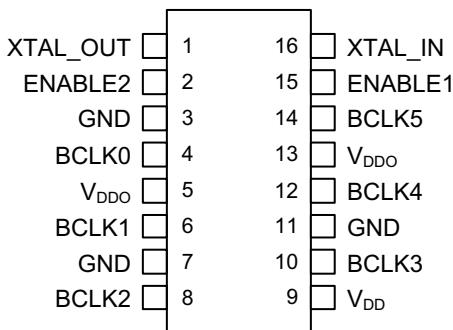


General Description


The 83905-01 is a low skew, 1-to-6 LVCMOS Fanout Buffer. The low impedance LVCMOS outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 6 to 12 by utilizing the ability of the outputs to drive two series terminated lines.

The 83905-01 is characterized at full 1.8V, 1.5V, and 1.2V, mixed 1.8V/1.5V, 1.8V/1.2V and 1.5V/1.2V output operating supply mode. Guaranteed output skew characteristics along with the 1.2V output capabilities makes the 83905-01 ideal for high performance, single ended applications that also require a limited output voltage.

Pin Assignments

20-pin, 4mm x 4mm VFQFN Package

83905-01

16-pin, 4.4mm x 5.0mm TSSOP Package

Features

- Six LVCMOS outputs
- Outputs able to drive 12 series terminated lines
- Crystal Oscillator Interface
- Crystal input frequency range: 10MHz to 40MHz
- Output skew: 95ps (maximum)
- RMS phase jitter @ 25MHz, (100Hz – 1MHz): 0.17ps (typical)

Offset Noise Power

Offset	Noise Power
100Hz	-115 dBc/Hz
1kHz	-138 dBc/Hz
10kHz	-154 dBc/Hz
100kHz	-160 dBc/Hz

- Synchronous output enables
- Power supply modes: Full 1.8V, 1.5V, 1.2V
Mixed 1.8V core/1.5V output operating supply
Mixed 1.8V core/1.2V output operating supply
Mixed 1.5V core/1.2V output operating supply
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Descriptions and Characteristics

Table 1. Pin Descriptions

Name	Type	Description
XTAL_OUT	Output	Crystal oscillator interface.
XTAL_IN	Input	Crystal oscillator interface.
ENABLE1, ENABLE2	Input	Clock enable. LVC MOS/LVTTL interface levels. See Table 3.
BCLK0, BCLK1, BCLK2, BCLK3, BCLK4, BCLK5	Output	Clock outputs. LVC MOS interface levels.
GND	Power	Power supply ground.
V _{DD}	Power	Power supply pin.
V _{DDO}	Power	Output supply pin.
nc	Unused	No connect.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance	ENABLE[2:1]		4		pF
C _{PD}	Power Dissipation Capacitance (per output)	V _{DDO} = 2.0V		12		pF
		V _{DDO} = 1.6V		12		pF
		V _{DDO} = 1.26V		12		pF
R _{OUT}	Output Impedance	V _{DDO} = 1.8V ± 0.2V		17		Ω
		V _{DDO} = 1.5V ± 0.1V		18		Ω
		V _{DDO} = 1.2V ± 5%		24		Ω

Function Table

Table 3. Clock Enable Function Table

Control Inputs		Outputs	
ENABLE 1	ENABLE2	BCLK[0:4]	BCLK5
0	0	LOW	LOW
0	1	LOW	Toggling
1	0	Toggling	LOW
1	1	Toggling	Toggling

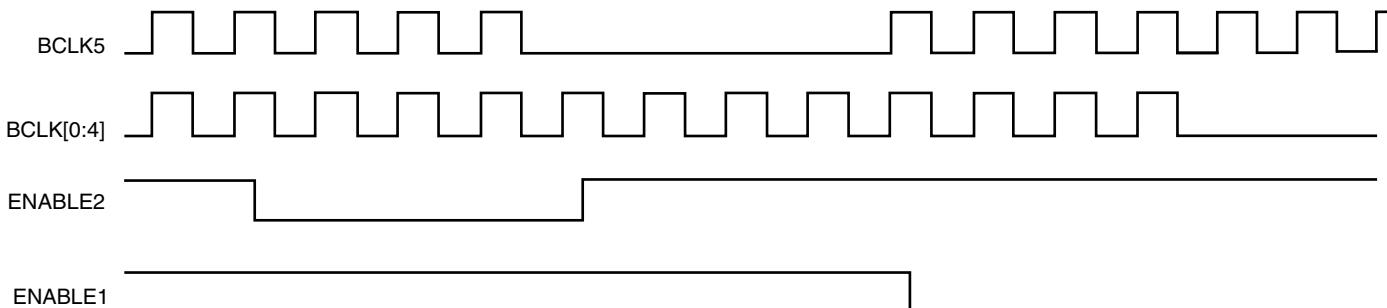


Figure 1. Enable Timing Diagram

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Input, V_I Crystal Oscillator Input	0V to V_{DD}
Outputs, V_O	-0.5V to $V_{DDO} + 0.5V$
Package Thermal Impedance, T_J	125°C
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		1.6	1.8	2.0	V
V_{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I_{DD} ; NOTE 1	Power Supply Current	ENABLE [1:2] = 00		4	10	mA
I_{DDO} ; NOTE 1	Output Supply Current	ENABLE [1:2] = 00			1	mA

NOTE 1: Measured with outputs unterminated, and XTAL_IN and XTAL_OUT floated.

Table 4B. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 1.5V \pm 0.1V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		1.4	1.5	1.6	V
V_{DDO}	Output Supply Voltage		1.4	1.5	1.6	V
I_{DD} ; NOTE 1	Power Supply Current	ENABLE [1:2] = 00		3	7	mA
I_{DDO} ; NOTE 1	Output Supply Current	ENABLE [1:2] = 00			1	mA

NOTE 1: Measured with outputs unterminated, and XTAL_IN and XTAL_OUT floated.

Table 4C. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 1.2V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		1.14	1.2	1.26	V
V_{DDO}	Output Supply Voltage		1.14	1.2	1.26	V
I_{DD} ; NOTE 1	Power Supply Current	ENABLE [1:2] = 00		2	6	mA
I_{DDO} ; NOTE 1	Output Supply Current	ENABLE [1:2] = 00			1	mA

NOTE 1: Measured with outputs unterminated, and XTAL_IN and XTAL_OUT floated.

Table 4D. Power Supply DC Characteristics, $V_{DD} = 1.8V \pm 0.2V$, $V_{DDO} = 1.5V \pm 0.1V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		1.6	1.8	2.0	V
V_{DDO}	Output Supply Voltage		1.4	1.5	1.6	V
I_{DD} ; NOTE 1	Power Supply Current	ENABLE [1:2] = 00		4	10	mA
I_{DDO} ; NOTE 1	Output Supply Current	ENABLE [1:2] = 00			1	mA

NOTE 1: Measured with outputs unterminated, and XTAL_IN and XTAL_OUT floated.

Table 4E. Power Supply DC Characteristics, $V_{DD} = 1.8V \pm 0.2V$, $V_{DDO} = 1.2V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		1.6	1.8	2.0	V
V_{DDO}	Output Supply Voltage		1.14	1.2	1.26	V
I_{DD} ; NOTE 1	Power Supply Current	ENABLE [1:2] = 00		4	10	mA
I_{DDO} ; NOTE 1	Output Supply Current	ENABLE [1:2] = 00			1	mA

NOTE 1: Measured with outputs unterminated, and XTAL_IN and XTAL_OUT floated.

Table 4F. Power Supply DC Characteristics, $V_{DD} = 1.5V \pm 0.1V$, $V_{DDO} = 1.2V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		1.4	1.5	1.6	V
V_{DDO}	Output Supply Voltage		1.14	1.2	1.26	V
I_{DD} ; NOTE 1	Power Supply Current	ENABLE [1:2] = 00		3	7	mA
I_{DDO} ; NOTE 1	Output Supply Current	ENABLE [1:2] = 00			1	mA

NOTE 1: Measured with outputs unterminated, and XTAL_IN and XTAL_OUT floated.

Table 4G. LVCMS/LVTTL DC Characteristics, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	$V_{DD} = 1.8V \pm 0.2V$	1.2		$V_{DD} + 0.3$	V
		$V_{DD} = 1.5V \pm 0.1V$	1.0		$V_{DD} + 0.3$	V
		$V_{DD} = 1.2V \pm 5\%$	0.8		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage	$V_{DD} = 1.8V \pm 0.2V$	-0.3		0.4	V
		$V_{DD} = 1.5V \pm 0.1V$	-0.3		0.3	V
		$V_{DD} = 1.2V \pm 5\%$	-0.3		0.2	V
V_{OH}	Output High Voltage; NOTE 1	$V_{DDO} = 1.8V \pm 0.2V$	0.7			V
		$V_{DDO} = 1.5V \pm 0.1V$	0.7			V
		$V_{DDO} = 1.2V \pm 5\%$	0.7			V
V_{OL}	Output Low Voltage; NOTE 1	$V_{DDO} = 1.8V \pm 0.2V$			0.4	V
		$V_{DDO} = 1.5V \pm 0.1V$			0.4	V
		$V_{DDO} = 1.2V \pm 5\%$			0.4	V

NOTE 1: Outputs terminated with 50Ω to $V_{DDO}/2$. See Parameter Measurement Information, *Output Load Test Circuit diagrams*.

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		10		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Load Capacitance			12	18	pF

AC Electrical Characteristics**Table 6A. AC Characteristics, $V_{DD} = V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$**

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency	Using External Crystal	10		40	MHz
		Using External Clock Source NOTE 1	1		100	MHz
$t_{sk(o)}$	Output Skew; NOTE 2, 3				90	ps
t_{jit}	RMS Phase Jitter (Random); NOTE 4	25MHz, Integration Range: 100Hz – 1MHz		0.17		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	300		600	ps
odc	Output Duty Cycle		42	50	58	%
t_{EN}	Output Enable Time; NOTE 5	ENABLE1			4	cycles
		ENABLE2			4	cycles
t_{DIS}	Output Disable Time; NOTE 5	ENABLE1			4	cycles
		ENABLE2			4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $f \leq 40$ MHz using a crystal input unless noted otherwise. Outputs terminated with 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by an external source.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: See phase noise plot.

NOTE 5: These parameters are guaranteed by design. Not tested in production.

Table 6B. AC Characteristics, $V_{DD} = V_{DDO} = 1.5V \pm 0.1V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency	Using External Crystal	10		40	MHz
		Using External Clock Source; NOTE 1	1		100	MHz
$t_{sk(o)}$	Output Skew; NOTE 2, 3				90	ps
t_{jitter}	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.3		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	300		650	ps
odc	Output Duty Cycle		44	50	56	%
t_{EN}	Output Enable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles
t_{DIS}	Output Disable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $f \leq 40$ MHz using a crystal input unless noted otherwise. Outputs terminated with 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by an external source.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: These parameters are guaranteed by design. Not tested in production.

Table 6C. AC Characteristics, $V_{DD} = V_{DDO} = 1.2V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency	Using External Crystal	10		40	MHz
		Using External Clock Source; NOTE 1	1		100	MHz
$t_{sk(o)}$	Output Skew; NOTE 2, 3				90	ps
t_{jitter}	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.7		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	350		800	ps
odc	Output Duty Cycle		44	50	56	%
t_{EN}	Output Enable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles
t_{DIS}	Output Disable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $f \leq 40$ MHz using a crystal input unless noted otherwise. Outputs terminated with 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by an external source.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: These parameters are guaranteed by design. Not tested in production.

Table 6D. AC Characteristics, $V_{DD} = 1.8V \pm 0.2V$, $V_{DDO} = 1.5V \pm 0.1V$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency	Using External Crystal	10		40	MHz
		Using External Clock Source; NOTE 1	1		100	MHz
$t_{sk(o)}$	Output Skew; NOTE 2, 3				90	ps
t_{jitter}	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.18		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	300		650	ps
odc	Output Duty Cycle		40	50	60	%
t_{EN}	Output Enable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles
t_{DIS}	Output Disable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $f \leq 40$ MHz using a crystal input unless noted otherwise. Outputs terminated with 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by an external source.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: These parameters are guaranteed by design. Not tested in production.

Table 6E. AC Characteristics, $V_{DD} = 1.8V \pm 0.2V$, $V_{DDO} = 1.2V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency	Using External Crystal	10		40	MHz
		Using External Clock Source; NOTE 1	1		100	MHz
$t_{sk(o)}$	Output Skew; NOTE 2, 3				95	ps
t_{jitter}	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.2		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	350		800	ps
odc	Output Duty Cycle		42	50	58	%
t_{EN}	Output Enable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles
t_{DIS}	Output Disable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $f \leq 40$ MHz using a crystal input unless noted otherwise. Outputs terminated with 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by an external source.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: These parameters are guaranteed by design. Not tested in production.

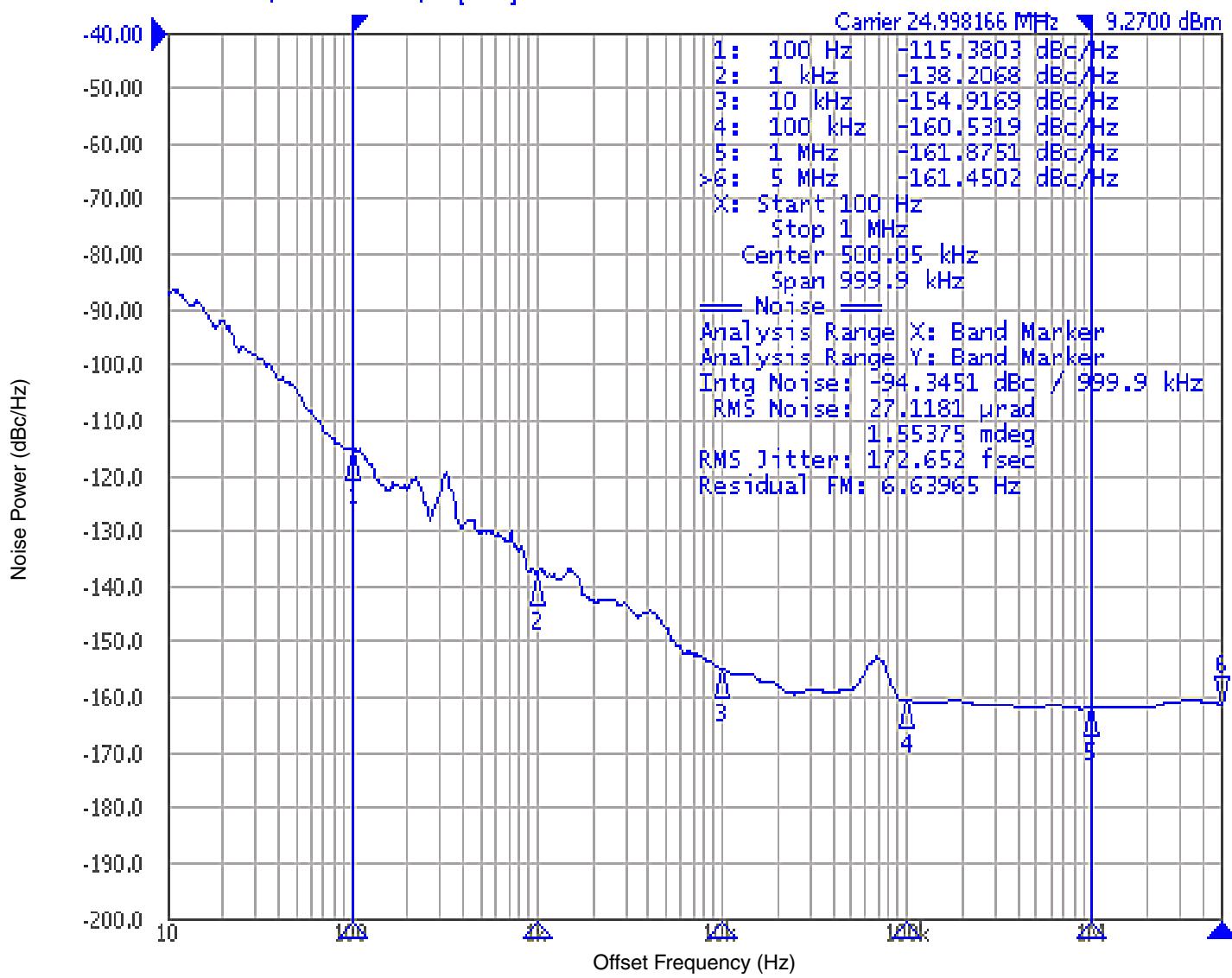
Table 6F. AC Characteristics, $V_{DD} = 1.5V \pm 0.1V$, $V_{DDO} = 1.2V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency	Using External Crystal	10		40	MHz
		Using External Clock Source; NOTE 1	1		100	MHz
$t_{sk(o)}$	Output Skew; NOTE 2, 3				90	ps
t_{jit}	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.34		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	350		800	ps
odc	Output Duty Cycle		42	50	58	%
t_{EN}	Output Enable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles
t_{DIS}	Output Disable Time; NOTE 4	ENABLE1			4	cycles
		ENABLE2			4	cycles

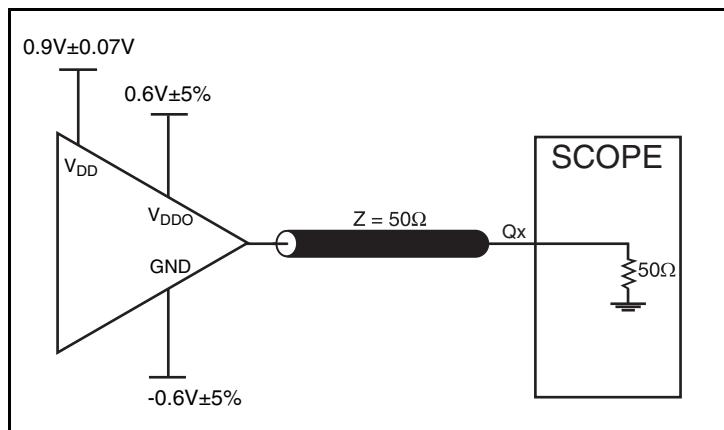
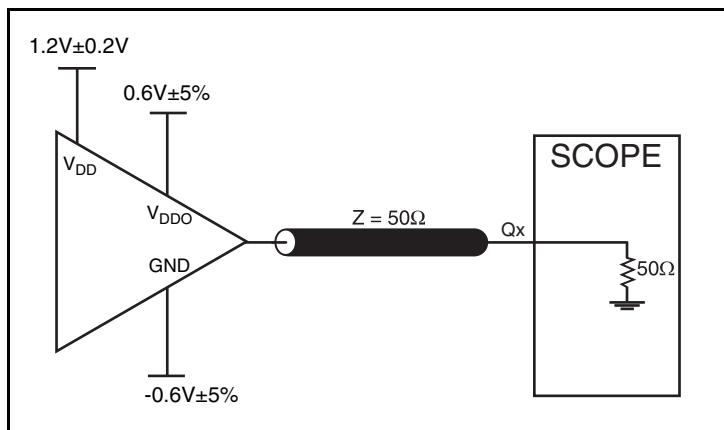
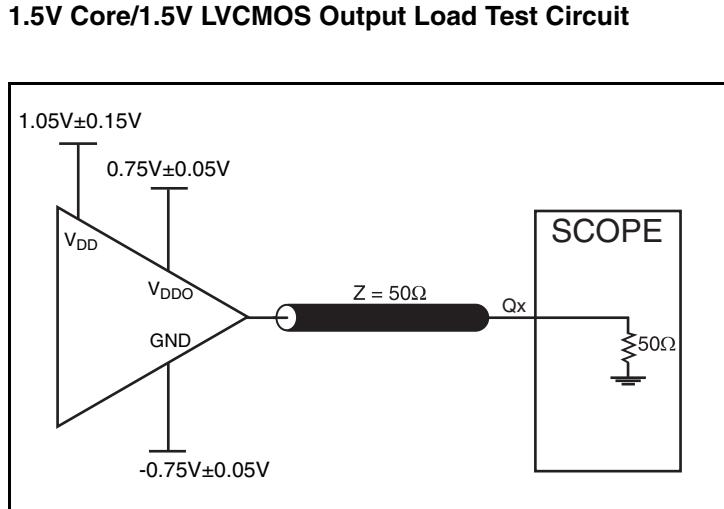
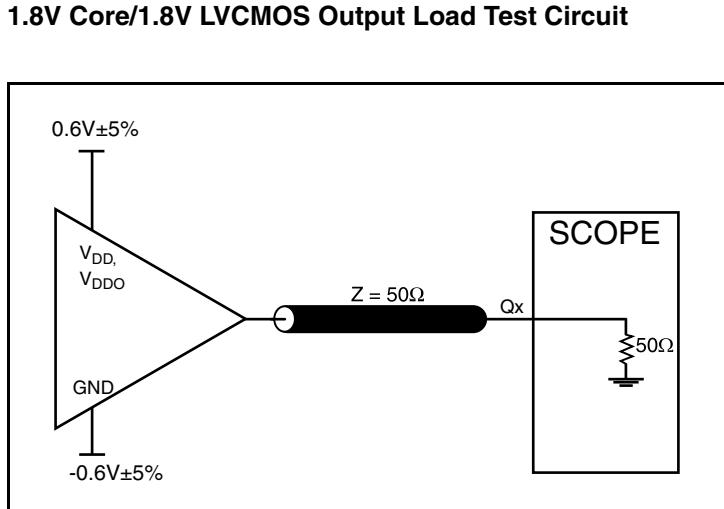
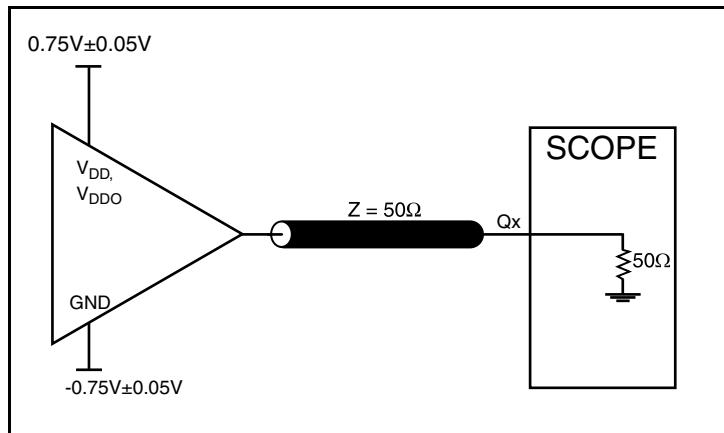
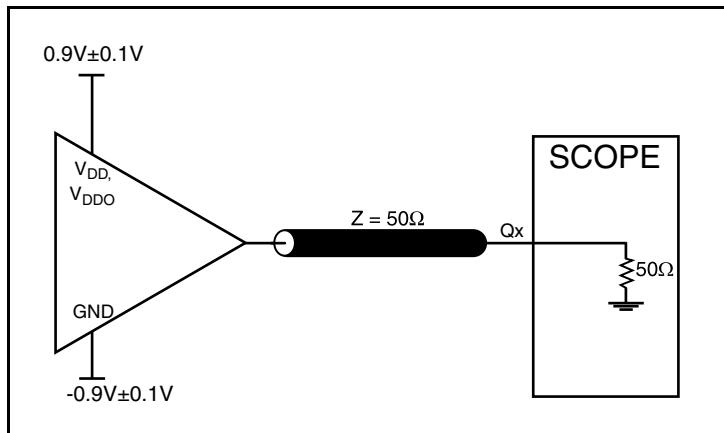
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $f \leq 40$ MHz using a crystal input unless noted otherwise. Outputs terminated with 50Ω to $V_{DDO}/2$.

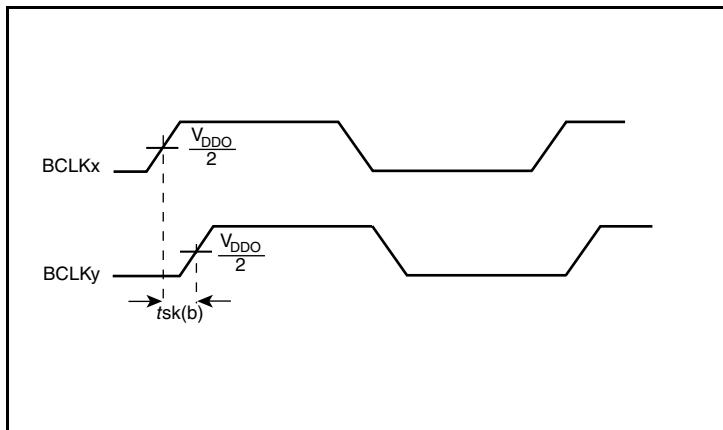
NOTE 1: XTAL_IN can be overdriven by an external source.

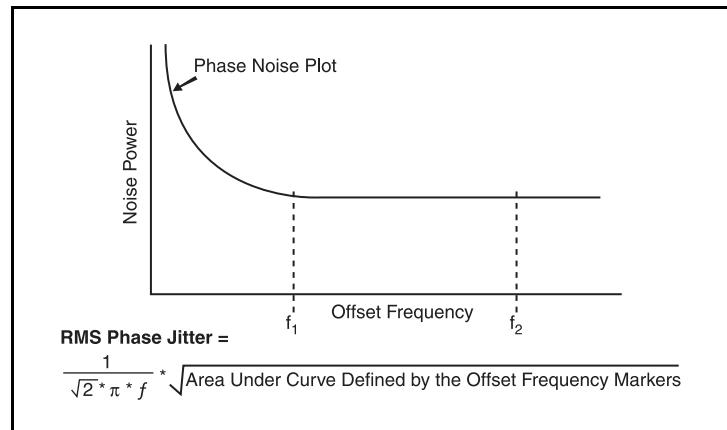

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

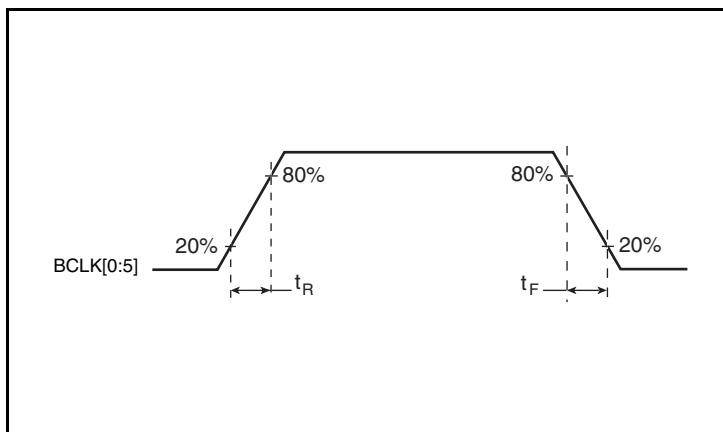
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

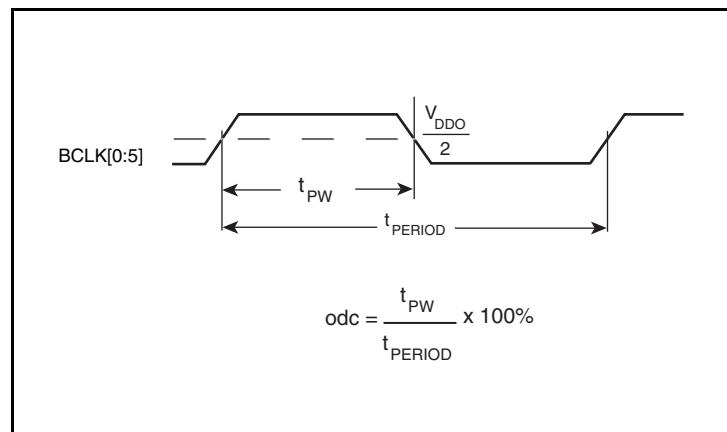






NOTE 4: These parameters are guaranteed by design. Not tested in production.

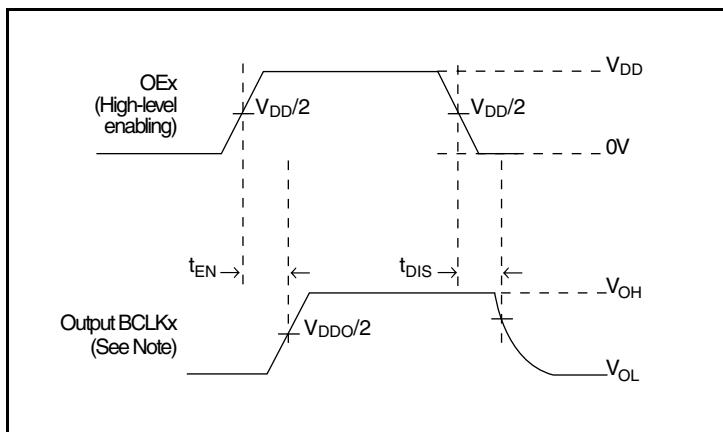
Typical Phase Noise at 25MHz (1.8V Core, 1.8V Output)


►Phase Noise 10.00dB/ Ref -40.00dBc/Hz [Smo]


Parameter Measurement Information


Parameter Measurement Information, continued


Output Skew


RMS Phase Jitter

Output Rise/Fall Time

Output Duty Cycle/Pulse Width/Period

Output Enable/Disable

Application Information

Recommendations for Unused Output Pins

Outputs:

LVCMS Outputs

All unused LVCMS output can be left floating. There should be no trace attached.

Crystal Input Interface

The 83905-01 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using an 18pF parallel resonant crystal and were

chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

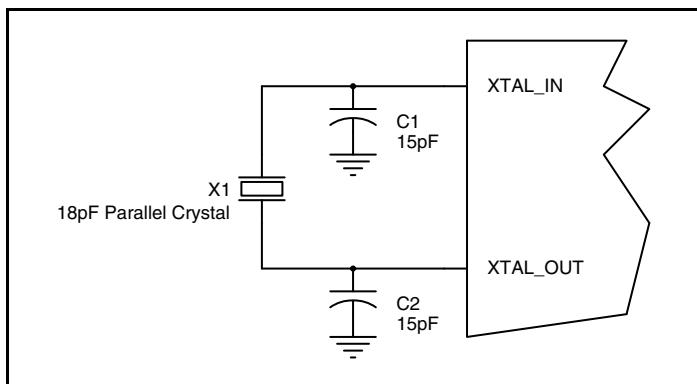


Figure 2. Crystal Input Interface

Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 3A shows an example of the interface diagram for a high speed 3.3V LVCMS driver. This configuration requires that the sum of the output impedance of the driver (Z_o) and the series resistance (R_s) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This

can be done in one of two ways. First, R_1 and R_2 in parallel should equal the transmission line impedance. For most 50Ω applications, R_1 and R_2 can be 100Ω . This can also be accomplished by removing R_1 and changing R_2 to 50Ω . The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMS driver. Figure 3B shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

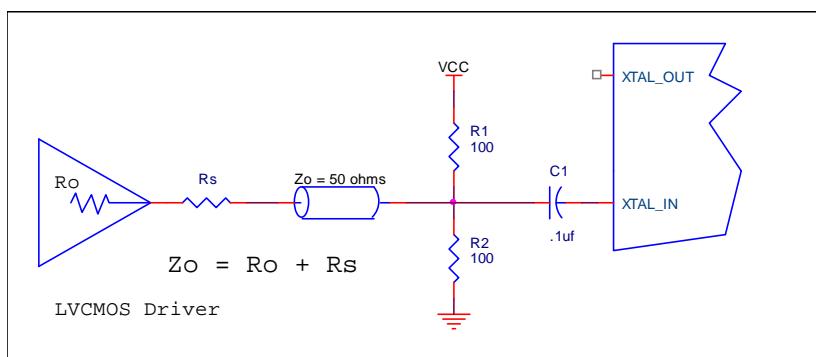


Figure 3A. General Diagram for LVCMS Driver to XTAL Input Interface

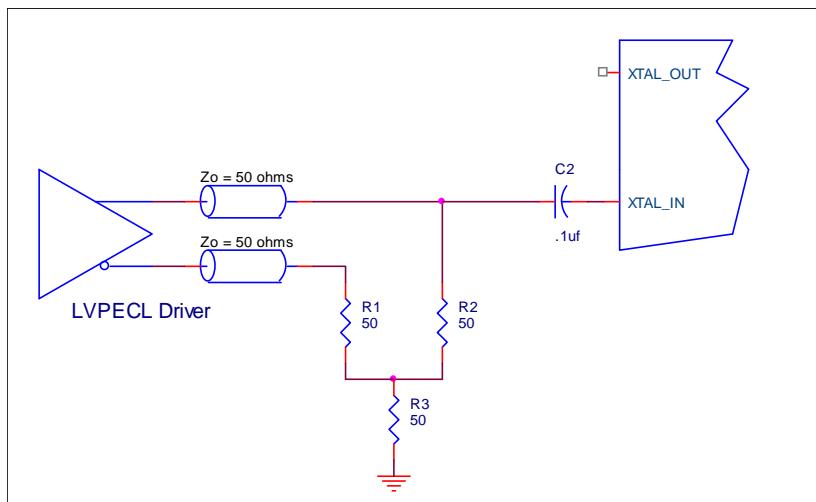
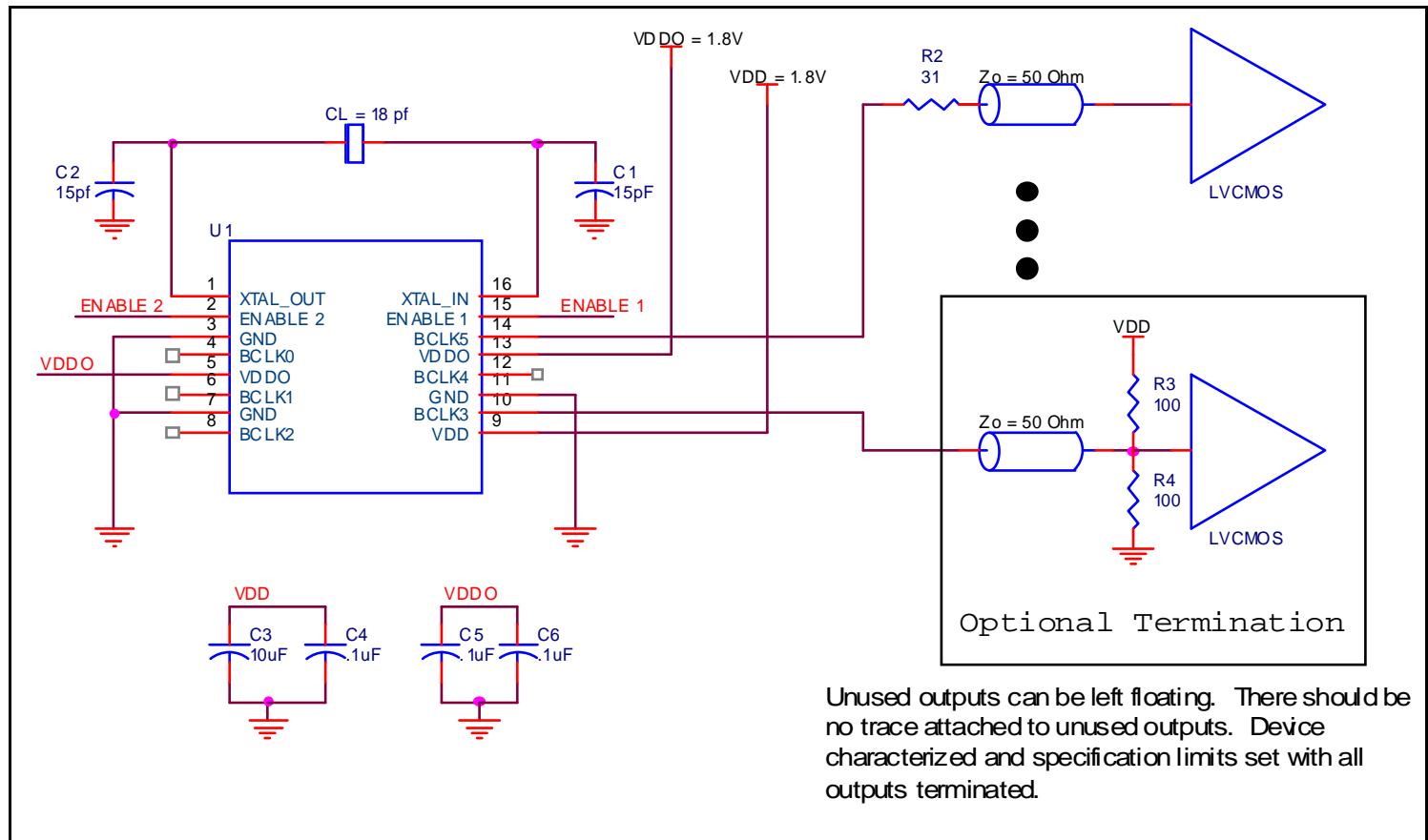



Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

Schematic Example

Figure 4 shows an example of the 83905-01 application schematic. In this example, the device is operated at $V_{DD} = V_{DD0} = 1.8V$. The decoupling capacitors should be located as close as possible to the power pin. The input is driven by an 18pF load resonant quartz crystal. The tuning capacitors C1 and C2 are fairly accurate, but

minor adjustments might be required. For the LVCMOS output drivers, two termination examples are shown in this schematic. For additional termination examples, see [LVCMOS Termination Application Note](#).

Figure 4. 83905-01 Schematic Layout

Power Considerations

This section provides information on power dissipation and junction temperature for the 83905-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 83905-01 is the sum of the core power plus the analog power plus the power dissipated due to the load. The following is the power dissipation for $V_{DD} = 1.8V + 0.2V = 2.0V$, which gives worst case results.

- Power (core)_{MAX} = $V_{DD_MAX} * I_{DD} = 2V * 10mA = 20mW$
- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{DD}/2$
Output Current $I_{OUT} = V_{DD_MAX} / [2 * (50\Omega + R_{OUT})] = 2V / [2 * (50\Omega + 17\Omega)] = 14.9mA$
- Power Dissipation on the R_{OUT} per LVC MOS output
Power (R_{OUT}) = $R_{OUT} * (I_{OUT})^2 = 17\Omega * (14.9mA)^2 = 3.8mW$ per output
- Total Power Dissipation on the R_{OUT}
Total Power (R_{OUT}) = $3.8mW * 6 = 22.8mW$

Dynamic Power Dissipation at 100MHz

$$\text{Power (100MHz)} = C_{PD} * \text{Frequency} * (V_{DD})^2 = 12pF * 100MHz * (2V)^2 = 4.8mW \text{ per output}$$

$$\text{Total Power (100MHz)} = 4.8mW * 6 = 28.8mW$$

Total Power Dissipation

- **Total Power**
= Power (core)_{MAX} + Total Power (R_{OUT}) + Total Power (100MHz)
= $20mW + 22.8mW + 28.8mW$
= **71.6mW**

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C .

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 100.3°C/W per Table 7 below.

Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

$$70^\circ\text{C} + 0.072W * 100.3^\circ\text{C/W} = 77.2^\circ\text{C}.$$

This is below the limit of 125°C .

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 16-Lead TSSOP, Forced Convection

θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	100.3°C/W	96.0°C/W	93.9°C/W

Reliability Information

Table 8A. θ_{JA} vs. Air Flow Table for a 16-Lead TSSOP

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	100.3°C/W	96.0°C/W	93.9°C/W

Table 8B. θ_{JA} vs. Air Flow Table for a 20-Lead VFQFN

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	57.5°C/W	50.3°C/W	45.1°C/W

Transistor Count

The transistor count for 83905-01: 505

16-Lead TSSOP Package Outline and Package Dimensions

Package Outline - G Suffix for 16-Lead TSSOP

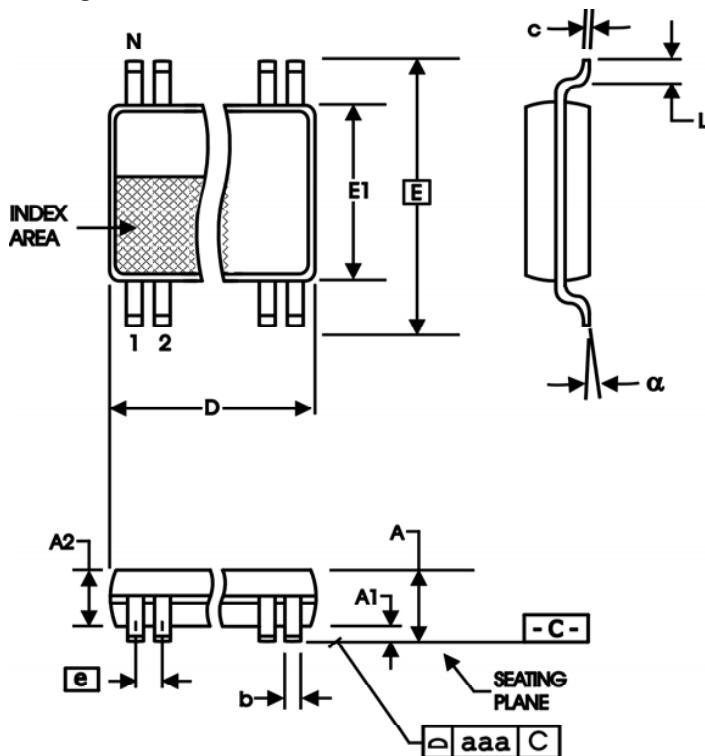
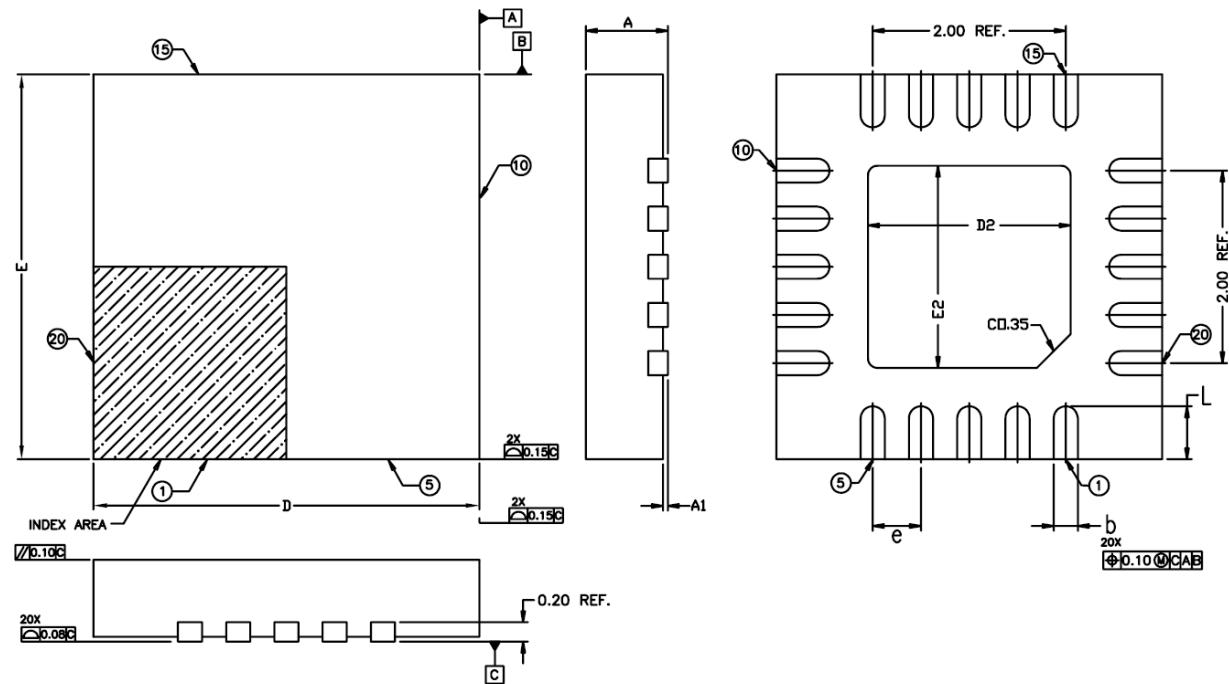


Table 9A. Package Dimensions for 16-Lead TSSOP

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	16	
A		1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	4.90	5.10
E	6.40 Basic	
E1	4.30	4.50
e	0.65 Basic	
L	0.45	0.75
alpha	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153


20-Lead VFQFN Package Outline and Package Dimensions

Package Outline - K Suffix for 20-Lead VFQFN

TOP VIEW

SIDE VIEW

BOTTOM VIEW

Table 9C. Package Dimensions for 20-Lead VFQFN

All Dimensions in Millimeters			
Symbol	Minimum	Nom	Maximum
b	0.20	0.25	0.30
D	3.90	4.00	4.10
E	3.90	4.00	4.10
D2	1.95	2.10	2.25
E2	1.95	2.10	2.25
L	0.45	0.55	0.65
e	0.50 BSC		
N	20		
A	0.80	0.90	1.00
A1	0.00	0.02	0.05
A3	0.2 REF		

Reference Document: JEDEC Publication 95, MO-220

NOTE:

The drawing and dimension data originate from IDT package outline drawing PSC-4170, rev03.

1. Dimensions and tolerances conform to ASME Y14.5M-1994
2. All dimensions are in millimeters. All angles are in degrees.
3. N is the total number of terminals.
4. All specifications comply with JEDEC MO-220.

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
83905AG-01LF	3905A01L	16-Lead TSSOP, Lead-Free	Tube	0°C to 70°C
83905AG-01LFT	3905A01L	16-Lead TSSOP, Lead-Free	Tape & Reel	0°C to 70°C
83905AK-01LF	5A01L	20-Lead VFQFN, Lead-Free	Tray	0°C to 70°C
83905AK-01LFT	5A01L	20-Lead VFQFN, Lead-Free	Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.