
## Description

The ICS514 LOCO™ is the most cost effective way to generate a high-quality, high-frequency clock output from a 14.31818 MHz crystal or clock input. The name LOCO stands for Low Cost Oscillator, as it is designed to replace crystal oscillators in most electronic systems. Using Phase-Locked Loop (PLL) techniques, the device uses a standard, inexpensive crystal to produce output clocks up to 66.66 MHz.

Stored in the chip's ROM is the ability to generate five different output frequencies, allowing one chip to work in different speed processor systems.

The device also has a power-down mode that turns off the clock outputs when both select pins are low. In this mode, the internal PLL is not running.

## Block Diagram



## Features

- Packaged as 8-pin SOIC or die
- Pb (lead) free package
- IDT's lowest cost PLL clock plus reference
- Produces common computer frequencies
- Input crystal frequency typically 14.3182 MHz
- Output clock frequencies up to 66.66 MHz from a 14.3182 MHz crystal or input clock
- Low jitter of 50 ps (one sigma)
- Compatible with all popular CPUs
- Duty cycle of 45/55
- Custom frequencies available
- Operating voltage of 3.3 V to 5.5 V
- Power-down mode turns off chip
- 25 mA drive capability at TTL levels
- Advanced, low-power CMOS process

## Pin Assignment



## Clock Decoding Table (MHz) with 14.31818 MHz Crystal or Clock Input

| S1 | S0 | CLK            | Multiplier | Accuracy |
|----|----|----------------|------------|----------|
| 0  | 0  | Power-down CLK | —          | —        |
| 0  | 1  | 25             | 1.746      | 1 ppm    |
| M  | 0  | 33.33          | 2.328      | 0.008%   |
| M  | 1  | 40             | 2.794      | 1 ppm    |
| 1  | 0  | 50             | 3.492      | 1 ppm    |
| 1  | 1  | 66.66          | 4.656      | 0.008%   |

0 = connect directly to ground

1 = connect directly to VDD

M = leave unconnected (floating)

CLK and REF stop low in power-down state

## Pin Descriptions

| Pin Number | Pin Name | Pin Type        | Pin Description                                                                  |
|------------|----------|-----------------|----------------------------------------------------------------------------------|
| 1          | XI/ICLK  | Input           | Crystal connection to a 14.31818 MHz crystal or clock input.                     |
| 2          | VDD      | Power           | Connect to +3.3 V or +5 V.                                                       |
| 3          | GND      | Power           | Connect to ground.                                                               |
| 4          | REF      | Output          | Reference 14.31818 MHz crystal oscillator buffered clock output.                 |
| 5          | CLK      | Output          | Clock output per table above.                                                    |
| 6          | S0       | Tri-level Input | Select 0 for output clock. Connect to GND or VDD or float. See table above.      |
| 7          | S1       | Tri-level Input | Select 1 for output clock. Connect to GND or VDD or float. See table above.      |
| 8          | X2       | Output          | Crystal connection to a 14.31818 MHz crystal. Leave unconnected for clock input. |

### Notes:

- With S1 = S0 = 0, the internal PLL is turned off and the CLK outputs stops low. The crystal oscillator and REF output are still active.
- With a clock input, the phase relationship between the input and the output clocks can change each time the device is powered on. If a fixed phase relationship is required, use the ICS571 or other zero delay multipliers.

## External Components

### Decoupling Capacitor

As with any high-performance mixed-signal IC, the ICS514 must be isolated from system power supply noise to perform optimally.

A decoupling capacitor of  $0.01\mu\text{F}$  must be connected between VDD and the GND. It must be connected close to the ICS514 to minimize lead inductance. No external power supply filtering is required for the ICS514.

### Series Termination Resistor

A  $33\Omega$  terminating resistor can be used next to the CLK and REF pins for trace lengths over one inch.

### Crystal Load Capacitors

The total on-chip capacitance is approximately  $12\text{ pF}$ . A parallel resonant, fundamental mode crystal should be used. The device crystal connections should include pads for small capacitors from X1 to ground and from

X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal capacitors, if needed, must be connected from each of the pins X1 and X2 to ground.

The value (in pF) of these crystal caps should equal  $(C_L - 12\text{ pF})/2$ . In this equation,  $C_L$  = crystal load capacitance in pF. Example: For a crystal with a  $16\text{ pF}$  load capacitance, each crystal capacitor would be  $8\text{ pF}$   $[(16-12)/2 = 8]$ .

## Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS514. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

| Item                                       | Rating                      |
|--------------------------------------------|-----------------------------|
| Supply Voltage, VDD                        | 7 V                         |
| All Inputs and Outputs (referenced to GND) | -0.5 V to VDD+0.5 V         |
| Ambient Operating Temperature              | 0 to $+70^\circ\text{C}$    |
| Storage Temperature                        | -65 to $+150^\circ\text{C}$ |
| Soldering Temperature                      | $260^\circ\text{C}$         |

## Recommended Operation Conditions

| Parameter                                         | Min. | Typ. | Max. | Units |
|---------------------------------------------------|------|------|------|-------|
| Ambient Operating Temperature                     | 0    |      | +70  | °C    |
| Power Supply Voltage (measured in respect to GND) | +3.0 |      | +5.5 | V     |

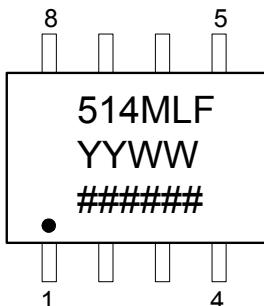
## DC Electrical Characteristics

VDD=5.0 V ±5% , Ambient temperature 0 to +70° C, unless stated otherwise

| Parameter                            | Symbol          | Conditions               | Min.      | Typ.  | Max.      | Units |
|--------------------------------------|-----------------|--------------------------|-----------|-------|-----------|-------|
| Operating Voltage                    | VDD             |                          | 3.0       |       | 5.5       | V     |
| Input High Voltage, ICLK only        | V <sub>IH</sub> | ICLK (pin 1)             | (VDD/2)+1 | VDD/2 |           | V     |
| Input Low Voltage, ICLK only         | V <sub>IL</sub> | ICLK (pin 1)             |           | VDD/2 | (VDD/2)-1 | V     |
| Input High Voltage                   | V <sub>IH</sub> | S0                       | 2.0       |       |           | V     |
| Input Low Voltage                    | V <sub>IL</sub> | S0                       |           |       | 0.8       | V     |
| Input High Voltage                   | V <sub>IH</sub> | S1                       | VDD-0.5   |       |           | V     |
| Input Mid Voltage                    | V <sub>IM</sub> | S1                       |           | VDD/2 |           | V     |
| Input Low Voltage                    | V <sub>IL</sub> | S1                       |           |       | 0.5       | V     |
| Output High Voltage                  | V <sub>OH</sub> | I <sub>OH</sub> = -25 mA | 2.4       |       |           | V     |
| Output Low Voltage                   | V <sub>OL</sub> | I <sub>OL</sub> = 25 mA  |           |       | 0.4       | V     |
| IDD Operating Supply Current         |                 | No load, 66.66 MHz       |           | 20    |           | mA    |
| IDD Power-down Supply Current, 3.3 V |                 | S1=S0=0                  |           | 1.5   |           | mA    |
| Short Circuit Current                |                 | CLK output               |           | ±70   |           | mA    |
| On-Chip Pull-up Resistor             |                 | Pin 6                    |           | 270   |           | kΩ    |
| Input Capacitance, S1, S0            |                 | Pins 6, 7                |           | 4     |           | pF    |

## AC Electrical Characteristics

VDD = 5.0 V ±5%, Ambient Temperature 0 to +70° C, unless stated otherwise

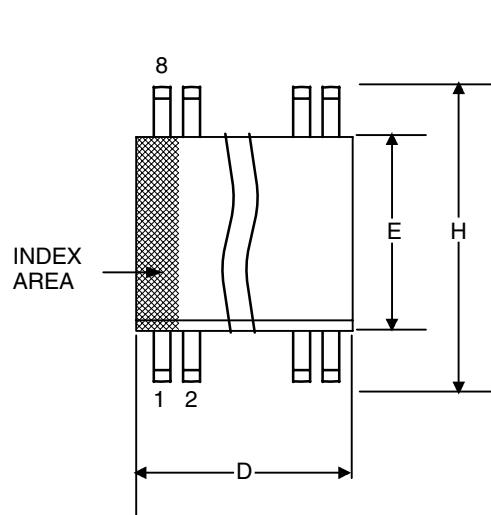

| Parameter                            | Symbol           | Conditions           | Min. | Typ.     | Max. | Units |
|--------------------------------------|------------------|----------------------|------|----------|------|-------|
| Input Frequency, crystal input       | F <sub>IN</sub>  |                      | 5    | 14.31818 | 27   | MHz   |
| Input Frequency, clock input         | F <sub>IN</sub>  |                      | 2    | 14.31818 | 50   | MHz   |
| Output Frequency, VDD = 4.5 to 5.5 V | F <sub>OUT</sub> |                      | 14   | 66.66    | 140  | MHz   |
| Output Frequency, VDD = 3.0 to 3.6 V | F <sub>OUT</sub> |                      | 14   | 66.66    | 100  | MHz   |
| Output Clock Rise Time               | t <sub>OR</sub>  | 0.8 to 2.0 V         |      | 1        |      | ns    |
| Output Clock Fall Time               | t <sub>OF</sub>  | 2.0 to 8.0 V         |      | 1        |      | ns    |
| Output Clock Duty Cycle              | t <sub>OD</sub>  | 1.5 V, up to 140 MHz | 45   | 49-51    | 55   | %     |

| Parameter                                 | Symbol   | Conditions          | Min. | Typ.      | Max. | Units |
|-------------------------------------------|----------|---------------------|------|-----------|------|-------|
| Power-up time, from PD to outputs stable  |          |                     |      | 5         | 10   | ms    |
| Power-down time, from running to PD state |          |                     |      |           | 50   | ns    |
| Absolute Clock Period Jitter              | $t_{ja}$ | Deviation from mean |      | $\pm 160$ |      | ps    |
| One Sigma Clock Period Jitter             | $t_{js}$ |                     |      | 50        |      | ps    |

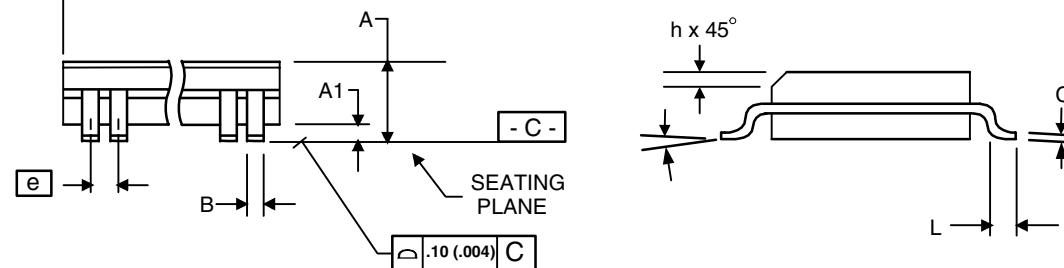
## Thermal Characteristics

| Parameter                              | Symbol        | Conditions     | Min. | Typ. | Max. | Units |
|----------------------------------------|---------------|----------------|------|------|------|-------|
| Thermal Resistance Junction to Ambient | $\theta_{JA}$ | Still air      |      | 150  |      | °C/W  |
|                                        | $\theta_{JA}$ | 1 m/s air flow |      | 140  |      | °C/W  |
|                                        | $\theta_{JA}$ | 3 m/s air flow |      | 120  |      | °C/W  |
| Thermal Resistance Junction to Case    | $\theta_{JC}$ |                |      | 40   |      | °C/W  |

## Marking Diagram




### Notes:


1. ##### is the lot code.
2. YYWW is the last two digits of the year and the week.
3. "LF" designates Pb (lead) free package.

## Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95



| Symbol   | Millimeters |      | Inches      |       |
|----------|-------------|------|-------------|-------|
|          | Min         | Max  | Min         | Max   |
| A        | 1.35        | 1.75 | .0532       | .0688 |
| A1       | 0.10        | 0.25 | .0040       | .0098 |
| B        | 0.33        | 0.51 | .013        | .020  |
| C        | 0.19        | 0.25 | .0075       | .0098 |
| D        | 4.80        | 5.00 | .1890       | .1968 |
| E        | 3.80        | 4.00 | .1497       | .1574 |
| e        | 1.27 BASIC  |      | 0.050 BASIC |       |
| H        | 5.80        | 6.20 | .2284       | .2440 |
| h        | 0.25        | 0.50 | .010        | .020  |
| L        | 0.40        | 1.27 | .016        | .050  |
| $\alpha$ | 0°          | 8°   | 0°          | 8°    |



## Ordering Information

| Part / Order Number | Marking | Shipping Packaging | Package    | Temperature |
|---------------------|---------|--------------------|------------|-------------|
| 514MLF              | 514MLF  | Tubes              | 8-pin SOIC | 0 to +70° C |
| 514MLFT             | 514MLF  | Tape and Reel      | 8-pin SOIC | 0 to +70° C |

"LF" denotes Pb (lead) free package.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

ICS514

LOCO™ PLL CLOCK GENERATOR

CLOCK MULTIPLIER

## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit [www.renesas.com/contact-us/](http://www.renesas.com/contact-us/).