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Overview

This application report presents different methods of achieving a defined phase relationship between the input reference 
clock and output clock for IDT PLL-based zero-delay buffers. The report focuses on the effects of varying trace lengths in 
the PLL feedback loop and capacitive loading at the feedback clock input in generating an early (or late) clock. Early clock 
is defined as a case when the phase of the output clock is advanced in relation to the reference input clock.

Introduction

There are two major types of clock driver architectures: a buffer-type and a feedback-type with phase-locked loop (PLL). In 
a buffer-type (non-PLL) clock driver, the input wave propagates through the device and is “re-driven” by the output buffers. 
The output signal directly follows the input signal with some device propagation time delay (tPD). For additional information 
on Fanout buffers please refer to IDT Clock Distribution Application Note.

The feedback-type clock drivers utilize an additional feedback input path from one of the device clock outputs. The feedback 
path can be internal or external to the device. In the case of an external feedback, a trace on the PCB is used to connect an 
output pin to the feedback input pin. This type of device is usually based upon one or more PLLs that are used to align the 
phase and frequency of the feedback and reference input. Board-level trace-length mismatches can be compensated in 
order to achieve defined skew relationship between the input and output clock. Outputs can be selectively divided, multiplied 
or inverted while still maintaining very low input to output skew.

What is a PLL?

A basic PLL is a feedback system that receives an incoming oscillating signal and generates an output waveform that 
oscillates at an integer or fractional multiple of the input signal. It is comprised of a phase or frequency detector, a filter and 
a voltage-controlled oscillator as shown in Figure 1. In order for the PLL to align the reference input (CLKIN) with an output, 
the output must be fed back to the feedback (FBIN) input of the PLL. 

Figure 1. Phase-Locked Loop (PLL) Block Diagram
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The Phase Detector (PD) typically evaluates the rising edge of the CLKIN input with respect to the FBIN input. If the CLKIN 
input leads the FBIN input, indicating that the voltage controlled oscillator (VCO) is running slower than ideal, the PD 
produces a 'Pump Up' signal that is triggered on the rising edge of the CLKIN input and lasts until the rising edge of the 
FBIN input. This 'Pump Up' pulse forces the VCO to run faster and reduces the time difference between the CLKIN input 
and the FBIN input.

If the FBIN input leads the CLKIN input, the PD produces a 'Pump Down' signal that is triggered on the rising edge of the 
FBIN input and lasts until the rising edge of the CLKIN input. The 'Pump Down' pulse forces the VCO to run slower and 
reduces the time difference between the FBIN input and the CLKIN input.

The PD forces the VCO to run faster or slower based on the relationship between the CLKIN and FBIN input edge. The 
output of the VCO is the internally generated oscillator waveform. The input voltage that controls the frequency of the VCO 
is a measure of the phase deviation between the reference and feedback inputs. The PLL is designed to operate within a 
limited band of frequencies (tracking range). If the input frequency is outside this band, the circuit will not lock-on to the input 
signal and the frequencies of CLKIN (FCLKIN) and CLKOUT (FCLKOUT) will be different. As long as FCLKIN remains within the 
tracking range of the PLL, FCLKOUT will equal FCLKIN. 

The low-pass filter converts the 'Pump Up' and 'Pump Down' signals into a DC control voltage (FCONT) and the magnitude 
of this voltage is proportional to the width of the 'Pump Up' or 'Pump Down' pulse. The range of the voltage produced by the 
filter is guaranteed to force the VCO to operate at any frequency within its allowable operating range.

The PLL may respond to the absence of an reference input (CLKIN) clock in different ways. The output path from the PLL 
may be disabled thereby disabling the device outputs or the VCO could be forced to operate at its minimum operating 
frequency. The specifics of the device need to be known if the design will be placed in this condition. There are buffers that 
support dual clock inputs if the loss of an input clock is expected.

PLLs have a number of desirable properties that include the ability to minimize input-to-output skew (zero-delay buffers), 
multiply and generate different clock frequencies (clock synthesizers), correct input clock duty cycle distortion, reduce 
timing jitter (jitter attenuators) and extract clock signals from data streams (clock data recovery). The focus of this 
application report is on the use of PLLs in zero-delay buffers (ZDB). A ZDB aids clock tree designs that require zero 
propagation delay from the input signal to the output. A completely integrated PLL allows alignment in both the phase and 
the frequency of the reference input clock with the output clock.

What is a Zero-Delay Buffer?

A zero-delay buffer is a device that can fan out one clock signal into multiple clock signals with near zero delay. The device 
is well suited for a variety of clock distribution applications requiring tight input-output and output-output skew relationship. 
A simplified diagram of a ZDB is shown in Figure 2.

Figure 2. Simplified Zero-Delay Buffer (ZDB) Block Diagram
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A ZDB is built with a PLL that uses a reference and feedback input. The feedback input is driven by one of the outputs. The 
phase detector adjusts the output frequency of the VCO so that its two inputs have no phase or frequency offset. Since the 
PLL feedback path includes one of the outputs and its associated load, it will dynamically compensate for the load placed 
on that output. This means that it will have near zero delay from the reference input to the output from which the feedback is 
derived, irrespective of the loading on that output. Note that this is only true for the output that provides the feedback. All 
other outputs have an input-to-output delay that is affected by the differences in the output loads. Please see the section 
“Tuning a ZDB for Phase Adjustment” for a detailed discussion on this topic.

Tuning a ZDB for Phase Adjustment

Depending on the application and delay requirement, the system designer can adjust the input-output delay for Zero Delay 
Buffers.

The output signal of the buffer is said to lead when it transitions earlier in time than the reference input signal. It can also be 
viewed as negative delay. On the other hand, the output signal is said to lag when it transitions later in time than the input 
signal (positive delay). To tune the device and adjust the lead or lag of the buffer outputs, the system designer must 
understand the relationship between REF and FBIN, and the relationship between the output driving FBIN and the other 
outputs.

The PLL compares the phase of the signal at the FBIN pin at a threshold of VDD/2 (where VDD is the device supply voltage) 
and compares it to the signal at the REF input pin at the same threshold. All the outputs (including the output driving FBIN) 
transition at the same time.

Changing the load on an output clock affects its rise time and therefore alters the time it takes for the output to reach the 
VDD/2 threshold. Using these properties to their advantage, the system designers can then adjust the time when the 
outputs reach the VDD/2 threshold relative to when the REF input reaches the VDD/2 threshold. The output driving FBIN, 
however, cannot be adjusted; it will always have near zero delay from the REF input at VDD/2.

In order to have a positive phase error (i.e. REF leads the outputs), the FBIN pin should be less loaded compared to the Yn 
outputs. On the other hand, if negative phase error is desired (i.e. the Yn outputs lead the REF input); the output used for 
the feedback can be loaded heavily to advance in time the other outputs.

When the difference in loading between the output used for FBIN and the other outputs is zero, the signals will be aligned in 
phase. If the loading on the output used for FBIN is different from the other outputs, the signals will not be aligned in phase. 
As a rule of thumb, 1pF will induce about 50ps to 60ps of skew. Figure 3 shows example waveforms of the input and output 
clock signals before and after mounting a 1pF capacitor between the FBIN input and GND. After mounting the 1pF 
capacitor, the CLKOUT signal is retarded by 60ps.

Figure 3. Timing Effect of Adding 1pF Capacitance Between FBIN and GND



SYSTEM APPLICATIONS AND DESIGN GUIDELINES WITH IDT’S ZERO-DELAY BUFFERS APPLICATION NOTE

IDT® SYSTEM APPLICATIONS AND DESIGN GUIDELINES WITH IDT’S ZERO-DELAY BUFFERS 4 REV B  091013

Note that the zero-delay buffer will always adjust itself to keep the VDD/2 point of the output at near zero delay compared to 
the VDD/2 point of the reference.

A one inch trace adds roughly 3pF parasitic capacitance, which translates to approximately 150ps to 180ps delay. 
Therefore, the skew can also be altered by adjusting the feedback trace length relative to the trace length of the other 
outputs. The system designer can advance the Yn outputs by increasing the feedback trace length, thereby generating an 
early clock. On the other hand, the system designer can shorten the feedback trace length and advance the REF input 
signal relative to the Yn signal.

It is important to note that the capacitive loading on the FBIN pin is the best way to fine tune the phase error and this loading 
should be placed as close to the FBIN pin as physically possible. Adding additional capacitance beyond 30pF is not 
suggested due to the possibility of degrading the clock edges and adding more jitter to the outputs. Adjusting the trace 
length of the feedback loop is used more for the coarse tuning of phase error. 

If the application requires the outputs of the ZDB to have near zero delay with respect to one another (output-output skew), 
the output clock of the device that is driving the zero-delay buffer must be loaded the same as the other outputs of the 
device.

Adjusting the lead or lag of the output skew with a capacitor has its benefits. However, it does have imperfections due to 
variation in the capacitor itself. As an alternative to the methods outlined above, a programmable skew device such as the 
IDT5T9890 or IDT5T9891 could also be considered.

Using External Feedback

Many ZDBs have an open external feedback path that is simply closed by driving one of the output clocks into the FBIN pin 
for zero delay buffer operation.

Alternatively, the feedback path can be used for other interesting applications. Using a discrete delay element in the 
feedback path will generate outputs that lead the input signal. Sometimes, designs require copies of a clock that are early 
compared to the input clock. Figure 4 shows a circuit implemented to generate such early clocks using a ZDB.

Figure 4. ICS8752i Used to Generate Early Clocks
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Another simple approach to lead or lag output clocks is to insert a trace delay into the feedback path. The output of the 
buffer will lead the input by the amount of trace delay added in the feedback path. This approach provides a precise method 
for delay adjustment. Some designers will embed a very long trace into the board from an output pin to the feedback pin. At 
the ends of each trace segment, the designer places pads for zero ohm resistors. This allows for incremental addition of 
delay into the feedback path to align the output to the precise phase. Figure 5 shows an example where the feedback path 
is n-inches shorter than the other output traces. This initially allows the remaining outputs to be later in time than the input. 
By placing a capacitor (3*n pF) on the feedback line, the outputs can be moved forward in time.

Figure 5. ICS8752i Used with Trace Skew Adjustments
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Application Example

In the following section, three examples are presented. The first (Figure 6) shows zero delay while the second (Figure 7) 
and the third (Figure 8) show delay adjustment of CLKOUT output and CLKIN respectively.

Figure 6. LOUT = LFB; Zero Phase Delay Between CLKIN and CLKOUT

Figure 7. LOUT Longer than LFB by 0.5 ns

Figure 8. LFB Longer than LOUT by 0.5 ns

One of the systems designer's goals, when implementing a ZDB, is to match the edges of CLKIN and CLKOUT so that there 
is zero delay (no phase shift) between the input signal and the output signal. This is achieved by matching the feedback 
trace length with the output clock trace length as shown in Figure 6. However, in practical implementation, this may be 
difficult to achieve.



SYSTEM APPLICATIONS AND DESIGN GUIDELINES WITH IDT’S ZERO-DELAY BUFFERS APPLICATION NOTE

IDT® SYSTEM APPLICATIONS AND DESIGN GUIDELINES WITH IDT’S ZERO-DELAY BUFFERS 7 REV B  091013

A possible solution is to design the feedback trace length to be slightly shorter than the output clock trace length as shown 
in Figure 7. In the lab, the output waveforms will be slightly delayed and skewed to the right of the input waveform. As an 
example, the ICS670-02, configured in the 1X mode (FCLKOUT = FCLKIN = 50 MHz), was tested in the lab with a feedback 
trace length which was shorter than the output trace length and the CLKOUT signal was delayed by 700ps. The 
measurements are shown in Figure 9.

Figure 9. CLKIN and CLKOUT with Shorter Feedback Trace

The user can then tune the ZDB and adjust the timing by adding (or increasing) the feedback loading capacitance 
accordingly. In the ICS670-02 example, a 10pF capacitance was added to the feedback capacitance and the CLKOUT 
signal better aligned with the CLKIN signal as shown in Figure 10.
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Figure 10. CLKIN and CLKOUT After Tuning the ICS670-02

Care should be taken when designing with ZDB to ensure that the feedback trace length does not exceed the output trace 
length. If the feedback trace length is longer than the output trace length, the CLKOUT signal will be “early” and skewed to 
the left of the CLKIN signal as shown in Figure 8. In this case, adding a feedback capacitance will only increase the skew 
time and CLKOUT will drift more to the left of CLKIN, increasing the timing difference. Therefore, it is impossible to tune the 
ZDB and adjust the timing with a feedback capacitance if the feedback trace length is longer than the output trace length.
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Layout Guidelines

As the device pin density and system frequency increases, the printed circuit board (PCB) layout becomes more complex 
and critical. A successful high-speed board must effectively integrate devices and other elements while avoiding signal 
transmission problems associated with high-speed I/O standards. Since IDT zero delay buffers include a variety of 
high-speed features, including fast I/O pins and high edge rates, it is imperative that an effective design successfully achieve 
the following:

• Reduces system noise by filtering and evenly distributing power to all devices

• Matches impedance and terminates the signal line to diminish signal reflection

• Minimizes crosstalk between parallel traces

• Reduces the effects of ground bounce.

These high-speed design goals are achieved by adhering to the following board design guidelines:

• Filter any noise that can interfere with device PLL components such as the VCO and phase detector and cause output
clock jitter. Each VDD pin must be decoupled individually, by placing 0.1µF and 10µF capacitors physically close to the
VDD pin, to prevent power supply noise generated by one device circuit block from interfering with another circuit block.

• Isolate the power planes of the clock driver from the power plane of the board by a ferrite bead. The ferrite blocks high
frequency noise from reaching the main power supply. Use a non-resonant, surface-mount ferrite bead large enough to
handle the current in series with the power supply and place a 10µF to 100µF bypass tantalum capacitor next to the ferrite
bead (see Figure 11).

Figure 11. Filtering Noise with a Ferrite Bead

• Place power supply decoupling capacitors and filter components as close to VCC as possible. For decoupling, it is
recommended to use low-inductance, low-ESR (Equivalent Series Resistance) capacitors as they provide best
performance. The capacitors filter low-frequency noise from the power supply and supply extra current when many
outputs switch simultaneously in a circuit.

• Keep power and ground planes adjacent. This reduces power supply noise.

• Create a localized ground plane, where possible, for the clock trace on the PCB top layer. These localized planes provide
a return path for RF current.

• Configure unused I/O pins as output pins, and drive the outputs high or low. In this configuration, the pins may act as
virtual power or virtual ground pins. The unused output pins that are driven high may be connected to VCCIO to prevent
VCC sag and the unused output pins that are driven low may be connected to GND on the board, to reduce ground
bounce.

• Keep trace impedance short and balanced to minimize reflections and ringing.

VCC Source Ferrite Bead VCC

0.1µF0.1µF 10µF
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• Reduce crosstalk in the layout by widening the spacing between signal lines as much as routing restrictions will allow, 
trying not to bring traces closer than three times the dielectric height and minimize parallel run lengths between 
single-ended signals. Route with short parallel sections and minimize long, couple sections between nets. The trace 
conductor should be as close to the ground plane as possible to couple the transmission line tightly to the ground plane 
and help decouple it from adjacent signals.

• Use differential routing techniques where possible, especially for critical nets (i.e. match the lengths as well as the turns 
that each trace goes through).

• Minimize EMI by avoiding the use of vias to route clock signals. Vias add unwanted inductance to the trace and in general 
reduce the effectiveness of bypass capacitors. Further, vias can cause impedance change and reflections.

• Place clock signals far away from I/O area, but avoid routing traces near the edge of the PCB.

• Route clock traces to each load when driving multiple loads and terminate them individually. Load all outputs equally. 
Clock traces should not intersect with each other. The clock traces should be of equal length to minimize clock skew.

• Avoid using right angle bends as they increase capacitive loading of the transmission line and, in turn, causes unwanted 
reflection, ringing, overshoot and undershoot, and degraded signal rise and fall times. Instead, use smooth rounded or 
chamfered traces.

In Conclusion

There are four methods that are used to adjust the phase in PLL-based clock buffers:

1. By adjusting the feedback trace length.

2. By varying the capacitive load on the feedback pin.

3. By varying the capacitive load on the output clock.

4. By adjusting the trace on the output clock.

This report discussed all four methods.
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