
GENERAL DESCRIPTION

The 8430252-45 is a 2 output LVPECL and LVCMS/LVTTL Synthesizer optimized to generate Ethernet reference clock frequencies. Using a 25MHz, 18pF parallel resonant crystal, the following frequencies can be generated: 156.25MHz LVPECL output and, 125MHz LVCMS output. The 8430252-45 uses IDT's 3rd generation low phase noise VCO technology and can achieve 1ps or lower typical rms phase jitter, easily meeting Ethernet jitter requirements. The 8430252-45 is packaged in a small 16-pin TSSOP package.

FEATURES

- One differential 3.3V LVPECL output and One LVCMS/LVTTL output
- Crystal oscillator interface designed for a 25MHz, 18pF parallel resonant crystal
- A 25MHz crystal generates both an output frequency of 156.25MHz (LVPECL) and 125MHz (LVCMS)
- VCO frequency: 625MHz
- RMS phase jitter @ 156.25MHz (1.875MHz - 20MHz) using a 25MHz crystal: 0.39ps (typical)
- Full 3.3V supply mode
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT

OE	1	CLK_EN
V _{EE}	2	V _{EE}
QA	3	QB
V _{CCO_A}	4	nQB
nc	5	V _{CCO_B}
nc	6	XTAL_IN
V _{CCA}	7	XTAL_OUT
V _{CC}	8	V _{EE}

8430252-45
16-Lead TSSOP
4.4mm x 5.0mm x 0.92mm
package body
G Package
Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type		Description
1	OE	Input	Pullup	Output enable pin. LVCMOS/LVTTL interface levels. See Table 3A Function Table.
2, 9, 15	V_{EE}	Power		Negative supply pin.
3	QA	Output		LVCMOS/LVTTL clock output.
4	V_{CCO_A}	Power		Output supply pin for QA output.
5, 6	nc	Unused		No connect.
7	V_{CCA}	Power		Analog supply pin.
8	V_{CC}	Power		Core supply pin.
10, 11	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
12	V_{CCO_B}	Power		Output supply pin for QB, nQB outputs.
13, 14	nQB, QB	Output		Differential clock outputs. LVPECL interface levels.
16	CLK_EN	Input	Pullup	Clock enable pin. LVCMOS/LVTTL interface levels. See Table 3B Function Table.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
C_{PD}	Power Dissipation Capacitance	$V_{CC}, V_{CCA}, V_{CCO_A}, V_{CCO_B} = 3.465V$		18		pF
R_{PULLUP}	Input Pullup Resistor			51		k Ω
R_{OUT}	Output Impedance	QA	$V_{CCO_A} = 3.3V$	20		Ω

TABLE 3A. OE SELECT FUNCTION TABLE

Input	Output
OE	QA
0	Hi-Z
1	Active

TABLE 3B. CLK_EN SELECT FUNCTION TABLE

Input	Outputs	
	QB	nQB
0	Low	High
1	Active	Active

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{cc}	4.6V
Inputs, V_i	-0.5V to $V_{cc} + 0.5V$
Outputs, I_o	
Continuous Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	89°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, $V_{cc} = V_{CCA} = V_{CCO_A} = V_{CCO_B} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{cc}	Core Supply Voltage		3.135	3.3	3.465	V
V_{CCA}	Analog Supply Voltage		$V_{cc} - 0.10$	3.3	V_{cc}	V
V_{CCO_A}, V_{CCO_B}	Output Supply Voltage		3.135	3.3	3.465	V
I_{EE}	Power Supply Current				95	mA
I_{CCA}	Analog Supply Current				10	mA

TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, $V_{cc} = V_{CCA} = V_{CCO_A} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		2		$V_{cc} + 0.3$	V
V_{IL}	Input Low Voltage		-0.3		0.8	V
I_{IH}	Input High Current	OE, CLK_EN	$V_{cc} = V_{IN} = 3.465V$		5	
I_{IL}	Input Low Current	OE, CLK_EN	$V_{cc} = 3.465V, V_{IN} = 0V$	-150		
V_{OH}	Output High Voltage; NOTE 1		2.6			V
V_{OL}	Output Low Voltage; NOTE 1				0.5	V

NOTE 1: Outputs terminated with 50Ω to $V_{CCO_A}/2$. See Parameter Measurement Information Section, "3.3V Output Load Test Circuit".

TABLE 4C. LVPECL DC CHARACTERISTICS, $V_{cc} = V_{CCA} = V_{CCO_B} = 3.3V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

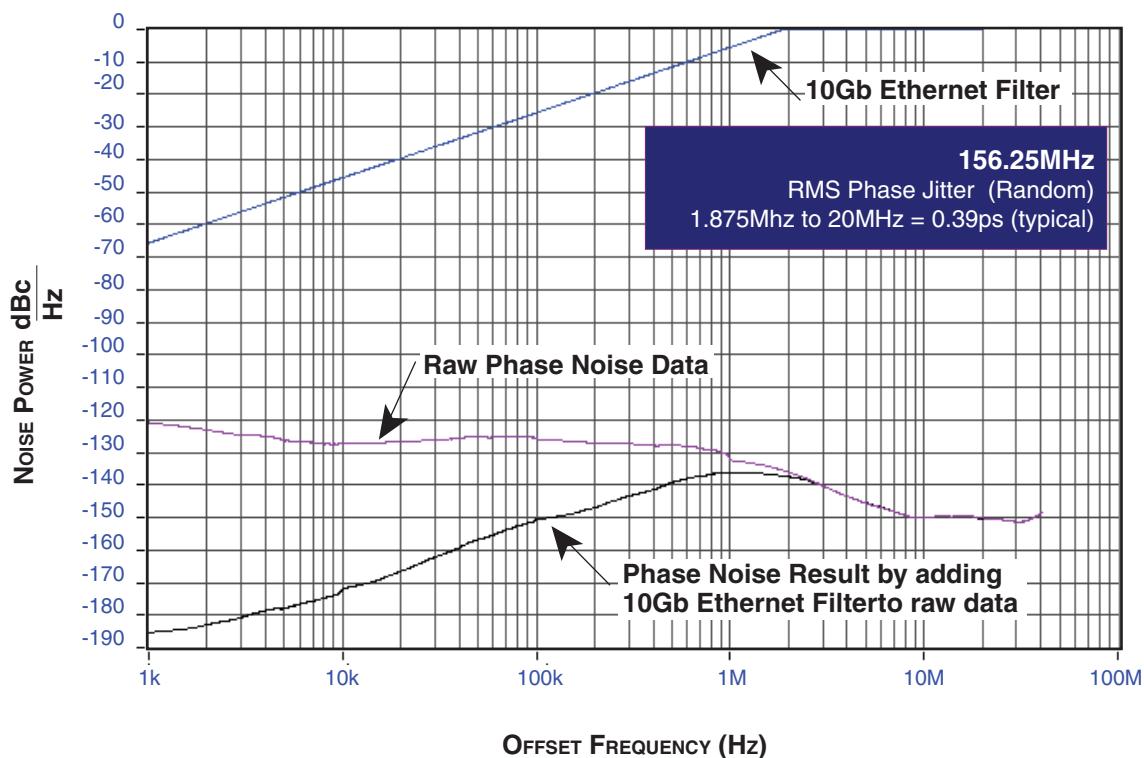
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		$V_{CCO_B} - 1.4$		$V_{CCO_B} - 0.9$	V
V_{OL}	Output Low Voltage; NOTE 1		$V_{CCO_B} - 2.0$		$V_{CCO_B} - 1.7$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50Ω to $V_{CCO_B} - 2V$.

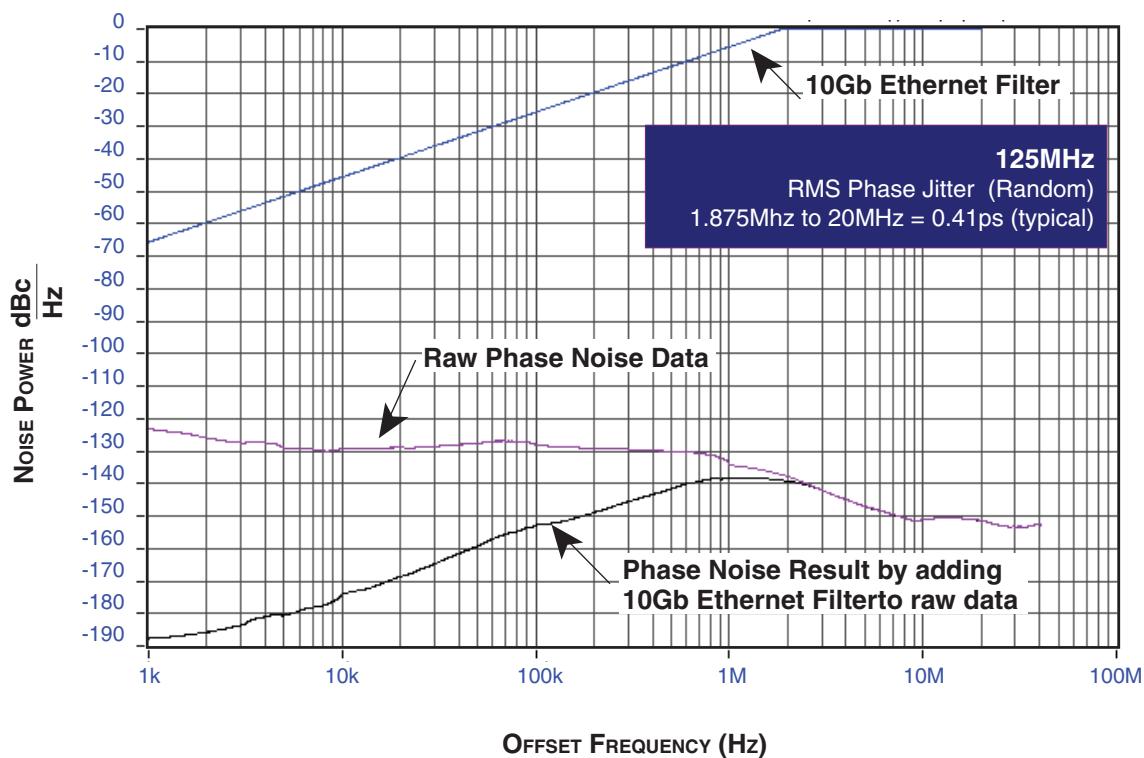
TABLE 5. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

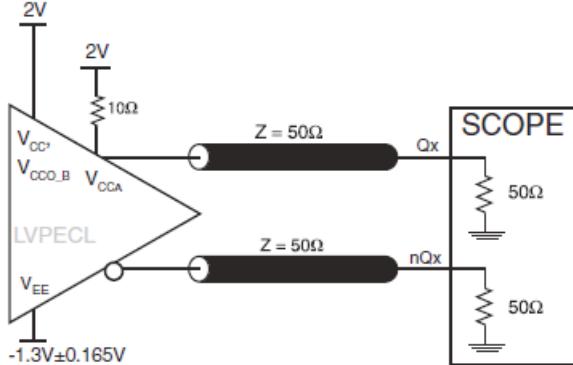
NOTE: Characterized using an 18pF parallel resonant crystal.

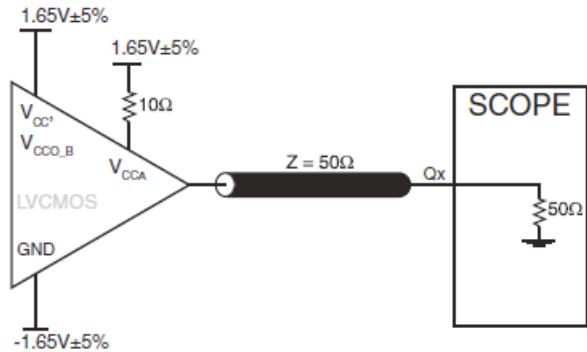

TABLE 6. AC CHARACTERISTICS, $V_{cc} = V_{cca} = V_{cc0_A}$, $V_{cc0_B} = 3.3V \pm 5\%$, TA = 0°C TO 70°C

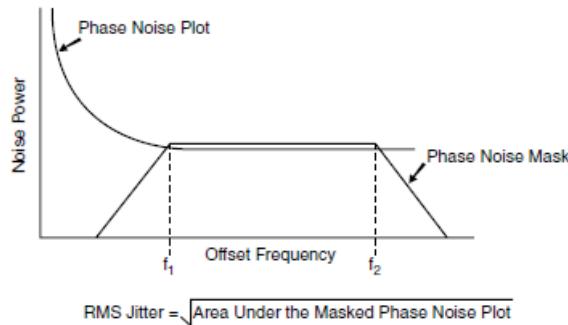
Symbol	Parameter	Test Conditions		Minimum	Typical	Maximum	Units
f_{out}	Output Frequency Range			156.25			MHz
				125			MHz
$t_{jit}(\emptyset)$	RMS Phase Jitter (Random); NOTE 1	QA	125MHz (1.875MHz - 20MHz)		0.41		ps
		QB, nQB	156.25MHz (1.875MHz - 20MHz)		0.39		ps
t_r / t_f	Output Rise/Fall Time	QA	20% to 80%	500		1200	ps
		QB, nQB		300		700	ps
odc	Output Duty Cycle	QA		47		53	%
		QB, nQB		48		52	%

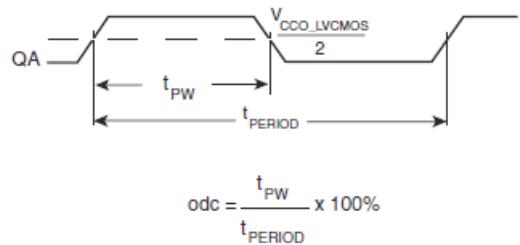

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

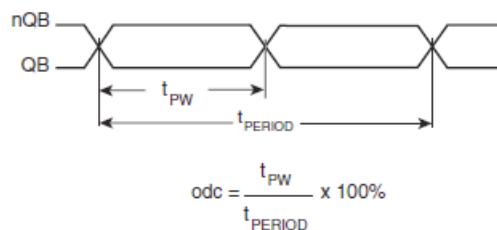
NOTE 1: Please refer to the Phase Noise Plots.

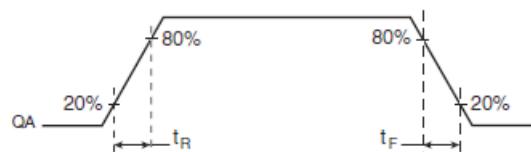

TYPICAL PHASE NOISE AT 156.25MHz

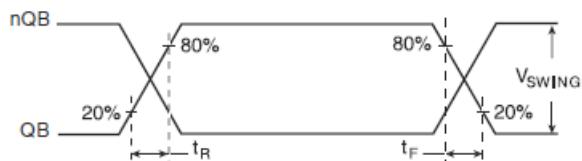

TYPICAL PHASE NOISE AT 125MHz


PARAMETER MEASUREMENT INFORMATION


3.3V CORE/3.3V LVPECL Output Load AC Test Circuit


3.3V CORE/3.3V LVCMOS Output Load AC Test Circuit


RMS Phase Jitter


LVCMOS Output Duty Cycle/Pulse Width/Period

LVPECL Output Duty Cycle/Pulse Width/Period

LVCMOS Output Rise/Fall Time

LVPECL Output Rise/Fall Time

APPLICATION INFORMATION

POWER SUPPLY FILTERING TECHNIQUES

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 8430252-45 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{cc} , V_{CCA} , and $V_{c_{co,x}}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. *Figure 1* illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each V_{CCA} pin.

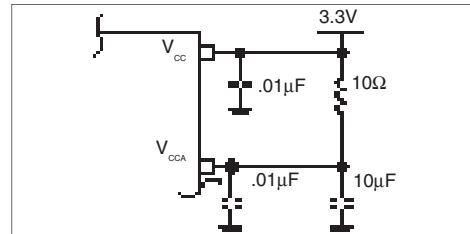


FIGURE 1. POWER SUPPLY FILTERING

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

SELECT PINS:

All select pins have internal pull-ups and pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS:

LVC MOS OUTPUT:

All unused LVC MOS output can be left floating. We recommend that there is no trace attached.

LVPECL OUTPUT

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

CRYSTAL INPUT INTERFACE

The 8430252-45 has been characterized with 18pF parallel resonant crystals. The capacitor values shown in

Figure 2 below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error.

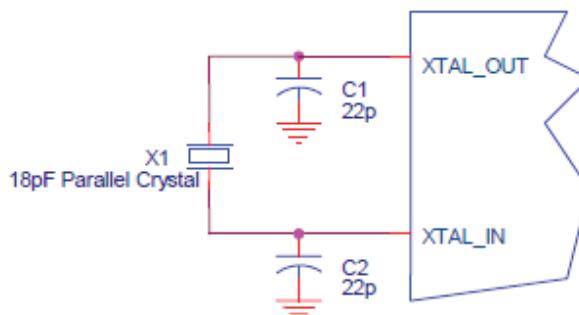


Figure 2. CRYSTAL INPUT INTERFACE

OVER-DRIVING THE CRYSTAL INTERFACE

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 2V/nS. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. *Figure 3A* shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Z_o) and the series resistance (R_s) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R_1 and R_2 in parallel should equal the

transmission line impedance. For most 50Ω applications, R_1 and R_2 can be 100Ω . This can also be accomplished by removing R_1 and changing R_2 to 50Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. *Figure 3B* shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

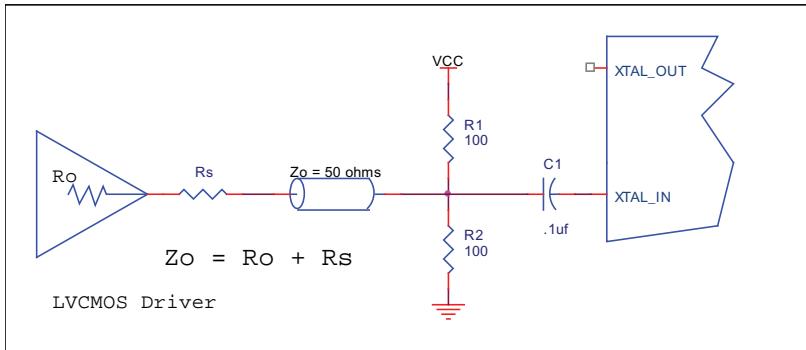
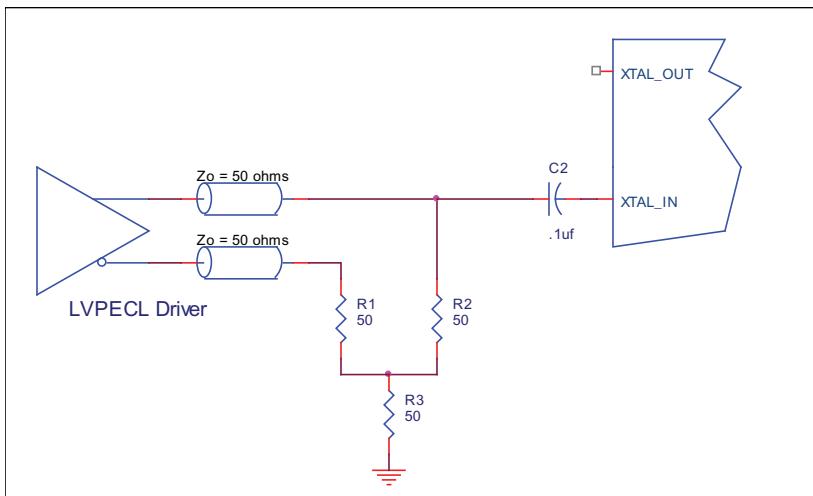
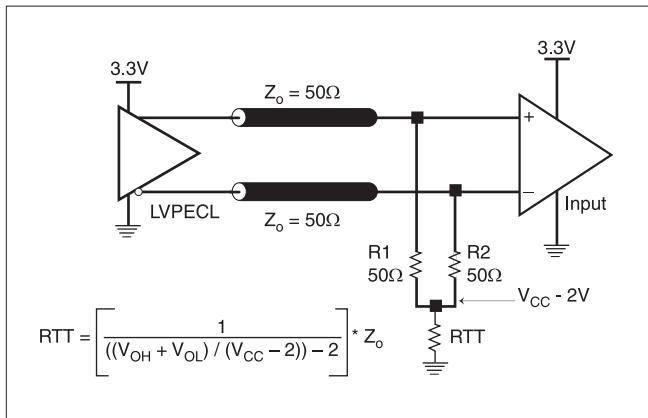
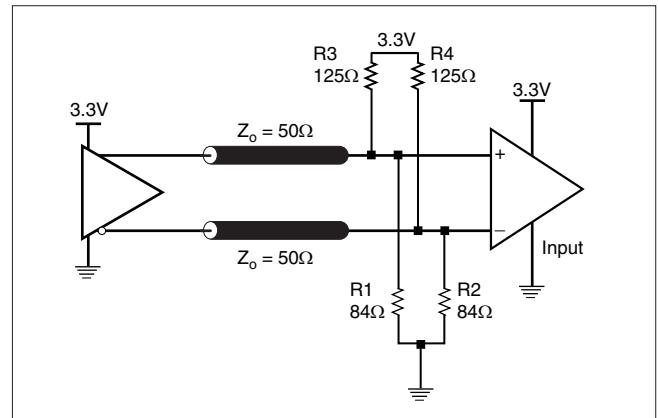


FIGURE 3A. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE




FIGURE 3B. GENERAL DIAGRAM FOR LVPECL DRIVER TO XTAL INPUT INTERFACE

TERMINATION FOR 3.3V LVPECL OUTPUTS


The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω .

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

FIGURE 4A. LVPECL OUTPUT TERMINATION

FIGURE 4B. LVPECL OUTPUT TERMINATION

LAYOUT GUIDELINE

Figure 5 shows an example of 8430252-45 application schematic. In this example, the device is operated at VCC=3.3V. The 18pF parallel resonant 25MHz crystal is used. The C1 = 22pF and C2 = 22pF are recommended for frequency accuracy. For different board layout,

the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. Two examples of LVPECL and one example of LVCMS terminations are shown in this schematic. Additional termination approaches are shown in the LVPECL Termination Application Note.

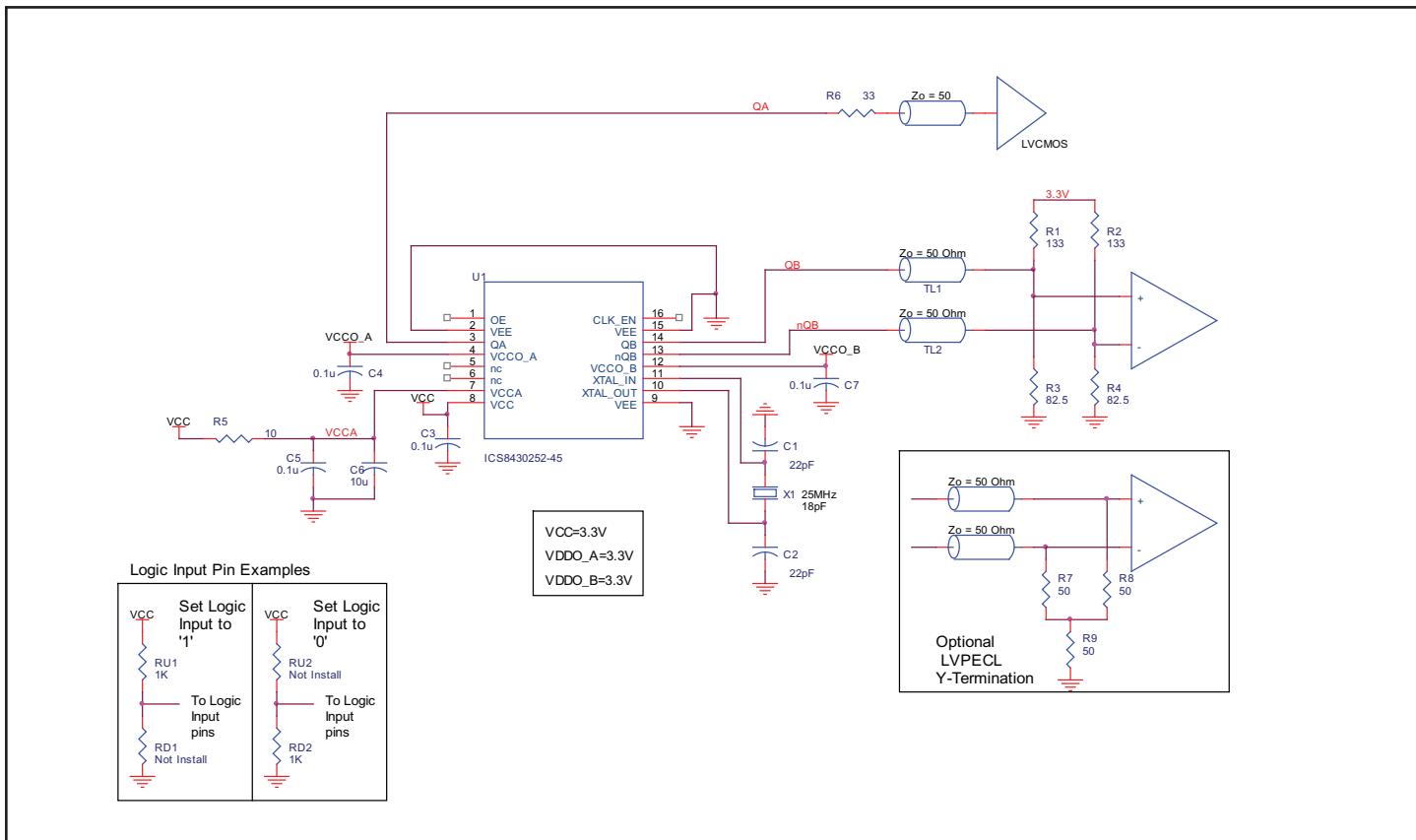


FIGURE 5. 8430252-45 SCHEMATIC EXAMPLE

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 8430252-45. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8430252-45 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{cc} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = $V_{cc,MAX} * I_{EE,MAX} = 3.465V * 95mA = 329.17mW$
(95mA includes the LVC MOS output terminated with 50Ω to $V_{cc}/2$ at 125MHz)
- Power (outputs)_{MAX} = **30mW/Loaded Output pair**

Total Power_{MAX} (3.465V, with all outputs switching) = 329.17mW + 30mW = **359.17mW**

2. Junction Temperature.

Junction temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_j , to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 81.8°C/W per Table 7 below.

Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

70°C + 0.359W * 81.8°C/W = 99.4°C. This is well below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

TABLE 7. THERMAL RESISTANCE θ_{JA} FOR 16-PIN TSSOP, FORCED CONVECTION

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	137.1°C/W	118.2°C/W	106.8°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	89.0°C/W	81.8°C/W	78.1°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in *Figure 6*.

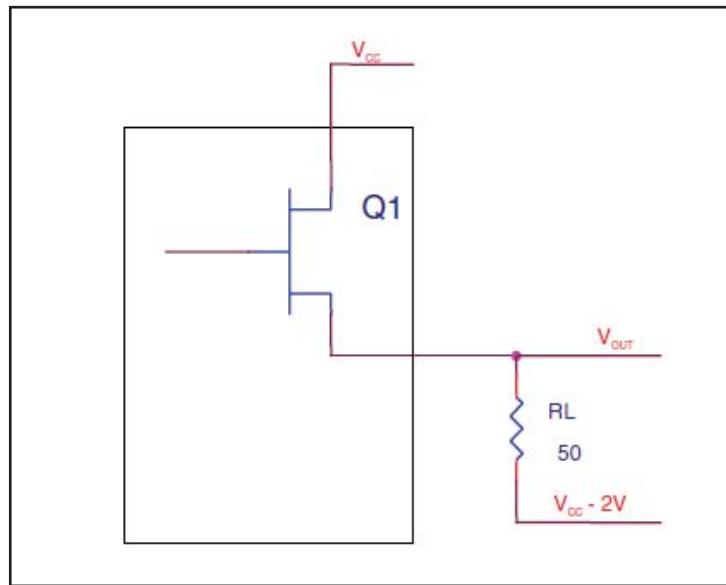


FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{cc} - 2V$.

- For logic high, $V_{out} = V_{oh_{max}} = V_{cc_{max}} - 0.9V$

$$(V_{cc_{max}} - V_{oh_{max}}) = 0.9V$$

- For logic low, $V_{out} = V_{ol_{max}} = V_{cc_{max}} - 1.7V$

$$(V_{cc_{max}} - V_{ol_{max}}) = 1.7V$$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{oh_{max}} - (V_{cc_{max}} - 2V))/R_L] * (V_{cc_{max}} - V_{oh_{max}}) = [(2V - (V_{cc_{max}} - V_{oh_{max}}))/R_L] * (V_{cc_{max}} - V_{oh_{max}}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$Pd_L = [(V_{ol_{max}} - (V_{cc_{max}} - 2V))/R_L] * (V_{cc_{max}} - V_{ol_{max}}) = [(2V - (V_{cc_{max}} - V_{ol_{max}}))/R_L] * (V_{cc_{max}} - V_{ol_{max}}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = $Pd_H + Pd_L = 30mW$

RELIABILITY INFORMATION

TABLE 8. θ_{JA} vs. AIR FLOW TABLE FOR 16 LEAD TSSOP

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	137.1°C/W	118.2°C/W	106.8°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	89.0°C/W	81.8°C/W	78.1°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

TRANSISTOR COUNT

The transistor count for 8430252-45 is: 2070

PACKAGE OUTLINE - G SUFFIX FOR 16 LEAD TSSOP

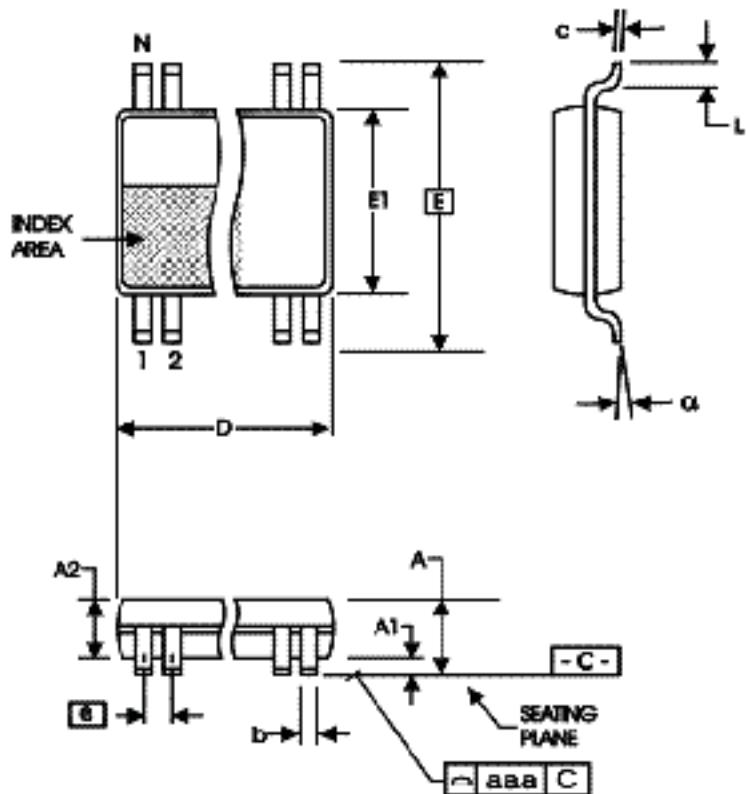


TABLE 9. PACKAGE DIMENSIONS

SYMBOL	Millimeters	
	Minimum	Maximum
N	16	
A	--	1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	4.90	5.10
E	6.40 BASIC	
E1	4.30	4.50
e	0.65 BASIC	
L	0.45	0.75
α	0°	8°
aaa	--	0.10

Reference Document: JEDEC Publication 95, MO-153

TABLE 10. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8430252CG-45LF	0252C45L	16 Lead "Lead-Free" TSSOP	tube	0°C to 70°C
8430252CG-45LFT	0252C45L	16 Lead "Lead-Free" TSSOP	tape & reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

REVISION HISTORY SHEET

Rev	Table	Page	Description of Change	Date
A		9	Added Schematic Layout and Guideline.	10/4/06
A	T6	1 4 8 9 15	General Description - deleted HiperClocks logo and text reference. AC Characteristics Table - added thermal note. Updated Over-Driving the Crystal Interface section. Termination for 3.3V LVPECL Outputs - updated Figures 4A and 4B. Ordering Information Table - deleted ICS prefix in Part/Order column. And deleted tape & reel count in Shipping Packaging column.	2/19/14
A	T10	15	Updated data sheet format. Ordering Information - removed leaded devices.	5/27/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.