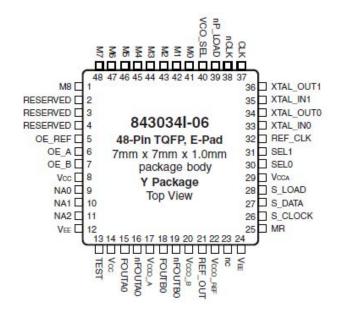
DATA SHEET

GENERAL DESCRIPTION

The 843034I-06 is a general purpose, low phase noise LVPECL synthesizer which can generate frequencies for a wide variety of applications. The 843034I-06 has a 4:1 input multiplexer from which the following inputs can be selected: one differential input, one single-ended input, or one of two crystal oscillators, thus making the device ideal for frequency translation or frequency generation. The 843034I-06 has dual LVPECL outputs that may be programmed for $\div 2$, $\div 4$ or $\div 5$ of the VCO frequency. The 843034I-06 also supplies a buffered copy of the reference clock or crystal frequency on the single-ended REF_OUT pin which can be enabled or disabled (disabled by default). The output frequency can be programmed using either a serial or parallel programming interface. This device supports Spread Spectrum Clocking (SSC) for EMI reduction.


FEATURES

- Dual differential 3.3V LVPECL outputs
- 4:1 Input Mux:
 One differential input
 One single-ended input
 Two crystal oscillator interfaces
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL
- Output frequency range: 120MHz to 375MHz
- Crystal input frequency range: 12MHz to 40MHz
- VCO range: 600MHz to 750MHz
- Supports Spread Spectrum Clocking (SSC)
- Parallel or serial interface for programming feedback divider and output dividers
- RMS phase jitter at 166.6MHz, using a 22.222MHz crystal (12kHz to 30MHz): 1.33ps (typical), SSC - Off
- 3.3V supply mode
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package
- Use functional replacement part 8t49N241-dddNLGI

BLOCK DIAGRAM

OE_A Pullup VCO SEL Pullup 011 100 XTAL INO ou<u>r</u>o<u></u>€ FOUTA0 ≥_nFOUTA0 XTAL_IN1 XTAL OUT 1 Phase CLK Pullup Detector nCLK Pullup/Pulldo FOUTB0 REF_CLK Pulldown nFOUTB0 SEL1 Pulldown SELO Pulldown OE_B Pullup VCCO REF MR Pulldown REF_OUT OE_REF Pulldown S_LOAD Pulldown S_DATA Pulldown TEST Configuration S CLOCK Pulldown Interface nP_LOAD Pulldown Logic M8:M0 M0:M4 M6:M8 Pulldown, M5 Pullup NA2:NA0 NA2 Pulldown, NA1:0 Pullup

PIN ASSIGNMENT

FUNCTIONAL DESCRIPTION

NOTE: The functional description that follows describes operation using a 22.22MHz crystal. Valid PLL loop divider values for different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 6, NOTE 1.

The 843034I-06 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. A fundamental crystal is used as the input to the onchip oscillator. The output of the oscillator is fed into the phase detector. A 22.22MHz crystal provides a 22.22MHz phase detector reference frequency. The VCO of the PLL operates over a range of 600MHz to 750MHz. The output of the M divider is also applied to the phase detector.

The phase detector and the M divider force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50% output duty cycle.

The 843034I-06 supports either serial or parallel programming modes to program the M feedback divider and N output divider. *Figure 1* shows the timing diagram for each mode. In parallel mode, the nP_LOAD input is initially LOW. The data on the M and NA inputs are passed directly to the M divider and N output dividers. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M and N dividers remain loaded until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M and NA bits can be hardwired to set the M divider and NA output divider to a specific default state that

will automatically occur during power-up. The TEST output is LOW when operating in the parallel input mode. The relationship between the VCO frequency, the crystal frequency and the M divider is defined as follows: $fVCO = fxtal \times M$

The M value and the required values of M0 through M8 are shown in Table 4B to program the VCO Frequency Function Table. Valid M values for which the PLL will achieve lock for a 22.22MHz reference are defined as $26 \le M \le 33$. The frequency out is defined as follows:

$$FOUT = \frac{fVCO}{N} = \frac{fxtal \times M}{N}$$

Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and NA output divider when S_LOAD transitions from LOW-to-HIGH. The M divide and NA output divide values are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and NA output divider on each rising edge of S_CLOCK. The serial mode can be used to program the M and NA bits and test bits T1 and T0. The internal registers T0 and T1 determine the state of the TEST output as follows:

TO TEST Output	<u>T0</u>	<u>T1</u>
0 LOW	0	0
1 S_Data, Shift Register Outpo	1	0
0 Output of M divider	0	1
1 Same frequency as FOUTA	1	1

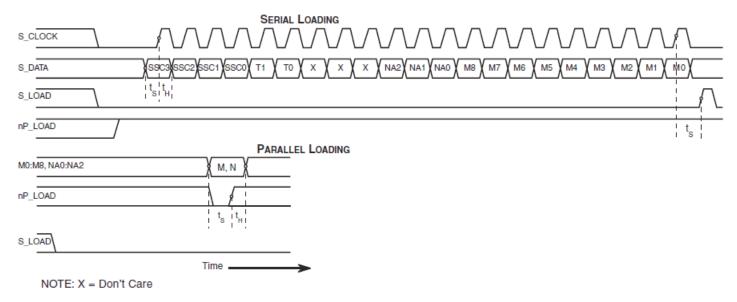


FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS

TABLE 1. SSM OPERATION

	SS Bit	Pattern		Oper	ation
SS3	SS2	SS1	SS0	Mode	%
0	0	0	0	off	0
0	0	0	1	center	±0.25
0	0	1	0	center	±0.25
0	0	1	1	center	±0.85
0	1	0	0	center	±0.85
0	1	0	1	center	±1.45
0	1	1	0	center	±1.45
0	1	1	1	center	±1.7
1	0	0	0	off	0
1	0	0	1	down	-0.25
1	0	1	0	down	-0.25
1	0	1	1	down	-0.75
1	1	0	0	down	-0.75
1	1	0	1	down	-1.25
1	1	1	0	down	-1.25
1	1	1	1	down	-1.5

NOTE: SS modulation frequency is approximately 32kHz using reference frequency of 22.22MHz, providing a VCO frequency of 666.66MHz.

SPREAD SPECTRUM MODULATION

The 843034I-06 offers the option of a spread spectrum modulated output clock. The spread spectrum is controlled via 4 bits in the serial bit stream. These four bits configure the SSM to be enabled and the amount of spread modulation to be selected. See *Table 1* for the definition of the four bits. The four bits are added at the beginning of the serial data stream and are labeled SS3, SS2, SS1

and SS0. The initial state of SS3, SS2, SS1 and SS0 is 0, 0, 0, 0 which places the 843034I-06 in the mode of spread spectrum off. Additionally, a parallel load will result in spread spectrum modulation being off. The 843034I-06 offers down-spread or center-spread using triangle-wave modulation. NOTE: PLL operation not guaranteed for M >31 when using center spread.

POWER-UP OPERATION

The 843034I-06 has internal power–up reset circuitry that initiates the phase lock loop to automatically acquire lock on power-up. On power-up the M/N values for the feedback and output dividers will be acquired from the M and N pins if nP_Load is held Low. If nP_Load is High during power-up, M/N values are indeterminate. The M/N values may be changed by either changing the values on the M/N pins when nP_LOAD is low or with a serial load when nP_LOAD is high and S_LOAD is low.

MR PIN OPERATION

Any time there is a change in the input frequency, either due to an external change or a change in the SEL pins, the MR pin must go high and low to relock to the new input frequency. A change in the M feedback divider by either a serial or parallel load will also cause a relock to the new input frequency.

TABLE 2. PIN DESCRIPTIONS

Number	Name	Ту	ре	Description
1, 41, 42, 43, 44, 45, 47, 48	M8, M0, M1, M2, M3, M4, M6, M7	Input	Pulldown	M divider input. Data latched on LOW-to-HIGH transition of nP_LOAD input. LVCMOS/LVTTL interface levels.
2, 3, 4	RESERVED	Reserve		Reserved pins. Do not connect.
5	OE_REF	Input	Pulldown	Output enable. Controls enabling and disabling of REF_OUT output. LVCMOS/LVTTL interface levels.
6	OE_A	Input	Pullup	Output enable. Controls enabling and disabling of FOUTA0, nFOUTA0 outputs. LVCMOS/LVTTL interface levels.
7	OE_B	Input	Pullup	Output enable. Controls enabling and disabling of FOUTB0, nFOUTB0 outputs. LVCMOS/LVTTL interface levels.
8, 14	V _{cc}	Power		Core supply pins.
9, 10	NA0, NA1	Input	Pullup	Determines output divider value as defined in Table 4C,
11	NA2	Input	Pulldown	Function Table. LVCMOS/LVTTL interface levels.
12, 24	V _{EE}	Power		Negative supply pins.
13	TEST	Output		Test output which is ACTIVE in the serial mode of operation. Output driven LOW in parallel mode. LVCMOS/LVTTL interface levels.
15, 16	FOUTA0, nFOU- TA0	Output		Differential output for the synthesizer. LVPECL interface levels.
17	V _{CCO A}	Power		Output supply pin for FOUTA0, nFOUTA0.
18, 19	FOUTB0, nFOUTB0	Output		Differential output for the synthesizer. LVPECL interface levels.
20	V _{CCO_B}	Power		Output supply pin for FOUTB0, nFOUTB0.
21	REF_OUT	Output		Reference clock output. LVCMOS/LVTTL interface levels.
22	V _{CCO_REF}	Power		Output supply pin for REF_OUT output.
23	nc	Unused		No connect.
25	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, forces the internal PLL to a reset condition which holds the VCO at the minumum value. When logic LOW, the internal dividers and the outputs are enabled. Assertion of MR does not affect loaded M, N, S and T values. LVCMOS/LVTTL interface levels.
26	S_CLOCK	Input	Pulldown	Clocks in serial data present at S_DATA input into the shift register on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.
27	S_DATA	Input	Pulldown	Shift register serial input. Data sampled on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.
28	S_LOAD	Input	Pulldown	Controls transition of data from shift register into the dividers. LVC-MOS/LVTTL interface levels.
29	V _{CCA}	Power		Analog supply pin.
30, 31	SEL0, SEL1	Input	Pulldown	Clock select inputs. LVCMOS/LVTTL interface levels.
32	REF_CLK	Input	Pulldown	Reference clock input. LVCMOS/LVTTL interface levels.
33, 34	XTAL_IN0, XTAL_OUT0	Input		Crystal oscillator interface. XTAL_IN0 is the input, XTAL_OUT0 is the output.
35, 36	XTAL_IN1, XTAL_OUT1	Input		Crystal oscillator interface. XTAL_IN1 is the input, XTAL_OUT1 is the output.

Continued on next page...

TABLE 2. PIN DESCRIPTIONS, CONTINUED

Number	Name	1	Туре	Description
37	CLK	Input	Pulldown	Non-inverting differential clock input.
38	nCLK	Input	Pullup/ Pulldown	Inverting differential clock input.V _{cc} /2 default when left floating.
39	nP_LOAD	Input	Pulldown	Parallel load input. Determines when data present at M8:M0 is loaded into M divider, and when data present at NA2:NA0 is loaded into the N output dividers. LVCMOS/LVTTL interface levels.
40	VCO_SEL	Input	Pullup	Determines whether synthesizer is in PLL or bypass mode. LVCMOS/LVTTL interface levels.
46	M5	Input	Pullup	M divider input. Data latched on LOW-to-HIGH transition of nP_LOAD input. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 3, Pin Characteristics, for typical values.

TABLE 3. PIN CHARACTERISTICS

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
C	Input Capacitance				4		pF
R	Input Pullup Resistor	'			51		kΩ
R	Input Pulldown Resistor				51		kΩ
R _{out}	Output Impedance	REF_OUT		5	7	12	Ω

TABLE 4A. PARALLEL AND SERIAL MODE FUNCTION TABLE

			In	puts			Conditions
MR	nP_LOAD	М	N	S_LOAD	S_CLOCK	S_DATA	Conditions
Н	Х	Х	Х	Х	Х	Х	Reset the PLL.
L	L	Data	Data	Х	Х	х	Data on M and N inputs passed directly to the M divider and N output divider. TEST output forced LOW.
L	1	Data	Data	L	Х	Х	Data is latched into input registers and remains loaded until next LOW transition or until a serial event occurs.
L	Н	Х	Х	L	1	Data	Serial input mode. Shift register is loaded with data on S_DATA on each rising edge of S_CLOCK.
L	Н	Х	Х	1	L	Data	Contents of the shift register are passed to the M divider and N output divider.
L	Н	Х	Х	\	L	Data	M divider and N output divider values are latched.
L	Н	Х	Х	L	Х	Х	Parallel or serial input do not affect shift registers.
L	Н	Х	Х	Н	1	Data	S_DATA passed directly to M divider as it is clocked.

NOTE: L = LOW

H = HIGH

X = Don't care

 \uparrow = Rising edge transition \downarrow = Falling edge transition

TABLE 4B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE

VCO Frequency	M Divido	256	128	64	32	16	8	4	2	1
(MHz)	M Divide	M8	М7	М6	M5	M4	М3	M2	M1	МО
600	27	0	0	0	0	1	1	0	1	0
•	•	•	•	•	•	•	•	•	•	•
666.6	30	0	0	0	0	1	1	1	1	0
•	•	•	•	•	•	•	•	•	•	•
711.04 (default)	32	0	0	0	1	0	0	0	0	0
733.3	33	0	0	0	1	0	0	0	0	1

NOTE 1: These M divide values and the resulting frequencies correspond to crystal, CLK, or REF_CLK input frequency of 22.22MHz.

TABLE 4C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE

	Inputs		N Divider Value	Output Freq	uency (MHz)
*NA2	*NA1	*NA0	N Divider value	Minimum	Maximum
0	0	1	2	300	375
0	1	1	4	150	187.5 (default)
1	0	0	5	120	150

*NOTE: Programming for Bank A and Bank B.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V 4.6V

Inputs, V_{cc} -0.5V to V_{cc} + 0.5V

Outputs, V_{\odot} (LVCMOS) -0.5V to $V_{\odot} + 0.5V$

Outputs, I (LVPECL)

Continuous Current 50mA Surge Current 100mA

Package Thermal Impedance, $\theta_{_{\rm JA}}$ 29°C/W (0 mps) Storage Temperature, T $_{_{\rm STG}}$ -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 5A. Power Supply DC Characteristics, $V_{cc} = V_{cco,a} = V_{cco,b} = V_{cco,b} = 3.3V \pm 5\%$, $V_{ee} = 0V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		V _{cc} -0.17	3.3	V _{cc}	V
V CCO_A, V CCO_B, V	Output Supply Voltage		3.135	3.3	3.465	V
 EE	Power Supply Current				176	mA
I _{CCA}	Analog Supply Current				17	mA

Table 5B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = V_{CCO, REF} = 3.3V \pm 5\%$, $V_{EF} = 0V$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Vol	tage		2		V _{cc} + 0.3	V
V	Input Low Volt	age		-0.3		0.8	V
Inp	Input High Current	REF_CLK, MR, SEL[1:0], OE_REF, S_CLOCK, S_DATA, S_LOAD, nP_LOAD, NA2, M1:M4, M6:M8	V _{cc} = V _{IN} = 3.465V			150	μА
		OE_A, M5, OE_B, VCO_SEL, NA0, NA1	V _{cc} = V _{IN} = 3.465V			5	μА
11 1	Input Low Current	REF_CLK, MR, SEL[1:0], OE_REF, S_CLOCK, S_DATA, S_LOAD, nP_LOAD, NA2, M1:M4, M6:M8	V _{cc} = 3.465V, V _{IN} = 0V	-5			μА
		OE_A, M5, OE_B, VCO_SEL, NA0, NA1	V _{cc} = 3.465V, V _{IN} = 0V	-150			μА
V	Output	TEST; NOTE 1	\/ _ 2 2\/ \ 59/	2.6			V
V _{OH}	High Voltage	REF_OUT	$V_{\text{CCO_REF}} = 3.3\text{V}\pm5\%$	V _{CCO_REF} - 0.3V			V
V	Output	TEST; NOTE 1	V - 3 3V+5%			0.5	V
V _{OL}		REF_OUT	$V_{\text{CCO_REF}} = 3.3\text{V}\pm5\%$			0.4	V

NOTE 1: Outputs terminated with 50 Ω to V_{cco.}/2. See *Parameter Measurement Information Section*, "Output Load Test Circuit Diagrams.

Table 5C. Differential DC Characteristics, $V_{cc} = V_{cco,a} = V_{cco,b} = 3.3V \pm 5\%$, $V_{ee} = 0V$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	nCLK	V _{IN} = V _{CC} = 3.465V			150	μA
IH		CLK	$V_{_{IN}} = V_{_{CC}} = 3.465V$			150	μA
	Input Low Current	nCLK	$V_{_{IN}} = 0V, V_{_{CC}} = 3.465V$	-150			μA
I _{IL}		CLK	$V_{IN} = 0V, V_{CC} = 3.465V$	-5			μA
V	Peak-to-Peak Input Voltage; NOTE 1			0.15		1.3	V
V _{CMR}	Common Mode Inpu	ıt Voltage; NOTE 1, 2		V _{EE} + 0.5		V _{cc} - 0.85	V

NOTE 1: V should not be less than -0.3V.

NOTE 2: Common mode voltage is defined as V_{...}.

 $\textbf{Table 5D. LVPECL DC Characteristics, V}_{\text{cc}} = V_{\text{cco},\text{A}} = V_{\text{cco},\text{B}} = 3.3 \text{V} \pm 5\%, \text{ V}_{\text{ee}} = 0\text{V, Ta} = -40 ^{\circ}\text{C to } 85 ^{\circ}\text{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cco} - 1.4		V _{cco} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{cco} - 2.0		V _{cco} - 1.7	V
V	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50Ω to $~V_{_{\text{CCO_A},}}~V_{_{\text{CCO_B}}}$ - 2V.

Table 6. Input Frequency Characteristics, $V_{cc} = V_{cco_a} = V_{cco_b} = 3.3V \pm 5\%$, $V_{ee} = 0V$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{.N}	Input Frequency	XTAL_IN0/XTAL_OUT0, XTAL_IN1/XTAL_OUT1		12		40	MHz
		CLK/nCLK, REF_CLK		12		40	MHz
		S_CLOCK				50	MHz

NOTE: For the input crystal, CLK/nCLK and REF_CLK frequency range, the M value must be set for the VCO to operate within the 600MHz to 750MHz range. Using the minimum input frequency of 12MHz, valid values of M are $50 \le M \le 62$. Using the maximum frequency of 40MHz, valid values of M are $15 \le M \le 18$.

Table 7. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		12		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

 $\textbf{Table 8. AC Characteristics, V}_{\text{CC}} = V_{\text{CCO}_A} = V_{\text{CCO}_REF} = V_{\text{CCO}_REF} = 3.3V \pm 5\%, V_{\text{ee}} = 0V, TA = -40^{\circ}C \text{ to } 85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
FOUT	Output Frequency			120		375	MHz
tjit(Ø)	Phase Jitter, RMS (Random), SSC-Off NOTE 1, 2		166.6MHz, Integration Range: 12kHz - 30MHz		1.33		ps
tjit(cc)	Cycle-to-Cycle Jitter; NOTE 2, 3, 4					35	ps
tsk(o)	Output Skew; NOTE 2, 4, 5					120	ps
tR / tF	Output Rise/Fall Time	LVPECL Outputs	20% to 80%	200		700	ps
	Setup Time	M, N to nP_LOAD		5			ns
tS		S_DATA to S_CLOCK		5			ns
		S_CLOCK to S_LOAD		5			ns
		M, N to nP_LOAD		5			ns
tH	Hold Time	S_DATA to S_CLOCK		5			ns
		S_CLOCK to S_LOAD		5			ns
odc	Output Duty Cycle		N = 4 or N = 5	48		52	%
			N = 2	45		55	%
tLOCK	PLL Lock Time					100	ms

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

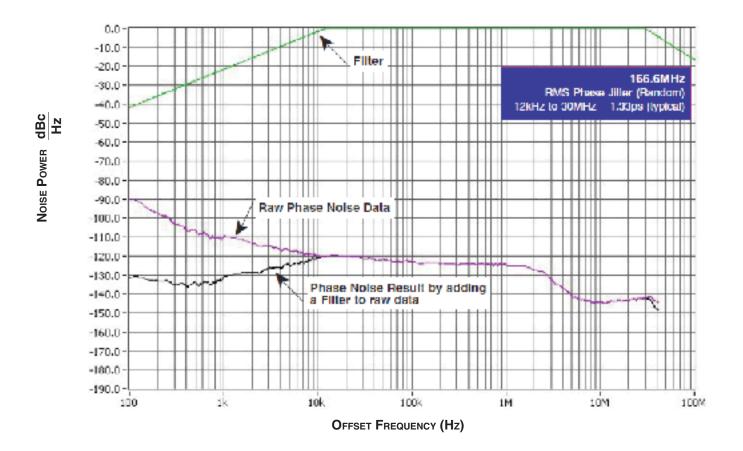
NOTE: Characterized using a 22.22MHz crystal producing a VCO frequency of 666.66MHz, unless otherwise noted.

NOTE: See Parameter Measurement Information section.

NOTE 1: Please refer to the Phase Noise Plot.

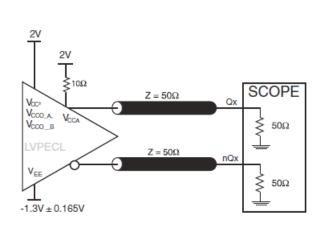
NOTE 2: Characterized with REF_OUT output disabled.

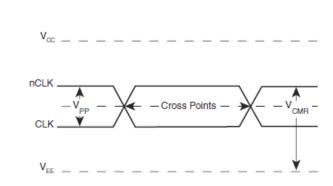
NOTE 3: Jitter performance using XTAL inputs.

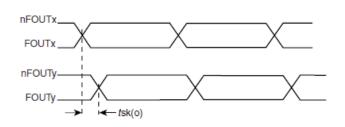

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 5: Defined as skew between outputs at the same supply voltage and with equal load conditions.

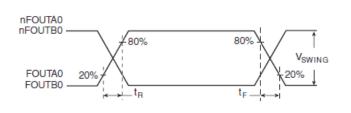
Measured at the output differential cross points.

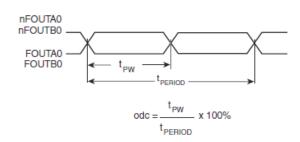



Typical Phase Noise at 166.6MHz


PARAMETER MEASUREMENT INFORMATION

3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVELS



OUTPUT SKEW

CYCLE-TO-CYCLE JITTER

LVPECL OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/OUTPUT PULSE WIDTH/PERIOD

APPLICATION INFORMATION

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 843034I-06 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm cc}$, $V_{\rm cca}$ and $V_{\rm cco,x}$ should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 2 illustrates this for a generic $V_{\rm cc}$ pin and also shows that $V_{\rm cca}$ requires that an additional10 Ω resistor along with a 10µF bypass capacitor be connected to the $V_{\rm cca}$ pin.

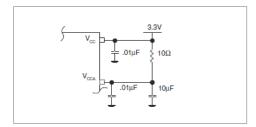


FIGURE 2. POWER SUPPLY FILTERING

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS/LVTTL LEVELS

Figure 3 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{cc}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V $_{\rm cc}$ = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

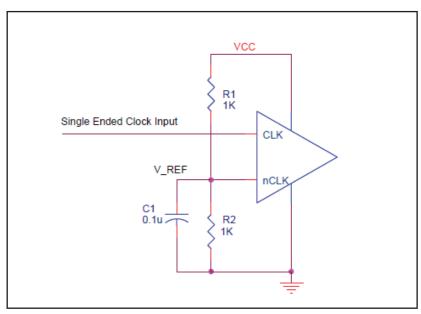


FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both $V_{\mbox{\tiny SWING}}$ and $V_{\mbox{\tiny OH}}$ must meet the $V_{\mbox{\tiny PP}}$ and V_{CMR} input requirements. Figures 4A to 4F show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only.

Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 4A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

3.3V

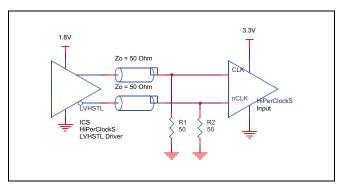
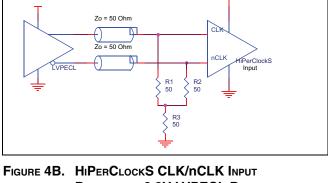



FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY AN IDT OPEN EMITTER HIPERCLOCKS LVHSTL DRIVER

DRIVEN BY A 3.3V LVPECL DRIVER

3.3V

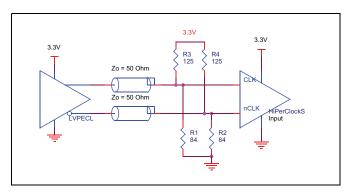


FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

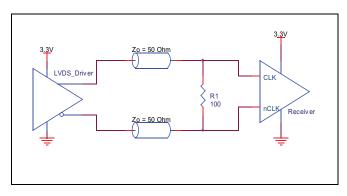


FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

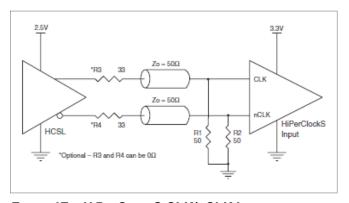


FIGURE 4E. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY A 3.3V HCSL DRIVER

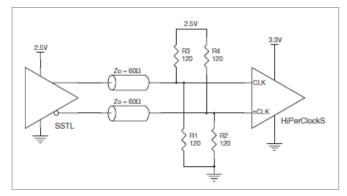


FIGURE 4F. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY A 2.5V SSTL DRIVER

CRYSTAL INPUT INTERFACE

The 843034I-06 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 5* below were determined using a 18pF parallel resonant crystal and were

chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

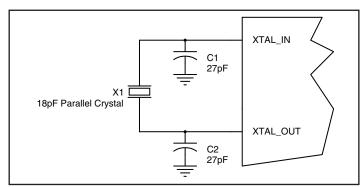


FIGURE 5. CRYSTAL INPUT INTERFACE

LVCMOS TO XTAL INTERFACE

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 6*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS signals, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be $100\Omega.$ This can also be accomplished by removing R1 and making R2 $50\Omega.$

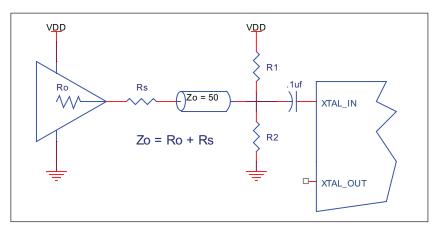


FIGURE 6. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CRYSTAL INPUTS

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

CLK/nCLK INPUTS

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

REF_CLK INPUT

For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the REF_CLK to ground.

LVCMOS CONTROL PINS

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS:

LVCMOS OUTPUTS

All unused LVCMOS output can be left floating. We recommend that there is no trace attached.

LVPECL OUTPUTS

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

TERMINATION FOR 3.3V LVPECL OUTPUTS

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 7A and 7B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.



FIGURE 7A. LVPECL OUTPUT TERMINATION

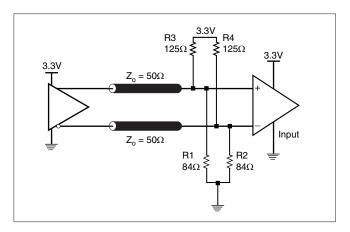


FIGURE 7B. LVPECL OUTPUT TERMINATION

EPAD THERMAL RELEASE PATH

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 8*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/ shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application

specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

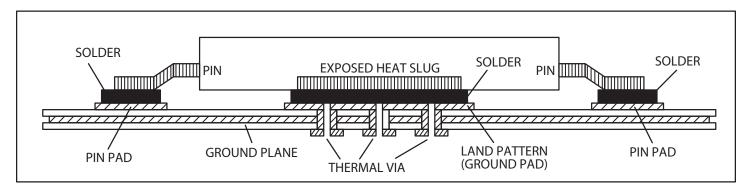


FIGURE 8. ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH -SIDE VIEW (DRAWING NOT TO SCALE)

APPLICATION SCHEMATIC EXAMPLE

Figure 9 shows an example of 843034I-06 application schematic. In this example, the device is operated at $V_{cc} = V_{cco} = 3.3V$. The device are be driven by a crystal, LVCMOS or LVPECL input sources. The 18pF parallel resonant 25MHz crystal is used. The C1 = 27pF and C2 = 27pF are recommended for frequency accuracy. For different board

layout, the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. For the LVPECL output drivers, only two termination examples are shown in this schematic. Additional termination approaches are shown in the LVPECL Termination Application Note.

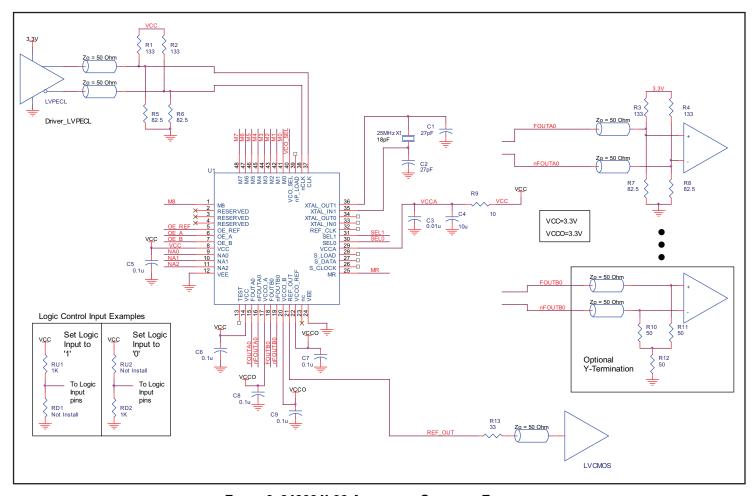


FIGURE 9. 843034I-06 APPLICATION SCHEMATIC EXAMPLE

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 843034I-06. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 843034I-06 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{cc} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

Core and LVPECL Output Power Dissipation

- Power (core)_{MAX} = $V_{CC,MAX} * I_{EE,MAX} = 3.465V * 176mA = 609.84mW$
- Power (outputs) = 30mW/Loaded Output pair
 If all outputs are loaded, the total power is 2 * 30mW = 60mW

LVCMOS Output Power Dissipation

- Output Impedance R_{out} Power Dissipation due to Loading 50Ω to $V_{cco_REF}/2$ Output Current $I_{out} = V_{cco_MAX} / [2 * (50\Omega + R_{out})] = 3.465 V / [2 * (50\Omega + 7\Omega] = 30.4 mA$
- Power Dissipation on the R_{out} per LVCMOS output Power (R_{out}) = R_{out} * (I_{out})² = 7Ω * (30.4mA)² = **6.97mW per output**

Total Power Dissipation

- Total Power
 - = Power (LVPECL) + Power (R___)
 - = 609.84mW + 60mW + 6.47mW
 - = 676.31mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS™ devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 29°C/W per Table 9 below.

Therefore, Tj for an ambient temperature of 85° C with all outputs switching is: 85° C + 0.676W * 29° C/W = 104.6° C. This is below the limit of 125° C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 9. Thermal Resistance θ_{JA} for 48-Lead TQFP, E-Pad Forced Convection

θ _{JA} by Velocity (Meters per Second)					
Multi-Layer PCB, JEDEC Standard Test Boards	0 29°C/W	1 22.6°C/W	2.5 21.1°C/W		
-					

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 10.

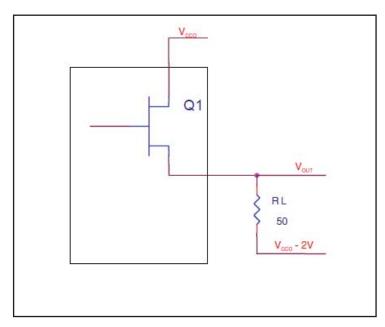


FIGURE 10. LVPECL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{cco} – 2V.

• For logic high,
$$V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$$

$$(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$$

• For logic low, $V_{OUT} = V_{OL MAX} = V_{CCO MAX} - 1.7V$

$$(V_{CCO\ MAX} - V_{OL\ MAX}) = 1.7V$$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{\text{OH_MAX}} - (V_{\text{CCO_MAX}} - 2V))/R_{\text{L}}] * (V_{\text{CCO_MAX}} - V_{\text{OH_MAX}}) = [(2V - (V_{\text{CCO_MAX}} - V_{\text{OH_MAX}}))/R_{\text{L}}] * (V_{\text{CCO_MAX}} - V_{\text{OH_MAX}}) = [(2V - 0.9V)/50\Omega] * 0.9V = \textbf{19.8mW}$$

$$Pd_L = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

RELIABILITY INFORMATION

Table 10. $\theta_{_{JA}} vs.$ Air Flow Table for 48 Lead TQFP, E-Pad

 $\theta_{\mbox{\tiny JA}}$ by Velocity (Meters per Second)

0 1 2.5

Multi-Layer PCB, JEDEC Standard Test Boards 29°C/W 22.6°C/W 21.1°C/W

TRANSISTOR COUNT

The transistor count for 843034I-06 is: 7846

PACKAGE OUTLINE - Y SUFFIX FOR 48 LEAD TQFP, EPAD

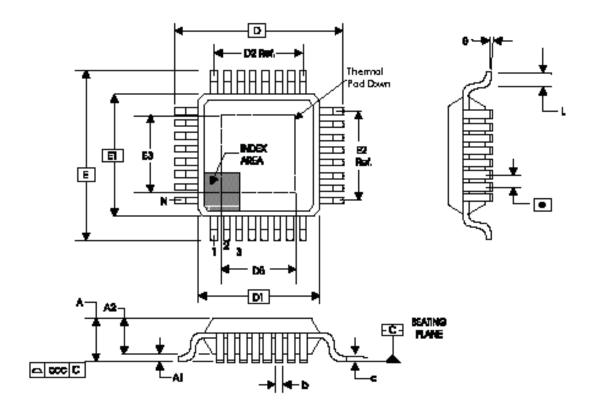


TABLE 11. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS						
SYMBOL	ABC - HD					
SYMBOL	MINIMUM	NOMINAL	MAXIMUM			
N		48				
Α			1.20			
A1	0.05		0.15			
A2	0.95	1.00	1.05			
b	0.17	0.22	0.27			
С	0.09		0.20			
D/E		9.00 BASIC				
D1/E1		7.00 BASIC				
D2/E2	5.50 BASIC					
е	0.5 BASIC					
L	0.45	0.60	0.75			
θ	0°		7°			
ccc	0.08					
D3 & E3	3.5 4.0 4.5					

Reference Document: JEDEC Publication 95, MS-026

Table 12. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843034EYI-06LF	ICS3034EI06L	48 Lead "Lead-Free" TQFP, E-Pad	tray	-40°C to 85°C
843034EYI-06LFT	ICS3034EI06L	48 Lead "Lead-Free" TQFP, E-Pad	tape & reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

	REVISION HISTORY SHEET						
Rev	Table	Page	Description of Change	Date			
Α	F9	17	Added Applications Schematic.	1/5/09			
Α	9	19	Thermal Resistance Table - corrected package.	1/26/09			
В	T4B T4C T6 T8	1 6 6 8 9	Features Section - changed min. VCO from 560MHz to 600MHz. Changed min. output frequency from 112MHz to 120MHz. Programmable VCO Frequency Table - changed first row VCO frequency from 577.7 to 600 and M Divide from 26 to 27. Programmable Output Divider Table - change Output Frequency Minimum columns from (1st row) 280 to 300; (2nd row) 140 to 150; (3rd row) 112 to 120. Input Frequency Characteristics - changed VCO min. from 560MHz to 600MHz. Changed min. input frequency value from 47 to 50, change max. value from 14 to 15. AC Characteristics Table - changed min. F _{out} from 112MHz to 120MHz. Updated header/footer of datasheet.	8/11/09			
В			Product Discontinuation Notice - Last time buy expires August 14, 2016.	8/20/15			

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.