Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

4509 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4509 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has two reload registers), interrupts, 10-bit A/D converter, Serial interface and oscillation circuit switch function.

FEATURES

- Minimum instruction execution time 0.5 µs (at 6 MHz oscillation frequency, in through-mode)
- Supply voltage 1.8 V to 5.5 V
 - (It depends on operation source clock, oscillation frequency and operating mode.) $% \label{eq:clock}$
- Timers
- Input/Output port 18

- A/D converter
- 10-bit successive comparison method 6 channel
- Serial intereface 8-bit X 1
- Power-on reset circuit (only for H version)
- Watchdog timer
- Clock generating circuit (on-chip oscillator/ceramic resonator/RC oscillation)
- ●LED drive directly enabled (port D)

APPLICATION

Electrical household appliance, consumer electronic products, office automation equipment, etc.

Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34509G4FP (Note)	4096 words	256 words	PRSP0024GA-A	QzROM
M34509G4-XXXFP	4096 words	256 words	PRSP0024GA-A	QzROM
M34509G4HFP (Note)	4096 words	256 words	PRSP0024GA-A	QzROM
M34509G4H-XXXFP	4096 words	256 words	PRSP0024GA-A	QzROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4509 Group)

Block diagram (4509 Group)

PERFORMANCE OVERVIEW

	Paramete	er	Function					
Number of		M34509G4	134					
basic instructi	ons	M34509G4H	135					
Minimum insti	uction exe	cution time	0.5 μ s (at 6 MHz oscillation frequency, in through mode)					
Memory sizes	ROM		4096 words X 10 bits					
RAM			256 words X 4 bits					
Input/Output ports	D0D5	I/O	Six independent I/O ports. Input is examined by skip decision. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function Both functions can be switched by software. Ports D2 and D3 are also used as AIN4, and AIN5, respectively.					
	P00–P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions and output structure can be switched by software. Ports P00, P01 and P02 are also used as SIN, SOUT and SCK, respectively.					
	P10–P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function Both functions and output structure can be switched by software. Ports P11, P12 and P13 are also used as CNTR1, CNTR0 and INT, respectively.					
	P20, P21	I/O	2-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function Both functions and output structure can be switched by software. Ports P20 and P21 are also used as AIN0 and AIN1, respectively.					
	P30, P31	I/O	2-bit I/O port; The output structure can be switched by software. Ports P30 and P31 are also used as AIN2 and AIN3, respectively.					
CNTR0, Timer I/O CNTR1			Two independent I/O; CNTR1 and CNTR0 pins are also used as ports P11 and P12, respectively.					
	INT	Interrupt input	1-bit input; INT pin is also used as port P13.					
	SIN, SOUT	Serial interface	Three independent I/O;					
	SCK	input/output	SIN, SOUT, and SCK are also used as ports P00, P01, and P02, respectively.					
	AIN0-AIN5	Analog input	Six independent input; AIN0-AIN5 are also used as P20, P21, P30, P31, D2 and D3, respectively.					
Timers	Timer 1		8-bit programmable timer/event counter with two reload registers and PWM output function.					
	Timer 2		8-bit programmable timer/event counter with two reload registers and PWM output function.					
	Watchdog	g timer function	16-bit timer (fixed dividing frequency) (for watchdog)					
A/D			10-bit wide, This is equipped with an 8-bit comparator function.					
converter	Analog in	put	6 channel (AIN0–AIN5 pins)					
Serial interfac	e		8-bit X 1					
Voltage drop	Reset occ	currence	Typ. 2.6 V (Ta = 25 °C)					
detection circuit (Note)	Reset rele	ease	Typ. 2.7 V (Ta = 25 °C)					
Power-on res	et circuit (N	Note)	Built-in type					
Interrupt	Sources		5 (one for external, two for timer, one for A/D, one for Serial interface)					
	Nesting		1 level					
Subroutine ne	esting		8 levels					
Device structu	ure		CMOS silicon gate					
Package			24-pin plastic molded SSOP (PRSP0024GA-A)					
Operating ten	nperature r	ange	_20 °C to 85 °C					
Supply voltag	e		1.8 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)					
Power	Active mo	ode	2.2 mA (Ta = 25°C, VDD = 5.0 V, f(XIN) = 6.0 MHz, f(STCK) = f(XIN)/1)					
dissipation (typical value)	RAM bac	k-up mode	0.1 μ A (Ta = 25°C, VDD = 5.0 V, output transistors in the cut-off state)					
	÷							

Note: These circuits are equipped with only the H version.

PIN DESCRIPTION

Pin	Name	Input/Output	Function			
Vdd	Power supply		Connected to a plus power supply.			
Vss	Ground	—	Connected to a 0 V power supply.			
CNVss	CNVss	—	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.			
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the voltage drop detection circuit (only for H version) or the built-in power-on reset (only for H version) causes the system to be reset, the RESET pin outputs "L" level.			
Xin	System clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect between pins XIN and XOUT. A feedback resistor is built-in between them. When u the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin operation.			
Хоит	System clock output	Output				
D0-D5	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as AIN4 and AIN5, respectively.			
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P00, P01 and P02 are also used as SIN, SOUT and SCK, respectively.			
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P11, P12 and P13 are also used as CNTR1, CNTR0 and INT, respectively.			
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P20 and P21 are also used as AIN0 and AIN1, respectively.			
P30, P31	I/O port P3	I/O	Port P3 serves as a 2-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports P30 and P31 are also used as AIN2 and AIN3, respectively.			
CNTR0	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 2 event counter, and to output the PWM signal generated by timer 1. This pin is also used as port P12.			
CNTR1	Timer input/output	I/O	CNTR1 pin has the function to input the clock for the timer 1 event counter, and to output the PWM signal generated by timer 2. This pin is also used as port P11.			
INT	Interrupt input	Input	INT pin accepts external interrupts. It has the key-on wakeup function which can be switched by software. This pin is also used as port P13.			
Aino-Ain5	Analog input	Input	A/D converter analog input pins. AIN0–AIN5 are also used as ports P20, P21, P30, P31, D2 and D3, respectively.			
SCK	Serial interface clock I/O	I/O	Serial interface data transfer synchronous clock I/O pin. SCK pin is also used as port P02.			
Sout	Serial interface data output	Output	Serial interface data output pin. SOUT pin is also used as port P01.			
Sin	Serial interface data input	Input	Serial interface data input pin. SIN pin is also used as port P00.			

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
P00	Sin	SIN	P00	P20	AINO	AINO	P20
P01	Sout	SOUT	P01	P21	AIN1	AIN1	P21
P02	SCK	SCK	P02	P30	Ain2	AIN2	P30
P11	CNTR1	CNTR1	P11	P31	Аілз	Аімз	P31
P12	CNTR0	CNTR0	P12	D2	Ain4	AIN4	D2
P13	INT	INT	P13	D3	Ain5	AIN5	D3

Notes 1: Pins except above have just single function.

2: The input/output of P00 can be used even when SIN is used. Be careful when using inputs of both SIN and P00 since the input threshold value of SIN pin is different from that of port P00.

3: The input of P01 can be used even when SOUT is used.

4: The input of P02 can be used even when SCK is used. Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.

5: The input of P11 can be used even when CNTR1 (output) is selected. The input/output of P11 can be used even when CNTR1 (input) is selected. Be careful when using inputs of both CNTR1 and P11 since the input threshold value of CNTR1 pin is different from that of port P11.

6: The input of P12 can be used even when CNTR0 (output) is selected.

The input/output of P12 can be used even when CNTR0 (input) is selected. Be careful when using inputs of both CNTR0 and P12 since the input threshold value of CNTR0 pin is different from that of port P12.

7: The input/output of P13 can be used even when INT is used. Be careful when using inputs of both INT and P13 since the input threshold value of INT pin is different from that of port P13.

8: The input/output of P20, P21, P30, P31, D2, D3 can be used even when AIN0-AIN5 are used.

PORT FUNCTION

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0, D1, D4, D5	I/O (6)	N-channel open-drain/ CMOS	1	SD, RD SZD, CLD	FR3, C1	Programmable output structure selection function
	D2/AIN4 D3/AIN5					FR3, PU2 K2 Q1	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P0	Р00/SIN, Р01/SOUT, Р02/SCK, Р03	I/O (4)	N-channel open-drain/ CMOS	4	OP0A IAP0	FR0, PU0 K0 J1	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P1	P10, P11/CNTR1, P12/CNT0, P13/INT	I/O (4)	N-channel open-drain/ CMOS	4	OP1A IAP1	FR1, PU1 K1, L1, I1 W1, W2 W5, W6	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P2	P20/AIN0 P21/AIN1	I/O (2)	N-channel open-drain/ CMOS	2	OP2A IAP2	FR2, PU2 Q1 K2	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P3	P30/AIN2 P31/AIN3	I/O (2)	N-channel open-drain/ CMOS	2	OP3A IAP3	C1 Q1	Programmable output structure selection functions

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator.
- System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the register MR and register RG.

Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

Register MR, RG			, RG		System clock	Operation mode
MR3	MR2	MR1	MR0	RG0		
1	1	-	1	0	f(STCK) = f(RING)/8	Internal frequency divided by 8 mode
1	0	-	1	0	f(STCK) = f(RING)/4	Internal frequency divided by 4 mode
0	1	-	1	0	f(STCK) = f(RING)/2	Internal frequency divided by 2 mode
0	0	-	1	0	f(STCK) = f(RING)	Internal frequency through mode
1	1	0	0	_	f(STCK) = f(XIN)/8	High-speed frequency divided by 8 mode
1	0	0	0	-	f(STCK) = f(XIN)/4	High-speed frequency divided by 4 mode
0	1	0	0	_	f(STCK) = f(XIN)/2	High-speed frequency divided by 2 mode
0	0	0	0	_	f(STCK) = f(XIN)	High-speed through mode

Note: The internal frequency divided by 8 is selected after system is released from reset.

CONNECTIONS OF UNUSED PINS

Pin	Connection	Usage condition
Xin	Connect to Vss.	RC oscillation circuit is not selected. (CRCK instruction is not executed.)
Хоит	Open.	
D0, D1, D4, D5	Open.	
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR30, FR31, C12, C13 = "0").
D2/AIN4, D3/AIN5	Open.	The key-on wakeup function is invalid (K22, K23 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR32, FR33 = "0").
		Pull-up transistor is OFF (PU22, PU23 = "0").
		The key-on wakeup function is invalid (K22, K23 = "0").
P00/SIN	Open.	SIN pin is not selected (J11 = "0").
		The key-on wakeup function is invalid (K00 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR00 = "0").
		Pull-up transistor is OFF (PU00 = "0").
		The key-on wakeup function is invalid (K00 = "0").
P01/SOUT	Open.	The key-on wakeup function is invalid (K01 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR01 = "0").
		Pull-up transistor is OFF (PU01 = "0").
		The key-on wakeup function is invalid (K01 = "0").
P02/SCK	Open.	SCK pin is not selected (J11J10 = "00").
		The key-on wakeup function is invalid (K02 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR02 = "0").
		Pull-up transistor is OFF (PU02 = "0").
		The key-on wakeup function is invalid (K02 = "0").
P03	Open.	The key-on wakeup function is invalid (K03 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR03 = "0").
		Pull-up transistor is OFF (PU03 = "0").
		The key-on wakeup function is invalid (K03 = "0").
P10	Open.	The key-on wakeup function is invalid (K10 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR10 = "0").
		Pull-up transistor is OFF (PU10 = "0").
		The key-on wakeup function is invalid (K10 = "0").
P11/CNTR1	Open.	CNTR1 input is not selected for the timer 1 count source (W11, W10 \neq "10").
,		The key-on wakeup function is invalid (K11 = " 0 ").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR11 = "0").
		Pull-up transistor is OFF (PU11 = "0").
		The key-on wakeup function is invalid (K11 = "0").
P12/CNTR0	Open.	CNTR0 input is not selected for the timer 2 count source (W21, W20 \neq "10").
1 12/011110		The key-on wakeup function is invalid ($K12 = "0"$).
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR12 = "0").
		Pull-up transistor is OFF (PU12 = 0°).
		The key-on wakeup function is invalid (K12 = "0").
P13/INT	Open.	INT pin input is disabled ($I13 = "0"$).
		The key-on wakeup function is invalid (K13 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR13 = "0").
		Pull-up transistor is OFF (PU13 = 0°).
		The key-on wakeup function is invalid (K13 = "0").
P20/AIN0, P21/AIN1	Open.	The key-on wakeup function is invalid (K_{20} , $K_{21} = "0"$).
F 20/AINU, F21/AIN1	Connect to Vss.	N-channel open-drain is selected for the output structure (FR20, FR21 = "0").
		Pull-up transistor is OFF (PU20, PU21 = "0"). The key on workeys function is involid (K^{20} - K^{24} - "0").
	0.000	The key-on wakeup function is invalid (K20, K21 = "0").
P30/AIN2, P31/AIN3	Open.	
	Connect to Vss.	N-channel open-drain is selected for the output structure (C11, C10 = "0").

(Note when connecting to VSS or VDD)
Connect the unused pins to VSS using the thickest wire at the shortest distance against noise.

PORT BLOCK DIAGRAMS

Port block diagram (2)

Port block diagram (3)

Port block diagram (4)

Port block diagram (5)

External interrupt circuit structure

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A₀ is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Also, when the TABP p instruction is executed at UPTF flag = "1", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0". When the TABP p instruction is executed at UPTF flag = "0", the contents of register D remains unchanged. The UPTF flag is set to "1" with the SUPT instruction and cleared to "0" with the RUPT instruction. The initial value of UPTF flag is "0".

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

Fig. 1 AMC instruction execution example

Fig. 2 RAR instruction execution example

Fig. 3 Registers A, B and register E

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Program of	Program counter (PC)								
Executing BM instruction	Executing F instruction								
S	SK0	(SP) = 0							
5	SK1	(SP) = 1							
5	SK2	(SP) = 2							
S	SK3	(SP) = 3							
S	SK4	(SP) = 4							
S	SK5	(SP) = 5							
S	SK6	(SP) = 6							
S	SK7	(SP) = 7							
Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the									

returning from RAM back-up mode. It points "0" by executing the first **BM** instruction, and the contents of program counter is stored in SK0. When the **BM** instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SK0 is destroyed.

Fig. 5 Stack registers (SKs) structure

Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Fig. 7 Program counter (PC) structure

Fig. 8 Data pointer (DP) structure

Fig. 9 SD instruction execution example

PROGRAM MEMOY (ROM)

1 word of program memory is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34509G4.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages	
M34509G4	4096 words	32 (0 to 31)	
M34509G4H	4096 words	32 (0 to 31)	

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP $\ensuremath{\mathsf{p}}$ instruction.

ROM Code Protect Address

When selecting the protect bit write by using a serial programmer or selecting protect enabled for writing shipment by Renesas Technology corp., reading or writing from/to QzROM is disabled by a serial programmer.

As for the QzROM product in blank, the ROM code is protected by selecting the protect bit write at ROM writing with a serial programmer.

As for the QzROM product shipped after writing, whether the ROM code protect is used or not can be selected as ROM option setup ("MASK option" written in the mask file converter) when ordering.

Fig. 10 ROM map of M34509G4

Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size				
M34509G4	256 words X 4 bits (1024 bits)				
M34509G4H	256 words X 4 bits (1024 bits)				

\backslash	Register Z	Register Z 0							
	Register X	0	1	2	3		6	7	 15
	0								
	1								
	2								
	3								
	4								
	5								
≻	6								
ster	7								
Register Y	8								
ш	9								
	10								
	11								
	12								
	13								
	14								
	15								

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

• An interrupt activated condition is satisfied (request flag = "1")

- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	A/D interrupt	Completion of A/D conversion	Address C in page 1
5	Serial interface interrupt	Completion of serial interface transmit/ recieve	Address E in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
A/D interrupt	ADF	SNZAD	V22
Serial interface interrupt	SIOF	SNZSI	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction		
1 Enabled		Invalid		
0	Disabled	Valid		

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

• Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)
- INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
- Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

Fig. 13 Program example of interrupt processing

Fig. 14 Internal state when interrupt occurs

(6) Interrupt control registers

Interrupt control register V1

Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Table 6 Interrupt control registers

Interrupt control register V2

The A/D interrupt enable bit and serial interface interrupt enable bit are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Interrupt control register V1		at reset : 00002		at RAM back-up : 00002	R/W TAV1/TV1A	
1/10	Timor 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)		
V 13	V13 Timer 2 interrupt enable bit		Interrupt enabled (SNZT2 instruction is invalid)		
V12			Interrupt disabled (SNZT1 instruction is valid)			
V I Z	V12 Timer 1 interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)			
V11	Not used	0	 This bit has no function, but read/write is enabled. 			
V I 1	Not used	1				
1/10			Interrupt disabled (SNZ0 instruction is valid)			
V10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)		

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W TAV2/TV2A	
1/20	Serial interface interrupt enable bit	0	Interrupt disabled	Interrupt disabled (SNZSI instruction is valid)		
VZ3	V23 Serial interface interrupt enable bit		Interrupt enabled (SNZSI instruction is invalid)		
1/00	V22 A/D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)			
V22		1	Interrupt enabled (SNZAD instruction is invalid)			
V21	Not used	0	 This bit has no function, but read/write is enabled. 			
VZ1		1				
1/20	V20 Not used	0	This bit has no function, but read/write is enabled.			
V20		1				

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V22, V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

Rev.1.03 2009.07.27 page 22 of 140 REJ03B0147-0103

EXTERNAL INTERRUPTS

The 4509 Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	P13/INT	When the next waveform is input to P13/INT pin	l11
		 Falling waveform ("H"→"L") 	112
		 Rising waveform ("L"→"H") 	
		 Both rising and falling waveforms 	

Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to P13/INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to P13/INT pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- \odot Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- ^② Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- ④ Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- ⑤ Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the P1 $_3$ /INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1A
113	INT pin input control bit (Note 2)	0	INT pin input disab	led	
113		1	INT pin input enab	led	
	Interrupt valid waveform for INT pin/		Falling waveform ("L" level of INT pin is recognized with the SNZI0 instruction)/"L" level		
112	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT pin is recognized with the SNZI0 instruction)/"H" level		
I11	INIT his addre datastian sizewit sentral hit	0	One-sided edge detected		
111	INT pin edge detection circuit control bit	1	Both edges detected		
110	INT pin	0	Disabled		
110	timer 1 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

(3) Notes on interrupts

① Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register 11 in software, be careful about the following notes.

• Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18⁽²⁾).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18³).

Fig. 18 External 0 interrupt program example-1

2 Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

 When the INT pin input is disabled (register I13 = "0"), set the keyon wakeup of INT pin to be invalid (register L10 = "0") before system enters to the RAM back-up mode. (refer to Figure 19⁽¹⁾).

Fig. 19 External 0 interrupt program example-2

3 Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20^①) and then, change the bit 2 of register I1 is changed.
In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20^②).
Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20^③).

LA	4	; (XXX02)	
TV1A		; The SNZ0 instruction is valid	1
LA	12	; (1XXX2)	
TI1A		; Interrupt valid waveform is changed	
NOP			2
SNZ0		; The SNZ0 instruction is executed	
		(EXF0 flag cleared)	
NOP			3
:			
X :	these b	its are not used here.	

Fig. 20 External 0 interrupt program example-3

TIMERS

The 4509 Group has the following timers.

Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

• Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

Fig. 21 Auto-reload function

The 4509 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- (Timers 1 and 2 have the interrupt function, respectively) • 16-bit timer

Table 9 Function related timers

Prescaler and timers 1 and 2 can be controlled with the timer control registers PA, W1, W2, W5 and W6. The 16-bit timer is a free counter which is not controlled with the control register. Each function is described below.

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable	 Instruction clock (INSTCK) 	1 to 256	Timer 1 and 2 count sources	PA
	binary down counter				
Timer 1	8-bit programmable	PWM2 signal (PWMOD2)	1 to 256	Timer 2 count source	W1
	binary down counter	 Prescaler output (ORCLK) 		CNTR0 output	W5
	(link to INT input)	CNTR1 input		Timer 1 interrupt	W6
	(with PWM output function)	On-chip oscillator clock (f(RING))			
Timer 2	8-bit programmable	Timer 1 underflow (T1UDF)	1 to 256	Timer 1 count source	W2
	binary down counter	 Prescaler output (ORCLK) 		CNTR1 output	W5
	(INT input period count	CNTR0 input		Timer 2 interrupt	W6
	function)	 System clock (STCK) 			
	(with PWM output function)				
Watchdog	16-bit fixed dividing	Instruction clock (INSTCK)	65536	System reset (counting twice)	-
timer	frequency			Decision of flag WDF1	

Fig. 22 Timers structure (1)

Fig. 23 Timers structure (2)

Table 10 Timer control registers

	Timer control register PA	trol register PA at reset : 02		at RAM back-up : 02	W TPAA
PAo	Prescaler control bit	0	Stop (state initialized	ed)	
PA0		1	Operating		

Timer control register W1		at reset : 00002		reset : 00002	at RAM back-up : 00002	R/W TAW1/TW1A
W13	PWM1 function control bit	C)	PWM1 function inv	alid	
1010		1		PWM1 function val	id	
W12	W12 Timer 1 control bit)	Stop (state retained)		
		1		Operating		
		W11	W10		Count source	
W11		0	0	PWM2 signal		
	Timer 1 count source selection bits		1	Prescaler output (ORCLK)		
W10		1	0	CNTR1 input		
		1	1	On-chip oscillator clock (f(RING))		

Timer control register W2		at reset : 00002		reset : 00002	at RAM back-up : 00002	R/W TAW2/TW2A
W23	PWM2 function control bit	0)	PWM2 function inv	valid	
1125				PWM2 function va	lid	
W/22	W22 Timer 2 control bit)	Stop (state retained)		
				Operating		
		W21	W20	Count source		
W21	W21 Timer 2 count source selection bits W20	0	0	Timer 1 underflow	signal (T1UDF)	
		0	1	Prescaler output (ORCLK)		
W20		1	0	CNTR0 input		
		1	1	System clock (STC	К)	

Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A
W/53	W53 P12/CNTR0 pin function selection bit		P12 (I/O) / CNTR0	(input)	
1000			P12 (input) /CNTR	0 (I/O)	
W/52	W52 Timer 1 count auto-stop circuit selection bit (Note 2)		Count auto-stop circuit not selected		
VVJ2			Count auto-stop ci	rcuit selected	
W51	Timer 1 count start synchronous circuit	0	Count start synchro	onous circuit not selected	
0001	selection bit (Note 3)	1	Count start synchro	onous circuit selected	
W50	CNTR0 pin input count edge selection bit	0	Falling edge		
VV50		1	Rising edge		

	Timer control register W6	at	reset : 00002	at RAM back-up : state retained	R/W TAW6/TW6A		
W63	P11/CNTR1 pin function selection bit	0	P11 (I/O) / CNTR1 (input)				
0003	F H/CNTRT pintunction selection bit	1	P11 (input) /CNTR	1 (I/O)			
W62	CNTR 1 pin output auto-control circuit	0	Output auto-control circuit not selected				
1 102	selection bit	1	Output auto-contro	l circuit selected			
W61	Timer 2	0	INT pin input period count circuit not selected				
1000	INT pin input period count circuit selection bit	1	INT pin input period count circuit selected				
W60	CNITD1 nin input count adap coloction hit	0	Falling edge				
**00	CNTR1 pin input count edge selection bit	1	Rising edge				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the INT pin/timer 1 control is enabled (I10="1") and the timer 1 count start synchronous circuit is selected (W51="1").

3: This function is valid only when the INT pin/timer 1 control is enabled (I10="1").

(1) Timer control registers

• Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

Timer control register W1

Register W1 controls the count operation and count source of timer 1, and PWM1 function. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the count operation and count source of timer 2, and PWM2 function. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W5

Register W5 controls the input count edge of CNTR0 pin, timer 1 count start synchronous circuit, timer 1 auto-stop circuit and P12/CNTR0 pin function. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

• Timer control register W6

Register W6 controls the input count edge of CNTR1 pin, the INT pin input count start synchronous circuit and CNTR1 pin output auto-control circuit and the P11/CNTR1 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A.

(2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register RPS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

set data in prescaler, and

 $\ensuremath{\textcircled{}^{2}}$ set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1 and 2 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with two timer 1 reload registers (R1L, R1H). Data can be set simultaneously in timer 1 and the reload register R1L with the T1AB instruction. Data can be set in the reload register R1H with the T1HAB instruction. The contents of reload register R1L set with the T1AB instruction can be set to timer 1 again with the T1R1L instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the T1HAB instruction to set data to reload register R1H while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

① set data in timer 1

2 set count source by bits 0 and 1 of register W1, and

3 set the bit 2 of register W1 to "1."

When a value set in reload register R1L is n and a value set in reload register R1H is m, timer 1 divides the count source signal by n + 1 or m + 1 (n = 0 to 255, m = 0 to 255).

<Bit 3 of register W1 = "0" (PWM1 function invalid)>

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1L, and count continues (auto-reload function).

<Bit 3 of register W1 = "1" (PWM1 function valid)>

Timer 1 generates the PWM1 signal of the "L" interval set as reload register R1L, and the "H" interval set as reload register R1H. The PWM1 signal generated by timer 1 is output from CNTR0 pin by setting "1" to bit 3 of register W5.

After timer 1 control by INT pin is enabled by setting the bit 0 of register 11 to "1", INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 1 of register W5 to "1".

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 2 of register W5 to "1."

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with two timer 2 reload registers (R2L, R2H). Data can be set simultaneously in timer 2 and the reload register R2L with the T2AB instruction. Data can be set in the reload register R2H with the T2HAB instruction. The contents of reload register R2L set with the T2AB instruction can be set to timer 2 again with the T2R2L instruction. Data can be read from timer 2 with the TAB2 instruction.

Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

When executing the T2HAB instruction to set data to reload register R2H while timer 2 is operating, avoid a timing when timer 2 underflows.

Timer 2 starts counting after the following process;

① set data in timer 2

2 set count source by bits 0 and 1 of register W2, and

③ set the bit 2 of register W2 to "1."

When a value set in reload register R2L is n and a value set in reload register R2H is m, timer 2 divides the count source signal by n + 1 or m + 1 (n = 0 to 255, m = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

<Bit 3 of register W2 = "0" (PWM2 function invalid)>

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

<Bit 3 of register W2 = "1" (PWM2 function valid)>

Timer 2 generates the PWM2 signal of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H. The PWM2 signal generated by timer 2 is output from CNTR1 pin by setting "1" to bit 3 of register W6.

PWM2 output to CNTR1 pin combined with timer 1 can be controlled by setting the bit 2 of register W6 to "1."

Input period of INT pin by timer 2 can be counted by setting the bit 1 of register W6 to "1."

(5) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function can be selected after timer 1 control by INT pin is enabled by setting the bit 0 of register I1 to "1" and its function is selected by setting the bit 1 of register W5 to "1".

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to timer by inputting valid waveform to INT pin.

The valid waveform of INT pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit 110 to "0" or system reset.

However, when the count auto-stop circuit is selected (W22 = "1"), the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(6) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop circuit is valid by setting the bit 2 of register W5 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(7) INT pin input period count circuit (timer 2)

Timer 2 has the INT pin input period count circuit to count the valid waveform input interval of the INT pin.

When bit 1 of register W6 is set to "1", the INT pin input period count circuit of timer 2 becomes valid, and the count source is input. The count source input is stopped by the next input of valid waveform to the INT pin.

Then, every a valid waveform is input to the INT pin, start/stop of the count source input is alternately repeated.

A valid waveform of the INT pin input is the same as the activated condition of an external interrupt.

The INT pin input period count circuit set once is cleared by setting the INT pin input to be disabled state. The INT pin input can be disabled by clearing bit 3 of register 11 to "0".

(8) Timer input/output pin (P12/CNTR0 pin, P11/ CNTR1 pin)

CNTR0 pin is used to input the timer 2 count source and output the PWM1 signal generated by timer 1.

CNTR1 pin is used to input the timer 1 count source and output the PWM2 signal generated by timer 2.

The P12/CNTR0 pin function can be selected by bit 3 of register W5. The P11/CNTR1 pin function can be selected by bit 3 of register W6. When the CNTR0 input is selected for timer 2 count source, timer 2 counts the falling or rising waveform of CNTR0 input. The count edge is selected by bit 0 of register W5.

When the CNTR1 input is selected for timer 1 count source, timer 1 counts the falling or rising waveform of CNTR1 input. The count edge is selected by bit 0 of register W6.

(9) PWM1 output function (P12/CNTR0, timer 1)

When bit 3 of register W1 is set to "1", the data is reloaded alternately from reload register R1L and R1H every timer 1 underflow.

Timer 1 generates the PWM1 signal of the "L" interval set as reload register R1L, and the "H" interval set as reload register R1H.

In this time, the PWM1 signal generated by timer 1 is output from CNTR0 pin by setting "1" to bit 3 of register W5.

When the TW1A instruction is executed while the PWM1 signal is "H", the contents of register W1 is changed after the "H" interval of the PWM1 signal is ended.

(10) PWM2 output function (P11/CNTR1, timer 1, timer 2)

When bit 3 of register W2 is set to "1", the data is reloaded alternately from reload register R2L and R2H every timer 2 underflow.

Timer 2 generates the PWM2 signal of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H.

In this time, the PWM2 signal generated by timer 2 is output from CNTR1 pin by setting "1" to bit 3 of register W6.

When bit 2 of register W6 is set to "1", the PWM2 signal output to CNTR1 pin is switched to valid/invalid alternately each timer 1 underflow. However, when timer 1 is stopped (bit 2 of register W1 is cleared to "0"), this function is canceled.

When the TW2A instruction is executed while the PWM2 signal is "H", the contents of register W2 is changed after the "H" interval of the PWM2 signal is ended.

(11) Timer interrupt request flags (T1F, T2F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(12) Precautions

- Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

- Timer count source Stop timer 1 or 2 counting to change its count source.
- Reading the count value
 Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.
- Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB, T1R1L, T2AB or T2R2L instruction to write data to timer.

- Writing to reload register

In order to write a data to the reload register R1H while the timer 1 is operating, execute the T1HAB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R2H while the timer 2 is operating, execute the T2HAB instruction except a timing of the timer 2 underflow.

- PWM signal (PWM1, PWM2)

If the timer 1 count stop timing and the timer 1 underflow timing overlap during output of the PWM1 signal, a hazard may occur in the PWM1 output waveform.

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM2 signal, a hazard may occur in the PWM2 output waveform.

- Prescaler, timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after prescaler and timer operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer, timer operates synchronizing with the count edge (falling edge or rising edge) of CNTR input selected by software.

Fig. 24 Timer count start timing and count time when operation starts

PWM2 signal		תתתתתתתת	տորողողող	ոոորոորո	ոոոդոու	
Timer 1 underflow signal		<u>h</u>	h	h	<u> </u>	
	Timer 1 start	nnd		nnnd	1	
CNTR1 output	CNTR1 outp					
					<i>с</i> 4 1 6	
* When the CNTR1 output at	to-control circuit is selecte	ed, valid/invalid o	r CNTR1 output	is repeated ev	very timer 1 underflows.	
CNTR1 output auto-control (sircuit operation example 2	2 (W23 = "1" W63	3 = "1")			
CNTR1 output auto-control o	ircuit operation example 2	2 (W23 = "1", W63	3 = "1")			
CNTR1 output auto-control o	ircuit operation example 2	2 (W23 = "1", W63	3 = "1")			
CNTR1 output auto-control o PWM2 signal	circuit operation example 2	2 (W23 = "1", W63	3 = "1")			
PWM2 signal	ircuit operation example 2	2 (W23 = "1", W63	3 = "1")			
PWM2 signal		2 (W23 = "1", W63	3 = "1")			
WM2 signal	circuit operation example 2	2 (W23 = "1", W63	3 = "1")		Timer 1 stop	
WM2 signal imer 1 underflow signal					Timer 1 stop	
PWM2 signal						
WM2 signal imer 1 underflow signal						
WM2 signal ïmer 1 underflow signal Register W62						top

Fig. 26 CNTR1 output auto-control function by timer 1

Machine cycle	Mi	Mi + 1		X	Mi + 2	X	Mi	+ 3
Timer 2 count source (System clock (STCK))		W2A instructior		(W22←"1")				
Register W22								
Timer 2 count value (Reload register)		0216 (R2L)		X 0116 X)216 ((2H)	0116 00	116 <u>0216</u> (R2L)
Timer 2 undeflow signal		(122)				Ĩ		
PWM2 signal								
0			1					
			i ninei z	count start	unning			
Machina avala		Mi i 1	,	v	Mir 2		N/;	. 2
Machine cycle	Mi	Mi + 1			Mi + 2		Mi	+ 3
Timer 2 count source	Mi	Mi + 1			Mi + 2 ruction exec			+ 3
Timer 2 count source (System clock (STCK))	Mi	Mi + 1						+ 3
Timer 2 count source (System clock (STCK)) Register W22 Timer 2 count value				TW2A inst		cution (W2	22←"0")	+ 3 >
Timer 2 count source (System clock (STCK)) Register W22 Timer 2 count value (Reload register)	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>	Mi + 1	 1 (R2L)		0016	2H)		+ 3 >
Timer 2 count source (System clock (STCK)) Register W22 Timer 2 count value	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>		<u></u> <u>0216</u>	TW2A inst	0016		22←"0")	+ 3 >
Timer 2 count source (System clock (STCK)) Register W22 Timer 2 count value (Reload register)	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>		<u></u> <u>0216</u>	TW2A inst	0016		22←"0")	+ 3 >
Timer 2 count source (System clock (STCK)) Register W22 Timer 2 count value (Reload register) Timer 2 undeflow signal	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>		<u></u> <u>0216</u>	TW2A inst		2H)	22←"0")	

Fig. 27 Timer count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "FFFF16," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the $\overrightarrow{\text{RESET}}$ pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode.

The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig. 28 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 29).

The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 30) Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

WRST	; WDF1 flag cleared
DI DWDT WRST	; Watchdog timer function enabled/disabled ; WEF and WDF1 flags cleared

:		
WRST	; WDF1 flag cleared	
NOP		
DI	; Interrupt disabled	
EPOF	; POF instruction enabled	
POF	; RAM back-up mode	
\downarrow		
Oscillation	stop	
:		

Fig. 30 Program example to enter the RAM back-up mode when using the watchdog timer

A/D CONVERTER

The 4509 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	10 bits
Relative accuracy	Linearity error: ±2LSB (VDD=2.7 to 5.5 V)
	Differential non-linearity error: ±0.9LSB
	(VDD=2.7 to 5.5 V)
Conversion speed	31 µs (f(XIN)=6 MHz, f(STCK)=f(XIN))
Analog input pin	6

Fig. 31 A/D conversion circuit structure

Table 12 A/D control registers

	A/D control register Q1		at	reset	: 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A
Q13 A/D operation mode selection bit	0		A/D conversion mode				
Q13	A D operation mode selection bit	1		Cor	mparator mode		
		Q12	Q11	Q10		Selected pins	
Q12		0	0	0	AIN0		
		0	0	1	AIN1		
		0	1	0	AIN2		
Q11	Analog input pin selection bits	0	1	1	Аімз		
		1	0	0	AIN4		
		1	0	1	Ain5		
Q10		1	1	0	Not available		
		1	1	1	Not available		

Note: "R" represents read enabled, and "W" represents write enabled.

(1) A/D control register Q1

Register Q1 is used to select the operation mode and one of analog input pins. Set the contents of this register through register A with the TQ1A instruction. The TAQ1 instruction can be used to transfer the contents of register Q1 to register A.

(2) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

(3) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage Vref generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

Logic value of comparison voltage Vref

 $V_{ref} = \frac{V_{DD}}{1024} \times n$ n: The value of register AD (n = 0 to 1023)

(4) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(5) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- When the A/D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN.
- ③ When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

The 4509 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 62 machine cycles (31 μ s when f(XIN) = 6.0 MHz in high-speed mode) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 32).

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 <u>VDD</u> 2
2nd comparison	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3rd comparison	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
After 10th comparison	A/D conversion result
completes	*1 *2 *3 *8 *9 *A 2 ± ± 1024

Table 13 Change of successive comparison register AD during A/D conversion

*1: 1st comparison result*3: 3rd comparison result

*2: 2nd comparison result*8: 8th comparison result

*9: 9th comparison result

*A: 10th comparison result

(7) A/D conversion timing chart

Figure 32 shows the A/D conversion timing chart.

Fig. 32 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P20/AIN0 pin is A/D converted, and the high-order 4 bits of the converted data are stored in address M(Z, X, Y) = (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/D interrupt is not used in this example.

- ① Select the AINO pin function and A/D conversion mode with the register Q1 (refer to Figure 33).
- ⁽²⁾ Execute the ADST instruction and start A/D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- ④ Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- \circledast Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- \oslash Transfer the contents of register A to M (Z, X, Y) = (0, 0, 1).
- $\$ Transfer the contents of register B to register A, and then, store into M(Z, X, Y) = (0, 0, 0).

Fig. 33 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (6 μ s at f(XIN) = 4.0 MHz in high-speed through mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(13) Notes for the use of A/D conversion 1

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

• Operating mode of A/D converter

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

Clear the bit 2 of register V2 to "0" to change the operating mode from the comparator mode to A/D conversion mode.

The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

Fig. 34 Comparator operation timing chart

(14) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 35).

- Relative accuracy
 - ① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

 $\ensuremath{\textcircled{O}}$ Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

④ Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

• 1LSB at relative accuracy
$$\rightarrow \frac{VFST-V0T}{1022}$$
 (V)

• 1LSB at absolute accuracy
$$\rightarrow \frac{VDD}{1024}$$
 (V)

Fig. 35 Definition of A/D conversion accuracy

SERIAL INTERFACE

The 4509 Group has a built-in clock synchronous serial interface which can serially transmit or receive 8-bit data.

Serial interface consists of;

Serial interface register SI

- Serial interface control register J1
- Serial interface transmit/receive completion flag (SIOF)
- Serial interface counter

Registers A and B are used to perform data transfer with internal CPU.

The pin functions of the serial interface pins can be set with the register J1.

Table 14 Serial interface p	ins
-----------------------------	-----

Pin	Pin function when selecting serial interface
P02/SCK	Clock I/O (Scк)
P01/SOUT	Serial data output (SOUT)
P03/SIN	Serial data input (SIN)

Note: Even when the SIN pin function is used, the I/O of port P00 is valid. Even when the SOUT pin function is used, the input of port P01 is valid. The input of P02 can be used even when SCK is used. Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.

_11_3_12_L <u>00</u>0 1/8 010 1/4Synchronous Serial SIOF Serial interface counter (3) 100 circuit interface INSTCK 1/2 interrupt <u>11</u>0 P02/Sck (Q S SST instruction Internal reset signal P01/SOUT P00/SIN MSB Serial interface register (8) LSB TSIAB TABS TABSI Register B (4) Register A (4) **J1**1 **J1**0

Fig. 36 Serial interface structure

Table 15 Serial interface control register

	Serial interface control register J1		at	reset : 00002	at RAM back-up : state retained	R/W TAJ1/TJ1A
		J13	J12		Synchronous clock	
J13	Serial interface synchronous clock	0	0	Instruction clock (IN	NSTCK) divided by 8	
		0	1	Instruction clock (IN	NSTCK) divided by 4	
J12		1	0	Instruction clock (INSTCK) divided by 2		
		1	1	External clock (SCk	(input)	
		J11	J10		Port function	
J11		0	0	P00, P01,P02 selec	ted/SIN, SOUT, SCK not selected	
		0	1	P00, SOUT, SCK sel	ected/SIN, P01, P02 not selected	
J10	Serial interface port function selection bits	1	0	SIN, P01, SCK selec	cted/P00, SOUT, P02 not selected	
		1	1	SIN, SOUT, SCK sele	ected/P00, P01,P02 not selected	

Note: "R" represents read enabled, and "W" represents write enabled.

Fig. 37 Serial interface register state when transferring

(1) Serial interface register SI

Serial interface register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register SI through registers A and B with the TSIAB instruction. The contents of register A is transmitted to the low-order 4 bits of register SI, and the contents of register B is transmitted to the high-order 4 bits of register SI.

During transmission, each bit data is transmitted LSB first from the lowermost bit (bit 0) of register SI, and during reception, each bit data is received LSB first to register SI starting from the topmost bit (bit 7).

When register SI is used as a work register without using serial interface, do not select the SCK pin.

(2) Serial interface transmit/receive completion flag (SIOF)

Serial interface transmit/receive completion flag (SIOF) is set to "1" when serial data transmission or reception completes. The state of SIOF flag can be examined with the skip instruction (SNZSI). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The SIOF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(3) Serial interface start instruction (SST)

When the SST instruction is executed, the SIOF flag is cleared to "0" and then serial interface transmission/reception is started.

(4) Serial interface control register J1

Register J1 controls the synchronous clock, P02/SCK, P01/SOUT and P00/SIN pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A.

(5) How to use serial interface

Figure 38 shows the serial interface connection example. Serial interface interrupt is not used in this example. In the actual wiring, pull up the wiring between each pin with a resistor. Figure 38 shows the data transfer timing and Table 16 shows the data transfer sequence.

Fig. 38 Serial interface connection example

Fig. 39 Timing of serial interface data transfer

Table 16 Processing sequence of data transfer from master to slave

Master (transmission)	Slave (reception)
[Initial setting]	[Initial setting]
• Setting the serial interface control register J1 and inter- rupt control register V2 shown in Figure 38.	• Setting serial interface control register J1, and interrupt control register V2 shown in Figure 38.
TJ1A and TV2A instructions	TJ1A and TV2A instructions
• Setting the port received the reception enable signal (SRDY) to the input mode.	• Setting the port transmitted the reception enable signal (SRDY) and output- ting "H" level.
(Port D3 is used in this example)	(Port D3 is used in this example)
SD instruction	SD instruction
* [Transmission enable state]	*[Reception enable state]
Storing transmission data to serial interface register SI.	• The SIOF flag is cleared to "0."
TSIAB instruction	SST instruction
	"L" level (reception possible) is output from port D3.
	RD instruction
[Transmission]	[Reception]
 Check port D3 is "L" level. 	
•Serial transfer starts.	
•Check transmission completes.	Check reception completes.
•Wait (timing when continuously transferring)	• "H" level is output from port D3.
	[Data processing]

1-byte data is serially transferred on this process. Subsequently, data can be transferred continuously by repeating the process from *. When an external clock is selected as a synchronous clock, control the clock externally because serial transfer is performed as long as clock is externally input. (Unlike an internal clock, an external clock is not stopped when serial transfer is completed.) However, the

SIOF flag is set to "1" when the clock is counted 8 times after executing the SST instruction. Be sure to set the initial level of the external clock to "H."

RESET FUNCTION

System reset is performed by the followings:

- "L" level is applied to the RESET pin externally,
- System reset instruction (SRST) is executed,
- Reset occurs by watchdog timer,
- Reset occurs by built-in power-on reset (only for H version)

• Reset occurs by voltage drop detection circuit (only for H version) Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.

(1) RESET pin input

System reset is performed certainly by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied;

the value of supply voltage is the minimum value or more of the recommended operating conditions.

(2) Power-on reset (only for H version)

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

(3) System reset instruction (SRST)

By executing the SRST instruction, "L" level is output to RESET pin and system reset is performed.

Fig. 42 Power-on reset operation

Table 17 Port state at reset

Name	Function	State
D0, D1	D0, D1	High-impedance (Notes 1, 2)
D2/AIN4, D3/AIN5	D2, D3	High-impedance (Notes 1, 2, 3)
D4, D5	D4, D5	High-impedance (Notes 1, 2)
P00/SIN, P01/SOUT, P02/SCK	P00, P01, P02	High-impedance (Notes 1, 2, 3)
P03	P03	High-impedance (Notes 1, 2, 3)
P10	P10	High-impedance (Notes 1, 2, 3)
P11/CNTR1	P11	High-impedance (Notes 1, 2, 3)
P12/CNTR0	P12	High-impedance (Notes 1, 2, 3)
P13/INT	P13	High-impedance (Notes 1, 2, 3)
P20/AIN0, P21/AIN1	P20, P21	High-impedance (Notes 1, 2, 3)
P30/AIN2, P31/AIN3	P30, P31	High-impedance (Notes 1, 2)

Notes 1: Output latch is set to "1."

2: The output structure is N-channel open-drain.

3: Pull-up transistor is turned OFF.

(4) Internal state at reset

Figure 43 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 43 are undefined, so set the initial value to them.

Program counter (PC)		i
Address 0 in page 0 is set to program counter.		
Interrupt enable flag (INTE)		
Power down flag (P)		
External 0 interrupt request flag (EXF0)		
Interrupt control register V1		
Interrupt control register V2		
Interrupt control register I1		
Timer 1 interrupt request flag (T1F)		
Timer 2 interrupt request flag (T2F)		
Watchdog timer flags (WDF1, WDF2)		
Watchdog timer enable flag (WEF)		
Timer control register PA	0 (Prescaler stopped)	
Timer control register W1	0000 (Timer 1 stopped)	
Timer control register W2	0000 (Timer 2 stopped)	
Timer control register W5		
Timer control register W6	0000	
Clock control register MR		
Clock control register RG		
• Serial interface transmit/receive completion flag (SIOF)	0	
Serial interface control register J1		ted
Serial interface register SI	X X X X X X X X	
• A/D conversion completion flag (ADF)	0	
A/D control register Q1		
Successive comparison register ADX	x x x x x x x x x x	
Comparator register		
Key-on wakeup control register K0		
Key-on wakeup control register K1		
Key-on wakeup control register K2		
Key-on wakeup control register L1		
Pull-up control register PU0		
Pull-up control register PU1		
Pull-up control register PU2		
Port output structure control register FR0		
Port output structure control register FR1		
Port output structure control register FR2		
Port output structure control register FR3		
Port output structure control register C1		
Carry flag (CY)		
Register A		
Register B		
Register D		
Register E		
-		
Register X		
Register Y		
Register Z		
Stack pointer (SP)		
Operation source clock		
Ceramic resonator circuit	"V" represents under	əfin
RC oscillation circuit	Stop	

VOLTAGE DROP DETECTION CIRCUIT (only for H version)

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer by outputting "L" level to RESET pin if the supply voltage drops below a set value.

(1) SVDE instruction

If the SVDE instruction is not executed (initial state), the voltage drop detection circuit becomes invalid at RAM back-up mode. When the SVDE instruction is executed, the voltage drop detection circuit is valid even after system enters into the RAM back-up mode.

The SVDE instruction can be executed only once. In order to release the execution of the SVDE instruction, the system reset is required.

Fig. 44 Voltage drop detection reset circuit

Fig. 45 Voltage drop detection circuit operation waveform

Table 18 Voltage drop detection circuit operation state

	At CPU operating	At RAM back-up mode
SVDE instruction not executed	Valid	Invalid
SVDE instruction executed	Valid	Valid

RAM BACK-UP MODE

The 4509 Group has the RAM back-up mode.

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.

Table 19 shows the function and states retained at RAM back-up. Figure 46 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF instruction continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- "L" level is applied to RESET pin,
- system reset (SRST) is performed,
- reset by watchdog timer is performed,
- reset by the built-in power-on reset circuit is performed (only for H version), or
- reset by the voltage drop detection circuit is performed (only for H version).

In this case, the P flag is "0."

Table 19 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	×
carry flag (CY), stack pointer (SP) (Note 2)	~
Contents of RAM	0
Interrupt control registers V1, V2	×
Interrupt control register I1	0
Selected oscillation circuit (execution of CRCK)	0
Clock control register MR	x
Clock control register RG	x
Timer 1, Timer 2 function	(Note 3)
Watchdog timer function	X (Note 4)
Timer control register PA	×
Timer control registers W1, W2	x
Timer control registers W5, W6	0
Serial interface function	×
Serial interface control register J1	0
A/D conversion function	×
A/D control register Q1	0
Voltage drop detection circuit	(Note 5)
Port level	0
Key-on wakeup control registers K0 to K2, L1	0
Pull-up control registers PU0 to PU2	0
Port output structure control registers FR0 to FR3, C1	0
External interrupt request flag (EXF0)	x
Timer interrupt request flags (T1F, T2F)	(Note 3)
A/D conversion completion flag (ADF)	x
Serial interface transmit/receive completion flag (SIOF)	×
Interrupt enable flag (INTE)	x
Watchdog timer flags (WDF1, WDF2)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer flag WDF1 with the WRST instruction, and then set the system to be in the RAM back-up mode.
- 5: The voltage drop detection circuit is equipped with only H version. In the RAM back-up mode, when the SVDE instruction is not executed, the voltage drop detection circuit is invalid, and when the SVDE instruction is executed, the voltage drop detection circuit is valid.

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 20 shows the return condition for each return source.

(5) Control registers

Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

Key-on wakeup control register K1

Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K1 to register A.

• Key-on wakeup control register K2

Register K2 controls the ports P2, D2 and D3 key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

• Key-on wakeup control register L1

Register L1 controls the selection of the return condition and valid waveform/level of port P1, and the selection of the INT pin return condition and INT pin key-on wakeup function. Set the contents of this register through register A with the TL1A instruction. In addition, the TAL1 instruction can be used to transfer the contents of register L1 to register A.

• Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.

• Pull-up control register PU1

Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.

• Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P2, D2 and D3 pullup transistor. Set the contents of this register through register A with the TPU2A instruction. In addition, the TAPU2 instruction can be used to transfer the contents of register PU2 to register A.

• Interrupt control register I1

Register I1 controls the valid waveform/level of the external 0 interrupt and the input control of INT pin. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 20	Return source	and return	condition

F	Return source	Return condition	Remarks
	Port P00–P03 Port P20, P21 Port D2, D3	Return by an external "L" level in- put.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.
al wakeup signal	Port P10-P13	Return by an external "H" level or "L" level input, or falling edge ("H" \rightarrow "L") or rising edge ("L" \rightarrow "H").	The key-on wakeup function can be selected by one port unit. Select the return level ("L" level or "H" level) and return condition (level or edge) with the register L1 according to the external state before going into the RAM back-up state. Before going into the RAM backup state, set an opposite level of the selected return level (edge) to the port using the key-on wakeup function.
External	INT pin	Return by an external "H" level or "L" level input, or falling edge ("H" \rightarrow "L") or rising edge ("L" \rightarrow "H"). When the return level is input, the EXF0 flag is not set.	The key-on wakeup function can be selected by one port unit. Select the return level ("L" level or "H" level) with the register I1 and return condition (level or edge) with the register L1 according to the external state before going into the RAM back-up state.

Fig. 46 State transition

Fig. 48 Start condition identified example using the SNZP instruction

Table 21 Key-on wakeup control register

	Key-on wakeup control register K0		reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A	
KOa	Port P03 key-on wakeup	0	Key-on wakeup no	ot used		
K03	control bit	1 Key-on wakeup use		ed		
K02	Port P02 key-on wakeup	0 Key-on wakeup not used				
K02	control bit	1 Key-on wakeup use		sed		
KO	Port P01 key-on wakeup	0	Key-on wakeup not used			
K01	control bit	1	Key-on wakeup used			
K00	Port P00 key-on wakeup	0	0 Key-on wakeup not used			
K00	control bit	1	Key-on wakeup used			

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W TAK1/TK1A
K13	Port P13 key-on wakeup	0	Key-on wakeup no	bt used	
K13	control bit	1 Key-on wakeup use		sed	
K12	Port P12 key-on wakeup	0	Key-on wakeup not used		
K 12	control bit	1 Key-on wakeup us		sed	
1/14	Port P11 key-on wakeup	0	Key-on wakeup not used		
N 11	K11 control bit		Key-on wakeup used		
K10	Port P10 key-on wakeup	0	Key-on wakeup no	bt used	
K10	control bit	1	Key-on wakeup us	sed	

	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2A	
K23	Port D3 key-on wakeup	0 Key-on wakeup not		bt used		
r\23	control bit	1 Key-on wakeup use		sed		
K22	Port D2 key-on wakeup	0 Key-on wakeup not used				
KZ2	control bit	1 Key-on wakeup us		ised		
K21	Port P21 key-on wakeup	0	Key-on wakeup no	bt used		
K 21	control bit	1 Key-on wakeup used				
K20	Port P20 key-on wakeup	0 Key-on wakeup not used				
r\20	control bit	1	Key-on wakeup us	sed		

Key-on wakeup control register L1		at reset : 00002		at RAM back-up : state retained	R/W TAL1/TL1A	
1.10	Ports P10–P13 return condition selection	0 Return by level				
L13	bit	1 Return by edge				
140	Ports P10-P13 valid waveform/	0 Falling waveform/"L" level				
L12	level selection bit	1 Rising waveform/"H		H" level		
14.	INT pin	0	0 Return by level			
L11	return condition selection bit	1	Return by edge			
1.1.0	INT pin	0 Key-on wakeup not used				
L10	key-on wakeup control bit	1	Key-on wakeup use	ed		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	R/W TAPU0/TPU0A
PU03	Port P03 pull-up transistor	0 Pull-up transistor O		OFF	
P003	control bit	1	Pull-up transistor (N	
DUOs	Port P02 pull-up transistor	0	0 Pull-up transistor OFF		
PU02	^{J2} control bit		Pull-up transistor (NC	
	Port P01 pull-up transistor	0	Pull-up transistor OFF		
PU01	control bit	1	Pull-up transistor (N	
PU00	Port P00 pull-up transistor	0	Pull-up transistor (OFF	
P000	control bit	1	Pull-up transistor (N	

Table 22 Pull-up control register and interrupt control register

	Pull-up control register PU1	at reset : 00002		at RAM back-up : state retained	R/W TAPU1/TPU1A
	Port P13 pull-up transistor	0	Pull-up transistor (OFF	
PU13	control bit	1	Pull-up transistor (NC	
DUIA	Port P12 pull-up transistor	0	0 Pull-up transistor OFF		
PU12	control bit	1 Pull-up transistor		ON	
	Port P11 pull-up transistor	0	Pull-up transistor OFF		
PU11	control bit	1	Pull-up transistor (NC	
DUIA	Port P10 pull-up transistor	0	Pull-up transistor (OFF	
PU10	control bit	1	Pull-up transistor (NC	

	Pull-up control register PU2		reset : 00002	at RAM back-up : state retained	R/W	
					TAPU2/TPU2A	
PU23	Port D3 pull-up transistor	0 Pull-up transistor (OFF		
P023	control bit	1 Pull-up transistor C		ON		
DUOs	Port D2 pull-up transistor	0 Pull-up transistor OFF				
P022	PU22 control bit		Pull-up transistor	ON		
PU21	Port P21 pull-up transistor	0	Pull-up transistor OFF			
P021	control bit	trol bit 1 P		Pull-up transistor ON		
PU20	Port P20 pull-up transistor	0	Pull-up transistor	OFF		
F020	control bit	1	Pull-up transistor	ON		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- Ceramic oscillation circuit
- RC oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 49 shows the structure of the clock control circuit.

The 4509 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.

Also, the ceramic resonator or the RC oscillation can be used for the source oscillation (f(XIN)) of the 4509 Group.

Fig. 49 Clock control circuit structure

(1) On-chip oscillator operation

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(2) Main clock generating circuit (f(XIN))

The ceramic resonator or RC oscillation can be used for the main clock of this product.

After system is released from reset, the ceramic oscillation is active for main clock.

The ceramic oscillation is invalid and the RC oscillation circuit is valid with the CRCK instruction.

Execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The execution of the CRCK instruction can be valid only once.

Register MR controls the enable/disable of the oscillation and the selection of the operation source clock.

Also, when the MCU operates only by the on-chip oscillator without using main clock f(XIN), connect XIN pin to Vss and leave XOUT pin open, and do not execute the CRCK instruction (Figure 51).

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT (Figure 52).

Do not execute the CRCK instruction.

Set "0" to bit 0 of register MR after the oscillation stabilizing wait time is generated by software to select the clock generated by the ceramic oscillation circuit for the source oscillation clock.

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 53).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the recommended operating condition of the frequency limits.

Fig. 50 Switch to ceramic oscillation/RC oscillation

Fig. 51 Handling of XIN and XOUT when main clock is not used

Fig. 52 Ceramic resonator external circuit

Fig. 53 External RC circuit

(5) External clock

When the external signal clock is used for the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open (Figure 54). Do not execute the CRCK instruction in program. Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

(6) Clock control register MR

Register MR controls the selection of operation mode and the operation source clock, and enable/stop of main clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

Fig. 54 External clock input circuit

(7) Clock control register RG

Register RG controls the on-chip oscillator. Set the contents of this register through register A with the TRGA instruction.

Table 23 Clock control register MR

	Clock control register MR		at reset : 11012		at RAM back-up : 11012	R/W TAMR/TMRA
		MR3	MR2		Operation mode	
MR3	MR3 ———— Operation mode selection bits MR2	0	0	Through mode (free	quency not divided)	
		0	1	Frequency divided	by 2 mode	
MR2		1	0	Frequency divided by 4 mode		
		1	1	Frequency divided	by 8 mode	
MR1	Main clock f(XIN) control bit (Notes 2, 5)	0		Main clock (f(XIN)) oscillation enabled		
		1		Main clock (f(XIN)) oscillation stop		
MRo	Operation source clock selection bit (Notes 3, 5)	()	Main clock (f(XIN))		
		1	1	On-chip oscillator c	lock (f(RING))	

Clock control register RG		at reset : 02		at RAM back-up : 02	W TRGA
RG0	On-chip oscillator (f(RING)) control bit (Note 4)	0	On-chip oscillator (f(RING)) oscillation enabled	
		1	On-chip oscillator (f(RING)) oscillation stop		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: Main clock cannot be stopped when the main clock is selected for the operation source clock.

3: The stopped clock cannot be selected for the operation source clock. In order to switch the operation source clock, generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.

4: On-chip oscillator cannot be stopped when the on-chip oscillator is selected for the operation source clock.

5: When changing the setting of MR1 and MR0 from "00" to "11", make settings in the sequence "00" \rightarrow "01" \rightarrow "11".

When changing the setting of MR1 and MR0 from "11" to "0", make settings in the sequence "11" \rightarrow "01" \rightarrow "00".

QzROM Writing Mode

In the QzROM writing mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial programmer which is applicable for this microcomputer.

Table 24 lists the pin description (QzROM writing mode) and Figure 55 shows the pin connections.

Refer to Figure 56 for examples of a connection with a serial programmer.

Contact the manufacturer of your serial programmer for serial programmer. Refer to the user's manual of your serial programmer for details on how to use it.

Table 24 Pin description (QzROM writing mode)

Pin	Name	I/O	Function	
Vdd	Power source		Power supply voltage pin.	
Vss	GND	_	• GND pin.	
CNVss	VPP input	—	 QzROM programmable power source pin. VPP input is possible with Vss connected via a resistor of about 5 kΩ. 	
P20/AIN0	SDA input/output	I/O	• QzROM serial data I/O pin.	
P21/AIN1	SCLK input	Input	QzROM serial clock input pin.	
D3/AIN5	PGM input	Input	QzROM read/program pulse input pin.	
RESET	Reset input	Input	 Reset input pin. Input "L" level signal. 	
Xin	Clock input		• Either connect an oscillation circuit or connect XIN pin to Vss and leave the XOUT pin open.	
Хоит	Clock output			
D0, D1, D2/AIN4, D4, D5, P00/SIN, P01/SOUT, P02/SCK, P03, P10, P11/CNTR1, P12/CNTR0, P13/INT, P30/AIN2, P31/AIN3	I/O port	I/O	• Input "H" or "L" level signal or leave the pin open.	

Fig. 56 When using programmer of Suisei Electronics System Co., LTD, connection example

DATA REQUIRED FOR QZROM WRITING ORDERS

The following are necessary when ordering a QzROM product shipped after writing:

1. QzROM Writing Confirmation Form*

2. Mark Specification Form*

3. ROM data.....Mask file

* For the QzROM writing confirmation form and the mark specification form, refer to the "Renesas Technology Corp." Homepage (http:/ /www.renesas.com/homepage.jsp).

Note that we cannot deal with special font marking (customer's trademark etc.) in QzROM microcomputer.

LIST OF PRECAUTIONS

① Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 $\mu\text{F})$ between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/VPP pin as close as possible).

② Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

③ Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

5 Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

6 Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑦ Multifunction

- The input/output of P00 can be used even when SIN is used. Be careful when using inputs of both SIN and P00 since the input threshold value of SIN pin is different from that of port P00.
- The input of P01 can be used even when SOUT is used.
- The input of P02 can be used even when SCK is used. Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.
- The input of P11 can be used even when CNTR1 (output) is selected.

The input/output of P11 can be used even when CNTR1 (input) is selected. Be careful when using inputs of both CNTR1 and P11 since the input threshold value of CNTR1 pin is different from that of port P11.

- The input of P12 can be used even when CNTR0 (output) is selected.

The input/output of P12 can be used even when CNTR0 (input) is selected. Be careful when using inputs of both CNTR0 and P12 since the input threshold value of CNTR0 pin is different from that of port P12.

- The input/output of P13 can be used even when INT is used. Be careful when using inputs of both INT and P13 since the input threshold value of INT pin is different from that of port P13.
- The input/output of P20, P21, P30, P31, D2, D3 can be used even when AIN0-AIN5 are used.

Power-on reset (only for H version)

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

POF instruction

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF instruction continuously.

P13/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register 11 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 57⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 57⁽²⁾). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 57⁽³⁾).

:		
LA	4	; (XXX02)
TV1A		; The SNZ0 instruction is valid
LA	8	; (1XXX2)
TI1A		; Control of INT pin input is changed
NOP		
SNZ0		; The SNZ0 instruction is executed
		(EXF0 flag cleared)
NOP		3
:	X : the	se bits are not used here.

Fig. 57 External 0 interrupt program example-1

2 Note [2] on bit 3 of register I1

- When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the INT pin input is disabled (register I13 = "0"), set the keyon wakeup of INT pin to be invalid (register L10 = "0") before system enters to the RAM back-up mode. (refer to Figure 58⁽¹⁾).

•	
LA 0	; (XXX02)
TI1A	; INT key-on wakeup disabled \oplus
DI	
EPOF	
POF2	; RAM back-up
:	
X : thes	e bits are not used here.

Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register 11 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 59⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 59⁽²⁾). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 59⁽³⁾).

:				
LA	4	; (XXX02)		
TV1A		; The SNZ0 instruction is valid		
LA	12	; (1XXX2)		
TI1A		; Interrupt valid waveform is changed		
NOP				
SNZ0		; The SNZ0 instruction is executed		
		(EXF0 flag cleared)		
NOP		3		
:				
X : these bits are not used here.				

Fig. 59 A/D conversion interrupt program example

1 Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

2 Timer count source

Stop timer 1 or 2 counting to change its count source.

⁽³⁾ Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

(4) Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB, T1R1L, T2AB or T2R2L instruction to write data to timer.

Writing to reload register

In order to write a data to the reload register R1H while the timer 1 is operating, execute the T1HAB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R2H while the timer 2 is operating, execute the T2HAB instruction except a timing of the timer 2 underflow.

Prescaler, timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after prescaler and timer operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer, timer operates synchronizing with the count edge (falling edge or rising edge) of CNTR input selected by software.

Fig. 60 Timer count start timing and count time when operation starts

@PWM signal (PWM1, PWM2)

If the timer 1 count stop timing and the timer 1 underflow timing overlap during output of the PWM1 signal, a hazard may occur in the PWM1 output waveform.

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM2 signal, a hazard may occur in the PWM2 output waveform.

[®]Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.
- When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state.

Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

⁽⁹⁾Clock control

When the RC oscillation is used as the main clock f(XIN), execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CRCK instruction can be selected only once. When the CRCK instruction is not executed, the ceramic oscillation is selected for the main clock f(XIN).

Also, when the MCU operates only by the on-chip oscillator without using main clock f(XIN), connect XIN pin to Vss and leave XOUT pin open, and do not execute the CRCK instruction.

In order to switch the operation source clock (f(RING)) or f(XIN)), generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.

Registers RG and MR are initialized when system returns from RAM back-up mode.

However, the selected contents (CRCK instruction execution state) of main clock (f(XIN)) oscillation circuit is retained.

On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products. Also, when considering the oscillation stabilize wait time for switching clock, be careful that the variable frequency of the on-chip oscillator clock.

1 External clock

When the external clock is used for the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Do not execute the CRCK instruction in program.

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition).

Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

²² Notes for the use of A/D conversion 1

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

- Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.
- Clear the bit 2 of register V2 to "0" to change the operating mode from the comparator mode to A/D conversion mode.
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

Fig. 61 External 0 interrupt program example-3

⁽³⁾Notes for the use of A/D conversion 2

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins (Figure 60).

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 61. In addition, test the application products sufficiently.

to an analog input pin.

Fig. 63 Analog input external circuit example-2

^❷QzROM

- Be careful not to apply overvoltage to MCU. The contents of QzROM may be overwritten because of overvoltage. Take care especially at turning on the power.
- (2) As for the product shipped in blank, Renesas does not perform the writing test to user ROM area after the assembly process though the QzROM writing test is performed enough before the assembly process. Therefore, a writing error of approx.0.1 % may occur. Moreover, please note the contact of cables and foreign bodies on a socket, etc. because a writing environment may cause some writing errors.

In the second se

(QzROM product shipped after writing)

As for the QzROM product shipped after writing, the ROM code protect is specified according to the ROM option setup data in the mask file which is submitted at ordering.

The ROM option setup data in the mask file is "0016" for protect enabled or "FF16" for protect disabled.

Note that the mask file which has nothing at the ROM option data or has the data other than "0016" and "FF16" can not be accepted.

NOTES ON NOISE

Countermeasures against noise are described below.

The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

1. Shortest wiring length

(1) Wiring for RESET pin

Make the length of wiring which is connected to the RESET pin as short as possible. Especially, connect a capacitor across the RESET pin and the Vss pin with the shortest possible wiring.

<Reason>

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the $\overrightarrow{\mathsf{RESET}}$ pin is required.

If noise having a shorter pulse width than this is input to the $\overrightarrow{\mathsf{RESET}}$ input pin, the reset is released before the internal state of the microcomputer is completely initialized.

This may cause a program runaway.

Fig. 64 Wiring for the RESET pin

(2) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

<Reason>

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

Fig. 65 Wiring for clock I/O pins

(3) Wiring to CNVss pin

Connect CNVss pin to a GND pattern at the shortest distance.

The GND pattern is required to be as close as possible to the GND supplied to Vss.

In order to improve the noise reduction, to connect a 5 $k\Omega$ resistor serially to the CNVss pin - GND line may be valid.

As well as the above-mentioned, in this case, connect to a GND pattern at the shortest distance. The GND pattern is required to be as close as possible to the GND supplied to Vss.

<Reason>

The CNVss pin of the QzROM is the power source input pin for the built-in QzROM. When programming in the built-in QzROM, the impedance of the CNVss pin is low to allow the electric current for writing flow into the QzROM. Because of this, noise can enter easily. If noise enters the CNVss pin, abnormal instruction codes or data are read from the built-in QzROM, which may cause a program runaway.

Fig. 66 Wiring for the CNVss pin of the QzPROM

2. Connection of bypass capacitor across Vss line and VDD line Connect an approximately 0.1 μ F bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VDD pin at equal length.
- Connect a bypass capacitor across the VSS pin and the VDD pin with the shortest possible wiring.
- \bullet Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

Fig. 67 Bypass capacitor across the VSS line and the VDD line

3. Wiring to analog input pins

- Connect an approximately 100 Ω to 1 k Ω resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

<Reason>

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

Fig. 68 Analog signal line and a resistor and a capacitor

4. Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping oscillator away from large current signal lines Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

<Reason>

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

(2) Installing oscillator away from signal lines where potential levels change frequently

Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

<Reason>

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

Fig. 69 Wiring for a large current signal line

(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

Fig. 71 Vss pattern on the underside of an oscillator

5. Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its port latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

6. Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software. In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine.

This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

<The main routine>

 Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

N+1 \geq (Counts of interrupt processing executed in each main routine)

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

<The interrupt processing routine>

- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

Fig. 72 Watchdog timer by software

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W TAV1/TV1A		
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (Interrupt disabled (SNZT2 instruction is valid)			
V13		1 Interrupt enabled (SNZT2 instruction is invalid)	SNZT2 instruction is invalid)				
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)			
V 12		1	Interrupt enabled (SNZT1 instruction is invalid)			
V11	Not used	0	This bit has no function, but read/write is enabled.				
VII	Not used	1		clion, but read/ while is chabled.			
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)			
V 10	External o interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)			

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W TAV2/TV2A	
1/20	Serial interface interrupt enable bit	0	Interrupt disabled (SNZSI instruction is valid)			
V23		1	Interrupt enabled (SNZSI instruction is invalid)			
V22	A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)			
V 22	A/D Interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid)			
1/07	Not used	0	- This bit has no function, but read/write is enabled.			
V21		1				
1/00	Not used	0	This bit has no function, but read/write is enabled.			
V20	NOT USED	1	This bit has no function, but read/while is enabled.			

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1A
110	I13 INT pin input control bit (Note 2)		INT pin input disat	bled	
113			INT pin input enab	led	
		0	Falling waveform ("L" level of INT pin is recognized with	th the SNZI0
110	Interrupt valid waveform for INT pin/	0	instruction)/"L" level		
112	return level selection bit (Note 2)	4	Rising waveform ("H" level of INT pin is recognized with the SNZI0		
			instruction)/"H" lev	rel	
111	INT pin edge detection circuit control bit	0	One-sided edge detected		
		1	Both edges detected		
110	INT pin	0	Disabled		
110	timer 1 control enable bit	1 Enabled			

	Clock control register MR		at	reset : 11012	at RAM back-up : 11012	R/W TAMR/TMRA		
	Operation mode selection bits	MRз	MR2		Operation mode			
MR3		0	0	Through mode (frequency not divided)				
		0	1	Frequency divided by 2 mode				
MR2		1	0	Frequency divided	requency divided by 4 mode			
		1	1	Frequency divided by 8 mode				
MR1	Main clock f(XIN) control bit (Note 3)	()	Main clock (f(XIN)) oscillation enabled				
IVITS		1		Main clock (f(XIN)) oscillation stop				
MR0	Operation source clock selection bit (Note 4)	()	Main clock (f(XIN))				
			1	On-chip oscillator clock (f(RING))				

Clock control register RG		at reset : 02		at RAM back-up : 02	W TRGA
RG0	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (f(RING)) oscillation enabled	
KG0	(Note 5)	1	On-chip oscillator (f(RING)) oscillation stop	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

3: Main clock cannot be stopped when the main clock is selected for the operation source clock.

4: The stopped clock cannot be selected for the operation source clock. In order to switch the operation source clock, generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.

5: On-chip oscillator cannot be stopped when the on-chip oscillator is selected for the operation source clock.

Timer control register PA		at reset : 02		at RAM back-up : 02	W TPAA
DAo	Proceeder control hit	0	Stop (state initialize	ed)	•
PA0 Prescaler control bit		1	Operating		

	Timer control register W1		at reset : 00002		at RAM back-up : 00002	R/W TAW1/TW1A	
W/13	W13 PWM1 function control bit)	PWM1 function inv	alid		
VV15				PWM1 function val	id		
W12 Timer 1	Timer 1 control bit	0 Stop (state retained)					
VVIZ		1 Operating					
		W11	W10		Count source		
W11		0	0	PWM2 signal	PWM2 signal		
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)			
W10		1	0	CNTR1 input			
		1	1	On-chip oscillator clock (f(RING))			

	Timer control register W2		at reset : 00002		at RAM back-up : 00002	R/W TAW2/TW2A	
W23	W23 PWM2 function control bit)	PWM2 function inv	valid		
1125			1	PWM2 function va	lid		
W22	Timer 2 control bit	0		Stop (state retained)			
V V Z Z			1 Operating				
		W21	W20		Count source		
W21		0	0	Timer 1 underflow	Timer 1 underflow signal (T1UDF)		
	Timer 2 count source selection bits	0	1	Prescaler output (ORCLK)			
W20		1	0	CNTR0 input			
		1	1	System clock (STCK)			

	Timer control register W5		reset : 00002	at RAM back-up : state retained	R/W TAW5/TW5A	
W53 P12/CNTR0 pin function selection bit		0	P12 (I/O) / CNTR0	(input)		
1103	W53 P12/CNTR0 pin function selection bit		P12 (input) /CNTR	P12 (input) /CNTR0 (I/O)		
W52	Timer 1 count auto-stop circuit		Count auto-stop circuit not selected			
VV52	selection bit (Note 2)	1	Count auto-stop circuit selected			
W51	Timer 1 count start synchronous circuit	0	Count start synchronous circuit not selected			
0051	selection bit (Note 3)	1	Count start synchronous circuit selected			
W50	CNTR0 pin input count edge selection bit	0	Falling edge			
**50		1	Rising edge			

	Timer control register W6		reset : 00002	at RAM back-up : state retained	R/W TAW6/TW6A	
W63 P11/CNTR1 pin function selection bit		0	P11 (I/O) / CNTR1	(input)		
0005		1	P11 (input) /CNTR	P11 (input) /CNTR1 (I/O)		
W62	W62 CNTR 1 pin output auto-control circuit		Output auto-control circuit not selected			
1102	selection bit	1	Output auto-control circuit selected			
W61	Timer 2	0	INT pin input perio	d count circuit not selected		
0001	INT pin input period count circuit selection bit	1	INT pin input period count circuit selected			
W60	CNTD1 sis issuet court adda calestian bit	0	Falling edge			
**00	CNTR1 pin input count edge selection bit	1	Rising edge			

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: This function is valid only when the INT pin/timer 1 control is enabled (I10="1") and the timer 1 count start synchronous circuit is selected (W51="1"). 3: This function is valid only when the INT pin/timer 1 control is enabled (I10="1").

A/D control register Q1		at reset : 00002			: 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A
012	Q13 A/D operation mode selection bit)	A/D	conversion m	ode	
0213	Arb operation mode selection bit	1		Comparator mode			
		Q12	Q11	Q10		Selected pins	
Q12		0	0	0	AIN0		
		0	0	1	AIN1		
		0	1	0	AIN2		
Q11	Analog input pin selection bits	0	1	1	Аімз		
		1	0	0	AIN4		
		1	0	1	AIN5		
Q10		1	1	0	Not available		
		1	1	1	Not available		

	Serial interface control register J1			reset : 00002	at RAM back-up : state retained	R/W TAJ1/TJ1A	
	Serial interface synchronous clock	J13	J12		Synchronous clock		
J13		0	0	Instruction clock (II	NSTCK) divided by 8		
		0	1	Instruction clock (II	NSTCK) divided by 4		
J12		1	0	Instruction clock (INSTCK) divided by 2			
		1	1	External clock (Sck input)			
		J11	J1 0		Port function		
J11		0	0	P00, P01, P02 sele	P00, P01, P02 selected/SIN, SOUT, SCK not selected		
	Serial interface port function selection bits	0	1	P00, SOUT, SCK se	lected/SIN, P01, P02 not selected		
J10		1	0	SIN, P01, SCK selected/P00, SOUT, P02 not selected			
		1	1	SIN, SOUT, SCK selected/P00, P01, P02 not selected			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

	Key-on wakeup control register K0	at	reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A
K03	Port P03 key-on wakeup	0	Key-on wakeup no	bt used	
K03	control bit	1	Key-on wakeup us	ed	
K02	Port P02 key-on wakeup	0	Key-on wakeup not used		
K02	control bit	1	Key-on wakeup used		
K01	Port P01 key-on wakeup	0	Key-on wakeup not used		
K01	control bit	1	Key-on wakeup used		
K00	Port P00 key-on wakeup	0	Key-on wakeup not used		
K00	control bit	1	Key-on wakeup us	ed	

	Key-on wakeup control register K1	at reset : 00002		at RAM back-up : state retained	R/W TAK1/TK1A
K13	Port P13 key-on wakeup	0	Key-on wakeup no	ot used	
K13	control bit	1	1 Key-on wakeup used		
K12	Port P12 key-on wakeup	0	Key-on wakeup not used		
K12	control bit	1	Key-on wakeup used		
K11	Port P11 key-on wakeup	0	Key-on wakeup not used		
KI1	control bit	1	Key-on wakeup used		
K10	Port P10 key-on wakeup	0	Key-on wakeup not used		
K 10	control bit	1	Key-on wakeup us	sed	

	Key-on wakeup control register K2	at	reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2A
K23	Port D3 key-on wakeup	0	Key-on wakeup no	ot used	
K23	control bit	1	Key-on wakeup us	sed	
K22	Port D2 key-on wakeup	0	0 Key-on wakeup not used		
KZ2	control bit	1	1 Key-on wakeup used		
K21	Port P21 key-on wakeup	0	Key-on wakeup not used		
K 21	control bit	1	Key-on wakeup used		
K20	Port P20 key-on wakeup	0	0 Key-on wakeup not used		
r\20	control bit	1	Key-on wakeup us	sed	

Key-on wakeup control register L1		at reset : 00002		at RAM back-up : state retained	R/W
		u	10001.00002		TAL1/TL1A
L13	Ports P10–P13 return condition selection	0 Return by level			
L13	bit	1	Return by edge		
L12	Ports P10-P13 valid waveform/	0	Falling waveform/"L" level		
	level selection bit	1	1 Rising waveform/"H" level		
1.1.4	INT pin	0	Return by level		
L11	return condition selection bit	1	Return by edge		
L10	INT pin	0	Key-on wakeup not used		
L10	key-on wakeup control bit	1	Key-on wakeup use	ed	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

	Pull-up control register PU0	at	reset : 00002	at RAM back-up : state retained	R/W TAPU0/TPU0/
PU03	Port P03 pull-up transistor	0	Pull-up transistor	OFF	
PU03	control bit	1	Pull-up transistor	ON	
DU O.	Port P02 pull-up transistor	0	Pull-up transistor	OFF	
PU02	control bit	1	Pull-up transistor	ON	
DUO.	Port P01 pull-up transistor	0	Pull-up transistor	OFF	
PU01	control bit	1	Pull-up transistor	ON	
DU O.	Port P00 pull-up transistor	0	Pull-up transistor	OFF	
PU00	control bit	1	Pull-up transistor	ON	
	Pull-up control register PU1	at	reset : 00002	at RAM back-up : state retained	R/W TAPU1/TPU1/
DUIA	Port P13 pull-up transistor	0	Pull-up transistor	OFF	
PU13	control bit	1	Pull-up transistor ON		
5	Port P12 pull-up transistor	0	Pull-up transistor	OFF	
PU12	control bit	1	Pull-up transistor ON		
DUIA	Port P11 pull-up transistor	0	Pull-up transistor	OFF	
PU11	control bit	1	Pull-up transistor	ON	
BUIL	Port P10 pull-up transistor	0	Pull-up transistor	OFF	
PU10	control bit	1	Pull-up transistor	ON	
	Pull-up control register PU2	at	reset : 00002	at RAM back-up : state retained	R/W
			10001 . 00002		TAPU2/TPU2/
PU23	Port D3 pull-up transistor	0	Pull-up transistor	OFF	
1023	control bit	1	Pull-up transistor	ON	
PU22	Port D2 pull-up transistor	0	Pull-up transistor OFF		
1 022	control bit	1	1 Pull-up transistor ON		
PU21	Port P21 pull-up transistor	0	Pull-up transistor	OFF	
FUZT	control bit	1	Pull-up transistor	ON	
	Port P20 pull-up transistor	0	Pull-up transistor	OFF	
PU20	control bit	1	Pull-up transistor		

Pull-up transistor ON

Notes 1: "R" represents read enabled, and "W" represents write enabled.

Por	t output structure control register FR0	at reset : 00002		at RAM back-up : state retained	W TFR0A	
FDOo	Dest DOs sutant structure calestics hit	0	N-channel open-d	rain output		
FR03	Port P03 output structure selection bit	1	CMOS output	CMOS output		
FDOs		0	N-channel open-drain output			
FR02	Port P02 output structure selection bit	1	CMOS output			
ED0.	Deal DO sector (structure selection bit	0	N-channel open-d	rain output		
FR01	R01 Port P01 output structure selection bit		CMOS output			
FDOs	FR00 Port P00 output structure selection bit	0	N-channel open-drain output			
FR00		1	CMOS output			

Por	t output structure control register FR1	at reset : 00002		at RAM back-up : state retained	W TFR1A
FR13	Dort D1a output atructure calection hit	0	N-channel open-d	rain output	
FR13	Port P13 output structure selection bit	1	CMOS output		
ED4a	Port P12 output structure selection bit		N-channel open-drain output		
FR12			CMOS output		
FR11	Part D14 output atructure collection hit	0	N-channel open-drain output		
FR11	Port P11 output structure selection bit		CMOS output		
	FR10 Port P10 output structure selection bit	0	N-channel open-drain output		
FR10		1	CMOS output		

Por	t output structure control register FR2	at reset : 00002		at RAM back-up : state retained	W TFR2A	
FR23	Not used	0	This bit has no fun	unction, but read/write is enabled.		
		1		This bit has no function, but read/white is enabled.		
FR22	Netwood	0				
FR22	22 Not used		This bit has no function, but read/write is enabled.			
FR21	Dest D24 extend structure colection bit	0	N-channel open-drain output			
FR21	Port P21 output structure selection bit	1	CMOS output			
ED 20	EDD Dert DD entert structure school in hit	0	N-channel open-drain output			
FR20	Port P20 output structure selection bit	1	CMOS output			

Por	t output structure control register FR3	at reset : 00002		at RAM back-up : state retained	W TFR3A	
FR33	Part Da autout atructure calection, hit	0	N-channel open-d	rain output		
FK33	Port D3 output structure selection bit	1	CMOS output	CMOS output		
FR32	Ded De estructure en la diam bit	0	N-channel open-drain output			
FR32	Port D2 output structure selection bit	1	CMOS output			
ED0.	Ded Deserved structure solarities, bit	0	N-channel open-drain output			
FR31	Port D1 output structure selection bit	1	CMOS output			
ED 20	FR30 Port D0 output structure selection bit		N-channel open-drain output			
FK30			CMOS output			

Po	rt output structure control register C1	at reset : 00002		at power down : state retained	W TC1A
C13	Dant Da autout atmenture calentian, bit	0	N-channel open-di	rain output	
013	Port D5 output structure selection bit		CMOS output		
C10	C12 Port D4 output structure selection bit		N-channel open-drain output		
012			CMOS output		
01.	Dart D2/ autout atmosture calestics, bit	0	N-channel open-drain output		
C11	Port P31 output structure selection bit		CMOS output		
C10	Dort D2a output atructure coloction, hit	0	N-channel open-drain output		
C10	C10 Port P30 output structure selection bit	1	CMOS output		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)

(4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	RPS	Prescaler reload register (8 bits)
в	Register B (4 bits)	R1L	Timer 1 reload register (8 bits)
DR	Register D (3 bits)	R1H	Timer 1 reload register (8 bits)
E	Register E (8 bits)	R2L	Timer 2 reload register (8 bits)
Q1	A/D control register Q1 (4 bits)	R2H	Timer 2 reload register (8 bits)
V1	Interrupt control register V1 (4 bits)	PS	Prescaler
V2	Interrupt control register V2 (4 bits)	T1	Timer 1
11	Interrupt control register I1 (4 bits)	T2	Timer 2
W1	Timer control register W1 (4 bits)	T1F	Timer 1 interrupt request flag
W2	Timer control register W2 (4 bits)	T2F	Timer 2 interrupt request flag
W5	Timer control register W5 (4 bits)	WDF1	Watchdog timer flag
W6	Timer control register W6 (4 bits)	WEF	Watchdog timer enable flag
FR0	Port output structure control register FR0 (4 bits)	INTE	Interrupt enable flag
FR1	Port output structure control register FR1 (4 bits)	EXF0	External 0 interrupt request flag
FR2	Port output structure control register FR2 (4 bits)	Р	Power down flag
FR3	Port output structure control register FR3 (4 bits)	ADF	A/D conversion completion flag
C1	Port output structure control register C1 (4 bits)	SIOF	Serial interface transmit/receive completion flag
J1	Serial interface control register J1 (4 bits)		
MR	Clock control register MR (4 bits)	D	Port D (6 bits)
К0	Key-on wakeup control register K0 (4 bits)	P0	Port P0 (4 bits)
K1	Key-on wakeup control register K1 (4 bits)	P1	Port P1 (4 bits)
K2	Key-on wakeup control register K2 (4 bits)	P2	Port P2 (2 bits)
L1	Key-on wakeup control register L1 (4 bits)	P3	Port P3 (2 bits)
PU0	Pull-up control register PU0 (4 bits)		
PU1	Pull-up control register PU1 (4 bits)	x	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	У	Hexadecimal variable
Х	Register X (4 bits)	z	Hexadecimal variable
Y	Register Y (4 bits)	р	Hexadecimal variable
Z	Register Z (2 bits)	n	Hexadecimal constant
DP	Data pointer (10 bits)	i	Hexadecimal constant
	(It consists of registers X, Y, and Z)	j	Hexadecimal constant
PC	Program counter (14 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
РСн	High-order 7 bits of program counter		(same for others)
PCL	Low-order 7 bits of program counter		
SK	Stack register (14 bits X 8)	←	Direction of data movement
SP	Stack pointer (3 bits)	\leftrightarrow	Data exchange between a register and memory
CY	Carry flag	?	Decision of state shown before "?"
		()	Contents of registers and memories
			Negate, Flag unchanged after executing instruction
		M(DP)	RAM address pointed by the data pointer
		а	Label indicating address a6 a5 a4 a3 a2 a1 a0
		p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
			in page p6 p5 p4 p3 p2 p1 p0
		C	Hex. C + Hex. number x (also same for others)
		+	
		x	

Note : The 4509 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

$ \begin{array}{ c c c c c } \hline TAB & (A) \leftarrow (B) \\ \hline TBA & (B) \leftarrow (A) \\ \hline TBA & (B) \leftarrow (A) \\ \hline TAY & (A) \leftarrow (Y) \\ \hline TYA & (Y) \leftarrow (A) \\ \hline TYA & (Y) \leftarrow (A) \\ \hline TYA & (Y) \leftarrow (A) \\ \hline TAB & (E7-E4) \leftarrow (B) \\ \hline (E3-E0) \leftarrow (A) \\ \hline TAB & (B) \leftarrow (E7-E4) \\ \hline (A) \leftarrow (E2-E0) \\ \hline TAB & (B) \leftarrow (E7-E4) \\ \hline (A) \leftarrow (E2-E0) \\ \hline TAD & (DR2-DR0) \leftarrow (A2-A0) \\ \hline TAD & (A2-A0) \leftarrow (DR2-DR0) \\ \hline TAD & (A2-A0) \leftarrow (DR2-DR0) \\ \hline TAZ & (A1, A0) \leftarrow (Z1, Z0) \\ \hline (A3) \leftarrow 0 \\ \hline TAX & (A) \leftarrow (X) \\ \hline TASP & (A2-A0) \leftarrow (SP2-SP0) \\ \hline (A3) \leftarrow 0 \\ \hline TAX & (A) \leftarrow (X) \\ \hline TASP & (A2-A0) \leftarrow (SP2-SP0) \\ \hline (A3) \leftarrow 0 \\ \hline TAX & (A) \leftarrow (X) \\ \hline TASP & (A2-A0) \leftarrow (SP2-SP0) \\ \hline (A3) \leftarrow 0 \\ \hline TAX & (A) \leftarrow (X) \\ \hline TASP & (A2-A0) \leftarrow (SP2-SP0) \\ \hline (A3) \leftarrow 0 \\ \hline TAX & (A) \leftarrow (Y) + 1 \\ \hline DEY & (Y) \leftarrow (Y) + 1 \\ \hline DEY & (Y) \leftarrow (Y) + 1 \\ \hline DEY & (Y) \leftarrow (Y) + 1 \\ \hline DEY & (Y) \leftarrow (Y) + 1 \\ \hline DEY & (Y) \leftarrow (Y) + 1 \\ \hline DEY & (Y) \leftarrow (Y) + 1 \\ \hline TAM j & (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 to 15 \\ \hline XAM j & (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 to 15 \\ \hline XAM j & (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 to 15 \\ \hline XAM j & (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 to 15 \\ \hline XAM j & (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 to 15 \\ \hline XAM j & (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 to 15 \\ \hline XAM j & (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 to 15 \\ \hline XAM j & (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 to 15 \\ \hline XAM j & (A) \leftarrow (M(DP)) \\ \hline XAM$	Group- ing	Mnemonic	Function	Group ing	Mnemonic	Function
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					XAMI j	$(X) \leftarrow (X) EXOR(j)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				gister tre		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ΤΥΑ		RAM to reg	ТМА ј	$(X) \leftarrow (X) EXOR(j)$
$\begin{array}{c} \left(\begin{array}{c} (A3) \leftarrow 0 \\ (A3, A2) \leftarrow 0 \\ (A3, A2) \leftarrow 0 \end{array} \right) \\ TAZ \\ TAZ \\ (A1, A0) \leftarrow (Z1, Z0) \\ (A3, A2) \leftarrow 0 \\ (A3, A2) \leftarrow 0 \\ TAX \\ (A) \leftarrow (X) \\ TASP \\ (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ (A3) \leftarrow 0 \\ (A3) \leftarrow 0 \\ (A) \leftarrow (A) \leftarrow (M(DP)) \\ (A3) \leftarrow 0 \\ (A) \leftarrow (A) \leftarrow (M(DP)) \\ (A) \leftarrow (A) \leftarrow (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (A) + (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (A) + (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (A) + (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (A) + (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ XAM j \\ (A) \leftarrow (A) + (A) $	sfer	ТЕАВ			LA n	(A) ← n
$\begin{array}{c} \left(\begin{array}{c} (A3) \leftarrow 0 \\ (A3, A2) \leftarrow 0 \\ (A3, A2) \leftarrow 0 \end{array} \right) \\ TAZ \\ TAZ \\ (A1, A0) \leftarrow (Z1, Z0) \\ (A3, A2) \leftarrow 0 \\ (A3, A2) \leftarrow 0 \\ TAX \\ (A) \leftarrow (X) \\ TASP \\ (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ (A3) \leftarrow 0 \\ (A3) \leftarrow 0 \\ (A) \leftarrow (A) \leftarrow (M(DP)) \\ (A3) \leftarrow 0 \\ (A) \leftarrow (A) + (M(DP)) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \\ (A) \leftarrow (A) + (A)$	egister tran	TABE			TABP p	(SP) ← (SP) + 1
$\begin{array}{c} (A3) \leftarrow 0 \\ TAZ \\ TAZ \\ (A1, A0) \leftarrow (Z1, Z0) \\ (A3, A2) \leftarrow 0 \\ TAX \\ (A) \leftarrow (X) \\ TASP \\ (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ TASP \\ (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ TASP \\ (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ TASP \\ (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ TASP \\ (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ TASP \\ (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \\ TASP \\ (Y) \leftarrow y y = 0 \text{ to } 15 \\ TASP \\ (Y) \leftarrow y y = 0 \text{ to } 15 \\ TASP \\ INY \\ (Y) \leftarrow (Y) + 1 \\ DEY \\ INY \\ (Y) \leftarrow (Y) - 1 \\ TAM j \\ (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ SC \\ (CY) \leftarrow 0 \\ SC \\ (CY) \leftarrow 0 \\ SC \\ (CY) \leftarrow 0 \\ SZC \\ (CY) \leftarrow 0 \\ (CY) \leftarrow 0 \\ SZC \\ (CY) \leftarrow 0 \\ (C$	gister to r					(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reć	TAD	(A3) ← 0			(DR1, DR0) ← (ROM(PC))9, 8
TAX $(A) \leftarrow (X)$ $(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3 \leftarrow 0$ $(A) \leftarrow (A) + (M(DP))$ TASP $(A_2-A_0) \leftarrow (SP_2-SP_0)$ AM $(A) \leftarrow (A) + (M(DP))$ $(A_3) \leftarrow 0$ $(X) \leftarrow xx = 0 \text{ to } 15$ AM $(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow yy = 0 \text{ to } 15$ $(Z) \leftarrow zz = 0 \text{ to } 3$ AM $(A) \leftarrow (A) + (M(DP)) + (CY)$ V_2 $VY \leftarrow (Y) + 1$ DEY $(Y) \leftarrow (Y) + 1$ AND $(A) \leftarrow (A) AND (M(DP))$ DEY $(Y) \leftarrow (Y) - 1$ OR $(A) \leftarrow (A) OR (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ RC $(CY) \leftarrow 0$ $XAM j$ $(A) \leftarrow - (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ SZC $(CY) \leftarrow 0$ $XAM j$ $(A) \leftarrow - (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ RRR $\rightarrow (CY) \rightarrow (A3A2A1A0)$		TAZ				(A) ← (ROM(PC))3–0
$\begin{array}{ c c c c c } & (A3) \leftarrow 0 & (A3$		ТАХ				
$\begin{array}{c c} \overbrace{V}\\ \overbrace{V} \atop \overbrace{V} \atop \overbrace{V} \atop \overbrace{V} \atop \overbrace{V} \atop \overbrace{V} \atop \overbrace{V} \overbrace{V} \overbrace{V} \overbrace{V} \overbrace{I} \overbrace{I} \overbrace{I} \atop \overbrace{V} \overbrace{I} \overbrace{I} \overbrace{I} \atop I} \overbrace{I} \overbrace{I} \overbrace{I} \overbrace{I} \overbrace{I} \overbrace{I} \overbrace{I} \overbrace$		TASP		L L		
$\begin{array}{c c} & & \\ & &$		LXY x, y		c operati	AMC	
$\begin{array}{c c} & & \\ & &$	Iddresse	LZ z	(Z) ← z z = 0 to 3	Arithmeti	A n	
TAM j $(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ SC $(CY) \leftarrow 0$ XAM j $(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ SC $(CY) \leftarrow 0$ SZC $(CY) \leftarrow 0$ SZC $(CY) \leftarrow 0$ SZC $(CY) \leftarrow 0$ SZC $(CY) \leftarrow 0$ XAM j $(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ SZC $(CY) \leftarrow 0$ XAM j $(A) \leftarrow \rightarrow (M(DP))$ RAR $\rightarrow CY \rightarrow A3A2A1A0$	RAM a	INY			AND	(A) ← (A) AND (M(DP))
$\begin{array}{c c} x & x & x & x & x & x & x & x & x & x $						
$\begin{array}{c c} 30\\ \hline \\ 30\\ \hline \\ 12\\ \hline 12\\$, L	TAM j	$(X) \leftarrow (X) EXOR(j)$			
$ \begin{array}{c c} & & \\ & $	∋gister transfe	XAM j	$(X) \leftarrow (X) EXOR(j)$		SZC	(CY) = 0 ?
$ \begin{array}{c} \swarrow \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} \end{array} $	RAM to re	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15			

Note: p is 0 to 31.

Group- ing	Mnemonic	Function	Gro in	oup-M	Inemonic	Function
	SB j	(Mj(DP)) ← 1 j = 0 to 3		DI		(INTE) ← 0
Bit operation	RB j	(Mj(DP)) ← 0 j = 0 to 3		EI	NZ0	(INTE) ← 1 V10 = 0: (EXF0) = 1 ? (EXF0) ← 0
B	SZB j	(Mj(DP)) = 0 ? j = 0 to 3		. SI		V10 = 1: SNZ0 = NOP I12 = 0 : (INT) = "L" ?
rison tion	SEAM	(A) = (M(DP)) ?	Deration			112 = 1 : (INT) = "H" ?
Comparison operation	SEA n	(A) = n ? n = 0 to 15	Interrupt operation			$(A) \leftarrow (V1)$
	Ва	(PCL) ← a6–a0	Inte			$(V1) \leftarrow (A)$ $(A) \leftarrow (V2)$
Branch operation	BL p, a	(PCH) ← p (Note) (PCL) ← a6-a0				(V2) ← (A)
Branch	BLA p	(PCH) ← p (Note)		TA	AI1	(A) ← (I1)
	BM a	(PCL) ← (DR2–DR0, A3–A0) (SP) ← (SP) + 1		ТІ	1A	(I1) ← (A)
	DIVI a	$(SF) \leftarrow (SF) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$				(PA) ← (A)
uo		$(PCL) \leftarrow a6-a0$ $(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow a6-a0$				$(A) \leftarrow (W1)$
Subroutine operation	BML p, a					(W1) ← (A) (A) ← (W2)
Ibroutine				т١	W2A	(W2) ← (A)
Su	BMLA p	(SP) ← (SP) + 1 (SK(SP)) ← (PC)			AW5	(A) ← (W5)
		(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)	Timer operation	Т	W5A	(W5) ← (A)
	RTI	(PC) ← (SK(SP)) (SP) ← (SP) - 1	Timer o	TA		(A) ← (W6)
	RT	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$				(W6) ← (A) (B) ← (TPS7–TPS4)
		(SP) ← (SP) – 1				$(A) \leftarrow (TPS_3 - TPS_0)$
Return operation	RTS	(PC) ← (SK(SP)) (SP) ← (SP) - 1		TF		(RPS7–RPS4) ← (B) (TPS7–TPS4) ← (B) (RPS3–RPS0) ← (A) (TPS3–TPS0) ← (A)
				TA		(B) ← (T17–T14) (A) ← (T13–T10)

Note: p is 0 to 31.

Group- ing		Function	Group- ing	Mnemonic	Function
	T1AB	$(R1L7-R1L4) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R1L3-R1L0) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$		CLD RD	$(D) \leftarrow 1$ $(D(Y)) \leftarrow 0$ (Y) = 0 to 5
	T1HAB	(R1H7–R1H4) ← (B) (R1H3–R1H0) ← (A)		SD	(D(Y)) ← 1 (Y) = 0 to 5
	TAB2	(B) ← (T27–T24) (A) ← (T23–T20)		SZD	(D(Y)) = 0 ? (Y) = 0 to 5
	T2AB	(R2L7–R2L4) ← (B) (T27–T24) ← (B)		TFR0A	(FR0) ← (A)
Timer operation		(R2L3–R2L0) ← (A) (T23–T20) ← (A)			$(FR1) \leftarrow (A)$
Timer o	T2HAB	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)			(FR2) ← (A) (FR3) ← (A)
	T1R1L	(T17–T10) ← (R1L7–R1L0)		TC1A	(C1) ← (A)
	T2R2L	(T27–T20) ← (R2L7–R2L0)	uo	ТКОА	(K0) ← (A)
	SNZT1	V12 = 0: (T1F) = 1 ? (T1F) ← 0	nput/Output operation	ТАКО	(A) ← (K0)
		V12 = 1: SNZT1 = NOP	/Output		(K1) ← (A)
	SNZT2	V13 = 0: (T2F) = 1 ? (T2F) ← 0 V13 = 1: SNZT2 = NOP	Input	TAK1 TK2A	(A) ← (K1) (K2) ← (A)
	IAP0	(A) ← (P0)		TAK2	(A) ← (K2)
	OP0A	(P0) ← (A)		TPU0A	(PU0) ← (A)
	IAP1	(A) ← (P1)		TAPU0	(A) ← (PU0)
ation	OP1A	(P1) ← (A)		TPU1A	(PU1) ← (A)
Input/Output operation	IAP2	$(A_1, A_0) \leftarrow (P_{21}, P_{20})$ $(A_3, A_2) \leftarrow 0$			$(A) \leftarrow (PU1)$
out/Outp	OP2A	(P21, P20) ← (A1, A0)			(PU2) ← (A) (A) ← (PU2)
	IAP3	(A1, A0) ← (P31, P30) (A3, A2) ← 0			(L1) ← (A)
	ОРЗА	(P31, P30) ← (A1, A0)		TAL1	(A) ← (L1)

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Gro	pup-Mi	nemonic	Function
, ing	TABSI	(B) ← (SI7–SI4) (A) ← (SI3–SI0)				(PC) ← (PC) + 1
	TSIAB	(SI7–SI4) ← (B) (SI3–SI0) ← (A)		PC	DF	RAM back-up
peration	SST	(SIOF) ← 0 Serial interface transmit/receive starting		EP	POF	POF instruction valid
rface of	SNZSI	V23=0: (SIOF)=1?		SN	NZP	(P) = 1 ?
Serial interface operation		(SIOF) ← 0 V23 = 1: SNZSI = NOP	ation		NDT	Stop of watchdog timer function enabled
Ň	TAJ1	(A) ← (J1)	Other operation			(WDF1) = 1 ?, (WDF1) ← 0
	TJ1A	(J1) ← (A)	Ē		рет	Sustam reget
	CRCK	RC oscillator selected		55	RST	System reset
Clock operation	TRGA	(RG0) ← (A0)				(UPTF) ← 0
ock o	TAMR	(A) ← (MR)		SL	JPT	(UPTF) ← 1
ō	TMRA	(MR) ← (A)		SV		Voltage drop detection circuit valid at RAM back- up
	TABAD	$\begin{array}{l} Q13 = 0, \\ (B) \leftarrow (AD9\text{-}AD6) \\ (A) \leftarrow (AD5\text{-}AD2) \\ Q13 = 1, \\ (B) \leftarrow (AD7\text{-}AD4) \\ (A) \leftarrow (AD3\text{-}AD0) \end{array}$				
	TALA	(A3, A2) ← (AD1, AD0) (A1, A0) ← 0				
sion operation	TADAB	Q13 = 1 : $(AD7-AD4) \leftarrow (B)$ $(AD3-AD0) \leftarrow (A)$ Q13 = 0 : TABAD = NOP				
A/D conversion	TAQ1	(A) ← (Q1)				
A/D	TQ1A	(Q1) ← (A)				
	ADST	(ADF) ← 0 Q13 = 0 : A/D conversion starting Q13 = 1 : Comparator operation starting				
	SNZAD	V22 = 0: (ADF) = 1 ? (ADF) $\leftarrow 0$				
Noto: The		V22 = 1: SNZAD = NOP tion can be used only in the H version.				

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Note: The SVDE instruction can be used only in the H version.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

An (Add n	and accumulator)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 1 1 0 n n n ₂ 0 6 n ₁₆	words 1	cycles 1		Overflow = 0		
Operation:	$(A) \leftarrow (A) + n$	Grouping: Arithmetic operation Description: Adds the value n in the immediate field to					
	n = 0 to 15	Description			a result in register A.		
		The contents of carry flag CY remains unchanged. Skips the next instruction when there is no					
			overflow as	s the resul	t of operation.		
					struction when there is		
			overflow as	s the resul	t of operation.		
ADST (A/D	conversion STart)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 1 0 0 1 1 1 1 1 1 ₂ 2 9 F ₁₆	words	cycles				
		1	1	-	-		
Operation:	(ADF) ← 0	Grouping:	A/D conve	rsion opera	ation		
•	Q13 = 0: A/D conversion starting	Description	: Clears (0)	to A/D c	onversion completion		
	Q13 = 1: Comparator operation starting	flag ADF, and the A/D conversion at the A/D					
	(Q13 : bit 3 of A/D control register Q1)	conversion mode (Q13 = 0) or the compara- tor operation at the comparator mode (Q13 = 1) is started.					
			= 1) 13 3101				
AM (Add ac	ccumulator and Memory)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code		words	cycles	Thay OT	Onp condition		
	0 0 0 0 0 0 1 0 1 0 2 0 0 A 16	1	1	-	_		
Operation:	(A) ← (A) + (M(DP))	Grouping:	Arithmetic	operation			
•		Description			f M(DP) to register A.		
		Stores the result in register A. The contents					
			of carry fla	g CY rema	ins unchanged.		
AMC (Add	accumulator, Memory and Carry)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code		words	cycles	5	•		
	<u> </u>	1	1	0/1	-		
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping:	Arithmetic	operation			
	$(CY) \leftarrow Carry$	Description			f M(DP) and carry flag		
			-		res the result in regis-		
			ter A and c	arry flag C	Y.		

AND (logica	al AND between accumulator and memory)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles			
	0 0 0 0 0 1 1 0 0 0 2 0 1 0 16	1	1	-	-	
Operation:	$(A) \leftarrow (A) AND (M(DP))$	Grouping:	Arithmetic	operation		
operation.		Description	: Takes the	AND opera	ation between the con-	
				-	and the contents of e result in register A.	
B a (Branch	n to address a)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16	words	cycles	Ŭ	•	
		1	1	-	-	
Operation:	(PCL) ← a6 to a0	Grouping:	Branch ope	eration		
		Description	: Branch wit	hin a page	: Branches to address	
			a in the ide			
		Note: Specify the branch address within the page				
			including th	nis instruct	ion.	
BL p, a (Br	anch Long to address a in page p)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 1 1 1 p4 p3 p2 p1 p0 2 0 E p1 p1 p0 2 0 F p1 p0 16 P1	words	cycles			
		2	2	-	-	
	1 0 0 a6 a5 a4 a3 a2 a1 a0 2 2 a a ₁₆	Grouping:	Branch ope			
Operation:	(РСн) ← р	Description			: Branches to address	
	(PCL) ← a6 to a0	Nata	a in page p			
		Note: p is 0 to 31.				
	nch Long to address (D) + (A) in page p)					
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0	2	2	_		
			2			
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p ₁₆	Grouping:	Branch ope			
Operation:	(РСн) ← р	Description			: Branches to address	
	(PCL) ← (DR2–DR0, A3–A0)				2 A1 A0)2 specified by	
		Note:	registers D p is 0 to 31		baye p.	
		11016.	p is 0 t0 3 l			

		(
BM a (Brar	nch and Mark to address a in page 2)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	l laig e l	emp containen	
	0 1 0 a6 a5 a4 a3 a2 a1 a0 ₂ 1 a a ₁₆	1	1	-	_	
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine	call opera	ation	
Operation.	$(SF) \leftarrow (SF) + 1$ $(SK(SP)) \leftarrow (PC)$	Description			in page 2 : Calls the	
	$(PCH) \leftarrow 2$	subroutine at address a in page 2.				
	$(PCL) \leftarrow a6-a0$	Note:	Subroutine extending from page 2 to an-			
	$(1 \text{ GL}) \leftarrow a_0 - a_0$				be called with the BM	
					arts on page 2.	
					the stack because the	
			maximum I	evel of sub	routine nesting is 8.	
BML p, a (Branch and Mark Long to address a in page p)	1				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 ^C +p p 16	words	cycles			
		2	2	-	-	
	1 0 0 a6 a5 a4 a3 a2 a1 a0 2 2 a a ₁₆	Grouping:	ation			
Operation:	(SP) ← (SP) + 1	Description			Calls the subroutine at	
Operation.	$(SF) \leftarrow (SF) + 1$ $(SK(SP)) \leftarrow (PC)$		address a in page p.			
	(PCH) ← p	Note:	p is 0 to 31.			
	$(PCL) \leftarrow a6-a0$		Be careful	not to ove	the stack because the	
			maximum I	evel of sub	routine nesting is 8.	
BMLA p (B	Branch and Mark Long to address (D) + (A) in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words 2	cycles			
			2	-	-	
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p ₁₆	Grouping:	Subroutine	call opera	ation	
Operation:	(SP) ← (SP) + 1	Description		·	Calls the subroutine at	
operation.	$(SF) \leftarrow (PC)$	-	address (D	R2 DR1 D	Ro A3 A2 A1 A0)2 speci-	
	(PCH) ← p	fied by registers D and A in page p.				
	$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$	Note:	p is 0 to 31	l .		
					the stack because the	
			maximum I	evel of sub	routine nesting is 8.	
CLD (CLea		Number	Number		Ol in a seculities	
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 0 1 0 0 1 2 0 1 1 16	1	1	_		
Operation:	(D) ← 1	Grouping:	Input/Outp	•	n	
		Description	: Sets (1) to	port D.		
		1				

CMA (CoM	plen	nent	of /	Acc	umı	ulate	or)												
Instruction	D9									D0	_				_	Number of	Number of	Flag CY	Skip condition
code	0	0	0	0	0	1	1	1	0	0	<u> </u>	0	1	С	16	words	cycles		
	L										2 L				110	1	1	-	-
Operation:	(A)	← (A	()													Grouping:	Arithmetic	operation	
	()												Description	: Stores the	e one's co	mplement for register			
																	A's conten	ts in regist	er A.
CRCK (Clo	ck s	elec	t: R	со	scill	latic	on C	loci	K)										
Instruction	D9								-)	D0						Number of	Number of	Flag CY	Skip condition
code	1	0	1	0	0	1	1	0	1	1	2	2	9	В	16	words	cycles		
							I				2 L				110	1	1	-	-
Operation:	RC	oscil	latio	n cir	cuit	sele	cted									Grouping:	Other oper		
																Description			llation circuit for main
													clock f(XIN).						
	<u></u>	nt r		tor															
DEY (DEcr		nure	egis	ler	Y)														
Instruction code	D9	0	0	0	0	1	0	1	1	D0	Г	0	1	7]	Number of words	Number of cycles	Flag CY	Skip condition
											2 L				16	1	1	_	(Y) = 15
Operation:	(Y)	← (Y	′) – 1													Grouping:	RAM addre		
																Description			contents of register Y.
																			action, when the con-
																		-	15, the next instruction
																			e contents of register Y struction is executed.
DI (Disable	Inte	rrup	ot)																
Instruction code	D9 0	0	0	0	0	0	0	1	0	D0	Г	0	0	4]	Number of words	Number of cycles	Flag CY	Skip condition
											2 L				16	1	1	-	-
Operation:	(INT	Ē) ←	- 0													Grouping: Description Note:	disables th Interrupt is	to interrupt le interrupt disabled	enable flag INTE, and

DWDT (Dis	sable WatchDog Timer)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 1 0 0 1 1 1 0 0 ₂ 2 9 C ₁₆	words	cycles				
		1	1	-	_		
Operation:	Stop of watchdog timer function enabled	Grouping: Other operation					
•		Description	•	-	timer function by the		
					after executing the		
			DWDT inst	truction.			
EI (Enable	Interrupt)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code		words	cycles	l lag C l			
	0 0 0 0 0 0 0 1 0 1 2 0 0 5 16	1	1	_			
Operation:	(INTE) ← 1	Grouping:	Interrupt c				
		Description: Sets (1) to interrupt enable flag INTE, and					
		Note:	enables the interrupt. Note: Interrupt is enabled by executing				
		struction after executing 1 machine cycle					
					ing i maonino operer		
EPOF (Ena	able POF instruction)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code		words	cycles				
		1	1	-	-		
Operation:	POF instruction valid	Grouping:	Other oper	ration			
operation.		Description			e after POF instruction		
					e EPOF instruction.		
	t Accumulator from port P0)	Number	Number				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 0 1 1 0 0 0 0 0 2 2 6 0 16	1	1	_	_		
Operation:	(A) ← (P0)	Grouping:	Input/Outp	•			
		Description	: Transfers	the input o	f port P0 to register A.		
		1					

D0 Number of words Number of cycles Flag CY Skip condition 0 0 1 2 6 1 1 1 - - Grouping: Input/Output operation Description: Transfers the input of port P1 to register A.
0 0 1 2 2 6 1 1 - - Grouping: Input/Output operation
P2)
D0 Number of words Number of cycles Flag CY Skip condition
Grouping: Input/Output operation
Description: Transfers the input of port P2 to the low-or-
der 2 bits (A1, A0) of register A. Note: After this instruction is executed, "0" is
stored to the high-order 2 bits (A3, A2) of register A.
P3) D0 Number of Number of Flag CY Skip condition
0 1 1 2 6 3 16 words cycles
Grouping: Input/Output operation
Description: Transfers the input of port P3 to the low-or- der 2 bits (A1, A0) of register A.
Note: After this instruction is executed, "0" is
stored to the high-order 2 bits (A3, A2) of register A.
Do Number of Number of Flag CY Skip condition
register A.
Do Number of words Number of cycles Flag CY Skip condition
D0 0 1 1 0 1 3 40 Number of Number of Flag CY Ski words cycles

LAn (Load	I n in Accumulator)								
Instruction code	D9 D0 D0 T 1 1 1 n n n n 0 7 n 16	Number of words	Number of cycles	Flag CY	Skip condition				
	0 0 0 1 1 1 1 1 1 1 2 0 7 1 16	1	1	-	Continuous description				
Operation:	(A) ← n	Grouping:	Arithmetic	operation					
operation.	n = 0 to 15	Description			the immediate field to				
			register A.						
			0	I A instruc	tions are continuously				
					d, only the first LA in-				
					uted and other LA				
					d continuously are				
			skipped.						
	.oad register X and Y with x and y)	1		1	1				
Instruction code	D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16	Number of words	Number of cycles	Flag CY	Skip condition				
		1	1	-	Continuous description				
Operation:	(X) ← x x = 0 to 15	Grouping:	RAM addre	esses					
	(Y) ← y y = 0 to 15	Description	1: Loads the	value x in	the immediate field to				
			register X, and the value y in the immedia						
			field to reg	gister Y. V	When the LXY instruc-				
					y coded and executed,				
					nstruction is executed				
			and other	LXY instru	uctions coded continu-				
			ously are s	skipped.					
LZ z (Load	register Z with z)	1							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition				
code	0 0 0 1 0 0 1 0 z1 z0 0 4 8	words	cycles						
	0 0 0 1 0 0 1 0 z1 z0 2 0 4 +z 16	1	1	-	_				
Operation:	(Z) ← z z = 0 to 3	Grouping:	RAM addre						
		Description	1: Loads the register Z.	value z in	the immediate field to				
NOP (No C		1	1		Γ				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition				
code	0 0 0 0 0 0 0 0 0 0 0 0 0 0 16	1	1	_	_				
Operation:	(PC) ← (PC) + 1	Grouping:	Other oper						
		Description			1 to program counter				
			value, and	others rer	nain unchanged.				

OP0A (Out	put port P0 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 0 0 0 ₂ 2 2 0 ₁₆	words	cycles		
		1	1	-	-
Operation:	(P0) ← (A)	Grouping:	Input/Outp	ut operatio	n
		Description		ne content	s of register A to port
			P0.		
OP1A (Out	put port P1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		-
	1 0 0 0 1 0 0 0 1 2 2 2 1 16	1	1	-	-
Operation:	(P1) ← (A)	Grouping:	Input/Outp	ut operatic	n
		Description	: Outputs th P1.	ne content	s of register A to port
OP2A (Out	put port P2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 2 2 2 2 16	words 1	cycles 1	_	
Operation:	(P21, P20) ← (A1, A0)	Grouping: Description	Input/Outp		on of the low-order 2 bits
		Description	(A1, A0) of		
OP3A (Out	put port P3 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 1 ₂ 2 2 3 ₁₆	words	cycles		
		1	1	-	-
Operation:	(P31, P30) ← (A1, A0)	Grouping:	Input/Outp	ut operatio	n
		Description	: Outputs the (A1, A0) of		of the low-order 2 bits to port P3.

OR (logical	OR between accumulator and memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 1 2 0 1 9 16	words 1	cycles 1	-	_
Operation	(A) ← (A) OR (M(DP))	Grouping:	Arithmetic	operation	
Operation:	$(A) \leftarrow (A) \text{ OR } (M(DP))$				tion between the con-
			tents of r	egister A	and the contents of e result in register A.
POF (Powe	r OFF)				
Instruction code	D9 D0 0 0 0 0 0 0 0 0 1 0 2 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	RAM back-up	Grouping:	Other oper		
		Description	ecuting the the EPOF i	e POF inst nstruction.	M back-up state by ex- ruction after executing on is not executed just
			before this	s instructi	on, this instruction is P instruction.
RAR (Rotat	te Accumulator Right)				
Instruction code	D9 D0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	0/1	-
Operation:	$\rightarrow \boxed{CY} \rightarrow \boxed{A3A2A1A0}$	Grouping:	Arithmetic		
		Description			ontents of register A in- of carry flag CY to the
RB j (Reset	t Bit)				
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(Mj(DP)) ← 0 j = 0 to 3	Grouping: Description		the conter	nts of bit j (bit specified e immediate field) of
		1			

RC (Reset	Carr	y fla	ag)												
Instruction	D9							D0				Number of	Number of	Flag CY	Skip condition
code	0	0	0	0 0	0	0 1	1	0	0	0	6 16	words	cycles		
						1 1			2 ட		10	1	1	0	-
Operation:	(CY) (0									Grouping:	Arithmetic	operation	
operation.) - (0										: Clears (0)	-	g CY.
												_			-
RD (Reset	port	D s	peci	fied b	y re	gister	Y)					1	1	1	
Instruction	D9				_			D0				Number of words	Number of cycles	Flag CY	Skip condition
code	0	0	0	0 0	1	0 1	0	0	0	1	4 16		-		
												1	1	-	-
Operation:	(D()	′)) ←	- 0									Grouping:	Input/Outp	ut operatio	n
	How											Description			D specified by register Y.
	(Y) =	= 0 t	o 5									Note:	$(Y) = 0$ to ξ		nstruction if values ex-
															register Y.
													·		0
RT (ReTurr	fror	n ci	ihro	utino	\										
Instruction	D9	11 50		uune)			D0				Number of	Number of	Flag CY	Skip condition
code	0	0	0	1 0	0	0 1		0		4	4	words	cycles	Flag CT	Skip condition
oode	0	0	0		0	0	0	0	2 0	4	4 16	1	2	_	_
	(5.0)														
Operation:			(SK(\$ (SP)									Grouping:	Return ope		outine to the routine
	(01)		(01)	- 1								Description	called the		
RTI (ReTur	n fro	m lı	nter	rupt)											
Instruction	D9							D0				Number of	Number of	Flag CY	Skip condition
code	0	0	0	1 0	0	0 1	1	0	0	4	6 16	words	cycles		
												1	1	-	-
Operation:	(PC) ←	(SK(SP))								Grouping:	Return ope		
			(SP)									Description			upt service routine to
													main routir		
															f data pointer (X, Y, Z),
															s, NOP mode status by ption of the LA/LXY in-
															and register B to the
													states just		
													-		

RTS (ReTu	rn from subrout	ine and	d Ski	p)								
Instruction	D9				D0				Number of	Number of	Flag CY	Skip condition
code	0 0 0 1	0 0	0	1 0	1	0	4	5 16	words	cycles		
						2 📖		16	1	2	-	Skip at uncondition
Operation:	(PC) ← (SK(SP))								Grouping:	Return ope	eration	
	(SP) ← (SP) – 1								Description	: Returns f	rom subr	outine to the routine
										called the	subroutine	, and skips the next in-
										struction a	t unconditi	on.
	et UPT flag)									1	1	
Instruction	D9				D0				Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1	0 1	1 (0 0	0	2 0	5	8 16		-		
									1	1	-	-
Operation:	(UPTF) ← 0								Grouping:	Other oper	ation	
	(- / -								Description	: Clears (0)	to the hig	gh-order bit reference
										enable flag) UPTF.	
SB j (Set B									1		1	
Instruction	D9				Do				Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1	0 1	1	1 j	j	2 0	5	C +j 16	1	1	_	
											_	_
Operation:	(Mj(DP)) ← 0								Grouping:	Bit operation		
	j = 0 to 3								Description			of bit j (bit specified by
										the value j	in the imm	nediate field) of M(DP).
00 (0 -+ 0 -												
SC (Set Ca	D9				Do				Number of	Number of	Flag CY	Skip condition
code		0 0	0						words	cycles	Flag C f	Skip condition
coue	0 0 0 0	0 0	0	1 1	1	2 0	0	7 16	1	1	1	_
Operation:	(CY) ← 1								Grouping:	Arithmetic	•	
									Description	: Sets (1) to	carry flag	CY.
									1			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
--

SD (Set po	ort D specified by register Y)				
Instruction code	D9 D0 0 0 0 0 0 1 0 1 0 1 0 1 5 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 1 0 1 0 1 2 0 1 5 16	1	1	-	_
Operation:	(D(Y)) ← 1	Grouping:	Input/Outp	ut operatio)n
operation.	(Y) = 0 to 5	Description	<u> </u>	•	D specified by register Y.
	(1) = 0.000	Note:	(Y) = 0 to 5		
			Do not exe	ecute this i	nstruction if values ex-
			cept above	e are set to	o register Y.
SEA n (Sk	ip Equal, Accumulator with immediate data n)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 2 0 2 5	words	cycles		
	0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆	2	2	-	(A) = n
	0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆	Grouping:	Compariso		
Operation:	(A) = n ?	Description			uction when the con-
	n = 0 to 15			-	equal to the value n in
			the immed		
					struction when the con-
				-	not equal to the value n
			in the imm	ediate field	1.
SEAM (Sk	ip Equal, Accumulator with Memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
	<u> </u>	1	1	-	(A) = (M(DP))
Operation:	(A) = (M(DP)) ?	Grouping:	Compariso	n operatio	n
		Description	: Skips the	next instr	uction when the con-
			tents of reg	gister A is e	equal to the contents of
			M(DP).		
					struction when the con-
				-	is not equal to the
			contents of	f M(DP).	
SNZO (Skip	o if Non Zero condition of external 0 interrupt reques	st flag)	1		r
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 0 0 0 2 0 3 8 16	words	cycles		
		1	1	-	V10 = 0: (EXF0) = 1
Operation:	V10 = 0: (EXF0) = 1 ?	Grouping:	Interrupt o		
	$(EXF0) \leftarrow 0$	Description	: When V10	= 0 : Clea	rs (0) to the EXF0 flag
	$V_{10} = 1: SNZ0 = NOP$				struction when external
	(V10 : bit 0 of the interrupt control register V1)			•	lag EXF0 is "1." When
		the EXF0 flag is "0," executes the next struction.			
					s instruction is equiva-
			lent to the	NOP instru	uction.

SNZAD (SI	kip if Non Zero condition of A/D conversion completi	on flag)					
Instruction code	D9 D0 1 0 1 0 0 0 0 1 1 1 2 8 7 16	Number of words	Number of cycles	Flag CY	Skip condition		
	<u> </u>	1	1	-	V22 = 0: (ADF) = 1		
Operation: SNZIO (Skij Instruction code	V22 = 0: (ADF) = 1 ? (ADF) ← 0 V22 = 1: SNZAD = NOP (V22 : bit 2 of the interrupt control register V2) p if Non Zero condition of external 0 Interrupt input p D9 D0 0 0 0 0 1 1 1 1 0 1 0 2 0 3 A 16	Number of words Number of cycles Flag CY Skip condition					
	0 0 0 0 1 1 1 0 1 0 2 0 3 A ₁₆	1	1	-	I12 = 0 : (INT) = "L" I12 = 1 : (INT) = "H"		
Operation:	I12 = 0 : (INT) = "L" ? I12 = 1 : (INT) = "H" ? (I12 : bit 2 of the interrupt control register I1)	Grouping: Description	when the I the next in pin is "H." When I12 when the I	= 0 : Skip evel of IN istruction = 1 : Skip evel of IN	es the next instruction T pin is "L." Executes when the level of INT es the next instruction T pin is "H." Executes when the level of INT		
SNZP (Skip	o if Non Zero condition of Power down flag)						
Instruction code	D9 D0 0 0 0 0 0 0 0 0 1 1 0 0 0 3 16	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	_	(P) = 1		
Operation:	(P) = 1 ?	Grouping: Description	"1". After skip changed.	ext instrue	ction when the P flag is P flag remains un- nstruction when the P		
SNZSI (Ski	p if Non Zero condition of Serial Interface interrupt r	equest flag	g)				
Instruction code	D9 D0 1 0 1 0 0 0 1 0 0 0 2 2 8 8 16	Number of words	Number of cycles 1	Flag CY	Skip condition V23 = 0: (SIOF) =1		
Operation:	V23=0: (SIOF)=1? (SIOF) ← 0 V23 = 1: SNZSI = NOP	Grouping: Description	instruction of interrup contents of	to SIOF f when the t control f SIOF flag = 1: This i	ag and skips the next contents of bit 3 (V23) register V2 is "0" and g is "1." nstruction is equivalent		

SNZT1 (Ski	p if Non Zero condition of Timer 1 interrupt request	flag)			
Instruction code	D9 D0 1 0 1 0 0 0 0 0 0 0 0 2 8 0 40	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	V12 = 0: (T1F) = 1
Operation:	V12 = 0: (T1F) = 1 ? (T1F) ← 0 V12 = 1: SNZT1 = NOP (V12 = bit 2 of interrupt control register V1)	Grouping: Description	and skips t interrupt re T1F flag is tion.	= 0 : Clea the next in equest flag s "0," exec = 1 : This	ars (0) to the T1F flag struction when timer 1 g T1F is "1." When the sutes the next instruc- i instruction is equiva- uction.
SNZT2 (Ski	p if Non Zero condition of Timer 2 interrupt request	flag)			
Instruction code	D9 D0 1 0 1 0 0 0 0 0 1 2 8 1	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	V13 = 0: (T2F) = 1
Operation:	V13 = 0: (T2F) = 1 ?	Grouping:	Timer oper		
	(T2F) ← 0	Description			ars (0) to the T2F flag
	V13 = 1: SNZT2 = NOP		•		struction when timer 2
	(V13 = bit 3 of interrupt control register V1)				T2F is "1." When the sutes the next instruc-
			tion.	s U, exec	utes the next instruc-
				= 1 : This	instruction is equiva-
			lent to the		•
SRST (Syst		Number	Number of		Olvin condition
Instruction code		Number of words	cycles	Flag CY	Skip condition
coue	0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 16	1	1	_	_
Operation:	System reset	Grouping:	Other oper	ation	
-		Description	: System res	set occurs.	
· · · · · · · · · · · · · · · · · · ·	interface transmission/reception STart)	1			
Instruction code	D9 D0 1 0 1 0 0 1 1 1 0 0 2 9 E	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	(SIOF) ← 0	Grouping:	Serial inter		
	Serial interface transmit/receive starting	Description	: Clears (0) terface.	to SIOF fla	ag and starts serial in-

SUPT (Set	UPT	f fla	g)															
Instruction	D9									D0					Number of	Number of	Flag CY	Skip condition
code	0	0	0	1	0	1	1	0	0	1	[0	5	9 16	words	cycles		
					•			•	0		2 L	•		⁹ _16	1	1	-	-
Operation:	(UF	PTF)	← 1												Grouping:	Other oper	ation	
	(,	-												Description			order bit reference en-
															_		-	en the table reference
																instruction	(TABP p)	is executed, the high-
																order 2 b	its of RO	M reference data is
																transferred	d to the low	v-order 2 bits of regis-
																ter D.		
SVDE (Set	Volt	age	Det	ect	or E	Ena	ble f	lag)									
Instruction	D9									D0	_				Number of	Number of	Flag CY	Skip condition
code	1	0	1	0	0	1	0	0	1	1	2	2	9	3 16	words	cycles		
											12 L			110	1	1	-	-
Operation:	Volt	tage	drop	dete	ectio	n cir	cuit v	/alid	at F	RAM	bad	ck-u	р		Grouping:	Other oper		
															Description			e drop detection circuit
															Note:	at RAM ba		be executed only for
															NOLE.	the H versi		be executed only for
SZB j (Skip	if 7	ero	Bit)															
Instruction	D9		210)							D0					Number of	Number of	Flag CY	Skip condition
code	0	0	0	0	1	0	0	0	i	j		0	2	j ₁₆	words	cycles	- 5 -	
		0	0	•	•	0	0	•	1	1	2 L	•	2	J16	1	1	-	(Mj(DP)) = 0
Operation:	(1/1)	(חח)) = 0	2											Grouping:	Bit operation) Dn	j = 0 to 3
Operation.		(DP) 0 to 3		ſ											Description			uction when the con-
	,																	cified by the value j in
																	,	of M(DP) is "0."
																		struction when the con-
																tents of bit	j of M(DP)) is "1."
SZC (Skip i	f Ze	ro, (Carr	y fla	ag)													
Instruction	D9									D0					Number of words	Number of	Flag CY	Skip condition
code	0	0	0	0	1	0	1	1	1	1	2	0	2	F 16		cycles		(0)() 0
															1	1	-	(CY) = 0
Operation:	(CY	() = 0	?												Grouping:	Arithmetic		
	(0.	, .	•												Description			uction when the con-
																tents of ca		
																	ping, the	CY flag remains un-
																changed.	ho noviti	truction when the are
																tents of the		struction when the con-
																	o nay is	у ı.

	register Y) D0 1 0 0							
						1		
		0	2	4	Number of words	Number of cycles	Flag CY	Skip condition
0 0 1 0 1	$1 \qquad 0 \qquad 1 \qquad 1 \qquad 2$	0		4 16 B 16	2	2	-	(D(Y)) = 0 (Y) = 0 to 5
					0			
)?					Grouping:			
5					Note:	D specified next instruct (Y) = 0 to 5 Do not exe	I by registe ction when 5. ecute this i	er Y is "0." Executes the the bit is "1." nstruction if values ex-
to timer 1 and re	aistor R11	from		umul	ator and re	aistor B)		
	Do			0	Number of words	Number of cycles	Flag CY	Skip condition
	2			<u> </u>	1	1	-	-
L4) ← (B)					Grouping:	Timer oper	ation	
(Lo) ← (A)) ← (A)	I from Accu	mula	ator a	and re		high-order load registe register A t	4 bits of t er R1L. Tra to the low-	imer 1 and timer 1 re- ansfers the contents of order 4 bits of timer 1
					, , , , , , , , , , , , , , , , , , ,	Number of	Flag CY	Skip condition
1 0 0 1 0		2	9	2 16	words	cycles 1	-	_
 1H4) ← (B)					Grouping:	Timer oper	ation	
					Description	high-order R1H. Trans	4 bits of t sfers the c	nts of register B to the imer 1 reload register ontents of register A to of timer 1 reload regis-
a to timer 1 from	register R1	_)						
	Do	, 	Δ	7	Number of words	Number of cycles	Flag CY	Skip condition
	2	2		<u> 16</u>	1	1	-	_
					Grouping:	Timer oper		ents of timer 1 reload
	5 a to timer 1 and re 0 0 1 1 0 $ L4\rangle \leftarrow (B)$ $ C0\rangle \leftarrow (A)$ $ L0\rangle \leftarrow (A)$ $ C0\rangle \leftarrow (A)$	5 a to timer 1 and register R1L to D_0 0 0 1 1 0 0 0 0 0 2 $U(4) \leftarrow (B)$ $(C) \leftarrow (B)$ $U(D) \leftarrow (A)$ $(C) \leftarrow (A)$ (C	5 a to timer 1 and register R1L from $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 a to timer 1 and register R1L from Acc D_0 0 0 1 1 0 0 0 0 2 2 3 $L4) \leftarrow (B)$ $(L4) \leftarrow (A)$ $(L4) \leftarrow (B)$ $(L4) \leftarrow (A)$ D_0 $(L4) \leftarrow (B)$ $(L4) \leftarrow (A)$ D_0 $(L4) \leftarrow (B)$ $(L4) \leftarrow (C)$ D_0 $(L4) \leftarrow (C)$ $(L4) \leftarrow (C)$	5 a to timer 1 and register R1L from Accumul D0 0 0 1 1 0 0 0 0 2 2 3 0 16 $ L4\rangle \leftarrow (B)$ $ L0\rangle \leftarrow (A)$ $ L0\rangle \leftarrow (A)$ $ L0\rangle \leftarrow (A)$ $ L1\rangle \leftarrow (B)$ $ L0\rangle \leftarrow (A)$ $ L1\rangle \leftarrow (B)$ $ L2\rangle \leftarrow (A)$ $ L2\rangle $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} $

T2AB (Trar	nsfer data to timer 2 and register R2L from Accumul	ator and re	gister B)		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 0 1 ₂ 2 <u>3</u> 1 ₁₆	1	1	-	
Operation:	(R2L7–R2L4) ← (B)	Grouping:	Timer oper	ation	
Operation.	$(T27-T24) \leftarrow (B)$	Description			nts of register B to the
	$(R2L_3 - R2L_0) \leftarrow (A)$				imer 2 and timer 2 re-
	$(T_{23}-T_{20}) \leftarrow (A)$		-		ansfers the contents of
			-		order 4 bits of timer 2
			and timer 2	2 reload re	gister R2L.
T2HAB (Tr	ansfer data to register R2H from Accumulator and re	egister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 1 0 1 0 0 2 9 4	words	cycles		
	10	1	1	-	-
Operation:	(R2H7–R2H4) ← (B)	Grouping:	Timer oper	ation	
opolation	(R2H3–R2H0) ← (A)	Description			nts of register B to the
			high-order	4 bits of t	timer 2 reload register
					ontents of register A to
				der 4 bits o	of timer 2 reload regis-
			ter R2H.		
T2R2L (Tra	ansfer data to timer 2 from register R2L)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 1 0 1 0 1	words	cycles		
		1	1	-	-
Operation:	(T27−T20) ← (R2L7−R2L0)	Grouping:	Timer oper	ation	
operation.	$(127 - 120) \leftarrow (1227 - 1220)$	Description			ents of timer 2 reload
		-	register R2	L to timer	2.
TAB (Trans	sfer data to Accumulator from register B)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 0 2 0 1 E 16	words	cycles		
		1	1	-	-
Operation:	(A) ← (B)	Grouping:	Register to	register ti	ansfer
Operation.	$(A) \leftarrow (B)$	Description			ts of register B to reg-
			ister A.		

TAB1 (Tron	sfer data to Accumulator and register B from timer	1)	,		
		1 [']	Number of		Olvin eenditien
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 0 ₂ 2 7 0 ₁₆	1	1	-	_
Oneration	(D) = (T47, T44)	Grouping:	Timer oper	ation	
Operation:	$(B) \leftarrow (T17 - T14)$	Description	· · ·		der 4 bits (T17–T14) of
	(A) ← (T13–T10)	Description	timer 1 to r	-	
				-	der 4 bite (T4e, T4e) of
			timer 1 to r		der 4 bits (T13–T10) of
TAB2 (Trar	sfer data to Accumulator and register B from timer	2)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1 2 7 1	words	cycles	Ŭ	
		1	1	_	_
Operation:	(B) ← (T27–T24)	Grouping:	Timer oper	ation	
	(A) ← (T23–T20)	Description	: Transfers t	he high-or	der 4 bits (T27-T24) of
		_	timer 2 to r	egister B.	
			Transfers t	the low-ord	der 4 bits (T23-T20) of
			timer 2 to r		· · · · ·
TABAD (Tr	ansfer data to Accumulator and register B from regi	ster AD)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
		words	cycles	T lag CT	Skip condition
code	<u>1 0 0 1 1 1 1 0 0 1</u> <u>2 7 9</u> <u>16</u>	1	1	_	
					_
Operation:	In A/D conversion mode (Q1 $3 = 0$),	Grouping:	A/D conver	sion opera	ation
	(B) ← (AD9–AD6)	Description	: In the A/D	conversion	mode (Q13 = 0), trans-
	$(A) \leftarrow (AD5-AD2)$		fers the higl	n-order 4 bi	ts (AD9-AD6) of register
	In comparator mode $(Q13 = 1)$,		AD to regis	ter B, and	the middle-order 4 bits
	(B) ← (AD7–AD4)		(AD5–AD2)	of register	AD to register A. In the
	$(A) \leftarrow (AD3 - AD0)$		comparator	mode (Q1a	a = 1), transfers the high-
			order 4 bits	(AD7–AD4) of comparator register
	(Q13 : bit 3 of A/D control register Q1)		to register	B, and the	low-order 4 bits (AD3-
			AD0) of con	nparator reg	gister to register A.
TABE (Tran	nsfer data to Accumulator and register B from regist	er E)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		emp contaition
coue	0 0 0 0 1 0 1 0 1 0 <u>1</u> 0 <u>2</u> 0 <u>2</u> A <u>16</u>	1	1	_	_
			•		
Operation:	(B) ← (E7–E4)	Grouping:	Register to	register tr	ansfer
•	(A) ← (E3–E0)	Description	: Transfers	the high-o	rder 4 bits (E7-E4) of
			register E t	o register	B, and low-order 4 bits
			of register	-	
			0	0.11	

TABP p (Tr	ansf	er d	lata	to A	λссι	umu	lator a	and	regis	ter E	3 fror	n Pro	gram mem	ory in page	e p)			
Instruction	D9								Do				Number of	Number of	Flag CY	Skip condition		
code	0	0	1	0	0	p4	рз р2	p1	p0 ,	0	8 +p	p 16	words	cycles				
		-		-	-	1.		1 10 1	2		+p	P16	1	3	-	-		
Operation:	(SP)	← (SP) -	+ 1				Gr	oupir	ng:	Arith	nmetic	pperation					
-	(SK(SP)) ← (l							-			•	gister B and b	oits 3 to 0 to	o register A. These bits 7		
	(PC)		p (DR2	-DF	२ ∩ ∆	λ3 — Δr)		•		to 0	are the	ROM pattern	in address (D	R2 DR1 DR	Ro A3 A2 A1 A0)2 specified		
			OM(I			10 710)									Transfers bits 9, 8 to the		
(A) ← (ROM(PC))3–0 (UPTF) ← 1													bit (DR2) of re		er D, and	0" is stored to the least		
				←	(ROI	M(PC	;))9, 8								age of sta	ck register (SK) is used.		
	(D	R2) ·	← 0 [′]				,, .	No	ote:			0 to 31				at the second bar stands by a		
			SK(S SP) -										nstruction is executed, be careful not to over the stack be- ge of stack register is used.					
TABPS (Tra					ccu	imul	ator a	ind r	regist	ter B			-					
Instruction	D9								Do				Number of	Number of	Flag CY	Skip condition		
code	1	0	0	1	1	1	0 1	0	1	2	7	5	words					
	<u> </u>		•				• ·		2		1.1	16	1	1	-	-		
Operation:	(B) <	⊢ (T	PS7-	TPS	S4)								Grouping:	Timer oper				
	(A) <	⊢ (T	PS3-	TPS	So)								Description	: Transfers	the high-o	rder 4 bits of prescaler		
														to register				
															the low-orc	ler 4 bits of prescaler to		
														register A.				
TABSI (Tra	nsfei	r da	ta to) Ac	cur	nula	tor ar	nd re	egiste	er B	from	regis	ter SI)	I	1			
Instruction	D9								D0				Number of words	Number of	Flag CY	Skip condition		
code	1	0	0	1	1	1	1 0	0	02	2	7	8 16		cycles				
													1	1	_	_		
Operation:	(B) <	⊢ (S	I7–SI	4) (A) ←	- (SI:	3–SI0)						Grouping:	Serial inter	rface opera	ation		
	(-)	(-		., (,	(Description: Transfers the high-order 4 bits of serial inter-					
													face register SI to register B, and transfers					
													the low-order 4 bits of serial interface regis-					
														ter SI to re	gister A.			
TAD (Trans	fer d	ata	to A	CCL	umu	ilato	r from	n reg	gister	D)								
Instruction	D9								D0				Number of	Number of	Flag CY	Skip condition		
code	0	0	0	1	0	1	0 0	0	1	0	5	1 16	words	cycles				
									2			10	1	1	-	-		
Operation:	(A2-	A0)	← (D	R2–	DR0)							Grouping:	Register to				
-	(A3)	← 0											Description: Transfers the contents of register D to the					
													low-order 3 bits (A2–A0) of register A.					
										Note:			on is executed, "0" is					
														stored to the	he bit 3 (Aa	of register A.		

TADAB (Tr	ansfer data to register AD from Accumulator from re	egister B)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 0 1 1 1 0 0 1 ₂ 2 3 9 ₁₆	1	1	-	-	
Operation:	Q13 = 1: (AD7–AD4) ← (B) (AD3–AD0) ← (A) Q13 = 0: TADAB = NOP	Grouping:A/D conversion operationDescription:In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. In the A/D conversion mode (Q13 = 0), this in- struction is equivalent to the NOP instruction. 				
TAI1 (Trans	sfer data to Accumulator from register I1)					
Instruction code	D9 D0 1 0 0 1 0 1 0 0 1 1 2 5 3 46	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	-	
Operation:	(A) ← (I1)	Grouping:	Interrupt of			
		Description	i: Transfers register I1		hts of interrupt control A.	
TAJ1 (Tran	sfer data to Accumulator from register J1)					
Instruction code	D9 D0 1 0 0 1 0 0 0 0 1 0 2 2 4 2 16	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	-	
Operation:	(A) ← (J1)	Grouping: Description	Serial inter Transfers control reg	the conte	nts of serial interface	
TAK0 (Trar	nsfer data to Accumulator from register K0)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 0 1 1 1 0 2 2 5 6	words 1	cycles 1	-		
Operation:	(A) ← (K0)	Grouping: Description	Input/Outp Input/Outp Input/Outp Input/Output Input/Output Input/Output	the conte	nts of key-on wakeup	

TAK1 (Trar	(1 (Transfer data to Accumulator from register K1)																	
Instruction	D9							D0					Number of	Number of	Flag CY	Skip condition		
code	1 0	0	1 C	1	1	0	0	1	2	5	ę	9 16	words	cycles 1	_			
													1	1		_		
Operation:	(A) ← ((K1)											Grouping: Input/Output operation					
													Description			nts of key-on wakeup register A.		
TAK2 (Trar	ofor de		A.co.		lator	from			or K	2)								
		110	AUU	innu	alui	1101	IIIe	-		<u> </u>			Number	Number of		Olvin condition		
Instruction code	D9	0	1 C	1	1	0	1	D0 0	2	5	A	A 16	Number of words	cycles	Flag CY	Skip condition		
									<u> </u>			10	1	1	-	-		
Operation:	(A) ← ((K2)											Grouping:	Input/Outp	-			
											Description			nts of key-on wakeup register A.				
TAL1 (Tran	isfer da	ita to	Accu	imul	lator	fror	n re	giste	er L1)								
Instruction code	D9							Do					Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0	1	0 0	0	1	0	1	0	2	4	4	A16	1	1	-	_		
Operation:	(A) ← (L1)											Grouping:	Input/Outp				
													Description: Transfers the contents of key-on wakeup control register L1 to register A.					
TALA (Trar		ata to	Accı	ımu	lator	tror	n re	-	er LA	4)					-			
Instruction code	D9	0	1 C	0	1	0	0	D0	2	4	9	2	Number of words	Number of cycles	Flag CY	Skip condition		
		0		0	'	0	0	2	2	4		16	1	1	-	_		
Operation:	(A3, A2) ← (A	D1, Al	D0)									Grouping:	A/D conve				
	(A1, A0		,	,									Description: Transfers the low-order 2 bits (AD1, AD0) of					
													register AD to the high-order 2 bits (A3, A2) of register A. "0" is stored to the low-order 2 bits (A1, A0) of register A.					

TAM j (Tra	nsfer data to Accumulator from Memory)								
Instruction code	D9 D0 1 0 1 1 0 0 j j j j 2 C j 16	Number of words	Number of cycles	Flag CY	Skip condition				
	<u>1</u> 0 1 1 0 0 J J J J 2 2 0 J 16	1	1	-	_				
Operation:	(A) ← (M(DP))	Grouping:	RAM to reg	gister trans	sfer				
	$(X) \leftarrow (X) \in XOR(j)$	Description	: After trans	ferring the	e contents of M(DP) to				
	j = 0 to 15		register A	, an exclu	sive OR operation is				
			performed	between r	egister X and the value				
					eld, and stores the re-				
			sult in regi	ster X.					
TAMR (Tra	nsfer data to Accumulator from register MR)								
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition				
code		words	cycles	i i i g e i					
		1	1	-	-				
Operation:	(A) ← (MR)	Grouping:	Clock oper	ation	L				
-		Description	: Transfers	the conten	ts of clock control reg-				
			ister MR to	o register A					
`	ansfer data to Accumulator from register PU0)								
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition				
code	$\begin{vmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 &$	words	cycles						
		1	1	-	-				
Operation:	(A) ← (PU0)	Grouping: Input/Output operation							
		Description: Transfers the contents of pull-up control							
			register PL	JU to regist	ter A.				
TAPU1 (Tra	ansfer data to Accumulator from register PU1)								
Instruction	Do	Number of	Number of	Flag CY	Skip condition				
code	1 0 0 1 0 1 1 1 1 0 2 2 5 E 16	words	cycles						
		1	1	-	-				
Operation:	(A) ← (PU1)	Grouping:	Input/Outp	ut operatio	ิท				
operation		Description: Transfers the contents of pull-up control							
		register PU1 to register A.							

TAPU2 (Tra	PU2 (Transfer data to Accumulator from register PU2)													
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition									
code	1 0 0 1 0 1 1 1 1 1 0 2 5 F 16	words	cycles											
	<u> </u>	1	1	-	-									
Operation:	(A) ← (PU2)	Grouping:	Input/Outp	ut operatio	n									
		Description	: Transfers	the conte	nts of pull-up control									
			register PL	J2 to regist	ter A.									
TAQ1 (Trar	nsfer data to Accumulator from register Q1)													
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition									
code		words	cycles											
	1 0 0 1 0 0 1 0 0 2 2 4 4 16	1	1	-	-									
Operation:	(A) ← (Q1)	Grouping:	A/D conve	rsion opera	ation									
		Description: Transfers the contents of A/D control register Q1 to register A.												
	nsfer data to Accumulator from Stack Pointer)		I	1										
Instruction		Number of words	Number of	Flag CY	Skip condition									
code	0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0	1	cycles 1	_										
		C	Desistents											
Operation:	$(A_2 - A_0) \leftarrow (SP_2 - SP_0)$	Grouping: Register to register transfer Description: Transfers the contents of stack pointer (SP)												
	(A3) ← 0	Description	to the low-	order 3 bit	s (A2–A0) of register A. t 3 (A3) of register A.									
TAV1 (Tran	sfer data to Accumulator from register V1)													
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition									
code	0 0 0 1 0 1 0 1 0 2 0 5 4		cycles											
		1	1	-	-									
Operation:	(A) ← (V1)	Grouping:	Interrupt of	peration										
		Description: Transfers the contents of interrupt control register V1 to register A.												

TAV2 (Tran	ansfer data to Accumulator from register V2)																			
Instruction	D9									D0					Number of	Number of	Flag CY	Skip condition		
code	0	0	0	1	0	1	0	1	0	1] [0	5	5 16	words	cycles				
											12 [16	1	1	-	-		
Operation:	(A)	← (\	/2)												Grouping:	Interrupt o	peration			
•	()	`	,												Description		·	ts of interrupt control		
																register V2	to register	r A.		
TAW1 (Tran	nsfe	r da	ta to	Ac	cur	nula	ator	fro	m r	egis	ster	W	1)							
Instruction	D9									D0					Number of	Number of	Flag CY	Skip condition		
code	1	0	0	1	0	0	1	0	1	1] [2	4	B	words	cycles				
											12 L			16	1	1	-	-		
Operation:	(A)	← (V	V1)												Grouping:	Timer oper	ration			
													Description			ts of timer control reg-				
																ister W1 to register A.				
TAW2 (Tran	nsfe	r da	ta to	Ac	cur	nula	ator	fro	m r	egis	ster	r W	2)			1	,			
Instruction	D9									D0	1 r				Number of	Number of	Flag CY	Skip condition		
code	1	0	0	1	0	0	1	1	0	0	2	2	4	C 16	words	cycles				
															1	1	-	-		
Operation:	(A)	← (\	V2)					-							Grouping: Timer operation					
	()	(,												Description: Transfers the contents of timer control reg-					
																ister W2 to	o register A			
TAW5 (Trar	nsfe	r da	ta to	Ac	cur	nula	ator	fro	m r	egis	ster	· W	5)							
Instruction	D9									D0					Number of	Number of	Flag CY	Skip condition		
code	1	0	0	1	0	0	1	1	1	1	2	2	4	F 16	words	cycles				
			II					-			12 1			10	1	1	-	-		
Operation:	(A)	← (V													Grouping:	Timer oper	ration			
Operation.	(A)	- (v	v3)												Description: Transfers the contents of timer control reg-					
																ister W5 to	register A			

TAW6 (Tran	AW6 (Transfer data to Accumulator from register W6) struction D9 D0 Number of Number of Flag CY Skip condition																					
Instruction	D9									D0						Number of	Number of	Flag CY	Skip condition			
code	1	0	0	1	0	1	0	0	0	0]_	2	5	0)	words	cycles					
								-			12			-	16	1	1	-	-			
Operation:	(A)	← (V	V6)													Grouping:	Grouping: Timer operation					
oporationi	(, ,		10)																ts of timer control reg-			
																	ister W6 to	o register A				
	AX (Transfer data to Accumulator from register X) struction D9 D0 N																					
Instruction code	D9	0	0											2	2	Number of words	Number of cycles	Flag CY	Skip condition			
			_		Ŭ			-	·	-	2		-		16	1	1	-	-			
Operation:	(A) ← (X)														Grouping:	Register to	o register tr	ansfer				
																Description	: Transfers ister A.	the conten	ts of register X to reg-			
TAY (Trans	fer (lata	to A		Imi	ilat	orfu	·om	rec	liste	or \	<u>()</u>										
Instruction	D9		107			iiat		UIII	166	D0		')				Number of	Number of	Flog CV	Skip condition			
code	0	0	0	0	0	1	1	1	1	1]_	0	1	F	=	words	cycles	Flag CY	Skip condition			
							1		1		12			-	16	1	1	-	-			
Operation:	(A)	← (ነ	()													Grouping: Register to register transfer						
																Description: Transfers the contents of register Y to register A.						
TAZ (Trans	fer	data	to A	Acci	umu	ulat	or f	rom	re	giste	er 2	Z)				1						
Instruction code	D9	0	0	1	0	1	0	0	1	D0		0	5		3 16	Number of words	Number of cycles	Flag CY	Skip condition			
		0	0	•	0	1	0	0	'	'	2		5		 16	1	1	-	-			
Operation:	(A1	, Ao)	← (Z	Z1, Z	0)											Grouping:	Register to					
Operation: (A1, A0) ← (Z1, Z0) (A3, A2) ← 0									Description: Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A. "0" is stored to the high-order 2 bits (A3, A2) of register A.													

TBA (Trans	sfer dat	a to i	registe	er B	from	Accu	ımu	lato	or)						
Instruction	D9		-		-		Do	0				Number of	Number of	Flag CY	Skip condition
code	0 0	0	0 0	0	1	1 1	0	٦.	0	0	E 16	words	cycles		
								2	L		16	1	1	-	-
Operation:	(B) ← ((A)										Grouping:	Register to	o register tr	ansfer
oporationi		,,,,										Description	-	-	s of register A to regis-
													ter B.		
TC1A (Tran	nsfer da	ata to	reais	ster (C1 fro	om Ao	ccur	mul	ator	.)		1			
Instruction	D9						Do			/		Number of	Number of	Flag CY	Skip condition
code	1 0	1	0 1	0	1	0 0	-		2	A	8 16	words	cycles	, ag e i	
		_ ·			<u> </u>			2			16	1	1	-	_
Operation:	(C1) ←	(A)										Grouping:	Input/Outp	ut operatio	n
- point and a	(01)	(, ,)										Description	: Transfers	the conten	ts of register A to port
													output stru	icture conti	ol register C1.
TDA (Trans	sfer dat	a to i	regist	er D	from	Acci	Imu	late	or)						
Instruction	D9	a 10 I	eyisi		nom	AUU	Do		, ,			Number of	Number of	Flag CY	Skip condition
code	0 0	0	0 1	0	1	0 0	-		0	2	9	words	cycles	T lag C T	Skip contaition
couc	0 0	0	0 1	0		0 0	1	2	0	2	916	1	1	-	_
Operation:	(DR2-[DR0) <	— (A2—	A0)								Grouping:	Register to	o register tr	ansfer
												Description			nts of the low-order 3
													bits (A2–A	o) of registe	er A to register D.
TEAB (Trar	nsfer da	ata to	o regis	ster	E fror	m Ac	cum	nula	tor	and	regist	ter B)			
Instruction code	D9					0 4	Do				•	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0	0	0 0	1	1	0 1	0	2	0	1	A 16	1	1	-	_
Operation:	(E7–E4) ← (F	3)									Grouping:	Register to	o register tr	ansfer
operation	(E3-E0	· ·	,									Description	-	-	ts of register B to the
	,	, (,										-	,	-Eo) of register E, and
														-	er A to the low-order 4
													bits (E3–E	o) of registe	er E.

TFR0A (Tra	ansfer data to register FR0 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 1 0 1 0 0 0 2 2 8 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(FR0) ← (A)	Grouping:	Input/Outp		
		Description			its of register A to port rol register FR0.
TFR1A (Tra	ansfer data to register FR1 from Accumulator)	1			
Instruction code	D9 D0 1 0 0 1 0 1 0 1 2 2 9	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(FR1) ← (A)	Grouping:	Input/Outp		
		Description			ts of register A to port rol register FR1.
	ansfer data to register FR2 from Accumulator)	1	1		
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	(FR2) ← (A)	Grouping:	Input/Outp		n its of register A to port
		Description			rol register FR2.
TFR3A (Tra	ansfer data to register FR3 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 1 0 1 0 1 1 2 2 B	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 1 0 1 0 1 1 2 2 2 0 16	1	1	-	-
Operation:	(FR3) ← (A)	Grouping: Description		the conten	on its of register A to port rol register FR3.

TI1A (Trans	sfer dat	a to i	egis	ter I	11 fr	om /	Αссι	imula	tor)						
Instruction	D9							D0				Number of	Number of	Flag CY	Skip condition
code	1 0	0	0 0	0 1	1 0) 1	1	1	2	1	7 16	words 1	cycles 1	_	
Operation:	(I1) ←	(A)										Grouping:	Interrupt o		
												Description			s of register A to inter-
													rupt contro	ol register l	1.
TJ1A (Tran	nsfer da	ta to	regis	ster	J1 1	from	Acc	umu	lator)					
Instruction	D9							D0		,		Number of	Number of	Flag CY	Skip condition
code	1 0	0	0 0	0 0	0 0	0 0	1	0	2	0	2 16	words	cycles		
							-		: L		16	1	1	-	-
Operation:	(J1) ←	(A)			-							Grouping:	Serial inte	rface opera	ition
												Description			s of register A to serial
													interface c	ontrol regis	ster J1.
TK0A (Trar	nsfer da	ta to	regi	ster	r K0	fron	n Ac	cumu	Ilato	r)					
Instruction	D9							D0		,		Number of	Number of	Flag CY	Skip condition
code	1 0	0	0 0	0 1	1 1	1 0	1	1	2	1	В 16	words	cycles		
							-	4			10	1	1	-	-
Operation:	(K0) ←	(A)										Grouping:	Input/Outp	ut operatio	n
•••••	()	(, ,										Description			ts of register A to key-
													on wakeup	o control re	gister K0.
TK1A (Trar	nsfer da	ta to	regi	ster	r K1	fron	n Ac	cumi	ilato	r)					
Instruction	D9							D0				Number of	Number of	Flag CY	Skip condition
code	1 0	0	0 0	0 1	1 0) 1	0	0	2	1	4 16	words	cycles		
									: L		10	1	1	-	_
Operation:	(K1) ←	(A)										Grouping:	Input/Outp		
•	. ,	()										Description			ts of register A to key-
													on wakeup	o control re	gister K1.

TK2A (Trar	nsfer data to register K2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 2 2 1 5 16	words 1	cycles		
		1	1	-	_
Operation:	(K2) ← (A)	Grouping:	Input/Outp	-	
		Description	 Transfers f on wakeup 		ts of register A to key- dister K2
			on wakeup	control re	
TI 14 (Tran	sfer data to register L1 from Accumulator)				
Instruction		Number of	Number of	Flag CY	Skip condition
code		words	cycles	-	
		1	1	-	-
Operation:	(L1) ← (A)	Grouping:	Input/Outp	ut operatio	n
•		Description			ts of register A to key-
			on wakeup	control re	gister L1.
	nsfer data to Memory from Accumulator)				
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
oouo	1 0 1 0 1 1 <u>j</u> <u>j</u> <u>j</u> <u>2</u> <u>2</u> <u>B</u> <u>j</u> ₁₆	1	1	_	_
Operation	(M(DP)) ← (A)	Grouping:	RAM to reg	nister trans	ter
Operation:	$(N(DF)) \leftarrow (A)$ (X) \leftarrow (X)EXOR(j)	Description			contents of register A
	j = 0 to 15				e OR operation is per-
				-	ister X and the value j d, and stores the result
			in register		
TMRA (Tra	nsfer data to register MR from Accumulator)	1	1		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 0 2 2 1 6 16	1	1	_	
Operation:	(MR) ← (A)	Grouping: Description	Clock oper		ts of register A to clock
			control reg		

TPAA (Trar	nsfer data to register PA from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 1 0 1 0 1 0 1 0 ₂ 2 A A ₁₆	words	cycles		
		1	1	-	-
Operation:	(PA0) ← (A0)	Grouping:	Timer oper		
		Description			gnificant bit of register
			A to timer of	control reg	ister PA.
TPSAB (Tra	ansfer data to Pre-Scaler and register RPS from Ac	cumulator a	and registe	r B)	
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 1 0 1 2 3 5	1	cycles 1	_	
		1	I	_	_
Operation:	(RPS7–RPS4) ← (B)	Grouping:	Timer oper		
	(TPS7–TPS4) ← (B)	Description			ts of register B to the
	(RPS3–RPS0) ← (A) (TPS3–TPS0) ← (A)		-		rescaler and prescaler Transfers the contents
	(1F35-1F30) ← (A)		-		e low-order 4 bits of
			prescaler	and pres	caler reload register
			RPS.		
TPU0A (Tra	ansfer data to register PU0 from Accumulator)				
Instruction		Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 0 1 ₂ 2 2 D ₁₆	words 1	cycles 1	_	
		1	I	_	_
Operation:	(PU0) ← (A)	Grouping:	Input/Outp		
		Description	: Transfers t up control		ts of register A to pull-
			up control	register r t	50.
· · · ·	ansfer data to register PU1 from Accumulator)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 0 <u>1</u> 2 2 <u>1</u> 1 ₁₆	1	1	_	_
Operation:	(PU1) ← (A)	Grouping: Description	Input/Outp		n ts of register A to pull-
		Description	up control		•
				- <u>-</u>	-

TPU2A (Tra	ransfe	r da	ata t	o reg	jiste	r Pl	J2 1	from	۱A	ccu	mul	ato	or)					
Instruction	D9								0	D 0					Number of	Number of	Flag CY	Skip condition
code	1	0	0	0 1	0	1	1	1	Τ.	1	2	2	2 F	=	words	cycles		
				_		_				2				16	1	1	-	-
Operation:	(PU2	<u>2</u>) ←	(A)												Grouping:	Input/Outp	ut operatio	'n
		,	. ,												Description	1: Transfers	the conten	ts of register A to pull-
																up control	register Pl	J2.
TQ1A (Trai	Insfer	dat	a to	regis	ster	Q1	froi	m A	ссі	Jmu	ulato	or)						
Instruction	D9									Do					Number of	Number of	Flag CY	Skip condition
code	1	0	0	0 0	0	0	1	0	(0	2	0) 4	4	words	cycles		
										2				1 16	1	1	-	_
Operation:	(Q1)	← ()	A)												Grouping:	A/D conve	rsion opera	ation
															Description	 Transfers control reg 		ts of register A to A/D
TRGA (Tra	ansfer	dat	a to	regi	ster	RG	frc	om A		um	ulat	or))		·			
Instruction	D9									D 0		,			Number of	Number of	Flag CY	Skip condition
code	1	0	0	0 0	0	1	0	0		1	2	0		9	words	cycles		-
										2				16	1	1	-	-
Operation:	(RG	0) ←	(A0)												Grouping:	Clock ope		
	·	,	. ,												Description			significant bit (A0) of ntrol regiser RG.
TSIAB (Tra	ansfe	r da	ta te	o reg	ister	r SI	fro	m A	сс	umi	ulato	or)						
Instruction	D9									Do	_	,		,	Number of	Number of	Flag CY	Skip condition
code	1	0	0	0 1	1	1	0	0		0 2	2	;	3 8	8 16	words 1	cycles 1	_	
															· ·	· ·		
Operation:	(SI7-	-SI4)) ← ((B) (S	I3–SI	l0) ←	- (A))							Grouping:		rface operation	
															Description			nts of register B to the
																-		serial interface register
																	v-order 4 l	contents of register A bits of serial interface

TV1A (Tran	sfer data to register V1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 1 ₂ 0 3 F ₁₆	words	cycles		
		1	1	-	-
Operation:	(V1) ← (A)	Grouping:	Interrupt of	peration	
		Description			s of register A to inter-
			rupt contro	l register V	′1.
TV2A (Tran	sfer data to register V2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	0	
		1	1	-	-
Operation:	(V2) ← (A)	Grouping:	Interrupt o	peration	
Operation.	$(\sqrt{2}) \leftarrow (A)$	Description			s of register A to inter-
			rupt contro	ol register \	/2.
	actor data to register \//1 from Accumulator				
Instruction	nsfer data to register W1 from Accumulator) D9 D0	Number of	Number of	Flag CY	Skip condition
code	D9 D0 1 0 0 0 0 1 1 1 0 2 0 E	words	cycles	riag C1	Skip condition
oodo		1	1	_	_
		Grouping:	Timer oper	otion	
Operation:	(W1) ← (A)	Description			s of register A to timer
			control reg		
· · · ·	nsfer data to register W2 from Accumulator)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 1 1 ₂ 2 0 F ₁₆	1	1	_	_
Operation:	(W2) ← (A)	Grouping:	Timer oper		
		Description			ts of register A to timer
			control reg	JISLEI VV∠.	

TW5A (Tra	nsfer	' da	ta to	o reg	gist	er '	W5	fror	n A	ccu	mul	atc	or)					
Instruction	D9									D0					Number of	Number of	Flag CY	Skip condition
code	1	0	0	0	0	1	0	0	1	0] [2	1	2 16	words	cycles		
		•		-				<u> </u>			12 L	-		16	1	1	-	_
Operation:	(W5) ←	(A)												Grouping:	Timer oper	ration	
operation.	(000	, -	(~)												Description			ts of register A to timer
																control reg		U U
																-		
TW6A (Tra	nsfer	^r da	ta to	o ree	gist	er '	W6	fror	n A	ccu	mul	atc	or)					
Instruction	D9				<u> </u>					D0			,		Number of	Number of	Flag CY	Skip condition
code	1	0	0	0	0	1	0	0	1	1	1 [2	1	3 16	words	cycles	Ű	
		0	0	0	0			0			12 L	2		16	1	1	-	-
Operation:	(W6) ←	(A)												Grouping:	Timer oper	ration	
															Description			ts of register A to timer
																control reg	ister W6.	
TYA (Trans	fer d	ata	to r	egis	ster	Y I	from	n Ac	cur	nula	ator)			1	1		
Instruction	D9									D0					Number of	Number of	Flag CY	Skip condition
code	0	0	0	0	0	0	1	1	0	0	2	0	0	C 16	words	cycles		
															1	1	-	_
Operation:	(Y) •	← (A	N)												Grouping:	Register to	-	
															Description		he content	s of register A to regis-
																ter Y.		
WRST (Wa	atchd	og	time	er Ro	eSe	eT)												
Instruction	D9									D0					Number of	Number of	Flag CY	Skip condition
code	1	0	1	0	1	0	0	0	0	0	2	2	A	0 16	words	cycles		
															1	1	-	(WDF1) = 1
Operation:	(WF)F1)	= 1	?											Grouping:	Other ope	ration	
operation			 ← 0												Description			DF1 flag and skips the
	`	,																en watchdog timer flag
																		ne WDF1 flag is "0," ex-
																		ruction. Also, stops the
																-		ion when executing the
																		mmediately after the
																DWDT ins	truction.	

XAM j (eX	change Accumulator and Memory data)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
		1	1	-	-
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to reg	gister tran	sfer
-	$(X) \leftarrow (X) EXOR(j)$	Description	: After exch	nanging th	ne contents of M(DP)
	j = 0 to 15		with the co	ontents of	register A, an exclusive
			OR operat	tion is per	formed between regis-
			ter X and t	he value j	in the immediate field,
			and stores	the result	in register X.
					-
XAMD j (e	Xchange Accumulator and Memory data and Decrer	nent regist	er Y and sk	kip)	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
	1 0 1 1 1 1 1 1 1 1 1 1	1	1	-	(Y) = 15
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to reg		
	$(X) \leftarrow (X) \in XOR(j)$	Description			ne contents of M(DP) register A, an exclusive
	i = 0 to 15				formed between regis-
	$(Y) \leftarrow (Y) - 1$				in the immediate field,
	$(1) \leftarrow (1) = 1$				in register X.
					contents of register Y.
					action, when the con- 15, the next instruction
					e contents of register Y
					struction is executed.
XAMI j (eX	change Accumulator and Memory data and Increme	ent register)	1
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 1 1 0 j j j ₂ 2 E j ₁₆	words	cycles		
		1	1	-	(Y) = 0
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to reg		
	$(X) \leftarrow (X) EXOR(j)$	Description			ne contents of M(DP) register A, an exclusive
	i = 0 to 15				formed between regis-
	$(Y) \leftarrow (Y) + 1$				in the immediate field,
	$(1) \leftarrow (1) \neq 1$		and stores	the result	in register X.
					ts of register Y. As a re-
					hen the contents of
					e next instruction is contents of register Y is
					ction is executed.

Parameter						In	stru	ction		le					er of s	er of Is	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otat	cimal on	Number of words	Number o cycles	Function
	ТАВ	0	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	(A) ← (B)
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	(B) ← (A)
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	(A) ← (Y)
	ТҮА	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	(Y) ← (A)
transfei	ТЕАВ	0	0	0	0	0	1	1	0	1	0	0	1	A	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	A	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
r to r	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2–DR0) ← (A2–A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	(A2–A0) ← (DR2–DR0) (A3) ← 0
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$\begin{array}{l} (A1, A0) \leftarrow (Z1, Z0) \\ (A3, A2) \leftarrow 0 \end{array}$
	ТАХ	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	(A) ← (X)
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	(A2–A0) ← (SP2–SP0) (A3) ← 0
	LXY x, y	1	1	Х3	X2	X1	X0	уз	у2	у1	у0	3	х	у	1	1	$ \begin{array}{l} (X) \leftarrow x \ x = 0 \ \text{to} \ 15 \\ (Y) \leftarrow y \ y = 0 \ \text{to} \ 15 \end{array} $
esses	LZ z	0	0	0	1	0	0	1	0	Z 1	Z0	0	4	8 +z	1	1	(Z) ← z z = 0 to 3
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	(Y) ← (Y) – 1
	TAM j	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	(A) ← (M(DP)) (X) ← (X)EXOR(j) j = 0 to 15
transfer	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$
RAN	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array}$
	TMA j	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

MACHINE INSTRUCTIONS (INDEX BY TYPES)

Skip condition	Carry flag CY	Datailed description
	Ö	
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
_	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of regis- ter A to the low-order 4 bits (E3–E0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to regis- ter A.
_	-	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
-	-	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A. "0" is stored to the bit 3 (A3) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A. "0" is stored to the high-order 2 bits (A3, A2) of register A.
_	-	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A. "0" is stored to the bit 3 (A3) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15 the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.
_	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15 the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped. when the contents of register Y is not 0, the next instruction is executed.
-	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.

RENESAS

Parameter	Mnemonic	Mnemonic				In	stru	ction	cod	le					er of Is	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexao not	decin ation		Number (words	Number o cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7 n		1	1	(A) ← n n = 0 to 15
	ТАВР р	0	0	1	0	0	p4	рз	p2	p1	po		8 p +p		1	3	$\begin{array}{l} (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p (Note) \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (UPTF) = 1 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (DR2) \leftarrow 0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \end{array}$
ration	AM	0	0	0	0	0	0	1	0	1	0	0 (0 A		1	1	(A) ← (A) + (M(DP))
Arithmetic operation	AMC	0	0	0	0	0	0	1	0	1	1	0 (0 B		1	1	(A) ← (A) + (M(DP)) +(CY) (CY) ← Carry
Arithm	A n	0	0	0	1	1	0	n	n	n	n	0 (6 n		1	1	(A) ← (A) + n n = 0 to 15
	AND	0	0	0	0	0	1	1	0	0	0	0	18		1	1	(A) ← (A) AND (M(DP))
	OR	0	0	0	0	0	1	1	0	0	1	0	19		1	1	(A) ← (A) OR (M(DP))
	SC	0	0	0	0	0	0	0	1	1	1	0 (07		1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0 (06		1	1	(CY) ← 0
	SZC	0	0	0	0	1	0	1	1	1	1	0 2	2 F		1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1 C	;	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1 C)	1	1	CY→A3A2A1A0 ¬
	SB j	0	0	0	1	0	1	1	1	j	j	0 4	5 C +		1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0 4	4 C +		1	1	(Mj(DP)) ← 0 j = 0 to 3
Bit ol	SZB j	0	0	0	0	1	0	0	0	j	j	0 2	2 ј		1	1	(Mj(DP)) = 0 ? j = 0 to 3
I 1	SEAM	0	0	0	0	1	0	0	1	1	0	0 2	26		1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	0	1	0	0	1	0	1	0 2			2	2	(A) = n ? n = 0 to 15
		0	0	0	1	1	1	n	n	n	n	0	ι n				

Note : p is 0 to 31.

Skip condition	Carry flag CY	Datailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When UPTF is 1, Transfers bits 9, 8 to the low-order 2 bits (DR1, DR0) of register D, and "0" is stored to the least significant bit (DR2) of register D. When this instruction is executed, 1 stage of stack register (SK) is used.
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	-	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
_	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the re- sult in register A.
-	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n n = 0 to 15	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field. field.

RENESAS

Parameter						In	stru	ction	cod	le					er of ds	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0			lecimal ation	Number (words	Number o cycles	Function
	Ва	0	1	1	a 6	a 5	a 4	a 3	a2	a 1	a 0	1	8 +	a	1	1	(PCL) ← a6–a0
ration	BL p, a	0	0	1	1	1	p4	рз	p2	p1	p0	0	E +	р р	2	2	(PCн) ← p (Note) (PCL) ← a6–a0
Branch operation		1	0	0	a 6	a 5	a 4	аз	a2	a 1	a 0	2	а	а			
Brar	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	0	0	р4	0	0	рз	p2	p1	p0	2	р	р			
-	BM a	0	1	0	a 6	a 5	a4	a 3	a2	a1	a 0	1	а	а	1	1	$\begin{array}{l} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow 2 \\ (\text{PCL}) \leftarrow a6{-}a0 \end{array}$
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	p1	p0	0		; р р	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine (1	0	0	a 6	a 5	a4	аз	a2	a1	a 0	2	а	а			$(PCL) \leftarrow a6-a0$
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)
		1	0	0	р4	0	0	рз	p2	p1	p0	2	р	р			(PCH) ← p (Note) (PCL) ← (DR2–DR0,A3–A0)
u	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	(PC) ← (SK(SP)) (SP) ← (SP) − 1
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1
Retur	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1

Note : p is 0 to 31.

Skip condition	Carry flag CY	Datailed description
-	-	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
-	_	Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
_	_	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de- scription of the LA/LXY instruction, register A and register B to the states just before interrupt.
-	-	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

Parameter						In	stru	ction	cod	е					er of Is	er of es	Function
Type of	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		ade otati	cimal on	Number (words	Number o cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? (EXF0) ← 0 V10 = 1: SNZ0 = NOP
ation	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	A	1	1	l12 = 0 : (INT) = "L" ?
Interrupt operation																	I12 = 1 : (INT) = "H" ?
terru	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
-	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	(A) ← (I1)
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)
	TPAA	1	0	1	0	1	0	1	0	1	0	2	А	А	1	1	(PA0) ← (A0)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	(W1) ← (A)
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
	TAW5	1	0	0	1	0	0	1	1	1	1	2	4	F	1	1	(A) ← (W5)
	TW5A	1	0	0	0	0	1	0	0	1	0	2	1	2	1	1	(W5) ← (A)
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
ation	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
Timer operation	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	(B) ← (TPS7–TPS4) (A) ← (TPS3–TPS0)
ЦШ	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	(RPS7–RPS4) ← (B) (TPS7–TPS4) ← (B) (RPS3–RPS0) ← (A) (TPS3–TPS0) ← (A)
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R1L7-R1L4) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R1L3-R1L0) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
	T1HAB	1	0	1	0	0	1	0	0	1	0	2	9	2	1	1	(R1H7–R1H4) ← (B) (R1H3–R1H0) ← (A)

	5	
Skip condition	Carry flag	Datailed description
	Carry	
-	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	-	When $V10 = 0$: Clears (0) to the EXF0 flag and skips the next instruction when external 0 interrupt request flag EXF0 is "1." When the EXF0 flag is "0," executes the next instruction. When $V10 = 1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "L" However, I12 = 0	-	When I12 = 0 : Skips the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "H."
(INT) = "H" However, I12 = 1		When I12 = 1 : Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L." (I12: bit 2 of interrupt control register I1)
-	-	Transfers the contents of interrupt control register V1 to register A.
-	-	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A.
-	-	Transfers the contents of register A to interrupt control register V2.
-	-	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.
_	-	Transfers the contents of register A to timer control register PA.
-	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W5 to register A.
-	-	Transfers the contents of register A to timer control register W5.
-	-	Transfers the contents of timer control register W6 to register A.
-	-	Transfers the contents of register A to timer control register W6.
-	-	Transfers the high-order 4 bits of prescaler to register B. Transfers the low-order 4 bits of prescaler to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS. Transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
_	_	Transfers the high-order 4 bits (T17–T14) of timer 1 to register B. Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1L. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1L.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1H. Transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1H.

RENESAS

Paramete	r		Instruction code													er of es	Function				
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		ade otat	ecima tion	Number of words	Number o cycles					
	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)				
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$				
Timer operation	T2HAB	1	0	1	0	0	1	0	1	0	0	2	9	4	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)				
er ope	T1R1L	1	0	1	0	1	0	0	1	1	1	2	A	7	1	1	(T1) ← (R1L)				
Time	T2R2L	1	0	1	0	0	1	0	1	0	1	2	9	5	1	1	(T2) ← (R2L)				
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? (T1F) ← 0 V12 = 1: SNZT1 = NOP				
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? (T2F) ← 0 V13 = 1: SNZT2 = NOP				
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)				
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)				
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)				
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)				
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$(A_1, A_0) \leftarrow (P_{21}, P_{20})$ $(A_3, A_2) \leftarrow 0$				
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P21, P20) ← (A1, A0)				
tion	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	(A1, A0) ← (P31, P30) (A3, A2) ← 0				
operation	ОРЗА	1	0	0	0	1	0	0	0	1	1	2	2	3	1	1	(P31, P30) ← (A1, A0)				
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1				
Input/Output	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	(D(Y)) ← 0 (Y) = 0 to 5				
<u> </u>	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	(D(Y)) ← 1 (Y) = 0 to 5				
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0?				
		0	0	0	0	1	0	1	0	1	1	0	2	В			(Y) = 0 to 5				

Skip condition	Carry flag CY	Datailed description
	Carr	
-	-	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
_	-	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2L. Trans- fers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2L.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 2 reload register R2H. Transfers the con- tents of register A to the low-order 4 bits of timer 2 reload register R2H.
-	_	Transfers the contents of timer 1 reload register R1L to timer 1.
-	-	Transfers the contents of timer 2 reload register R2L to timer 2.
V12 = 0: (T1F) = 1	_	When V12 = 0 : Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is "1." . When the T1F flag is "0," executes the next instruction. When V12 = 1 : This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0: (T2F) =1	_	When V13 = 0 : Clears (0) to the T2F flag and skips the next instruction when timer 2 interrupt request flag T2F is "1." When the T2F flag is "0," executes the next instruction. When V13 = 1 : This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)
_	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A.
-	-	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to the low-order 2 bits (A1, A0) of register A. "0" is stored to the bit 3 (A3) of register A.
-	-	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P2.
-	-	Transfers the input of port P3 to the low-order 2 bits (A1, A0) of register A. "0" is stored to the bit 3 (A3) of register A.
-	-	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P3.
_	-	Sets (1) to port D.
_	-	Clears (0) to a bit of port D specified by register Y.
-	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 ?	_	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."

RENESAS

Parameter						In	stru	ction	coc	le					
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation	Number of words	Number o cycles	Function
	TFR0A	1	0	0	0	1	0	1	0	0	0	228	1	1	(FR0) ← (A)
	TFR1A	1	0	0	0	1	0	1	0	0	1	229	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	22A	1	1	(FR2) ← (A)
	TFR3A	1	0	0	0	1	0	1	0	1	1	22B	1	1	(FR3) ← (A)
	TC1A	1	0	1	0	1	0	1	0	0	0	2 A 8	1	1	(C1) ← (A)
	ТК0А	1	0	0	0	0	1	1	0	1	1	2 1 B	1	1	(K0) ← (A)
	TAK0	1	0	0	1	0	1	0	1	1	0	256	1	1	(A) ← (K0)
u	TK1A	1	0	0	0	0	1	0	1	0	0	2 1 4	1	1	(K1) ← (A)
Input/Output operation	TAK1	1	0	0	1	0	1	1	0	0	1	2 5 9	1	1	(A) ← (K1)
out of	TK2A	1	0	0	0	0	1	0	1	0	1	2 1 5	1	1	(K2) ← (A)
/Outp	TAK2	1	0	0	1	0	1	1	0	1	0	2 5 A	1	1	(A) ← (K2)
Input	TPU0A	1	0	0	0	1	0	1	1	0	1	22D	1	1	(PU0) ← (A)
	TAPU0	1	0	0	1	0	1	0	1	1	1	257	1	1	(A) ← (PU0)
	TPU1A	1	0	0	0	1	0	1	1	1	0	22E	1	1	(PU1) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2 5 E	1	1	(A) ← (PU1)
	TPU2A	1	0	0	0	1	0	1	1	1	1	22F	1	1	(PU2) ← (A)
	TAPU2	1	0	0	1	0	1	1	1	1	1	2 5 F	1	1	(A) ← (PU2)
	TL1A	1	0	0	0	0	0	1	0	1	0	2 0 A	1	1	(L1) ← (A)
	TAL1	1	0	0	1	0	0	1	0	1	0	24 A	1	1	(A) ← (L1)
	TABSI	1	0	0	1	1	1	1	0	0	0	2 7 8	1	1	(B) ← (SI7–SI4) (A) ← (SI3–SI0)
ation	TSIAB	1	0	0	0	1	1	1	0	0	0	238	1	1	(SI7–SI4) ← (B) (SI3–SI0) ← (A)
ce opera	SST	1	0	1	0	0	1	1	1	1	0	29E	1	1	(SIOF) ← 0 Serial interface transmit/receive starting
Serial interface operation	SNZSI	1	0	1	0	0	0	1	0	0	0	288	1	1	 V23=0: (SIOF)=1? (SIOF) ← 0 V23 = 1: SNZSI = NOP
Seri	TAJ1	1	0	0	1	0	0	0	0	1	0	242	1	1	(A) ← (J1)
	TJ1A	1	0	0	0	0	0	0	0	1	0	202	1	1	(J1) ← (A)
	CRCK	1	0	1	0	0	1	1	0	1	1	2 9 B	1	1	RC oscillator selected
Clock operation	TRGA	1	0	0	0	0	0	1	0	0	1	209	1	1	(RG0) ← (A0)
CIC	TAMR	1	0	0	1	0	1	0	0	1	0	252	1	1	(A) ← (MR)
	TMRA	1	0	0	0	0	1	0	1	1	0	2 1 6	1	1	(MR) ← (A)

	5	
Skip condition	Carry flag (Datailed description
-	-	Transfers the contents of register A to port output structure control register FR0.
-	-	Transfers the contents of register A to port output structure control register FR1.
-	-	Transfers the contents of register A to port output structure control register FR2.
-	-	Transfers the contents of register A to port output structure control register FR3.
-	-	Transfers the contents of register A to port output structure control register C1.
-	-	Transfers the contents of register A to key-on wakeup control register K0.
_	-	Transfers the contents of key-on wakeup control register K0 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K1.
-	-	Transfers the contents of key-on wakeup control register K1 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K2.
_	-	Transfers the contents of key-on wakeup control register K2 to register A.
_	-	Transfers the contents of register A to pull-up control register PU0.
_	-	Transfers the contents of pull-up control register PU0 to register A.
-	-	Transfers the contents of register A to pull-up control register PU1.
-	-	Transfers the contents of pull-up control register PU1 to register A.
-	-	Transfers the contents of register A to pull-up control register PU2.
-	-	Transfers the contents of pull-up control register PU2 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register L1.
-	-	Transfers the contents of key-on wakeup control register L1 to register A.
-	-	Transfers the high-order 4 bits of serial interface register SI to register B, and transfers the low-order 4 bits of serial interface register SI to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of serial interface register SI, and transfers the contents of register A to the low-order 4 bits of serial interface register SI.
-	_	Clears (0) to SIOF flag and starts serial interface transmit/receive.
V23 = 0: (SIOF) =1	_	Clears (0) to SIOF flag and skips the next instruction when the contents of bit 3 (V23) of interrupt control reg- ister V2 is "0" and contents of SIOF flag is "1." When V23 = 1: This instruction is equivalent to the NOP instruction.
-	-	Transfers the contents of serial interface control register J1 to register A.
_	_	Transfers the contents of register A to serial interface control register J1.
-	_	Selects the RC oscillation circuit for main clock f(XIN).
-	-	Transfers the least significant bit (A0) of register A to clock control regiser RG.
-	-	Transfers the contents of clock control regiser MR to register A.
-	_	Transfers the contents of register A to clock control register MR.

RENESAS

Parameter			Instruction code													Function				
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otati	cimal on	Number (words	Number o cycles				
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1	1	$Q13 = 0:$ $(B) \leftarrow (AD9-AD6)$ $(A) \leftarrow (AD5-AD2)$ $Q13 = 1:$ $(B) \leftarrow (AD7-AD4)$ $(A) \leftarrow (AD3-AD0)$			
tion	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	(A3, A2) ← (AD1, AD0) (A1, A0) ← 0			
A/D conversion operation	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	Q13 = 0: (AD7–AD4) ← (B) (AD3–AD0) ← (A) Q13 = 1: TADAB = NOP			
Sonve	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	(A) ← (Q1)			
A/D	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	(Q1) ← (A)			
	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	(ADF) ← 0 Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting			
	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? (ADF) ← 0 V22 = 1: SNZAD = NOP			
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1			
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	RAM back-up			
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	в	1	1	POF instruction valid			
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?			
tion	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled			
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	A	0	1	1	(WDF1) = 1 ?, (WDF1) ← 0			
Ō	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset			
	RUPT	0	0	0	1	0	1	1	0	0	0	0	5	8	1	1	(UPTF) ← 0			
	SUPT	0	0	0	1	0	1	1	0	0	1	0	5	9	1	1	(UPTF) ← 1			
	SVDE**	1	0	1	0	0	1	0	0	1	1	2	9	3	1	1	Voltage drop detection circuit valid at RAM back-up			

Note: The SVDE instruction can be used only in the H version.

	~	
Skip condition	Carry flag CY	Datailed description
-		In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the high-order 4 bits (AD7–AD4) of comparator register to register B, and the low-order 4 bits (AD3–AD0) of comparator register to register A. (Q13: bit 3 of A/D control register Q1)
-	-	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (A3, A2) of register A. "0" is stored to the least significant bit (A0) of register A.
_		In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. In the A/D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction. (Q13 = bit 3 of A/D control register Q1)
-	-	Transfers the contents of A/D control register Q1 to register A.
_	_	Transfers the contents of register A to A/D control register Q1.
-	-	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1		When $V22 = 0$: Clears (0) to the ADF flag and skips the next instruction when A/D conversion completion flag ADF is "1." When the ADF flag is "0," executes the next instruction. When $V22 = 1$: This instruction is equivalent to the NOP instruction. (V22: bit 2 of interrupt control register V2)
_	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	-	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction. Operations of all functions are stopped.
_	-	Makes the immediate after POF instruction valid by executing the EPOF instruction.
(P) = 1		Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0."
_	-	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
(WDF1) = 1	-	Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is "1." When the WDF1 flag is "0," executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
_	-	System reset occurs.
_	-	Clears (0) to the high-order bit reference enable flag UPTF.
_	_	Sets (1) to the high-order bit reference enable flag UPTF.
_	_	Validates the voltage drop detection circuit at RAM back-up (only for the H version).

RENESAS

INSTRUCTION CODE TABLE

						000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111		011000
D3-D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	010111 10–17	
0000	0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16	-	-	BML	BML	BL	BL	BM	в
0001	1	SRST	CLD	SZB 1	_	-	TAD	A 1	LA 1	TABP 1	TABP 17	-	-	BML	BML	BL	BL	BM	В
0010	2	POF	-	SZB 2	-	-	ТАХ	A 2	LA 2	TABP 2	TABP 18	-	-	BML	BML	BL	BL	BM	В
0011	3	SNZP	INY	SZB 3	-	-	TAZ	A 3	LA 3	TABP 3	TABP 19	-	_	BML	BML	BL	BL	BM	В
0100	4	DI	RD	SZD	-	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	-	-	BML	BML	BL	BL	BM	В
0101	5	EI	SD	SEAn	-	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	-	-	BML	BML	BL	BL	BM	В
0110	6	RC	_	SEAM	_	RTI	-	A 6	LA 6	TABP 6	TABP 22	-	-	BML	BML	BL	BL	BM	В
0111	7	SC	DEY	-	-	-	-	A 7	LA 7	TABP 7	TABP 23	-	-	BML	BML	BL	BL	BM	В
1000	8	-	AND	-	SNZ0	LZ 0	RUPT	A 8	LA 8	TABP 8	TABP 24	-	-	BML	BML	BL	BL	BM	В
1001	9	_	OR	TDA	_	LZ 1	SUPT	A 9	LA 9	TABP 9	TABP 25	-	-	BML	BML	BL	BL	BM	в
1010	А	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26	-	-	BML	BML	BL	BL	BM	В
1011	В	AMC	_	-	_	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	-	-	BML	BML	BL	BL	BM	в
1100	С	TYA	СМА	-	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	-	-	BML	BML	BL	BL	BM	в
1101	D	_	RAR	-	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	-	-	BML	BML	BL	BL	BM	в
1110	E	ТВА	ТАВ	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	-	-	BML	BML	BL	BL	BM	в
1111	F	_	TAY	SZC	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	-	-	BML	BML	BL	BL	BM	в

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the low-order 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	pppp
BMLA	10	0p00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

101	RUC		COL		ARLE	(00)	lunue	;u)										
/[D9–D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3–D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	_	OP0A	T1AB	_	TAW6	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	-	-	OP1A	T2AB	-	_	IAP1	TAB2	SNZT2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	TJ1A	TW5A	OP2A	_	TAJ1	TAMR	IAP2	-	_	T1HAB	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	-	TW6A	ОРЗА	_	_	TAI1	IAP3	-	_	SVDE*	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	-	-	TAQ1	_	-	-	-	T2HAB	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	-	TK2A	_	TPSAB	_	_	_	TABPS	_	T2R2L	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	-	TMRA	-	-	-	TAK0	-	-	-	_	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	-	TI1A	_	-	-	TAPU0	-	-	SNZAD	_	T1R1L	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	-	-	TFR0A	TSIAB	-	-	-	TABSI	SNZSI	-	TC1A	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	TRGA	_	TFR1A	TADAB	TALA	TAK1	Ι	TABAD	_	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	А	TL1A	-	TFR2A	_	TAL1	TAK2	-	-	-	-	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	-	TK0A	TFR3A	_	TAW1	-	-	_	_	CRCK	-	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	-	-	-	-	TAW2	-	-	-	-	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	-	-	TPU0A	_	_	_	-	-	-	-	-	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	-	TPU1A	_	-	TAPU1	-	-	-	SST	-	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	-	TPU2A	. –	TAW5	TAPU2	I	_	_	ADST	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

INSTRUCTION CODE TABLE (continued)

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the loworder 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	рррр
BMLA	10	0p00	рррр
SEA	00	0111	nnnn
SZD	00	0010	1011

• * can be used only in the H version.

Electrical characteristics

Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage	_	-0.3 to 6.5	V
VI	Input voltage P0, P1, P2, P3, D0-D5,	-	-0.3 to VDD+0.3	V
	RESET, XIN			
VI	Input voltage INT, CNTR0, CNTR1, SIN, SCK	_	-0.3 to VDD+0.3	V
VI	Input voltage AIN0–AIN5	_	-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, P3, D0-D5,	Output transistors in cut-off state	-0.3 to VDD+0.3	V
	RESET			
Vo	Output voltage CNTR0, CNTR1, SOUT, SCK	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage Xout	-	-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range	_	-20 to 85	°C
Tstg	Storage temperature range	_	-40 to 125	°C

Recommended operating conditions 1

(Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditions			Limits		 Unit
Symbol	Falameter	Conditions		Min.	Тур.	Max.	_
Vdd	Supply voltage	f(STCK) ≤ 6 MHz		4		5.5	V
	(with a ceramic resonator)	f(STCK) ≤ 4.4 MHz		2.7		5.5	
		f(STCK) ≤ 2.2 MHz		2.0		5.5	
		f(STCK) ≤ 1.1 MHz		1.8		5.5	
Vdd	Supply voltage (with RC oscillation)	f(STCK) ≤ 4.4 MHz		2.7		5.5	V
Vdd	Supply voltage (with an on-chip oscillator)			1.8		5.5	V
Vram	RAM back-up voltage	(at RAM back-up)		1.6		5.5	V
Vss	Supply voltage				0		V
Vih	"H" level input voltage	P0, P1, P2, P3, D0–D5	0.8Vdd		Vdd	V	
		XIN	0.7Vdd		Vdd	1	
		RESET		0.85Vdd		Vdd	1
		INT, CNTRO, CNTR1, SIN, SCH	(0.85VDD		Vdd	1
Vil	"L" level input voltage	P0, P1, P2, P3, D0–D5		0		0.2Vdd	V
	1 0	XIN		0		0.3Vdd	1
		RESET		0		0.3VDD	1
		INT, CNTR0, CNTR1, SIN, SCH	<	0		0.15VDD	1
IOH(peak)	"H" level peak output current	P0, P1, P2, P3, D0–D5	VDD = 5.0 V			-20	mA
		CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			-10	1
Iон(avg)	"H" level average output current	P0, P1, P2, P3, D0–D5	VDD = 5.0 V			-10	mA
(0)	(Note)	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			-5	1
loL(peak)	"L" level peak output current	P0, P1	VDD = 5.0 V			24	mA
		CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			12	1
		P2, P3, RESET	VDD = 5.0 V			10	1
			VDD = 3.0 V			4.0	1
		D0, D1, D4, D5	VDD = 5.0 V			40	1
			VDD = 3.0 V			30	1
		D2, D3	VDD = 5.0 V			24	1
			VDD = 3.0 V			12	1
loL(avg)	"L" level average output current	P0, P1	VDD = 5.0 V			12	mA
		CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			6.0	1
		P2, P3, RESET	VDD = 5.0 V			5.0	1
			VDD = 3.0 V			2.0	1
		D0, D1, D4, D5	VDD = 5.0 V			30	1
			VDD = 3.0 V			15	1
		D2, D3	VDD = 5.0 V			15	1
			VDD = 3.0 V			7.0	1
Σloн(avg)	"H" level total average current	P0, P1, P3, CNTR0, CNTR1, S				-40	mA
、 0/	5	P2, D0–D5				-40	1
ΣIOL(avg)	"L" level total average current	P0, P1, P3, CNTR0, CNTR1, S	Sout, Sck			60	mA
、 0/	5	P2, D0–D5, RESET				60	1

Notes 1: The average output current (IOH, IOL) is the average value during 100 ms.

Recommended operating conditions 2

(Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditio	ane		Limits		Unit
Cymbol		Conduit		Min.	Тур.	Max.	01111
f(XIN)	Oscillation frequency	Through mode	VDD = 4.0 V to 5.5 V			6	MHz
	(with a ceramic resonator)		VDD = 2.7 V to 5.5 V			4.4	
			VDD = 2.0 V to 5.5 V			2.2	
			VDD = 1.8 V to 5.5 V			1.1	
		Internal frequency divided	VDD = 2.7 V to 5.5 V			6	1
		by 2	VDD = 2.0 V to 5.5 V			4.4	1
			VDD = 1.8 V to 5.5 V			2.2	
		Internal frequency divided	VDD = 2.0 V to 5.5 V			6	
		by 4, 8	VDD = 1.8 V to 5.5 V			4.4	
f(XIN)	Oscillation frequency (with RC oscillation) (Note 1)	VDD = 2.7 V to 5.5 V				4.4	MHz
f(XIN)	Oscillation frequency	Through mode	VDD = 4.0 V to 5.5 V			4.8	MHz
· /	(with a ceramic oscillation selected,		VDD = 2.7 V to 5.5 V			3.2	1
	external clock input)		VDD = 2.0 V to 5.5 V			1.6	1
			VDD = 1.8 V to 5.5 V			0.8	
		Internal frequency divided	VDD = 2.7 V to 5.5 V			4.8	1
		by 2	VDD = 2.0 V to 5.5 V			3.2	1
			VDD = 1.8 V to 5.5 V			1.6	1
		Internal frequency divided	VDD = 2.0 V to 5.5 V			4.8	1
		by 4, 8	VDD = 1.8 V to 5.5 V			3.2	1
f(CNTR)	Timer external input frequency	CNTR0, CNTR1	1			f(STCK)/6	Hz
tw(CNTR)	Timer external input period	CNTR0, CNTR1		3/f(STCK)			S
	("H" and "L" pulse width)						
f(Scк)	Serial interface external input frequency	Scк				f(STCK)/6	Hz
tw(Scк)	Serial interface external input period	Scк		3/f(STCK)			s
	("H" and "L" pulse width)						
TPON	Power-on reset circuit valid supply voltage rising time (Note 2)	VDD = 0 → 1.8 V				100	μs

Notes 1: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits. 2: If the rising time exceeds the maximum rating value, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

System clock (STCK) operating condition map

Electrical characteristics 1 (Ta = -20 °C to 85 °C, V_{DD} = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	То	st conditions		Limits		Uni
Oymbol	i didificici	103	st conditions	Min.	Тур.	Max.	
Vон	"H" level output voltage	VDD = 5.0 V	Iон = -10 mA	3.0			V
	P0, P1, P2, P3, D0–D5		Iон = -3.0 mA	4.1			
	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V	Iон = -5.0 mA	2.1]
			Iон = -1.0 mA	2.4			
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 12 mA			2.0	V
	P0, P1		IOL = 4.0 mA			0.9	
	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V	IOL = 6.0 mA			0.9	1
			IOL = 2.0 mA			0.6	1
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 5.0 mA			2.0	V
	P2, P3, RESET		IOL = 1.0 mA			0.6	1
		VDD = 3.0 V	IOL = 2.0 mA			0.9	
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 30 mA			2.0	V
	D0, D1, D4, D5		IOL = 10 mA			0.9	
		VDD = 3.0 V	IOL = 15 mA			2.0	-
			IOL = 5.0 mA			0.9	1
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 15 mA			2.0	V
1	D2, D3		IOL = 5.0 mA			0.9	1
		VDD = 3.0 V	IOL = 9.0 mA			1.4	-
			IOL = 3.0 mA			0.9	-
IIH '	"H" level input current	VI = VDD				2.0	μA
	P0, P1, P2, P3, D0–D5						
	RESET, INT						
	CNTR0, CNTR1, SIN, SCK						
lil	"L" level input current	VI = 0 V P0, P1, P2	D2. D3 No pull-up			-2.0	μA
	P0, P1, P2, P3, D0–D5		,, _ • · · • F ··· • F				, ···
	RESET, INT						
	CNTR0, CNTR1, SIN, SCK						
Rpu	Pull-up resistor value	VI = 0 V	VDD = 5.0 V	30	60	125	kΩ
	P0, P1, P2, D2, D3, RESET		VDD = 3.0 V	50	120	250	-
VT+ – VT–		VDD = 5.0 V			1.0		V
		VDD = 3.0 V			0.4		-
Vt+ – Vt_	Hysteresis INT, CNTR0, CNTR1	VDD = 5.0 V			0.2		V
••••	SIN, SCK	VDD = 3.0 V			0.2		-
(RING)	On-chip oscillator clock frequency	VDD = 5.0 V		200	500	700	kH
(ININO)		VDD = 3.0 V	100	250	400	kHz	
		VDD = 3.0 V VDD = 1.8 V	30	120	200		
∆ f(Xin)	Oscillation frequency error (Note 1)	VDD = 1.0 V VDD = 5.0 V ± 10 %	Ta = center 25 °C		120	±17	%
	(at RC oscillation, error value of external R, C not included)	$VDD = 3.0 V \pm 10 \%$				±17 ±17	

Notes 1: When the RC oscillation is used, use a 33 pF capacitor externally.

Symbol		Parameter	Testes			Limits		Unit
Symbol		Falamelei	lest co	onditions	Min.	Тур.	Max.	Uni
ldd	Supply current	at active mode	VDD = 5.0 V	f(STCK) = f(XIN)/8		1.2	2.4	mA
		(with a ceramic resonator)	f(XIN) = 6.0 MHz	f(STCK) = f(XIN)/4		1.3	2.6	
		(Notes 1, 2)	f(RING) = stop	f(STCK) = f(XIN)/2		1.6	3.2	
				f(STCK) = f(XIN)		2.2	4.4	
			VDD = 5.0 V	f(STCK) = f(XIN)/8		0.9	1.8	mA
			f(XIN) = 4.0 MHz	f(STCK) = f(XIN)/4		1	2	
			f(RING) = stop	f(STCK) = f(XIN)/2		1.2	2.4	1
				f(STCK) = f(XIN)		1.6	3.2	
			VDD = 3.0 V	f(STCK) = f(XIN)/8		0.2	0.4	mA
			f(XIN) = 2.0 MHz	f(STCK) = f(XIN)/4		0.25	0.5	1
			f(RING) = stop	f(STCK) = f(XIN)/2		0.3	0.6	
				f(STCK) = f(XIN)		0.4	0.8]
		at active mode	VDD = 5.0 V	f(STCK) = f(RING)/8		50	100	μA
		(with an on-chip oscillator)	f(XIN) = stop	f(STCK) = f(RING)/4		60	120	
		(Notes 1, 2)	f(RING) = operating	f(STCK) = f(RING)/2		80	160	1
				f(STCK) = f(RING)		120	240	
			VDD = 3.0 V	f(STCK) = f(RING)/8		10	20	μA
			f(XIN) = stop	f(STCK) = f(RING)/4		13	26	
			f(RING) = opertaing	f(STCK) = f(RING)/2		19	38	
				f(STCK) = f(RING)		31	62	
		at RAM back-up mode	Ta = 25 °C			0.1	3	μA
		(POF instruction execution)	Vdd = 5.0 V				10	1
		(Note 3)	VDD = 3.0 V				6	1

Electrical characteristics 2 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Notes 1: When the A/D converter is used, the A/D operation current (IADD) is added.

When the AD converter is used, the AD operation current (IAD) is added.
 In the M34509G4H, the voltage drop detection circuit operation current (IRST) is added.
 In the M34509G4H, when the SVDE instruction is executed, the voltage drop detection circuit operation current (IRST) is added.

A/D converter recommended operating conditions

(Comparator mode included,	Ta = -20 °C to 85 °C	unless otherwise noted)
(Comparator mode moladed)	10 - 20 0 000 0	, and so otherwise noted)

Symbol	Parameter	Conditions			- Unit	
Symbol	i arameter	Conditions	Min.	Тур.	Max.	Onit
Vdd	Supply voltage	Ta = 0 °C to 50 °C	2.0		5.5	V
		$Ta = -20 \degree C$ to 85 $\degree C$	2.7		5.5	
VIA	Analog input voltage		0		Vdd	V
f(ADCK)	A/D clock frequency (Note)	VDD = 4.0 V to 5.5 V	0.8		334	kHz
		VDD = 2.7 V to 5.5 V	0.8		123	
		VDD = 2.2 V to 5.5 V	0.8		61.2	
		VDD = 2.0 V to 5.5 V	0.8		15.3	

Note: Definition of A/D conversion clock (ADCK)

A/D clock (ADCK) operating condition map

A/D converter characteristcs

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		- Unit
Symbol	Falameter		Min.	Тур.	Max.	Uni
-	Resolution				10	bits
-	Linearity error	Ta = 0 °C to 50 °C, 2.2 V ≤ VDD < 2.7 V			±4.0	LSE
		Ta = $-20 \text{ °C to } 85 \text{ °C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			±2.0]
-	Differential non-linearity error	Ta = 0 °C to 50 °C, 2.2 V ≤ VDD < 2.7 V			±0.9	LSE
		Ta = $-20 \text{ °C to } 85 \text{ °C}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			±0.9	1
Vот	Zero transition voltage	VDD = 2.56 V	0	7.5	15	mV
		VDD = 3.075 V	0	7.5	15	1
		VDD = 5.12 V	0	10	20	1
VFST	Full-scale transition voltage	VDD = 2.56 V	2552.5	2560	2567.5	mV
		VDD = 3.075 V	3064.5	3072	3079.5	1
		VDD = 5.12 V	5100	5110	5120	
-	Absolute accuracy	Ta = 0 °C to 50 °C, 2.0 V ≤ VDD < 2.2 V			±8.0	LSB
	(Quantization error excluded)					
IAdd	A/D operating current (Note 1)	VDD = 5.0 V		300	900	μΑ
		VDD = 3.0 V		100	300	
TCONV	A/D conversion time	f(ADCK) = 334 kHz			31	μs
		f(ADCK) = 123 kHz			85	1
		f(ADCK) = 61.2 kHz			169	1
		f(ADCK) = 15.3 kHz			676	1
-	Comparator resolution				8	bits
-	Comparator error (Note 2)	VDD = 2.56 V			± 15	mV
		VDD = 3.072 V			± 15	
		VDD = 5.12 V			± 20	
-	Comparator comparison time	f(ADCK) = 334 kHz			4	μs
		f(ADCK) = 123 kHz			11	
		f(ADCK) = 61.2 kHz			22	
		f(ADCK) = 15.3 kHz			88]

Notes 1: When the A/D converter is used, the IADD is added to IDD.

2: As for the error from the logic value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage V_{ref} which is generated by the built-in DA converter can be obtained by the following formula.

Logic value of comparison voltage Vref -

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits				
Symbol	Falameter		Min.	Тур.	Max.	- Unit		
Vrst-	Detection voltage	Ta = 25 °C		2.6		V		
	(reset occurs) (Note 2)	-20 °C ≤ Ta < 0 °C	2.5		3.1			
		0 °C ≤ Ta < 50 °C	2.2		3	1		
VRST ⁺ D		50 °C ≤ Ta ≤ 85 °C	2		2.7	-		
Vrst+	Detection voltage	Ta = 25 °C		2.7		V		
	(reset release) (Note 3)	-20 °C ≤ Ta < 0 °C	2.6		3.2	_		
		0 °C ≤ Ta < 50 °C	2.3		3.1			
		50 °C ≤ Ta ≤ 85 °C	2.1		2.8			
Vrst+-	Detection voltage hysteresis			0.1		V		
Vrst-								
IRST	Operation current (Note 4)	VDD = 5 V		50	100	μA		
		VDD = 3 V		30	60	1		
Trst	Detection time (Note 5)	$VDD \rightarrow (VRST^ 0.1 V)$		0.2	1.2	ms		

Notes 1: The voltage drop detection circuit is equipped with only the M34509G4H.

2: The detection voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

3: The detection voltage (VRST⁺) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.

4: In the M34509G4H, IRST is added to IDD (supply current).

5: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to $[VRST^{-} - 0.1 V]$.

Basic timing diagram

Parameter	Machine cycle Pin name	Mi		Mi+1	
System clock	STCK				
Port output	D0–D5 P00–P03 P10–P13 P20, P21 P30, P31				×
Port input	D0–D5 P00–P03 P10–P13 P20, P21 P30, P31		×		×
Interrupt input	INT		X		×

Package outline

REVISION HISTORY

4509 Group Data Sheet

Rev.	Date		Description		
		Page	Summary		
1.00	Mar. 18, 2005	_	First edition issued		
1.01	Aug. 12, 2005	17	ROM Code Protect Address added.		
	-	52	Table 20: Some description about Port P1 added.		
		57	Fig.52 revised.		
		58	Fig.54 revised.		
			"DATA REQUIRED FOR QZROM WRITING ORDERS" added.		
		62	Notes On ROM Code Protect added.		
		130	A/D converter characteristics:		
			Linearity error, Differential non-linearity error and Absolute accuracy		
			→ Parameters and Test conditions revised.		
		131	Voltage drop detection circuit characteristics: VRST ⁻ , VRST ⁺ \rightarrow Test conditions revised.		
1.02	Dec. 22, 2006	5	MULFUNCTION: Note 4 revised.		
		26	TIMER: Description revised and Structure of Timer 2 in Table 9 revised.		
		28	Fig.23: INSTCK (wrong) \rightarrow INTSNC (correct)		
		30	(2) Prescaler: $\underline{PRS} \rightarrow \underline{RPS}$		
			(3) Timer $\underline{3} \rightarrow \text{Timer } \underline{1}$		
		43	SERIAL I/O: Table 14: Note revised.		
		53	Fig. 46: Notes revised.		
		58	Table 23: Changes referring ahead and note 5 added.		
		59 to 61	QzROM Writing Mode added.		
		63	LIST OF PRECAUTIONS: Mulfunction revised.		
		67 to 70	NOTES ON NOISE added.		
		76	Description of Port output structure control register FR2 and FR3 revised.		
		102	Instruction code of TAL1 revised. Description of TALA revised.		
		117	Detailed description of TEAB revised.		
		134	f(SCK): Serial interface external input <u>frequency</u> \rightarrow		
			Serial interface external input period		
		135	Δ f(XIN): Ta = <u>around</u> 25 °C \rightarrow <u>center</u> 25 °C		
		137	Figure title revised, "When ceramic resonator is used" deleted.		
		139	Note 4: (power current) \rightarrow (supply current)		
		\rightarrow	Pages 79–81, 93–95, 114, 122–129:		
			Description of SNZ0, SNZT1, SNZT2, SNZAD, SNZSI and WRST instructions revised.		
1.03	Jul. 27, 2009	50	Fig 45: Note revised.		
		134	f(SCK): Serial interface external input period \rightarrow		
			Serial interface external input frequency		
		136	Note 1:, the A/D operation current (IADD) is <u>included</u> . \rightarrow		
			, the A/D operation current (IADD) is added.		

Rev.	Date	Description		
		Page	Summary	
		138	Linearity error: Ta = 0 °C to 50 °C, 2.2 V \leq VDD <u>0 °C</u> 2.7 V \rightarrow Ta = 0 °C to 50 °C, 2.2 V \leq VDD $<$ 2.7 V Note 1:, the IADD is <u>included</u> to IDD. \rightarrow , the IADD is <u>added</u> to IDD.	

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
 The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Al Information included in this document, but as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document, and their document.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a function of the laws of the set of the

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com