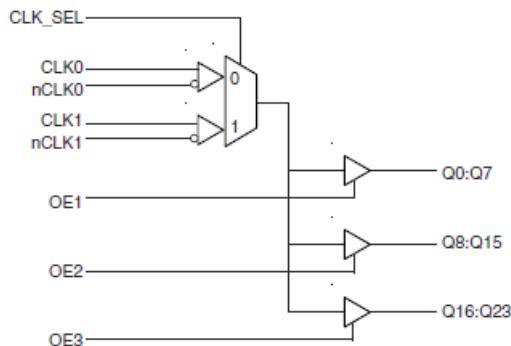


GENERAL DESCRIPTION


The 8344I is a low voltage, low skew fanout buffer and a member of the family of High Performance Clock Solutions from IDT. The 8344I has two selectable clock inputs. The CLK0, nCLK0 and CLK1, nCLK1 pairs can accept most standard differential input levels. The 8344I is designed to translate any differential signal levels to LVCMOS/LVTTL levels. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased to 48 by utilizing the ability of the outputs to drive two series terminated lines. Redundant clock applications can make use of the dual clock input. The dual clock inputs also facilitate board level testing. 8344I is characterized at full 3.3V, full 2.5V and mixed 3.3V input and 2.5V output operating supply modes.

Guaranteed output and part-to-part skew characteristics make the 8344I ideal for those clock distribution applications demanding well defined performance and repeatability.

FEATURES

- Twenty-four LVCMOS/LVTTL outputs, 7Ω typical output impedance
- Two selectable differential clock input pairs for redundant clock applications
- CLKx, nCLKx pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- Maximum output frequency: 100MHz
- Translates any single-ended input signal to LVCMOS/LVTTL with resistor bias on nCLK input
- Multiple output enable pins for disabling unused outputs in reduced fanout applications
- Output skew: 275ps (maximum)
- Part-to-part skew: 600ps (maximum)
- Bank skew: 150ps (maximum)
- Supply modes:
Core/Output
3.3V/3.3V
3.3V/2.5V
2.5V/2.5V
- 40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT

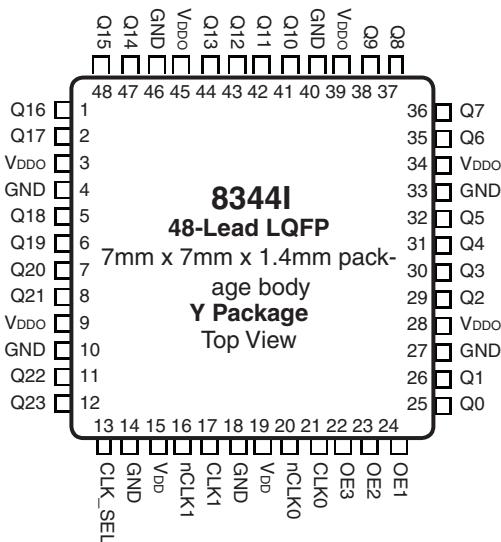


TABLE 1. PIN DESCRIPTIONS

Number	Name	Type		Description
1, 2, 5, 6 7, 8, 11, 12	Q16, Q17, Q18, Q19 Q20, Q21, Q22, Q23	Output		Single-ended LVCMOS/LVTTL outputs. 7Ω typical output impedance.
3, 9, 28, 34, 39, 45	V _{DDO}	Power		Output supply pins.
4, 10, 14, 18, 27, 33, 40, 46	GND	Power		Power supply ground.
13	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW, selects CLK0, nCLK0. LVTTL / LVCMOS interface levels.
15, 19	V _{DD}	Power		Positive supply pins.
16	nCLK1	Input	Pullup	Inverting differential clock input.
17	CLK1	Input	Pulldown	Non-inverting differential clock input.
20	nCLK0	Input	Pullup	Inverting differential clock input.
21	CLK0	Input	Pulldown	Non-inverting differential clock input.
22	OE3	Input	Pullup	Output enable. Controls enabling and disabling of outputs Q16 through Q23. LVCMOS/LVTTL interface levels.
23	OE2	Input	Pullup	Output enable. Controls enabling and disabling of outputs Q8 through Q15. LVCMOS/LVTTL interface levels.
24	OE1	Input	Pullup	Output enable. Controls enabling and disabling of outputs Q0 through Q7. LVCMOS/LVTTL interface levels.
25, 26, 29, 30 31, 32, 35, 36	Q0, Q1, Q2, Q3 Q4, Q5, Q6, Q7	Output		Single-ended LVCMOS/LVTTL outputs. 7Ω typical output impedance.
37, 38, 41, 42 43, 44, 47, 48	Q8, Q9, Q10, Q11 Q12, Q13, Q14, Q15	Output		Single-ended LVCMOS/LVTTL outputs. 7Ω typical output impedance.

NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance (per output)				20	pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}	Output Impedance			7		Ω

TABLE 3A. OUTPUT ENABLE FUNCTION TABLE

Bank 1		Bank 2		Bank 3	
Input	Output	Input	Output	Input	Output
OE1	Q0-Q7	OE2	Q8-Q15	OE3	Q16-Q23
0	Hi-Z	0	Hi-Z	0	Hi-Z
1	Enabled	1	Enabled	1	Enabled

TABLE 3B. CLOCK SELECT FUNCTION TABLE

Control Input		Clock	
CLK_SEL		CLK0, nCLK0	CLK1, nCLK1
0		Selected	De-selected
1		De-selected	Selected

TABLE 3C. CLOCK INPUTS FUNCTION TABLE

OE1, OE2, OE3	Inputs		Outputs Q0 thru Q23	Input to Output Mode	Polarity
	CLK	nCLK			
1	0	1	LOW	Differential to Single Ended	Non Inverting
1	1	0	HIGH	Differential to Single Ended	Non Inverting
1	0	Biased; NOTE 1	LOW	Single Ended to Differential	Non Inverting
1	1	Biased; NOTE 1	HIGH	Single Ended to Differential	Non Inverting
1	Biased; NOTE 1	0	HIGH	Single Ended to Differential	Inverting
1	Biased; NOTE 1	1	LOW	Single Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information section on page 13, Figure 8, which discusses wiring the differential input to accept single ended levels.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5$ V
Outputs, V_O	-0.5V to $V_{DDO} + 0.5$ V
Package Thermal Impedance, θ_{JA}	47.9°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^\circ\text{C}$ TO 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Quiescent Power Supply Current				95	mA

TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ\text{C}$ TO 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I_{DD}	Quiescent Power Supply Current				95	mA

TABLE 4C. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ\text{C}$ TO 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		2.375	2.5	2.625	V
V_{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I_{DD}	Quiescent Power Supply Current				95	mA

TABLE 4D. LVC MOS DC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	CLK_SEL, OE1, OE2, OE3	2		3.8	V
V_{IL}	Input Low Voltage	CLK_SEL, OE1, OE2, OE3	-0.3		0.8	V
I_{IH}	Input High Current	OE1, OE2, OE3	$V_{DD} = V_{IN} = 3.465V$		5	μA
		CLK_SEL	$V_{DD} = V_{IN} = 3.465V$		150	μA
I_{IL}	Input Low Current	OE1, OE2, OE3	$V_{DD} = 3.465, V_{IN} = 0V$	-150		μA
		CLK_SEL	$V_{DD} = 3.465, V_{IN} = 0V$	-5		μA
V_{OH}	Output High Voltage		$V_{DD} = V_{DDO} = 3.135V$ $I_{OH} = -36mA$	2.6		V
V_{OL}	Output Low Voltage		$V_{DD} = V_{DDO} = 3.135V$ $I_{OL} = 36mA$		0.6	V

TABLE 4E. LVC MOS DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	CLK_SEL, OE1, OE2, OE3	2		3.8	V
V_{IL}	Input Low Voltage	CLK_SEL, OE1, OE2, OE3	-0.3		0.8	V
I_{IH}	Input High Current	OE1, OE2, OE3	$V_{DD} = V_{IN} = 3.465V$		5	μA
		CLK_SEL	$V_{DD} = V_{IN} = 3.465V$		150	μA
I_{IL}	Input Low Current	OE1, OE2, OE3	$V_{DD} = 3.465, V_{IN} = 0V$	-150		μA
		CLK_SEL	$V_{DD} = 3.465, V_{IN} = 0$	-5		μA
V_{OH}	Output High Voltage		$V_{DD} = 3.135V$, $V_{DDO} = 2.375V$ $I_{OH} = -27mA$	2		V
V_{OL}	Output Low Voltage		$V_{DD} = 3.135V$, $V_{DDO} = 2.365V$ $I_{OL} = 27mA$		0.63	V

TABLE 4F. LVC MOS DC CHARACTERISTICS, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	CLK_SEL, OE1, OE2, OE3	2		2.9	V
V_{IL}	Input Low Voltage	CLK_SEL, OE1, OE2, OE3	-0.3		0.8	V
I_{IH}	Input High Current	OE1, OE2, OE3	$V_{DD} = V_{IN} = 2.625V$		5	μA
		CLK_SEL	$V_{DD} = V_{IN} = 2.625V$		150	μA
I_{IL}	Input Low Current	OE1, OE2, OE3	$V_{DD} = 2.625, V_{IN} = 0V$	-150		μA
		CLK_SEL	$V_{DD} = 2.625, V_{IN} = 0V$	-5		μA
V_{OH}	Output High Voltage		$V_{DD} = VDDO = 2.375V$ $I_{OH} = -27mA$	2		V
V_{OL}	Output Low Voltage		$V_{DD} = VDDO = 2.375V$ $I_{OL} = 27mA$		0.6	V

TABLE 4G. DIFFERENTIAL DC CHARACTERISTICS, $T_A = -40^\circ\text{C}$ TO 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	nCLK0, nCLK1			5	μA
		CLK0, CLK1			150	μA
I_{IL}	Input Low Current	nCLK0, nCLK1	-150			μA
		CLK0, CLK1	-5			μA
V_{PP}	Peak-to-Peak Input Voltage		0.15		1.3	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2		GND + 0.5		$V_{DD} - 0.85$	V

NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is $V_{DD} + 0.3\text{V}$.

NOTE 2: Common mode voltage is defined as V_{IH} .

TABLE 5A. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3\text{V} \pm 5\%$, $T_A = -40^\circ\text{C}$ TO 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Maximum Output Frequency				100	MHz
$t_{p_{LH}}$	Propagation Delay, Low to High; NOTE 1	$f \leq 100\text{MHz}$	2.6		4.3	ns
$t_{p_{HL}}$	Propagation Delay, High to Low; NOTE 1	$f \leq 100\text{MHz}$	2.4		4.3	ns
$t_{sk(b)}$	Bank Skew; NOTE 2, 6				150	ps
$t_{sk(o)}$	Output Skew; NOTE 3, 6				275	ps
$t_{sk(pp)}$	Part-to-Part Skew; NOTE 4, 6				600	ps
t_R	Output Rise Time; NOTE 5	30% to 70%	300		1700	ps
t_F	Output Fall Time; NOTE 5	30% to 70%	300		1400	ps
t_{dc}	Output Duty Cycle		40%		60%	%
t_{EN}	Output Enable Time; NOTE 5	$f = 66.7\text{MHz}$			5	ns
t_{DIS}	Output Disable Time; NOTE 5	$f = 66.7\text{MHz}$			4	ns

All parameters measured at 100MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to $V_{DD}/2$.

NOTE 2: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at $V_{DD}/2$.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DD}/2$.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

TABLE 5B. AC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Maximum Output Frequency				100	MHz
tp_{LH}	Propagation Delay, Low to High; NOTE 1	$f \leq 100MHz$	2.6		4.5	ns
tp_{HL}	Propagation Delay, High to Low; NOTE 1	$f \leq 100MHz$	2.6		4.5	ns
$tsk(b)$	Bank Skew; NOTE 2, 6				150	ps
$tsk(o)$	Output Skew; NOTE 3, 6				275	ps
$tsk(pp)$	Part-to-Part Skew; NOTE 4, 6				600	ps
t_R	Output Rise Time; NOTE 5	30% to 70%	300		1700	ps
t_F	Output Fall Time; NOTE 5	30% to 70%	300		1400	ps
odc	Output Duty Cycle		40%		60%	%
t_{EN}	Output Enable Time; NOTE 5	$f = 66.7MHz$			6	ns
t_{DIS}	Output Disable Time; NOTE 5	$f = 66.7MHz$			6	ns

All parameters measured at 100MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to $V_{DDO}/2$.

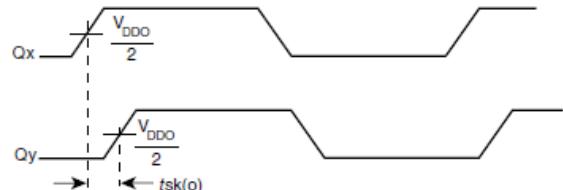
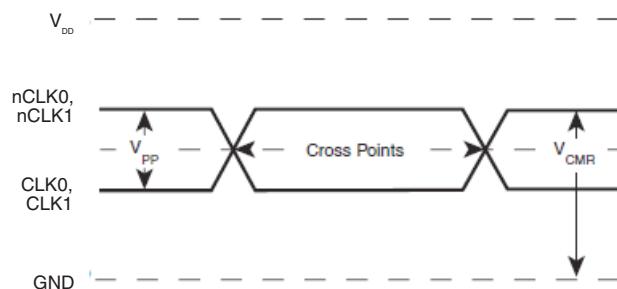
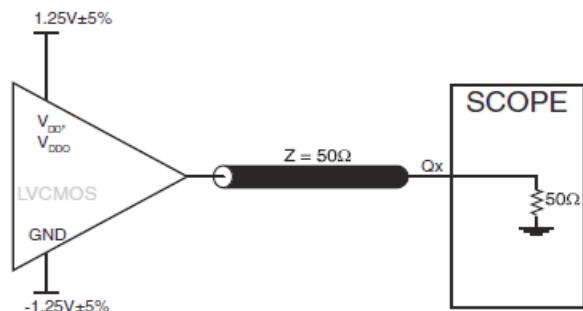
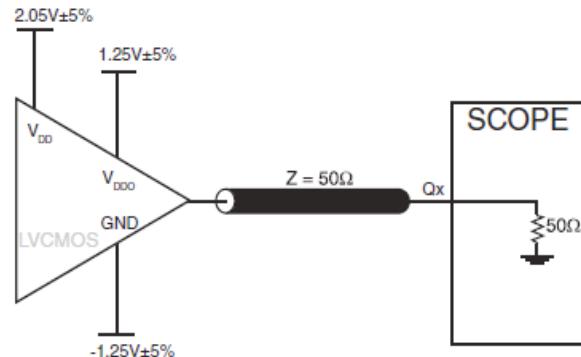
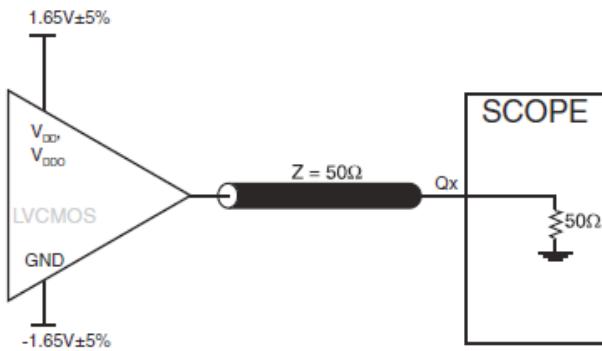
NOTE 2: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.

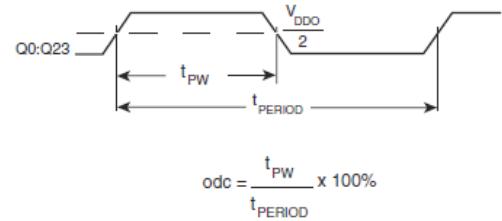
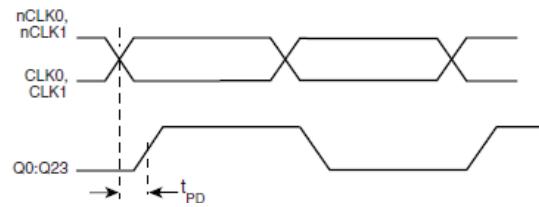
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at $V_{DDO}/2$.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

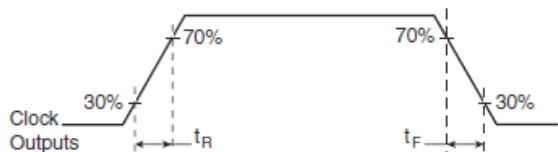
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.






NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.



TABLE 5C. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Maximum Output Frequency				100	MHz
tp_{LH}	Propagation Delay, Low to High; NOTE 1	$f \leq 100MHz$	2.7		4.3	ns
tp_{HL}	Propagation Delay, High to Low; NOTE 1	$f \leq 100MHz$	2.7		4.3	ns
$tsk(b)$	Bank Skew; NOTE 2, 6				150	ps
$tsk(o)$	Output Skew; NOTE 3, 6				275	ps
$tsk(pp)$	Part-to-Part Skew; NOTE 4, 6				600	ps
t_R	Output Rise Time; NOTE 5	30% to 70%	300		1700	ps
t_F	Output Fall Time; NOTE 5	30% to 70%	300		1400	ps
odc	Output Duty Cycle		40%		60%	%
t_{EN}	Output Enable Time; NOTE 5	$f = 66.7MHz$			6	ns
t_{DIS}	Output Disable Time; NOTE 5	$f = 66.7MHz$			6	ns

For NOTES, please see Table 5B above.


PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

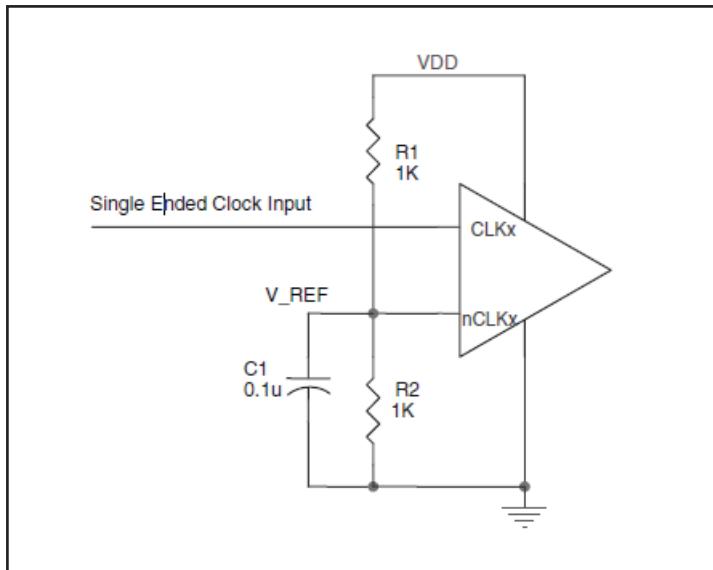


FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CLK/nCLK INPUTS

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from CLK to ground.

OUTPUTS:

LVC MOS OUTPUTS

All unused LVC MOS output can be left floating. There should be no trace attached.

LVC MOS CONTROL PINS

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only.

Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 2A, the input termination applies for IDT HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

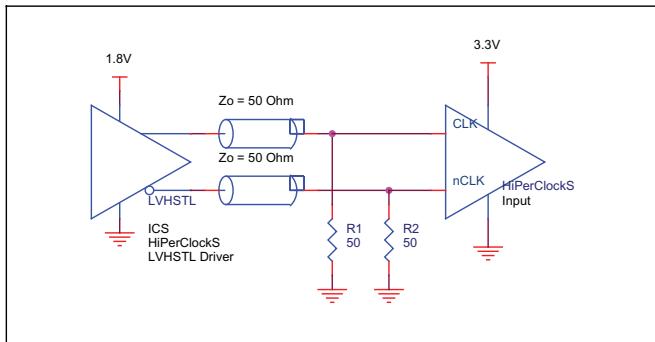


FIGURE 2A. HiPerClockS CLK/nCLK INPUT DRIVEN BY IDT HiPerClockS LVHSTL DRIVER

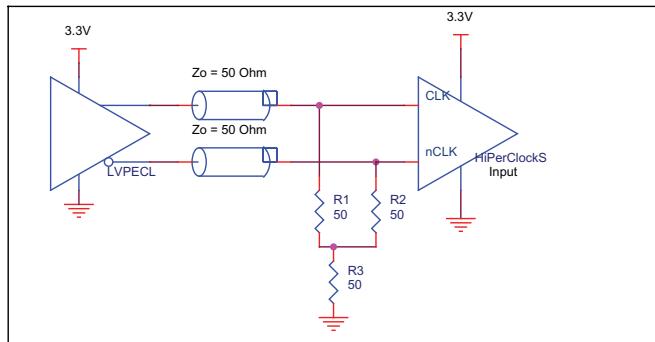


FIGURE 2B. HiPerClockS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

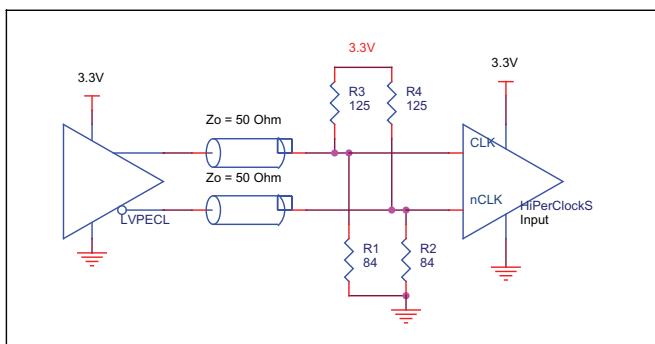


FIGURE 2C. HiPerClockS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

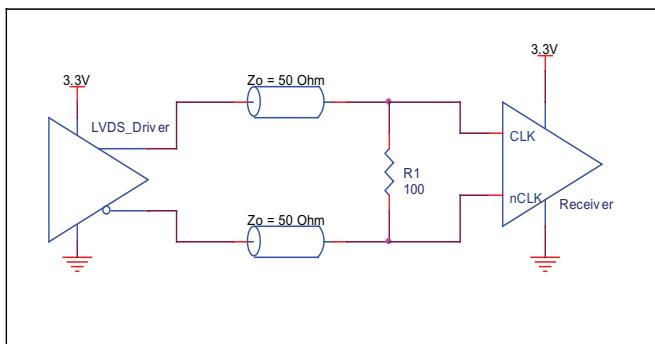


FIGURE 2D. HiPerClockS CLK/nCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

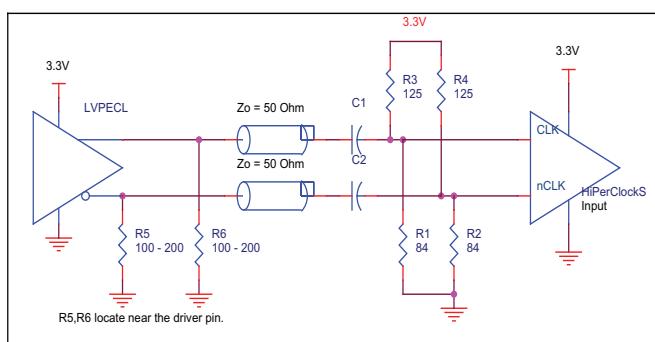


FIGURE 2E. HiPerClockS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE

RELIABILITY INFORMATION

TABLE 6. θ_{JA} VS. AIR FLOW TABLE FOR 48 LEAD LQFP

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

TRANSISTOR COUNT

The transistor count for 83441 is: 1,449

PACKAGE OUTLINE - Y SUFFIX FOR 48 LEAD LQFP

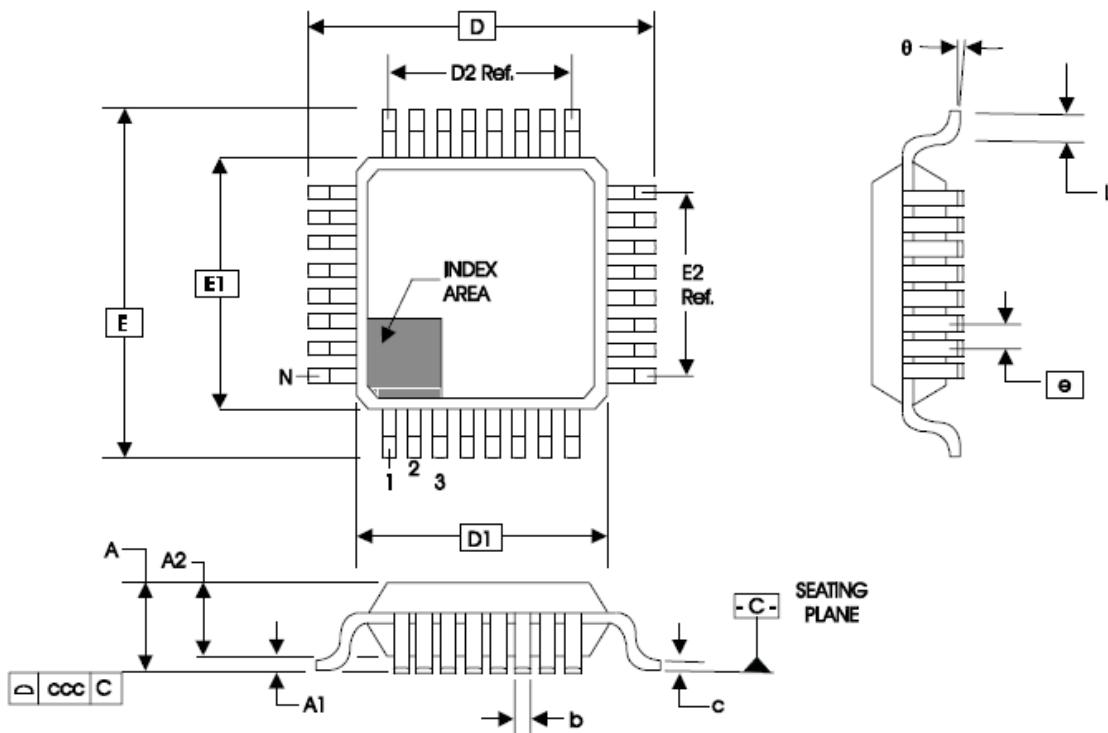


TABLE 7. PACKAGE DIMENSIONS

SYMBOL	BBC		
	MINIMUM	NOMINAL	MAXIMUM
N	48		
A	--	--	1.60
A1	0.05	--	0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
c	0.09	--	0.20
D	9.00 BASIC		
D1	7.00 BASIC		
D2	5.50 Ref.		
E	9.00 BASIC		
E1	7.00 BASIC		
E2	5.50 Ref.		
e	0.50 BASIC		
L	0.45	0.60	0.75
θ	0°	--	7°
ccc	--	--	0.08

Reference Document: JEDEC Publication 95, MS-026

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8344BYILF	ICS8344BYILF	48 lead "Lead-Free" LQFP	tray	-40°C to 85°C
8344BYILFT	ICS8344BYILF	48 lead "Lead-Free" LQFP	reel	-40°C to 85°C

REVISION HISTORY SHEET

Rev	Table	Page	Description of Change	Date
B		1 10 11 14	Features Section - added lead-free bullet. Pin Characteristics Table - changed C_{IN} 4pF max. to 4pF typical. Added <i>Recommendations for Unused Input and Output Pins</i> . Added <i>Differential Clock Input Interface</i> . Ordering Information Table - added lead-free part number, marking and note. Updated format throughout the datasheet.	5/23/07
B	T8	14	Ordering Information - removed leaded devices - PDN CQ-13-02 expired Updated Datasheet format	11/4/14
B	T8	1 14	Removed HiPerClockS from the general description. Ordering Information - removed ICS from the Part/Order Number. Removed LF note below the table. Updated datasheet header and footer.	12/14/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.