

Description

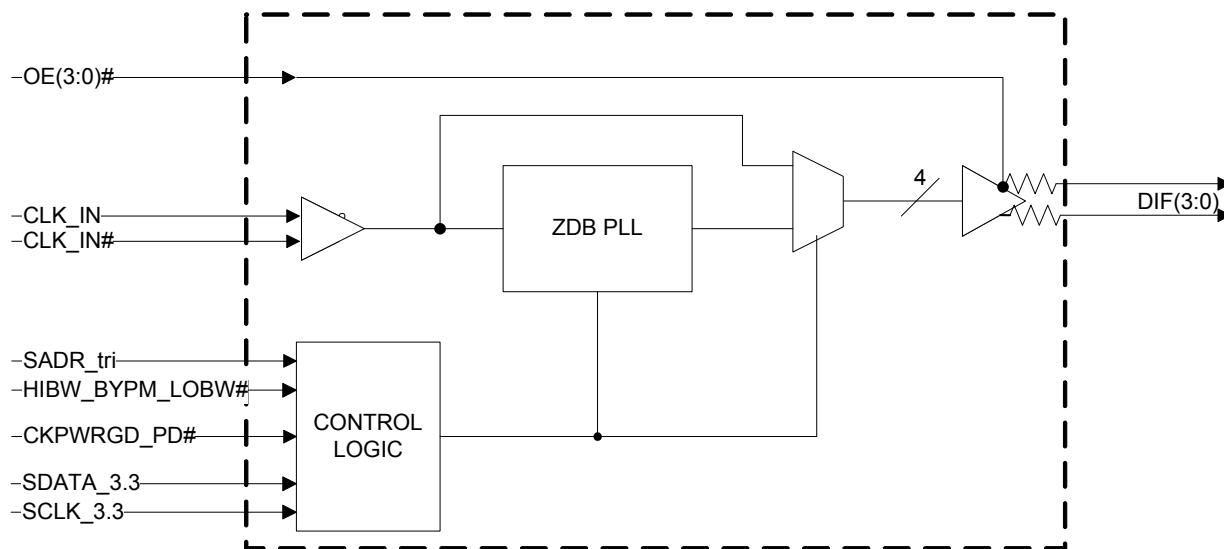
The IDT6P61043 is a 4-output very low power buffer for 100MHz PCIe Gen1, Gen2 and Gen3 applications with integrated output terminations providing $Z_o=100\Omega$. The device has 4 output enables for clock management, and 3 selectable SMBus addresses.

Recommended Application

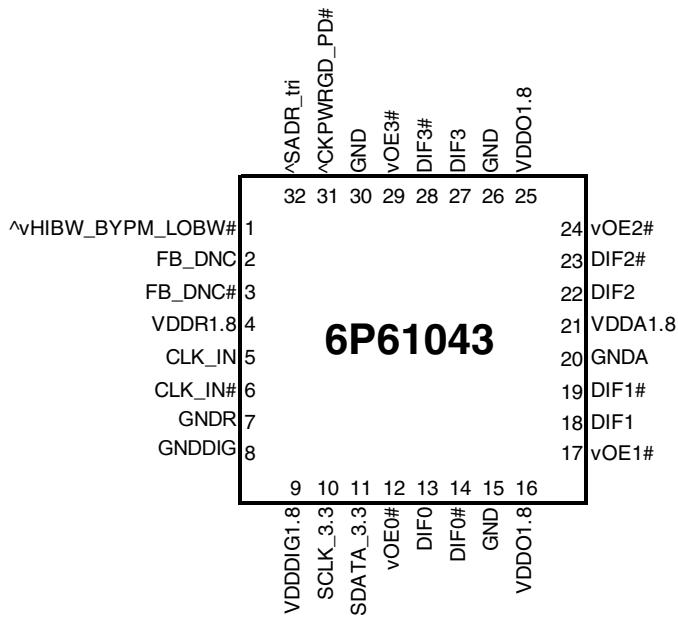
PCIe Gen1-2-3 Buffer for Freescale designs

Output Features

- 4 - 0.7V low-power HCSL-compatible (LP-HCSL) DIF pairs w/ $Z_o=100\Omega$


Key Specifications

- DIF cycle-to-cycle jitter <50ps
- DIF output-to-output skew <50ps
- DIF phase jitter is PCIe Gen1-2-3 compliant
- Very low additive phase jitter in bypass mode


Features/Benefits

- Integrated terminations provide 100Ω differential Z_o ; reduced component count and board space
- 1.8V operation; minimal power consumption
- OE# pins; support DIF power management
- HCSL compatible differential input; can be driven by common clock sources
- LP-HCSL differential clock outputs; reduced power and board space
- Programmable Slew rate for each output; allows tuning for various line lengths
- Programmable output amplitude; allows tuning for various application environments
- Pin/software selectable PLL bandwidth and PLL Bypass; minimize phase jitter for each application
- Outputs blocked until PLL is locked; clean system start-up
- Software selectable 50MHz or 125MHz PLL operation; useful for Ethernet applications
- Configuration can be accomplished with strapping pins; SMBus interface not required for device control
- 3.3V tolerant SMBus interface works with legacy controllers
- Space saving 32-pin 5x5mm MLF; minimal board space
- Selectable SMBus addresses; multiple devices can easily share an SMBus segment

Block Diagram

Pin Configuration

32-pin MLF, 5x5 mm, 0.5mm pitch

^ prefix indicates internal 120KOhm pull up resistor

^v prefix indicates internal 120KOhm pull up AND pull down resistor
(biased to VDD/2)

v prefix indicates internal 120KOhm pull down resistor

SMBus Address Selection Table

	SADR	Address	+ Read/Write bit
State of SADR on first application of CKPWRGD_PD#	0	1101011	x
	M	1101100	x
	1	1101101	x

Power Management Table

CKPWRGD_PD#	CLK_IN	SMBus OEx bit	OEx# Pin	DIFx		PLL
				True O/P	Comp. O/P	
0	X	X	X	Low	Low	Off
1	Running	0	X	Low	Low	On ¹
1	Running	1	0	Running	Running	On ¹
1	Running	1	1	Low	Low	On ¹

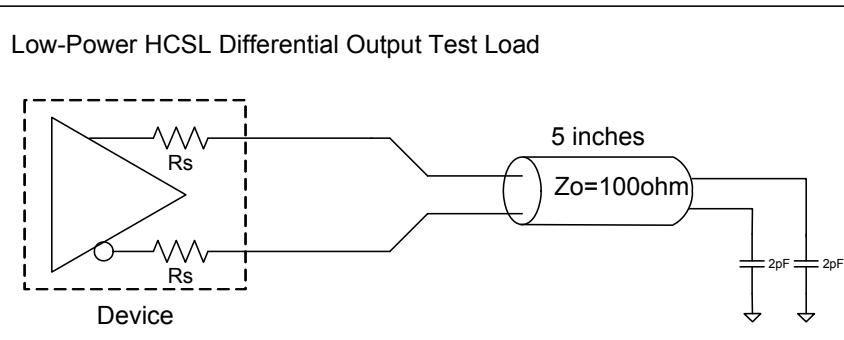
1. If Bypass mode is selected, the PLL will be off, and outputs will be running.

Power Connections

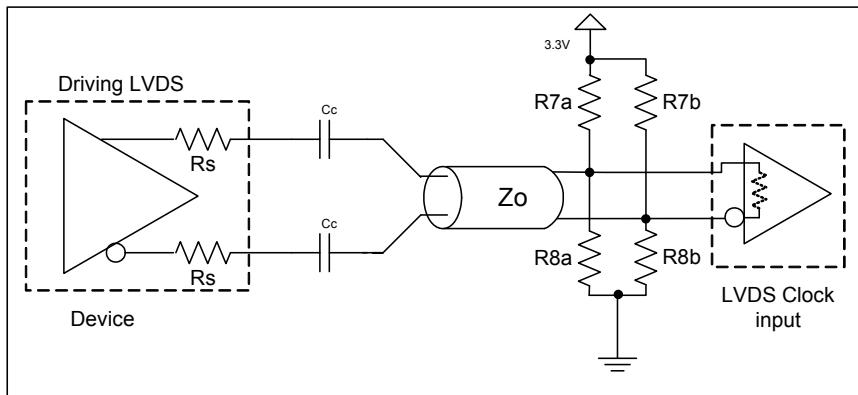
Pin Number		Description
VDD	GND	
4	7	Input receiver analog
9	8	Digital Power
16, 25	15,20,26,30	DIF outputs
21	20	PLL Analog

Frequency Select Table

FSEL Byte3 [4:3]	CLK_IN (MHz)	DIFx (MHz)
00 (Default)	100.00	CLK_IN
01	50.00	CLK_IN
10	125.00	CLK_IN
11	Reserved	Reserved


PLL Operating Mode

HiBW_BypM_LoBW#	MODE	Byte1 [7:6] Readback	Byte1 [4:3] Control
0	PLL Lo BW	00	00
M	Bypass	01	01
1	PLL Hi BW	11	11


Pin Descriptions

Pin#	Pin Name	Type	Pin Description
1	^vHIBW_BYPM_LOBW#	LATCHED IN	Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.
2	FB_DNC	DNC	True clock of differential feedback. The feedback output and feedback input are connected internally on this pin. Do not connect anything to this pin.
3	FB_DNC#	DNC	Complement clock of differential feedback. The feedback output and feedback input are connected internally on this pin. Do not connect anything to this pin.
4	VDDR1.8	PWR	1.8V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered appropriately.
5	CLK_IN	IN	True Input for differential reference clock.
6	CLK_IN#	IN	Complementary Input for differential reference clock.
7	GNDR	GND	Analog Ground pin for the differential input (receiver)
8	GNDDIG	GND	Ground pin for digital circuitry
9	VDDDIG1.8	PWR	1.8V digital power (dirty power)
10	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
11	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
12	vOE0#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs
13	DIF0	OUT	Differential true clock output
14	DIF0#	OUT	Differential Complementary clock output
15	GND	GND	Ground pin.
16	VDDO1.8	PWR	Power supply for outputs, nominally 1.8V.
17	vOE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs
18	DIF1	OUT	Differential true clock output
19	DIF1#	OUT	Differential Complementary clock output
20	GNDA	GND	Ground pin for the PLL core.
21	VDDA1.8	PWR	1.8V power for the PLL core.
22	DIF2	OUT	Differential true clock output
23	DIF2#	OUT	Differential Complementary clock output
24	vOE2#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs
25	VDDO1.8	PWR	Power supply for outputs, nominally 1.8V.
26	GND	GND	Ground pin.
27	DIF3	OUT	Differential true clock output
28	DIF3#	OUT	Differential Complementary clock output
29	vOE3#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs
30	GND	GND	Ground pin.
31	^CKPWRGD_PD#	IN	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor.
32	^SADR_tri	LATCHED IN	Tri-level latch to select SMBus Address. See SMBus Address Selection Table.

Test Loads

Driving LVDS

Driving LVDS inputs

Component	Value		Note
	Receiver has termination	Receiver does not have termination	
R7a, R7b	10K ohm	140 ohm	
R8a, R8b	5.6K ohm	75 ohm	
Cc	0.1 μF	0.1 μF	
Vcm	1.2 volts	1.2 volts	

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT6P61043. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
1.8V Supply Voltage	V _{VDDxx}	Applies to all VDD pins	-0.5		2.5	V	1,2
Input Voltage	V _{IN}		-0.5		V _{DD} +0.5V	V	1, 3
Input High Voltage, SMBus	V _{IHSMB}	SMBus clock and data pins			3.6V	V	1
Storage Temperature	T _S		-65		150	°C	1
Junction Temperature	T _J				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.5V.

Electrical Characteristics—Clock Input Parameters

TA = T_{COM} or T_{IND}; Supply Voltage per VDD of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1,3
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	300		725	mV	1
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value (V _{IHDIF} - V _{ILDIF})	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4			V/ns	1,2
Input Leakage Current	I _{IN}	V _{IN} = V _{DD} , V _{IN} = GND	-5		5	uA	1
Input Duty Cycle	d _{IN}	Measurement from differential waveform	45		55	%	1
Input Jitter - Cycle to Cycle	J _{DIFIn}	Differential Measurement	0		150	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through +/-75mV window centered around differential zero

³ The device can be driven from a single ended clock by driving the true clock and biasing the complement clock input to the V_{BIAS}, where V_{BIAS} is (V_{IHHIGH} - V_{IHLOW})/2

Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating Conditions

TA = T_{COM} or T_{IND} ; Supply Voltage per VDD of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
1.8V Supply Voltage	VDD	Supply voltage for core, analog and LVCMOS outputs	1.7	1.8	1.9	V	1
Ambient Operating Temperature	T_{COM}	Commercial range	0	25	70	°C	1
	T_{IND}	Industrial range	-40	25	85	°C	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus	$0.75 V_{DD}$		$V_{DD} + 0.3$	V	1
Input Mid Voltage	V_{IM}	Single-ended tri-level inputs ('_tri' suffix)	$0.4 V_{DD}$		$0.6 V_{DD}$	V	1
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus	-0.3		$0.25 V_{DD}$	V	1
Schmitt Trigger Positive Going Threshold Voltage	V_{T+}	Single-ended inputs, where indicated	$0.4 V_{DD}$		$0.7 V_{DD}$	V	1
Schmitt Trigger Negative Going Threshold Voltage	V_{T-}	Single-ended inputs, where indicated	$0.1 V_{DD}$		$0.4 V_{DD}$	V	1
Hysteresis Voltage	V_H	$V_{T+} - V_{T-}$	$0.1 V_{DD}$		$0.4 V_{DD}$	V	1
Output High Voltage	V_{OH}	Single-ended outputs, except SMBus. $I_{OH} = -2mA$	$V_{DD} - 0.45$			V	1
Output Low Voltage	V_{OL}	Single-ended outputs, except SMBus. $I_{OL} = -2mA$			0.45	V	1
Input Current	I_{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
	I_{INP}	Single-ended inputs $V_{IN} = 0 V$; Inputs with internal pull-up resistors $V_{IN} = VDD$; Inputs with internal pull-down resistors	-200		200	uA	1
Input Frequency	F_{ibyp}	Bypass mode	1		200	MHz	2
	$F_{ipll100}$	100MHz PLL mode	60	100.00	110	MHz	2
	$F_{ipll125}$	125MHz PLL mode	75	125.00	137.5	MHz	2
	F_{ipll62}	50MHz PLL mode	30	50.00	55	MHz	2
Pin Inductance	L_{pin}				7	nH	1
Capacitance	C_{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
	$C_{INDIF\ IN}$	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	C_{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T_{STAB}	From V_{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.6	1	ms	1,2
Input SS Modulation Frequency	f_{MODIN}	Allowable Frequency (Triangular Modulation)	30	31.500	33	kHz	1
OE# Latency	$t_{LATOE\#}$	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
Tdrive_PD#	t_{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t_F	Fall time of single-ended control inputs			5	ns	1,2
Trise	t_R	Rise time of single-ended control inputs			5	ns	1,2
SMBus Input Low Voltage	V_{ILSMB}				0.8	V	1
SMBus Input High Voltage	V_{IHSM}		2.1		3.6	V	1
SMBus Output Low Voltage	V_{OLSMB}	@ I_{PULLUP}			0.4	V	1
SMBus Sink Current	I_{PULLUP}	@ V_{OL}	4			mA	1
Nominal Bus Voltage	V_{DDSMB}	3.3V bus voltage	2.7		3.6	V	1
SCLK/SDATA Rise Time	t_{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t_{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f_{MAXSMB}	Maximum SMBus operating frequency			400	kHz	1,5

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

Electrical Characteristics—DIF 0.7V Low Power HCSL Outputs

TA = T_{COM} or T_{IND} ; Supply Voltage per VDD of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on 3.0V/ns setting	1.1	2	3	V/ns	1, 2, 3
		Scope averaging on 2.0V/ns setting	1.9	3	4	V/ns	1, 2, 3
Slew rate matching	Δ Trf	Slew rate matching, Scope averaging on		7	20	%	1, 2, 4
Voltage High	V_{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660	774	850	mV	1, 7
Voltage Low	V_{LOW}		-150	18	150		1, 7
Max Voltage	Vmax	Measurement on single ended signal using absolute value. (Scope averaging off)		821	1150	mV	1
Min Voltage	Vmin		-300	-15			1
Vswing	Vswing	Scope averaging off	300	1536		mV	1, 2, 7
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	414	550	mV	1, 5, 7
Crossing Voltage (var)	Δ Vcross	Scope averaging off		13	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ Vcross to be smaller than Vcross absolute.

⁷ At default SMBus settings.

Electrical Characteristics—Current Consumption

TA = T_{COM} or T_{IND} ; Supply Voltage per VDD of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I_{DDAOP}	VDDA+VDDR, PLL Mode, @100MHz		11	15	mA	1
	I_{DDOP}	VDD1.8, All outputs active @100MHz		25	35	mA	1
Powerdown Current	I_{DDAPD}	VDDA+VDDR, PLL Mode, @100MHz			1	mA	1, 2
	I_{DDPD}	VDD1.8, Outputs Low/Low			1.2	mA	1, 2

¹Guaranteed by design and characterization, not 100% tested in production.

² Input clock stopped.

Electrical Characteristics—Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{COM} or T_{IND} ; Supply Voltage per VDD of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	BW	-3dB point in High BW Mode	2	2.7	4	MHz	1,5
		-3dB point in Low BW Mode	1	1.4	2	MHz	1,5
PLL Jitter Peaking	t_{JPEAK}	Peak Pass band Gain		1.2	2	dB	1
Duty Cycle	t_{DC}	Measured differentially, PLL Mode	45	50.1	55	%	1
Duty Cycle Distortion	t_{DCD}	Measured differentially, Bypass Mode @100MHz	-1	0	1	%	1,3
Skew, Input to Output	t_{pdBYP}	Bypass Mode, $V_T = 50\%$	3000	3600	4500	ps	1
	t_{pdPLL}	PLL Mode $V_T = 50\%$	0	92	200	ps	1,4
Skew, Output to Output	t_{sk3}	$V_T = 50\%$		28	50	ps	1,4
Jitter, Cycle to cycle	$t_{jcyc-cyc}$	PLL mode		16	50	ps	1,2
		Additive Jitter in Bypass Mode		0.1	25	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

⁴ All outputs at default slew rate

⁵ The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.

Electrical Characteristics—Phase Jitter Parameters

TA = T_{COM} or T_{IND} ; Supply Voltage per VDD of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
Phase Jitter, PLL Mode	$t_{jphPCleG1}$	PCIe Gen 1		34	52	86	ps (p-p)	1,2,3
	$t_{jphPCleG2}$	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.9	1.4	3	ps (rms)	1,2
		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.2	2.5	3.1	ps (rms)	1,2
	$t_{jphPCleG3}$	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.5	0.6	1	ps (rms)	1,2,4
	$t_{jphSGMII}$	125MHz, 1.5MHz to 20MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		1.9	2	NA	ps (rms)	1,6
Additive Phase Jitter, Bypass Mode	$t_{jphPCleG1}$	PCIe Gen 1		0.6	5	N/A	ps (p-p)	1,2,3
	$t_{jphPCleG2}$	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.1	0.3	N/A	ps (rms)	1,2,5
		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.05	0.1	N/A	ps (rms)	1,2,5
	$t_{jphPCleG3}$	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.05	0.1	N/A	ps (rms)	1,2,4, 5
	$t_{jphSGMII}$	125MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		0.15	0.3	N/A	ps (rms)	1,6

¹ Applies to all outputs, with device driven by 9FG432AKLF or equivalent.

² See <http://www.pcisig.com> for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final ratification by PCI SIG.

⁵ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = $\sqrt{(\text{total jitter})^2 - (\text{input jitter})^2}$

⁶ Applies to all differential outputs

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will **acknowledge**
- Controller (host) sends the beginning byte location = N
- IDT clock will **acknowledge**
- Controller (host) sends the byte count = X
- IDT clock will **acknowledge**
- Controller (host) starts sending Byte **N** through Byte **N+X-1**
- IDT clock will **acknowledge** each byte **one at a time**
- Controller (host) sends a Stop bit

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will **acknowledge**
- Controller (host) sends the beginning byte location = N
- IDT clock will **acknowledge**
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will **acknowledge**
- IDT clock will send the data byte count = X
- IDT clock sends Byte **N+X-1**
- IDT clock sends **Byte 0 through Byte X (if X_(H) was written to Byte 8)**
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Write Operation		
Controller (Host)		IDT (Slave/Receiver)
T	starT bit	
Slave Address		
WR	WRite	
		ACK
Beginning Byte = N		
		ACK
Data Byte Count = X		
		ACK
Beginning Byte N		
		ACK
O		
O		O
O		O
		O
Byte N + X - 1		
		ACK
P	stoP bit	

Index Block Read Operation		
Controller (Host)		IDT (Slave/Receiver)
T	starT bit	
Slave Address		
WR	WRite	
		ACK
Beginning Byte = N		
		ACK
RT	Repeat starT	
Slave Address		
RD	ReaD	
		ACK
		Data Byte Count=X
		ACK
		Beginning Byte N
		O
		O
		O
		Byte N + X - 1
N	Not acknowledge	
P	stoP bit	

Note: SMBus Address is Latched on SADR pin.

SMBus Table: Output Enable Register¹

Byte 0	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				1
Bit 6	DIF OE3	Output Enable	RW	Low/Low	Enabled	1
Bit 5	DIF OE2	Output Enable	RW	Low/Low	Enabled	1
Bit 4		Reserved				1
Bit 3	DIF OE1	Output Enable	RW	Low/Low	Enabled	1
Bit 2		Reserved				1
Bit 1	DIF OE0	Output Enable	RW	Low/Low	Enabled	1
Bit 0		Reserved				1

1. A low on these bits will override the OE# pin and force the differential output Low/Low

SMBus Table: PLL Operating Mode and Output Amplitude Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	PLLMODEB1	PLL Mode Readback Bit 1	R	See PLL Operating Mode Table		Latch
Bit 6	PLLMODEB0	PLL Mode Readback Bit 0				Latch
Bit 5	PLLMODE_SWCTRL	Enable SW control of PLL Mode	RW	Values in B1[7:6] set PLL Mode	Values in B1[4:3] set PLL Mode	0
Bit 4	PLLMODE1	PLL Mode Control Bit 1		See PLL Operating Mode Table		0
Bit 3	PLLMODE0	PLL Mode Control Bit 0	RW ¹			0
Bit 2		Reserved			1	
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01 = 0.7V	1
Bit 0	AMPLITUDE 0		RW	10 = 0.8V	11 = 0.9V	0

1. B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				1
Bit 6	SLEWRATESEL DIF3	Slew Rate Selection	RW	2 V/ns	3 V/ns	1
Bit 5	SLEWRATESEL DIF2	Slew Rate Selection	RW	2 V/ns	3 V/ns	1
Bit 4		Reserved				1
Bit 3	SLEWRATESEL DIF1	Slew Rate Selection	RW	2 V/ns	3 V/ns	1
Bit 2		Reserved				1
Bit 1	SLEWRATESEL DIF0	Slew Rate Selection	RW	2 V/ns	3 V/ns	1
Bit 0		Reserved				1

SMBus Table: Frequency Select Control Register

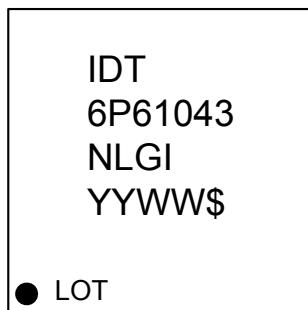
Byte 3	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				1
Bit 6		Reserved				1
Bit 5	FREQ_SEL_EN	Enable SW selection of frequency	RW	SW frequency change disabled	SW frequency change enabled	0
Bit 4	FSEL1	Freq. Select Bit 1		See Frequency Select Table		0
Bit 3	FSEL0	Freq. Select Bit 0	RW ¹			0
Bit 2		Reserved			1	
Bit 1		Reserved				1
Bit 0	SLEWRATESEL FB	Adjust Slew Rate of FB	RW	2V/ns	3V/ns	1

1. B3[5] must be set to a 1 for these bits to have any effect on the part.

Byte 4 is Reserved and reads back 'hFF'

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Type	0	1	Default
Bit 7	RID3	Revision ID	R	A rev = 0000		0
Bit 6	RID2		R			0
Bit 5	RID1		R			0
Bit 4	RID0		R			0
Bit 3	VID3	VENDOR ID	R	0001 = IDT		0
Bit 2	VID2		R			0
Bit 1	VID1		R			0
Bit 0	VID0		R			1


SMBus Table: Device Type/Device ID

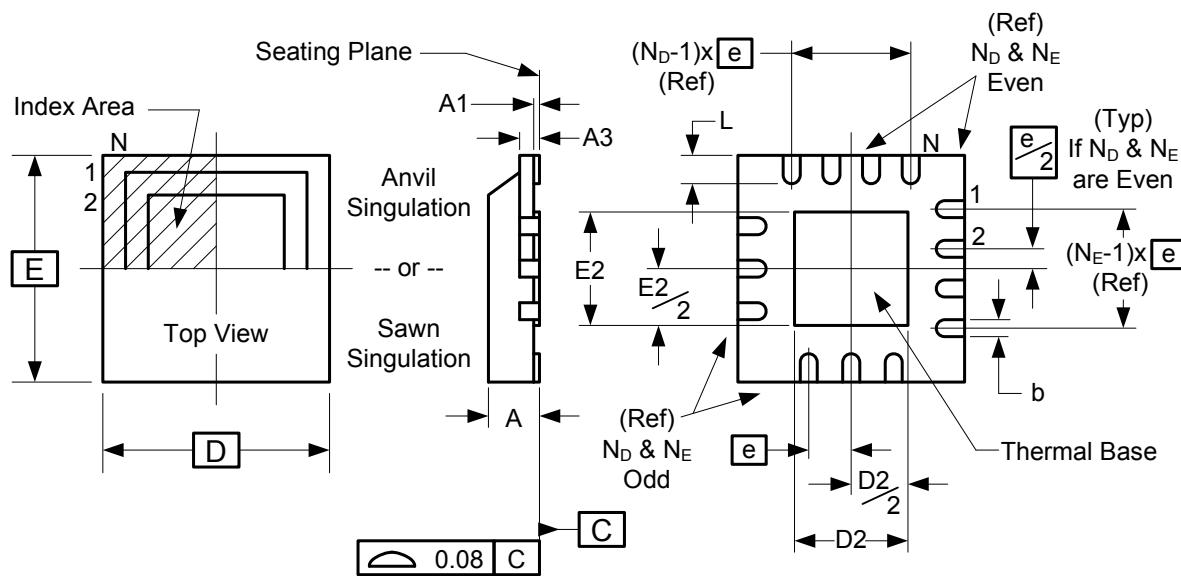
Byte 6	Name	Control Function	Type	0	1	Default
Bit 7	Device Type1	Device Type	R	00 = FGV, 01 = DBV, 10 = DMV, 11= Reserved		0
Bit 6	Device Type0		R			1
Bit 5	Device ID5	Device ID	R	000100 binary or 04 hex		
Bit 4	Device ID4		R	0		
Bit 3	Device ID3		R	0		
Bit 2	Device ID2		R	1		
Bit 1	Device ID1		R	0		
Bit 0	Device ID0		R	0		

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				
Bit 6		Reserved				
Bit 5		Reserved				
Bit 4	BC4	Byte Count Programming	RW	Writing to this register will configure how many bytes will be read back, default is = 8 bytes.		
Bit 3	BC3		RW	1		
Bit 2	BC2		RW	0		
Bit 1	BC1		RW	0		
Bit 0	BC0		RW	0		

Marking Diagram

Notes:


1. 'G' denotes RoHS compliant package.
2. 'I' denotes industrial temperature grade.
3. 'YYWW' is the last two digits of the year and week that the part was assembled.
4. '\$' is the assembly mark code.
5. 'LOT' is the lot number.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
Thermal Resistance	θ_{JC}	Junction to Case	NLG32	42	°C/W	1
	θ_{JB}	Junction to Base		2.4	°C/W	1
	θ_{JA0}	Junction to Air, still air		39	°C/W	1
	θ_{JA1}	Junction to Air, 1 m/s air flow		33	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		28	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		27	°C/W	1

¹ePad soldered to board

Package Outline and Package Dimensions (NLG32)

Symbol	Millimeters	
	Min	Max
A	0.80	1.00
A1	0	0.05
A3	0.20 Reference	
b	0.18	0.3
e	0.50 BASIC	
D x E BASIC	5.00 x 5.00	
D2 MIN./MAX.	3.00	3.30
E2 MIN./MAX.	3.00	3.30
L MIN./MAX.	0.30	0.50
N	32	
N _D	8	
N _E	8	

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
6P61043NLGI	Trays	32-pin MLF	-40 to +85° C
6P61043NLGI8	Tape and Reel	32-pin MLF	-40 to +85° C

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Issue Date	Initiator	Description	Page #
A	2/25/2013	RDW	Initial Release	-

IDT6P61043

4-OUTPUT SMALL FORM FACTOR PCIE GEN1-2-3 BUFFER

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.