size += 4; /* Rounds up the allocation size of the application

 program to multiples of 4. */

 }

 /* Loads the application program in the large-capacity internal RAM */

 sf_byte_read_spibsc(APROG_TOP_SFLASH, (unsigned char *)app_top_addr, app_prog_size);

}

/***

 * ID :

 * Outline : Terminate the system

 * Include :

 * Declaration : void system_down(void);

 * Description : This function contains the infinite loop.

 * : As this is registered in the DUMMY_Vectors table, this is

 * : called when an exception occurs while the loader program

 * : is operating.

 * Argument : void

 * Return Value: void

 **/

void system_down(void)

{

 while(1){

 /* System error */

 }

}

/* End of File */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 33 of 58
Feb 16, 2012

4.2 Application Program
4.2.1 Application Program Listing “main.c”(1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.

**************************** Technical reference data **************************

* System Name : SH7268/SH7269 Sample Program

* File Name : main.c

* Abstract : Sample Program Main

* Version : 1.00.00

* Device : SH7268/SH7269

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03Release02).

* OS : None

* H/W Platform: R0K57269(CPU board)

* Description :

**

* History : Jul.06,2011 Ver.1.00.00

***/

#include <stdio.h>

#include <string.h>

#include <machine.h>

#include "iodefine.h"

#include "r0k57269.h"

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 34 of 58
Feb 16, 2012

4.2.2 Application Program Listing “main.c” (2)

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

/* ==== prototype declaration ==== */

void main(void);

void io_init_cmt0(void);

void int_cmt_cmi0(void);

/* ==== Global variable ==== */

int g_led_onoff; /* LED lighting/turning off */

/***

 * ID :

 * Outline : main

 *--

 * Include :

 *--

 * Declaration : void main(void);

 *--

 * Description :

 *--

 * Argument : void

 *--

 * Return Value: void

 *--

 * Note : None

 **/

void main(void)

{

 puts("\nSH7269 CPU Board Sample Program. Ver.0.02.00");

 puts("Copyright (C) 2010(2011) Renesas Electronics Corporation. All rights eserved.");

 puts("\n");

 /* ==== initial LED port ==== */

 g_led_onoff = 1;

 led_init(); /* LED Initialization */

 /* ==== start timer ==== */

 io_init_cmt0(); /* CMT Initialization */

 /* ==== Setting of interrupt priority level ==== */

 INTC.IPR12.BIT._CMT0 = 0x1; /* CMI Priority level of interrupt = 1 */

 while(1){

 /* loop */

 }

}

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 35 of 58
Feb 16, 2012

4.2.3 Application Program Listing “main.c”(3)

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

/***

 * ID :

 * Outline : CMT0 setting

 *--

 * Include : #include "iodefine.h"

 *--

 * Declaration : void io_init_cmt0(void) ;

 *--

 * Description : CMT0 is set as a fixed cycle of about 500ms timer.

 *--

 * Argument : void

 *--

 * Return Value: void

 *--

 * Note : None

 **/

void io_init_cmt0(void)

{

 /* ---- STBCR7 setting ---- */

 CPG.STBCR7.BIT.MSTP72 = 0; /* Module standby clear */

 /* ==== CMT0 setting ==== */

 /* ---- CMSTR setting ---- */

 CMT.CMSTR.BIT.STR0 = 0; /* Count stop */

 /* ---- CMCSR0 setting ---- */

 CMT.CMCSR0.WORD = 0x0043; /* Pclock/512 */

 /* ---- CMCNT0 setting ---- */

 CMT.CMCNT0.WORD = 0x0000; /* Timer counter clear */

 /* ---- CMCOR0 setting ---- */

 CMT.CMCOR0.WORD = 0x7f08/5; /* 500/5=100ms */

 /* ---- CMSTR setting ---- */

 CMT.CMSTR.BIT.STR0 = 0x1; /* Count start */

}

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 36 of 58
Feb 16, 2012

4.2.4 Application Program Listing “main.c”(4)

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

/***

 * ID :

 * Outline : CMI interrupt

 *--

 * Include : #include "iodefine.h"

 *--

 * Declaration : void int_cmt_cmi0(void);

 *--

 * Description : The CMF flag is cleared, and the output of

 * : LED of each 0.5sec is reversed.

 *--

 * Argument : void

 *--

 * Return Value: void

 *--

 * Note : None

 **/

void int_cmt_cmi0(void)

{

 /* ====CMF Clearness of flag ==== */

 CMT.CMCSR0.BIT.CMF = 0;

 /* ==== PORT Reversing output(LED blinking) ==== */

 g_led_onoff ^= 1;

 if(g_led_onoff == 0){

 led_on(ID_LED1);

 led_on(ID_LED2);

 }

 else{

 led_off(ID_LED1);

 led_off(ID_LED2);

 }

}

/* End of File */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 37 of 58
Feb 16, 2012

4.2.5 Application Program Listing “appinfo.c”(1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.

**************************** Technical reference data **************************

* System Name : SH7268/SH7269 Sample Program

* File Name : appinfo.c

* Abstract : Generate the application program transfer information (appinfo).

* Version : 1.00.00

* Device : SH7268/SH7269

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release02).

* OS : None

* H/W Platform: R0K57269(CPU board)

* Description :

**

* History : Jul.06,2011 Ver.1.00.00

***/

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 38 of 58
Feb 16, 2012

4.2.6 Application Program Listing “appinfo.c”(2)

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

#include "appinfo.h"

#pragma section APPINFO

static APPINFO appinfo = {

 __sectop("DAPPINFO"), /* Start address in the start section of the application */

 /* program (program area, constant area, and initialized */

 /* data area). */

 __secend("PCACHE") /* End address in the end section of the application */

 /* program (program area, constant area, and initialized */

 /* data area) */

};

/* End of File */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 39 of 58
Feb 16, 2012

4.2.7 Application Program Listing “appinfo.h”
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.

**************************** Technical reference data **************************

* System Name : SH7268/SH7269 Sample Program

* File Name : appinfo.h

* Abstract : Header file of the application program transfer information (appinfo).

* Version : 1.00.00

* Device : SH7268/SH7269

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release02).

* OS : None

* H/W Platform: R0K57269(CPU board)

* Description :

**

* History : Jul.06,2011 Ver.1.00.00

***/

#ifndef __APPINFO_H__

#define __APPINFO_H__

typedef struct appinfo_t {

 void *app_top; /* Start address of the application program */

 void *app_end; /* End address of the application program */

} APPINFO;

#endif /* __APPINFO_H__ */

/* End of File */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 40 of 58
Feb 16, 2012

4.3 Downloader
4.3.1 Downloader Program Listing “downloader.hdc” (1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

#/**

#* DISCLAIMER

#*

#* This software is supplied by Renesas Electronics Corporation and is only

#* intended for use with Renesas products. No other uses are authorized.

#*

#* This software is owned by Renesas Electronics Corporation and is protected under

#* all applicable laws, including copyright laws.

#*

#* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

#* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

#* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

#* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

#* DISCLAIMED.

#*

#* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

#* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

#* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

#* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

#* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

#*

#* Renesas reserves the right, without notice, to make changes to this

#* software and to discontinue the availability of this software.

#* By using this software, you agree to the additional terms and

#* conditions found by accessing the following link:

#* http://www.renesas.com/disclaimer

#**

#* Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.

#**************************** Technical reference data **************************

#* System Name : SH7268/SH7269 Firm Update Sample Program

#* File Name : downloader.hdc

#* Abstract : ダウンローダ用バッチファイル

#* Version : 1.00.00

#* Device : SH7269/SH7269

#* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

#* : C/C++ compiler package for the SuperH RISC engine family

#* : (Ver.9.03Release02).

#* OS : None

#* H/W Platform: R0K57269(CPU board)

#* Description :

#**

#* History : Jul.06,2011 Ver.1.00.00

#*""FILE COMMENT END""**/

tcl enable

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 41 of 58
Feb 16, 2012

4.3.2 Downloader Program Listing “downloader.hdc” (2)
49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

#Macro downloader -Start

proc init_hardware {} {

 # set CPG

 MF H'FFFE0010 H'FFFE0011 H'1015 WORD

 # set SYSCR5

 MF H'FFFE0428 H'FFFE0428 H'0F BYTE

}

proc downloader {} {

 # reset CPU

 reset

 # init_hardware call routines

 init_hardware

 #download all [Download modules] in High-performance Embedded Workshop

 file_load_all

 #permit user stack（to use software breakpoint）

 sh2a_sbstk enable

 # set software break point in _halt(refer to main.c)

 set_disassembly_soft_break _halt set

 # set software break point in _error(refer to main.c)

 set_disassembly_soft_break _error set

 # execute _downloader(refer to downloader.src). Wait till stops

 go wait _downloader

 # clear software break point set in _halt

 set_disassembly_soft_break _halt clear

 # clear the software break point set in _error

 set_disassembly_soft_break _error clear

}

downloader

#Macro downloader -End

#Note: "tcl","reset","file_load","sh2a_sbstk","set_disassembly_soft_break","go" are、the

commands of #High-performance Embedded Workshop and E10A-USB emulator. For the details of

commands, see the Manual.。

/* End of File */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 42 of 58
Feb 16, 2012

4.3.3 Downloader Program Listing “dl_entry.src” (1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

;/**

;* DISCLAIMER

;*

;* This software is supplied by Renesas Electronics Corporation and is only

;* intended for use with Renesas products. No other uses are authorized.

;*

;* This software is owned by Renesas Electronics Corporation and is protected under

;* all applicable laws, including copyright laws.

;*

;* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

;* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

;* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

;* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

;* DISCLAIMED.

;*

;* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

;* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

;* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

;* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

;* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

;*

;* Renesas reserves the right, without notice, to make changes to this

;* software and to discontinue the availability of this software.

;* By using this software, you agree to the additional terms and

;* conditions found by accessing the following link:

;* http://www.renesas.com/disclaimer

;**

;* Copyright (C) 2010(2011) Renesas Electronics Corporation. All rights reserved.

;**************************** Technical reference data **************************

;* System Name : SH7268/SH7269 Firm Update Sample Program

;* File Name : dl_entry.src

;* Abstract : downloader start up

;* Version : 0.03.00

;* Device : SH7268/SH7269

;* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

;* : C/C++ compiler package for the SuperH RISC engine family

;* : (Ver.9.03Release02).

;* OS : None

;* H/W Platform: R0K57269(CPU board)

;* Description :

;**

;* History : Sep.06,2010 Ver.0.01.00

;* : Apr.27,2011 Ver.0.02.00 change comment

;* : May.08,2011 Ver.0.03.00 change comment

;*""FILE COMMENT END""**/

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 43 of 58
Feb 16, 2012

4.3.4 Downloader Program Listing “dl_entry.src” (2)

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 .SECTION ENTRY,CODE,ALIGN = 4

 .IMPORT _PowerON_Reset_PC

_downloader:

 MOV.L STACK_POINTER,R15 ; setting stack pointer

 MOV.L MAIN_PROGRAM,R0 ; get entry address of downloader

 JMP @R0 ; jump to entry address of downloader

 NOP

 .ALIGN 4

MAIN_PROGRAM:

 .DATA.L _PowerON_Reset_PC ; entry address of downloader

STACK_POINTER:

 .DATA.L H'FFF84000 ; stack pointer of downloader(R15)

 .pool

 .end

;/* End of File */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 44 of 58
Feb 16, 2012

4.3.5 Downloader Program List “dl_main.c” (1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

/**

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corporation and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corporation and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.

**************************** Technical reference data **************************

* System Name : SH7268/SH7269 Firm Update Sample Program

* File Name : dl_main.c

* Abstract : downloader main

* Version : 1.00.00

* Device : SH7268/SH7269

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release02).

* OS : None

* H/W Platform: R0K57269(CPU board)

* Description :

**

* History : Jul.06,2011 Ver.1.00.00

***/

#include <stdio.h>

#include <string.h>

#include <machine.h>

#include "iodefine.h"

#include "serial_flash.h"

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 45 of 58
Feb 16, 2012

4.3.6 Downloader Program List “dl_main.c” (2)

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

/* ==== macro defined ==== */

#define SECTOR_SIZE SF_SECTOR_SIZE /* Sector size */

#define SECTOR_NUM SF_NUM_OF_SECTOR /* Total number of sectors in the device */

#define DEVICE_SIZE (SECTOR_SIZE * SECTOR_NUM) /* Device size */

#if (SFLASH_DUAL == 0)

#define L_PROG_SIZE 8192 /* Loader program size */

#else

#define L_PROG_SIZE 4096 /* Loader program size */

#endif

#define L_PROG_SRC 0xFFF80000 /* Source address of the loader program */

#define L_PROG_DST 0x00000000 /* Destination address of the loader program */

#define APROG_TOP_SFLASH 0x00002000 /* Start address of the application program */

#define APROG_TOP_RAM 0x1C002000 /* Start address of the application program */

 /* When changing the start section of the */

 /* application program, change this definition */

#define APPINFO_TOP APROG_TOP_RAM /* Address the appinfo.app_top is located */

#define APPINFO_END (APROG_TOP_RAM + 4) /* Address the appinfo.app_end is located */

/* ==== prototype declaration ==== */

/*** User API ****/

void main(void);

static void halt(void);

static void error(void);

static void init_erase_flag(void);

static int Is_erased_sector(unsigned long sector_no);

static void set_erase_flag(unsigned long sector_no);

static int write_prog_data(unsigned char *program_data, unsigned long sflash_addr,

 unsigned long size);

/*** data ***/

static unsigned char sflash_erase_flag[SECTOR_NUM];/* 0: sector not erased,1: sector

erased */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 46 of 58
Feb 16, 2012

4.3.7 Downloader Program List “dl_main.c” (3)

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

/***

 * ID :

 * Outline : Downloader main

 * Include :

 * Declaration : void main(void);

 * Description : Writes the loader program and application program in serial

 * : flash memory as the following procedures.

 * : 1. Mask the interrupt while the downloader is operating.

 * : 2. Initialize the RSPI0.

 * : 3. Disable the software protection in serial flash memory.

 * : 4. Write the loader program in serial flash memory.

 * : 5. Write the application program in serial flash memory.

 * Argument : void

 * Return Value: void

 **/

void main(void)

{

 unsigned long app_top_addr,app_end_addr,app_prog_size;

 /* Initializes the erase flag */

 init_erase_flag();

 /* Initializes the SPIBSC */

 sf_init_serial_flash_spibsc();

 /* Disables the software protection in serial flash memory */

 sf_protect_ctrl_spibsc(SF_REQ_UNPROTECT);

 /* Writes the loader program */

 if(write_prog_data((unsigned char *)L_PROG_SRC, L_PROG_DST, L_PROG_SIZE) < 0){

 error();

 }

 /* Retrieves the start address and end address from the application program

 transfer information (appinfo) */

 app_top_addr = *(volatile unsigned long *)APPINFO_TOP;

 app_end_addr = *(volatile unsigned long *)APPINFO_END;

 /* Calculates the size of the application program */

 app_prog_size = app_end_addr - app_top_addr;

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 47 of 58
Feb 16, 2012

4.3.8 Downloader Program List “dl_main.c” (4)

128

129

130

131

132

133

134

135

136

137

138

139

 /* Writes the application program */

if(write_prog_data((unsigned char *)APROG_TOP_RAM,APROG_TOP_SFLASH, app_prog_size)<0){

 error();

 }

 /* Enables the software protection in serial flash memory */

 sf_protect_ctrl_spibsc(SF_REQ_PROTECT);

 /* Exits the downloader */

 halt();

}

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 48 of 58
Feb 16, 2012

4.3.9 Downloader Program List “dl_main.c” (5)
140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

/***

 * ID :

 * Outline : Write the program data

 * Include :

 * Declaration : int write_prog_data(unsigned char *program_data,

 * : unsigned long sflash_addr, unsigned long size);

 * Description : Writes the program data as the following procedures.

 * : 1. Erase the target sector when it is not erased.

 * : 2. Write the program data in serial flash memory.

 * : 3. Reads the data in serial flash memory and compare it with the

 * : provided data.

 * Argument : unsigned char *program_data ; I : Start address of the program data

 * : unsigned long sflash_addr ; I : Start address at the destination in

 * serial flash memory

 * : unsigned long size ; I : Write size

 * Return Value: Equal or bigger than 0: Success

 * : Less than 0: Error

 **/

int write_prog_data(unsigned char *program_data, unsigned long sflash_addr, unsigned long

size)

{

 unsigned long sector_no;

 unsigned long saddr;

 unsigned long sz;

 unsigned char read_data[2];

 unsigned char *w_p;

 int wr_size;

 int rd_size;

 int bsz;

 bsz = 1;

 /* ==== Copies the value from the argument to the local variable ==== */

 saddr = sflash_addr;

 sz = size;

 w_p = program_data;

 /* ==== Writes data in serial flash memory ==== */

 while(sz > 0){

 if(sz > ((256 * bsz) - (saddr % (256 * bsz)))){

 wr_size = (int)((256 * bsz) - (saddr % (256 * bsz)));

 }

 else{

 wr_size = (int)sz;

 }

 sector_no = saddr / (SECTOR_SIZE * bsz);

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 49 of 58
Feb 16, 2012

4.3.10 Downloader Program List “dl_main.c” (6)

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

 if(Is_erased_sector(sector_no) == 0){ /* When it is not erased */

 sf_sector_erase_spibsc(sector_no); /* Erase */

 set_erase_flag(sector_no); /* When it is erased, set the erase flag */

 }

 sf_byte_program_spibsc(saddr, w_p, wr_size);

 /* Writes data in units of */

 /* single byte */

 w_p += wr_size;

 saddr += wr_size;

 sz -= wr_size;

 }

 /* ==== Verifies data (serial flash memory is programmed successfully) ==== */

 saddr = sflash_addr;

 sz = size;

 w_p = program_data;

 rd_size = 1;

 while(sz > 0){

 sf_byte_read_spibsc(saddr,read_data, rd_size);

 /* Reads the data written in */

 /* serial flash memory */

 if(w_p[0] != read_data[0]){

 return -1; /* Returns an error when the data */

 /* unmatched */

 }

 w_p += rd_size;

 saddr += rd_size;

 sz -= rd_size;

 }

 return 0;

}

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 50 of 58
Feb 16, 2012

4.3.11 Downloader Program List “dl_main.c” (7)

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

/***

 * ID :

 * Outline : Initialize the Erase Flag

 * Include :

 * Declaration : static void init_erase_flag(void);

 * Description : Initializes the table sflash_erase_flag[].

 * Argument : void

 * Return Value: void

 **/

static void init_erase_flag(void)

{

 int i;

 for(i=0; i < SECTOR_NUM ;i++){

 sflash_erase_flag[i] = 0;

 }

}

/***

 * ID :

 * Outline : Retrieve the Sector Erase Status

 * Include :

 * Declaration : static int Is_erased_sector(unsigned long sector_no);

 * Description : Returns the information (not erased or eraser) of the

 * : sector specified by the sector number.

 * Argument : unsigned long sector_no ; I : Sector number

 * Return Value: 1 : Sector in the specified address is already erased

 * : 0 : Sector in the specified address is not erased

 **/

static int Is_erased_sector(unsigned long sector_no)

{

 return sflash_erase_flag[sector_no];

}

/***

 * ID :

 * Outline : Set the Erase Flag

 * Include :

 * Declaration : static void set_erase_flag(unsigned long sector_no);

 * Description : Sets the erase flag to modify the information of the specified

 * : sector as erased.

 * Argument : unsigned long sector_no ; I : Sector number

 * Return Value: void

 **/

static void set_erase_flag(unsigned long sector_no)

{

 sflash_erase_flag[sector_no] = 1;

}

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 51 of 58
Feb 16, 2012

4.3.12 Downloader Program List “dl_main.c” (8)

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

/***

 * ID :

 * Outline : Program stops (successful).

 * Include :

 * Declaration : static void halt(void);

 * Description : When the downloader ends successfully, this function is called

 * : to stop the program.

 * Argument : void

 * Return Value: void

 **/

static void halt(void)

{

 while(1){

 /* When the downloader ends successfully, this function stops the program. */

 }

}

/***

 * ID :

 * Outline : Program stops (error).

 * Include :

 * Declaration : static void error(void);

 * Description : When the downloader ends in error, this function is called

 * : to stop the program.

 * Argument : void

 * Return Value: void

 **/

static void error(void)

{

 while(1){

 /* When the downloader ends in error, this function stops the program */

 }

}

/* End of File */

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 52 of 58
Feb 16, 2012

5. Using the Downloader
The downloader in this application is designed to operate with the combination of the High-performance embedded
Workshop and the E10A-USB emulator. When using the downloader with other development environments, alter the
program according to the usage environments.

Programs cannot be written in the serial flash memory by selecting the downloader module in the Download dialog box
on the Debug menu. This section explains the procedures to write programs in the serial flash memory using the
downloader in the applicable examples.

5.1 Sample Program Configuration
The sample program consists of three workspaces as listed in Table 11.

Table 11 Sample Program Configuration

Workspace Name Description
sh7269_spibsc_downloader Builds the downloader in the project of this workspace
sh7269_spibsc_loader_prog Builds the loader program in the project of this workspace
sh7269_spibsc_app Builds the application program in the project of this workspace. The

downloader created in the [sh7269_spibsc_downloader]
workspace, a batch file to boot the downloader, and the loader
program created in the [sh7269_spibsc_loader_prog] workspace
are registered in the project of this workspace. Use these items to
write the loader program and application program in the serial flash
memory.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 53 of 58
Feb 16, 2012

5.2 Writing Programs in the Serial Flash Memory
This section describes how to write the loader program and application program in the serial flash memory using the
[sh7269_spibsc_app] workspace.

5.2.1 Registering the Download Module and the Batch File
Figure 15 shows the directory configuration of the [sh7269_spibsc_app] workspace. Download modules (A, B, Cand E)
and a batch file (D) in the figure are registered in the project. An attention is required to register the download modules
A and B. A as abs file is downloaded only its debug information and B as mot file is downloaded on large-capacity
RAM using offset specification as SPI multi I/O bus space does not allow downloading into it directly.

Figure 16 and Figure 17 show the download examples using in the sample programs.

Figure 15 [sh7269_spibsc_app] Workspace Directory Configuration

1. Changing the download module
The download module setting is changed in the Debug Settings dialog box which is opened by selecting Debug
Setting in the Debug menu of the High-performance Embedded Workshop.
For the procedure to register the download modules, refer to the High-performance Embedded Workshop User’s
Manual.

2. Changing the batch file
The batch file setting registered in the project is changed in the Set Batch File dialog box. The following procedure
will open the Set Batch File dialog box. On the View menu in the High-performance Embedded Workshop, click
the Command Line to open the Command Line window. Open the Set Batch File dialog box from the Batch File
pop-up menu on the Command Line window.
For the procedure to register the batch file, refer to the High-performance Embedded Workshop User’s Manual.

 \sh7269_ spibsc_app
 |-sh7269_ spibsc_app
 | |- debug
 | |-sh7269_ spibsc_app.abs
 | |-sh7269_ spibsc_app.mot
 |
 |- inc
 |-src
 |- sflash_boot
 |-sh 7269_ spibsc_ downloader.abs
 |- downloader.hdc
 |-sh 7269_ spibsc_ loader_ prog.abs

: Workspace directory

: Project directory
:
: Application program execute file 1 ------------------------- A
: ------------------------- B
:
: Directory to store the common include files

: Directory to store the source files

: Directory to store the downloader and loader programs

: Downloader execute file --C
: Batch file to boot the downloader -------------------------------------D
: Loader program execute file --E

Application program execute file 2

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 54 of 58
Feb 16, 2012

Figure 16 Example for Registering the Download Module as mot file

Figure 17 Example for Registering the Download Module as abs file

Select “Elf/dwarf2” as
the debug format

Set as below.
Offset = 04000000
File format = S-Record

Select
“xxx.mot” and
click Modify

Check “Download
debug information only”

Select
“xxx.abs” and
click Modify.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 55 of 58
Feb 16, 2012

5.2.2 Procedures to Writing Programs
This section describes how to write the loader program and the application program in the serial flash memory using the
[sh7269_spibsc_app] workspace.

1. Copy the [sh7269_spibsc_app] workspace directory in C:\Workspace.
2. Double-click the [sh7269_spibsc_app].hws in the workspace directory to activate the High-performance Embedded

Workshop.
3. On the Build menu in High-performance Embedded Workshop, select the Build All to build the project. The

application program is generated.
4. On the Debug menu in High-performance Embedded Workshop, select the Go to connect with the target device.
5. After the connection establishment, select the Command Line on the View menu in High-performance Embedded

Workshop to open the Command Line window as shown in Figure 18.
6. Click the Run Batch button in the Command Line window to execute the registered batch file [downloader.hdc].

Command Line window

Run Batch button

Figure 18 Command Line Window and Run Batch Button

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 56 of 58
Feb 16, 2012

7. When the batch file [downloader.hdc] is executed, all of the download modules registered in the workspace (loader
program, application program, and downloader) are transferred to RAM to execute the downloader. As shown in
Figure 19, the program counter stops at the _halt, when the downloader ends normally. The program counter stops
at the _error, when the downloader ends in error. A source file may appear when the [sh7269_spibsc_downloader]
workspace directory is copied in C:\Workspace.

8. When writing is completed successfully, the loader program and the application program can be executed after
Reset Go.

When the downloader ends normally, the program
counter stops at the _halt.

When the downloader ends in error, the
program counter stops at the _error.

Figure 19 High-performance Embedded Workshop Window When the Downloader Ends

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 57 of 58
Feb 16, 2012

6. References
• Software Manual

SH-2A/SH2A-FPU Software Manual Rev. 3.00
The latest version can be downloaded from the Renesas Electronics website.

• User's Manual for Hardware

SH7268 Group, SH7269 Group User's Manual: Hardware Rev. 1.00
The latest version can be downloaded from the Renesas Electronics website.

SH7268/SH7269 Group Boot From the Serial Flash Memory
Using SPI Multi I/O Bus Controller

R01AN0663EJ0101 Rev. 1.01 Page 58 of 58
Feb 16, 2012

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Jul 11.11 — First edition issued
1.01 Feb 16.12 — Added sample code of SH726B

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

	1. Introduction
	1.1 Specifications
	1.2 Modules Used
	1.3 Applicable Conditions
	1.4 Related Application Note
	1.5 About Active-low Pins (Signals)

	2. Overview of the Serial Flash Boot
	2.1 Words and Terms
	2.2 The Serial Flash Boot Operation
	2.3 Downloader Operation
	2.4 Serial Flash Memory Connection

	3. Applications
	3.1 Loader Program Specifications
	3.1.1 Memory Map
	3.1.2 Flow Chart of the Loader Program
	3.1.3 Stack Pointer Setting
	3.1.4 Floating-Point Status/Control Register (FPSCR) Setting
	3.1.5 Vector Base Register (VBR) Setting
	3.1.6 Interrupt Mask
	3.1.7 Initial Configuration
	3.1.8 Reading Transfer Information of Application Programs
	3.1.9 Enabling Read Mode in External Address Space
	3.1.10 Application Program Stack Pointer Setting
	3.1.11 Application Program Jump to the Entry Function Address
	3.1.12 Register State after Executing Loader Program

	3.2 Application Program Example
	3.2.1 Section Alignment
	3.2.2 Flow Chart
	3.2.3 Entry Function Setting
	3.2.4 Stack Pointer Setting
	3.2.5 Section Initialization
	3.2.6 Cache Setting (Enable)
	3.2.7 Vector Base Register (VBR) Setting
	3.2.8 Generating the Application Program Transfer Information (appinfo)

	3.3 Downloader Example
	3.3.1 Operation Overview
	3.3.2 Areas Used by the Downloader
	3.3.3 Flow Chart
	3.3.4 Stack Pointer Setting
	3.3.5 Interrupt Mask
	3.3.6 Initialization
	3.3.7 Writing the Loader Program
	3.3.8 Writing the Application Program
	3.3.9 Batch File

	4. Sample Program Listing
	4.1 Loader Program
	4.1.1 Loader Program Listing “loader.src” (1)
	4.1.2 Loader Program Listing "loader.src" (2)
	4.1.3 Loader Program Listing "ld_main.c" (1)
	4.1.4 Loader Program Listing "ld_main.c" (2)
	4.1.5 Loader Program Listing "ld_main.c" (3)
	4.1.6 Loader Program Listing "ld_main.c" (4)
	4.1.7 Loader Program Listing "ld_main.c" (5)

	4.2 Application Program
	4.2.1 Application Program Listing “main.c”(1)
	4.2.2 Application Program Listing “main.c” (2)
	4.2.3 Application Program Listing “main.c”(3)
	4.2.4 Application Program Listing “main.c”(4)
	4.2.5 Application Program Listing “appinfo.c”(1)
	4.2.6 Application Program Listing “appinfo.c”(2)
	4.2.7 Application Program Listing “appinfo.h”

	4.3 Downloader
	4.3.1 Downloader Program Listing “downloader.hdc” (1)
	4.3.2 Downloader Program Listing “downloader.hdc” (2)
	4.3.3 Downloader Program Listing “dl_entry.src” (1)
	4.3.4 Downloader Program Listing “dl_entry.src” (2)
	4.3.5 Downloader Program List “dl_main.c” (1)
	4.3.6 Downloader Program List “dl_main.c” (2)
	4.3.7 Downloader Program List “dl_main.c” (3)
	4.3.8 Downloader Program List “dl_main.c” (4)
	4.3.9 Downloader Program List “dl_main.c” (5)
	4.3.10 Downloader Program List “dl_main.c” (6)
	4.3.11 Downloader Program List “dl_main.c” (7)
	4.3.12 Downloader Program List “dl_main.c” (8)

	5. Using the Downloader
	5.1 Sample Program Configuration
	5.2 Writing Programs in the Serial Flash Memory
	5.2.1 Registering the Download Module and the Batch File
	5.2.2 Procedures to Writing Programs

	6. References

