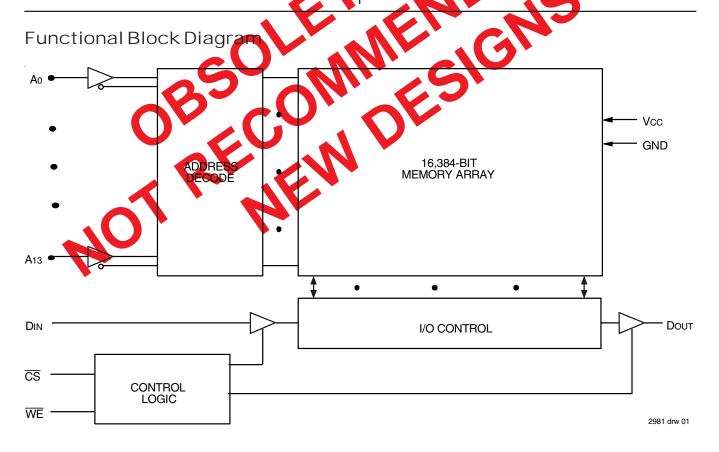


CMOS Static RAM 16K (16K x 1-Bit)

Features

- High-speed (equal access and cycle time)
 Military: 25/35/45/55/70/85/100ns (max.)
 - Commercial: 15/20/25ns (max.)
- Low power consumption
- Battery backup operation 2V data retention voltage (IDT6167LA only)
- Available in 20-pin CERDIP and Plastic DIP, and 20-pin SOJ
- Produced with advanced CMOS high-performance technology
- CMOS process virtually eliminates alpha particle soft-error rates
- Separate data input and output
- Military product compliant to MIL-STD-883, Class B

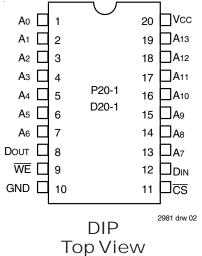
Description


The IDT6167 is a 16,384-bit high-speed static RAM organized as 16K x 1. The part is fabricated using IDT's high-performance, high reliability CMOS technology.

Access times as fast as 15ns are available. The circuit also offers a reduced power standby mode. When \overline{CS} goes HIGH, the circuit will automatically go to, and remain in, a standby mode as long as \overline{CS} remains HIGH. This capability provides significant system-level power and cooling savings. The low-power (LA) version also offers a battery backup data retention capability where the circuit typically consumes only 1µW operating off a 2V battery.

All inputs and the output of the IDT6167 are TTL-compatible and operate from a single 51 supply, thus simplifying system designs.

The IDT6167 is packaged in a space-saving 20-pin/300 mil Plastic DIP or CERDIP and a Plastic 20-pin providing high board-level packing densities.


Military grade product is manufactured in compliance with the latest revision of MIL-STD #83, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

FEBRUARY 2001

CMOS Static RAM 16K (16K x 1-Bit)

Pin Configurations

P

Name	Description
A0 - A13	Address Inputs
CS	Chip Select
WE	Write Enable
Vcc	Power
Din	DATAN
Dout	DATAout
GND	Ground
	2981 tbl 01

Truth Table⁽¹⁾

Mode	CS WE Output		Output	Power		
Standby	Н	X High-Z Standby		Standby		
Read	L	Н	DATAOUT	Active		
Write	L	L	High-Z	Active		
2981 tbl						

NOTE:

1. H = VIH, L = VIL, X = Don't Care.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	GND	Vcc
Military	-55°C to +125°C	0V	$5V \pm 10\%$
Commercial	0°C to +70°C	0V	5V ± 10%

2981 tbl 06

Military and Commercial Temperature Ranges

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
Та	Operating 0 to +70 Temperature		-55 to +125	٥C
Tbias	Temperature Under Bias	-55 to +125	-65 to +135	٥C
Tstg	Storage Temperature	-55 to +125	-65 to +150	٥C
Рт	Power Dissipation	1.0	1.0	W
Ιουτ	DC Output Current	50	50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance ($T_A = +25^{\circ}C, f = 1.0MHz$)

Symbol	Parameter ⁽¹⁾	Parameter ⁽¹⁾ Conditions		Unit
Cin	Input Capacitance	VIN = OV	7	pF
Соит	Output Capacitance	Vout = 0V	7	pF
				2981 tbl 04

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Мах.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	۷
GND	Ground	0	0	0	۷
Vih	Input High Voltage	2.2	_	6.0	۷
Vil	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	۷

NOTE:

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

Pin Description	IS
Name	
A0 - A13	A
100	

2981 tbl 05

2981 tbl 03

DC Electrical Characteristics⁽¹⁾

 $(VCC = 5.0V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

			6167SA/LA15	6167SA/LA20	6167SA	VLA25	
Symbol	Parameter	Power	Com'l.	Com'l.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	SA	90	90	90	90	mA
	$\overline{CS} \leq VIL$, Outputs Open Vcc = Max., f = 0 ⁽³⁾	LA	55	55	55	60	
ICC2			120	100	100	100	mA
	CS <u><</u> VIL, Óutputs Open Vcc = Max., f = f⋈ax ⁽³⁾	LA	100	80	70	75	
ISB	Standby Power Supply Current (TTL Level) $\overline{CS} \ge V_{H}$, Outputs Open	SA	50	35	35	35	mA
	$V_{CC} = Max., f = f_{MAX}^{(3)}$	LA	35	30	25	25	
ISB1	Full Standby Power Supply Current (CMOS Level) $\overline{CS} \ge VHC$, Vcc = Max.,	SA	5	5	5	10	mA
	$VN \ge VHC$, $VCC = MIAX.$, $VN \ge VHC$ or $VIN \le VLC$, $f = 0^{(3)}$	LA	0.9	0.05	0.05	0.9	

2981 tbl 07

DC Electrical Characteristics⁽¹⁾ (con't.) ($Vcc = 5.0V \pm 10\%$, VLc = 0.2V, VHc = Vcc - 0.2V)

			6167SA/LA35 ⁽²⁾	6167SA/LA45 ⁽²⁾	6167SA/LA55 ⁽²⁾	6167SA/LA70 ⁽²⁾	
Symbol	Parameter	Power	Mil.	Mil.	Mil.	Mil.	Unit
ICC1	Operating Power Supply Current	SA	90	90	90	90	mA
	$\overline{CS} \leq VIL, Outputs OpenVcc = Max., f = 0(3)$	LA	60	60	60	60	
ICC2	Dynamic Operating Current CS < Vi∟, Outputs Open	SA	100	100	100	100	mA
	Vcc = Max., $f = f_{Max}^{(3)}$	LA	70	65	60	60	
ISB	Standby Power Supply Current (TTL Level)	SA	35	35	35	35	mA
	CS <u>></u> V⊮, Outputs Open Vcc = Max., f = fмax ⁽³⁾	LA	20	20	20	15	
ISB1	Full Standby Power Supply Current (CMOS Level)	SA	10	10	10	10	mA
	$\label{eq:cs_star} \begin{split} \overline{CS} &\geq V \dot{\text{Hc}}, \ V \text{cc} = Max., \\ V \text{IN} &\geq V \text{Hc} \ \text{or} \ V \text{IN} \leq V \text{Lc}, \ f = 0^{(3)} \end{split}$	LA	0.9	0.9	0.9	0.9	

2981 tbl 08

NOTES:

1. All values are maximum guaranteed values.

2. -55°C to +125°C temperature range only. Also available; 85ns and 100ns Military devices.

3. $f_{MAX} = 1/t_{RC}$, only address inputs cycling at f_MAX. f = 0 means no address inputs change.

DC Electrical Characteristics

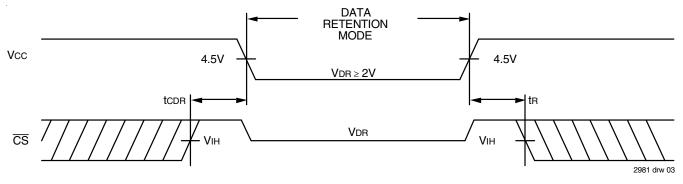
 $(VCC = 5.0V \pm 10\%)$

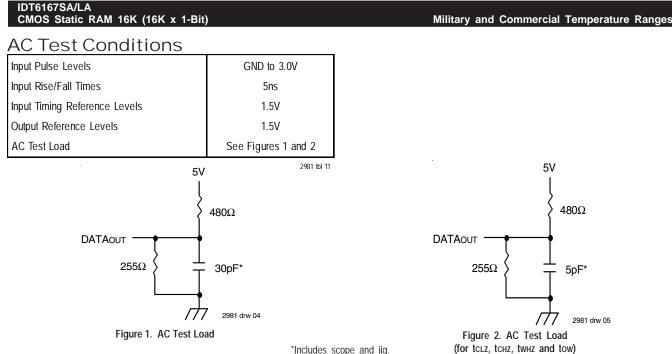
				IDT6167SA		IDT61		
Symbol	Parameter	Test Conditions		Min.	Max.	Min.	Max.	Unit
lu	Input Leakage Current	Vcc = Max., Viℕ = GND to Vcc	MIL. COM'L.		10 5		5 2	μA
Ilo	Output Leakage Current	$Vcc = Max., \overline{CS} = V_{H},$ Vout = GND to Vcc	MIL. COM'L.		10 5		5 2	μA
Vol	Output Low Voltage	Iol = 8mA, Vcc = Min.			0.4	_	0.4	V
Vон	Output High Voltage	Iон = -4mA, Vcc = Min.		2.4		2.4		V

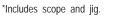
2981 tbl 09

Data Retention Characteristics Over All Temperature Ranges (LA Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)

					Tyj Vaa	p. ⁽¹⁾ ; @		ax. ; @	
Symbol	Parameter	Test Cond	Test Condition		2.0V	3.0V	2.0V	3.0V	Unit
Vdr	Vcc for Data Retention	—	_		—	_	_	_	V
ICCDR	Data Retention Current		MIL. Com'l.		0.5 0.5	1.0 1.0	200 20	300 30	μA
tCDR	Chip Deselect to Data Retention Time	<u>СЅ ></u> Vнс Vі∧ <u>></u> Vнс or <u><</u> V	Vlc	0			_		ns
tR ⁽³⁾	Operation Recovery Time	1		trc ⁽²⁾					ns
11L11 ⁽³⁾	Input Leakage Current	1		_	—		2	2	μA
	2981								


NOTES:

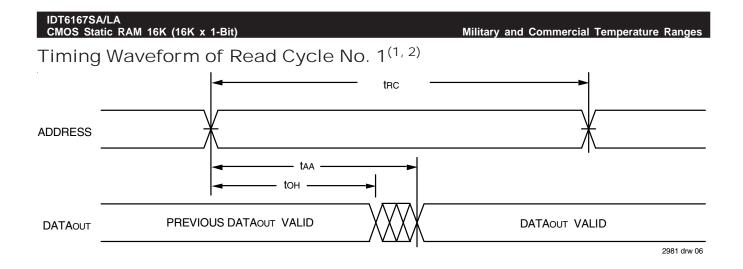

1. $TA = +25^{\circ}C.$


2. tRC = Read Cycle Time.

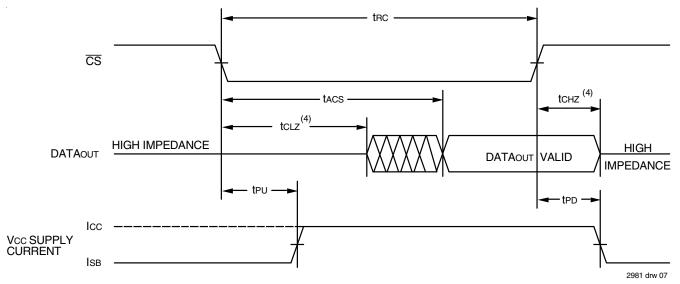
3. This parameter is guaranteed by device characterization, but is not production tested.

Low Vcc Data Retention Waveform

AC Electrical Characteristics (Vcc = 5.0V ± 10%, All Temperature Ranges)


		61675	5A15 ⁽³⁾		20 ⁽³⁾ /25 20 ⁽³⁾ /25		35 ⁽¹⁾ /45 ⁽¹⁾ 35 ⁽¹⁾ /45 ⁽¹⁾		55 ⁽¹⁾ /70 ⁽¹⁾ 55 ⁽¹⁾ /70 ⁽¹⁾	1 10014
Symbol	Parameter	Min. Max.		Min.	Мах.	Min.	Max.	Min.	Max.	Unit
Read Cy	<i>r</i> cle									
trc	Read Cycle Time	15		20/25		35/45		55/70	_	ns
taa	Address Access Time	-	15	_	20/25	-	35/45		55/70	ns
tacs	Chip Select Access Time	_	15		20/25		35/45	_	55/70	ns
tcLz ⁽²⁾	Chip Deselect to Output in Low-Z	3	_	5/5		5/5		5/5		ns
tcHz ⁽²⁾	Chip Select to Output in High-Z	—	10		10/10	_	15/30		40/40	ns
toн	Output Hold from Address Change	3		5/5	-	5/5		5/5		ns
tpu ⁽²⁾	Chip Select to Power-Up Time	0		0/0		0/0		0/0	_	ns
tpd ⁽²⁾	Chip Deselect to Power-Down Time	—	15		20/25	-	35/45		55/70	ns
Write Cy	/cle			•						
twc	Write Cycle Time	15	—	20/20		30/45		55/70	_	ns
tcw	Chip Select to End-of-Write	15		15/20	_	30/40		45/55		ns
taw	Address Valid to End-of-Write	15		15/20	_	30/40		45/55		ns
tas	Address Set-up Time	0	_	0/0	-	0/0	_	0/0	-	ns
twp	Write Pulse Width	13		15/20		30/30		35/40		ns
twr	Write Recovery Time	0	_	0/0	_	0/0	_	0/0	-	ns
tow	Data Valid to End-of-Write	10	—	12/15		17/20		25/30		ns
tdн	Data Hold Time	0	_	0/0	-	0/0		0/0		ns
twnz ⁽²⁾	Write Enable to Output in High-Z	—	7		8/8		15/30		40/40	ns
tow ⁽²⁾	Output Active from End-of-Write	0		0/0		0/0		0/0	_	ns
INTES.							I	1		2981 t

NOTES:


1. -55°C to +125°C temperature range only. Also available: 85ns and 100ns Military devices.

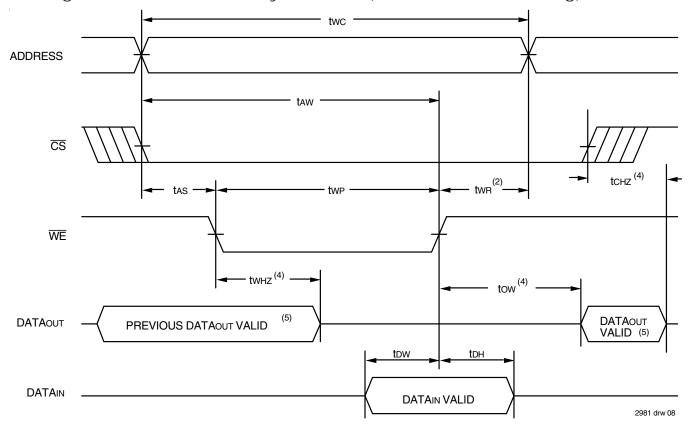
2. This parameter is guaranteed with AC Load (Figure 2) by device characterization, but is not production tested.

3. 0°C to +70°C temperature range only.

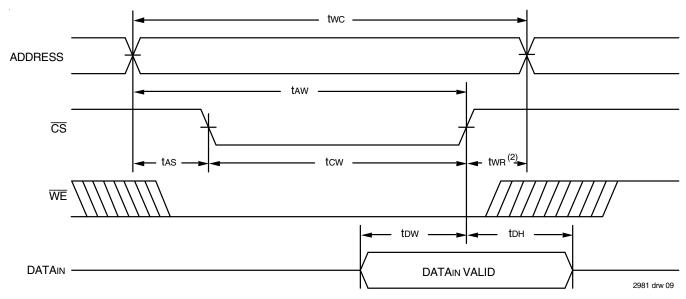
Timing Waveform of Read Cycle No. 2^(1, 3)

NOTES:

1. $\overline{\text{WE}}$ is HIGH for Read cycle.

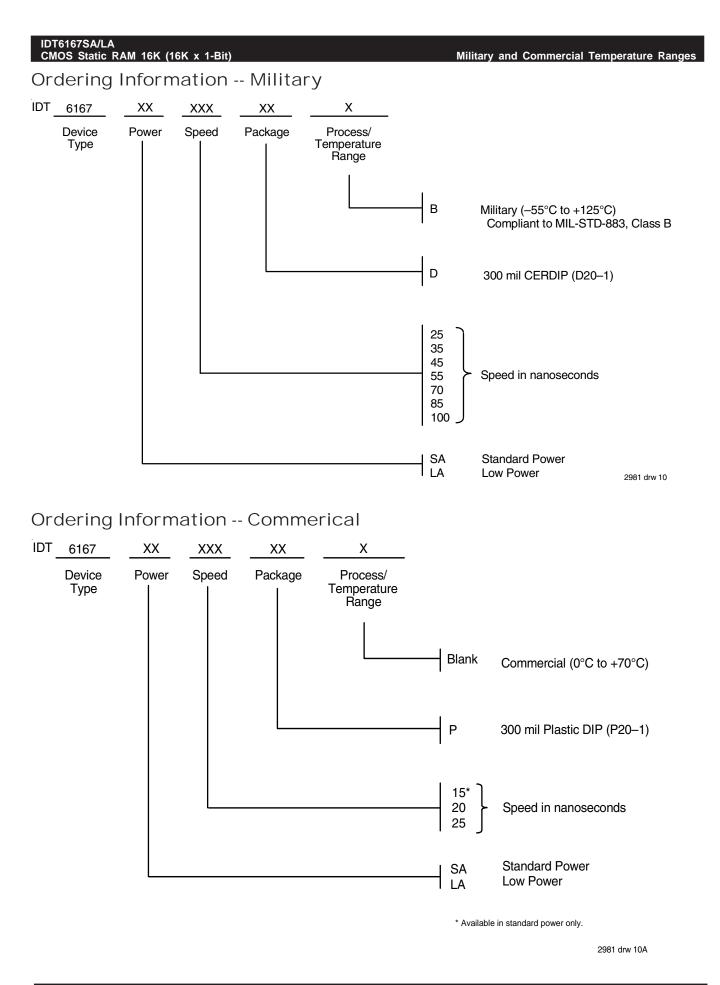

2. Device is continuously selected, \overline{CS} is LOW.

3. Address valid prior to or coincedent with $\overline{\text{CS}}$ transition LOW.


4. Transition is measured ±200mV from steady state.

Military and Commercial Temperature Ranges

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)^(1,3)



Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)^(1,3)

NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}.$
- 2. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 3. If the \overline{CS} low transition occurs simultaneously with or after the \overline{WE} LOW transition, the outputs remain in the high-impedance state.
- 4. Transition is measured $\pm 200 \text{mV}$ from steady state.
- 5. During this period, the I/O pins are in the output state and the input signals must not be applied.

Datasheet Document History

1/13/00		Updated to new format
	Pg. 7	Removed Note 1 from Write Cycle No. 1 and No. 2 drawings; renumbered notes and footnotes
	Pg. 8	Added Datasheet Document History
1/26/00	Pg. 1-3, 5, 8	Removed speed offering 15ns and 20ns for military and 35ns for commercial temperature range.
	Pg. 1, 2, 8	Removed SOJ package offering.
	Pg. 9	Updated Datasheet History
08/09/00		Not recommended for new designs
02/01/01		Removed "Not recommended for new designs"
02/01/07		PDN-SR-07-01 issued. See IDT.com for PDN specifics
08/07/14		6167SA/LA Datasheet changed to Obsolete Status

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.