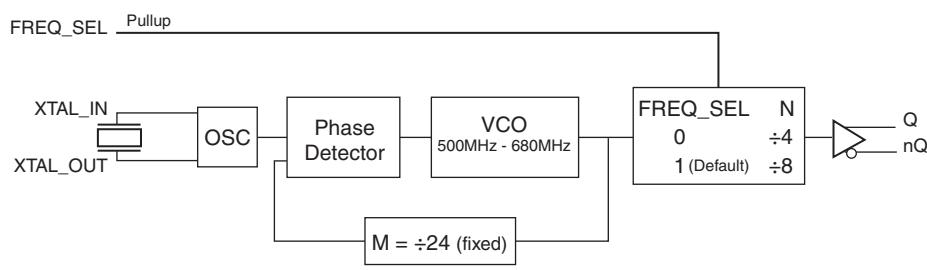
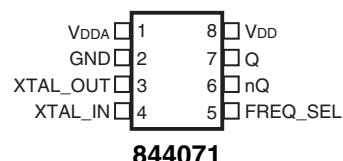


General Description

The 844071 is a Serial ATA (SATA)/Serial Attached SCSI (SAS) Clock Generator. The 844071 uses an 18pF parallel resonant crystal over the range of 20.833MHz - 28.3MHz. For SATA/SAS applications, a 25MHz crystal is used and either 75MHz or 150MHz may be selected with the FREQ_SEL pin. The 844071 has excellent <1ps phase jitter performance, over the 900kHz - 7.5MHz integration range. The 844071 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.


Features

- One differential LVDS output
- Crystal oscillator interface, 18pF parallel resonant crystal (20.833MHz – 28.3MHz)
- Output frequency range: 62.5MHz – 170MHz
- VCO range: 500MHz – 680MHz
- RMS phase jitter at 150MHz, using a 25MHz crystal (900kHz – 7.5MHz): 0.45ps (typical)
- Full 3.3V or 2.5V operating supply
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) packages


Table 1. Common Configuration Table

Inputs					Output Frequency (MHz)
Crystal Frequency (MHz)	FREQ_SEL	M	N	Multiplication Value M/N	
25	0	24	4	6	150
25	1	24	8	3	75
26.041666	0	24	4	6	156.25
26.041666	1	24	8	3	78.125
26.5625	0	24	4	6	159.375
26.5625	1	24	8	3	79.675

Block Diagram

Pin Assignment

844071
8 Lead TSSOP
4.40mm x 3.0mm x 0.925mm
package body
G Package
Top View

Table 1. Pin Descriptions

Number	Name	Type	Description			
1	V _{DDA}	Power	Analog supply pin.			
2	GND	Power	Power supply ground.			
3, 4	XTAL_OUT XTAL_IN	Input	Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.			
5	FREQ_SEL	Input	Pullup	Frequency select pin. LVCMOS/LVTTL interface levels.		
6, 7	nQ, Q	Output		Differential output pair. LVDS interface levels.		
8	V _{DD}	Power		Core supply pin.		

NOTE: *Pullup* refers to an internal input resistor. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Outputs, I_O Continuous Current Surge Current	10mA 15mA
Package Thermal Impedance, θ_{JA}	101.7°C/W (0 mps)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 10\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		2.97	3.3	3.63	V
V_{DDA}	Analog Supply Voltage		$V_{DD} - 0.12$	3.3	3.63	V
I_{DD}	Power Supply Current				135	mA
I_{DDA}	Analog Supply Current				12	mA

Table 3B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V_{DDA}	Analog Supply Voltage		$V_{DD} - 0.12$	2.5	2.625	V
I_{DD}	Power Supply Current				120	mA
I_{DDA}	Analog Supply Current				12	mA

Table 3C. LVC MOS/LV TTL DC Characteristics, $V_{DD} = 3.3V \pm 10\%$ or $2.5V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	$V_{DD} = 3.3V$	2		$V_{DD} + 0.3$	V
		$V_{DD} = 2.5V$	1.7		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage	$V_{DD} = 3.3V$	-0.3		0.8	V
		$V_{DD} = 2.5V$	-0.3		0.7	V
I_{IH}	Input High Current	$V_{DD} = V_{IN} = 3.63V$ or $2.625V$			5	μA
I_{IL}	Input Low Current	$V_{DD} = 3.63V$ or $2.625V$, $V_{IN} = 0V$	-150			μA

Table 3D. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 10\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OD}	Differential Output Voltage		275	365	455	mV
ΔV_{OD}	V_{OD} Magnitude Change				50	mV
V_{OS}	Offset Voltage		1.125	1.3	1.55	V
ΔV_{OS}	V_{OS} Magnitude Change				50	mV

Table 3E. LVDS DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OD}	Differential Output Voltage		205	335	465	mV
ΔV_{OD}	V_{OD} Magnitude Change				50	mV
V_{OS}	Offset Voltage		0.89	1.2	1.48	V
ΔV_{OS}	V_{OS} Magnitude Change				50	mV

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency		20.833		28.3	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

NOTE: It is not recommended to overdrive the crystal input with an external clock source.

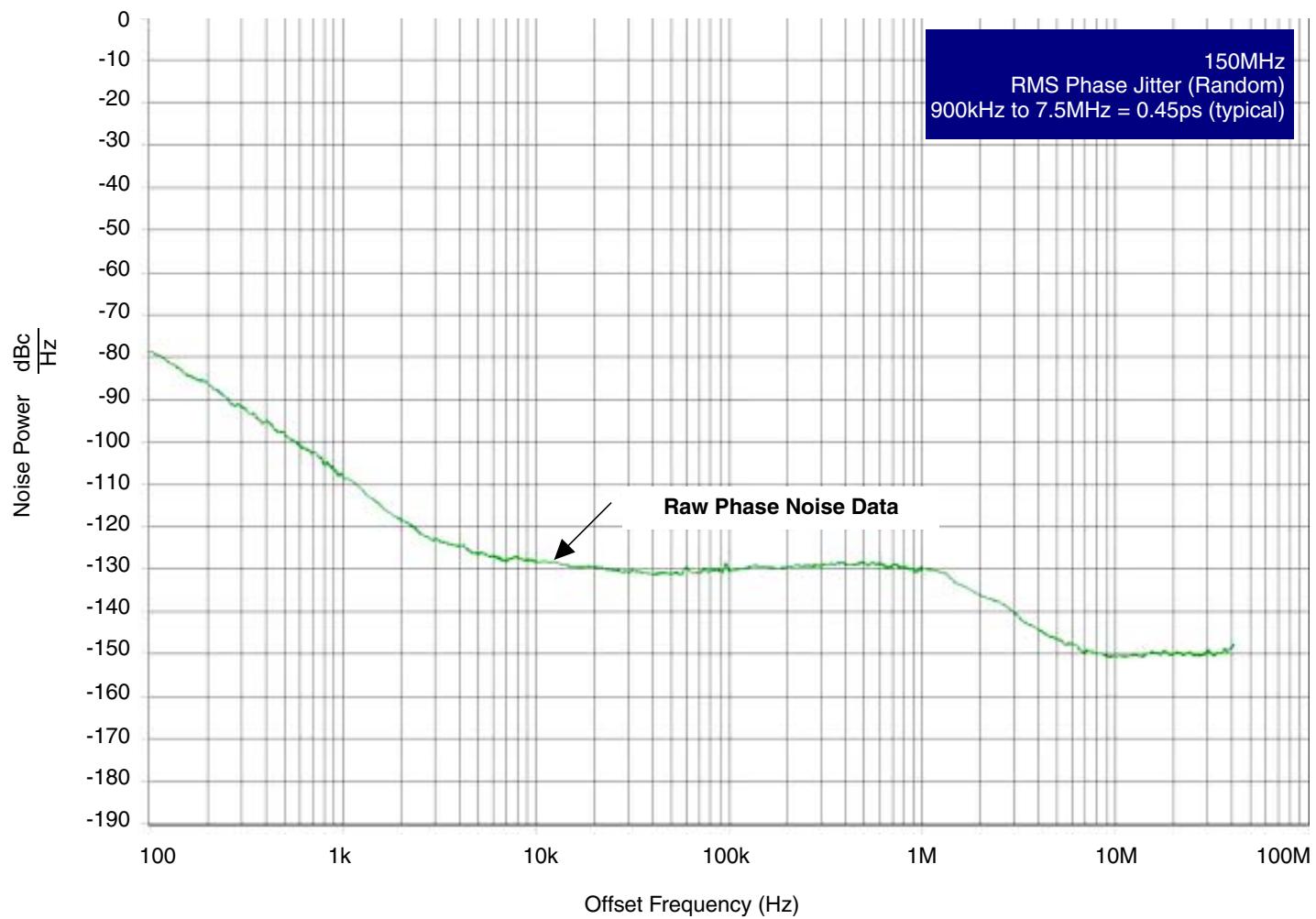
AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = 3.3V \pm 10\%$, $T_A = 0^\circ\text{C}$ to 70°C

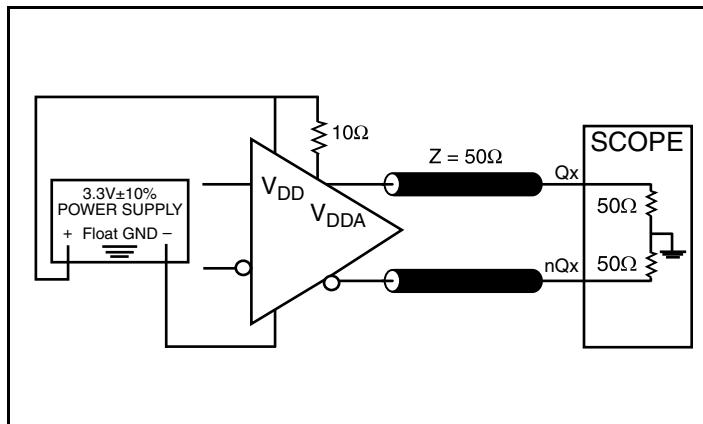
Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency		62.5		170	MHz
$\text{t}_{\text{jit}}(\mathcal{O})$	RMS Phase Jitter, Random; NOTE 1	150MHz, Integration Range: 900kHz – 7.5MHz		0.45		ps
		75MHz, Integration Range: 900kHz – 7.5MHz		0.46		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	150		400	ps
odc	Output Duty Cycle		48		52	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. For additional information, refer to the *PCI Express Application Note* section in the datasheet.

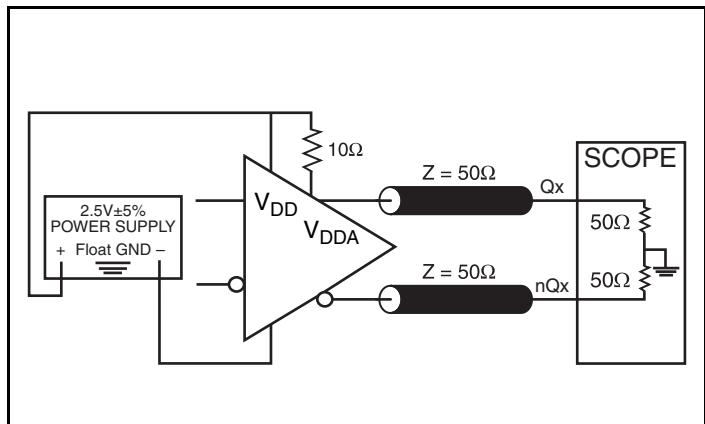
NOTE 1: Refer to the Phase Noise Plot.

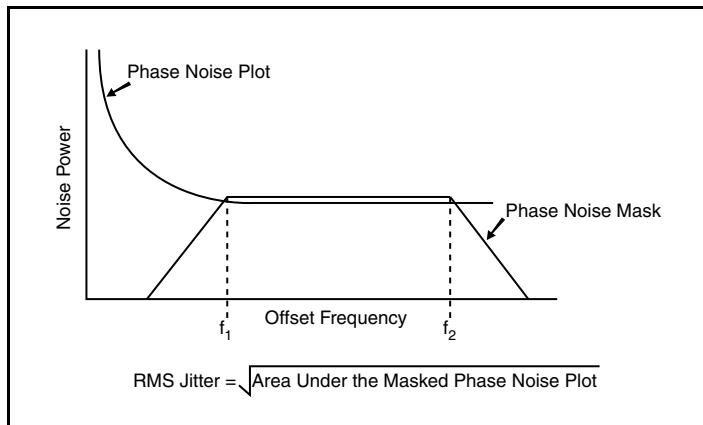

Table 5B. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = 0^\circ\text{C}$ to 70°C

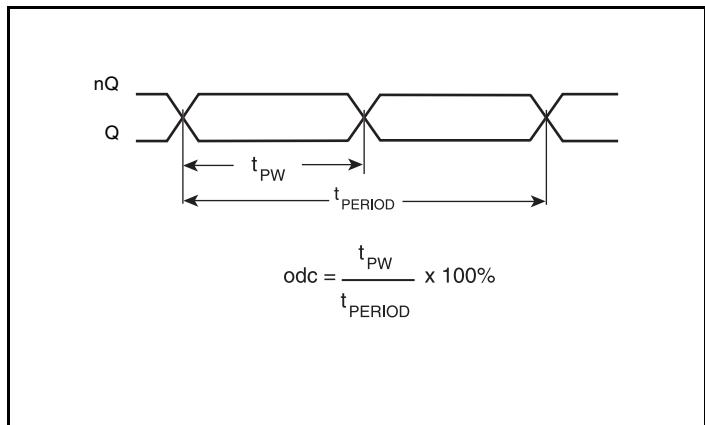
Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency		62.5		170	MHz
$\text{t}_{\text{jit}}(\mathcal{O})$	RMS Phase Jitter, Random; NOTE 1	150MHz, Integration Range: 900kHz – 7.5MHz		0.56		ps
		75MHz, Integration Range: 900kHz – 7.5MHz		0.60		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	150		400	ps
odc	Output Duty Cycle		48		52	%

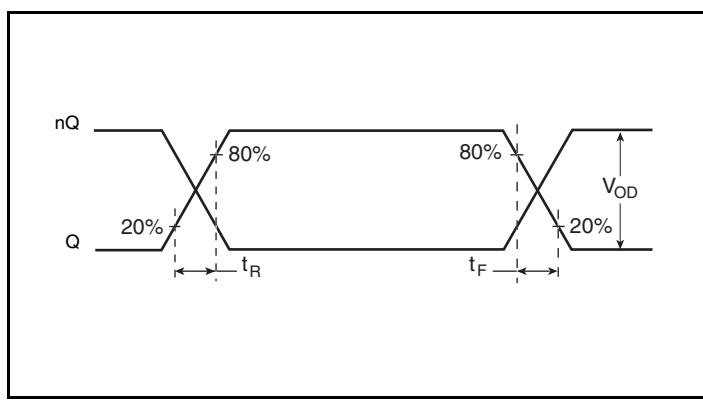

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. For additional information, refer to the *PCI Express Application Note* section in the datasheet.

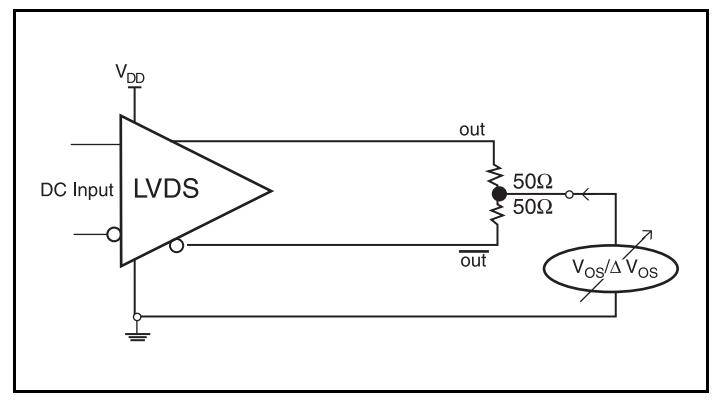
NOTE 1: Refer to the Phase Noise Plot.


Typical Phase Noise at 150MHz (3.3V)

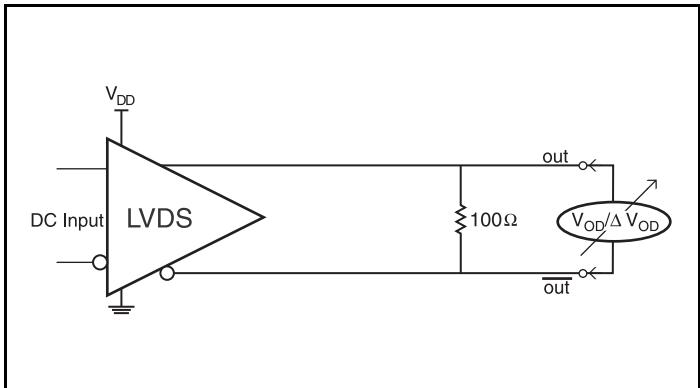

Parameter Measurement Information


3.3V LVDS Output Load Test Circuit


2.5V LVDS Output Load Test Circuit


RMS Phase Jitter

Output Duty Cycle/Pulse Width/Period



Output Rise/Fall Time

Offset Voltage Setup

Parameter Measurement Information, continued

Differential Output Voltage Setup

Applications Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 844071 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10Ω resistor along with a $10\mu F$ and a $0.01\mu F$ bypass capacitor should be connected to each V_{DDA} pin.

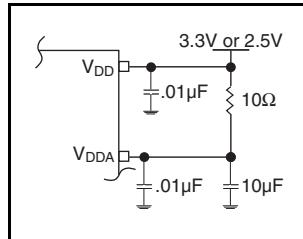
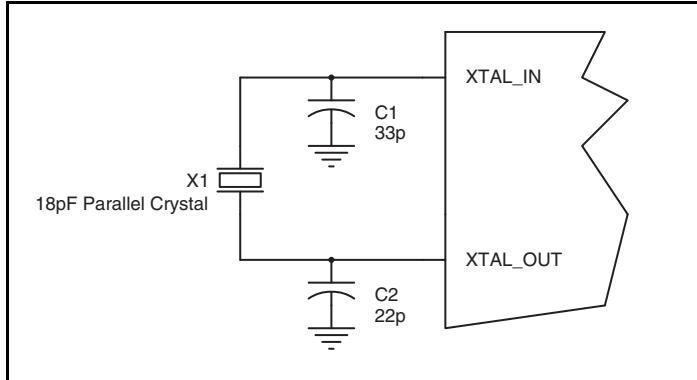



Figure 1. Power Supply Filtering

Crystal Input Interface

The 844071 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant

crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.



Figure 2. Crystal Input Interface

LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between 90Ω and 132Ω . The actual value should be selected to match the differential impedance (Z_0) of your transmission line. A typical point-to-point LVDS design uses a 100Ω parallel resistor at the receiver and a 100Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The

standard termination schematic as shown in *Figure 3A* can be used with either type of output structure. *Figure 3B*, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF . If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

LVDS Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the 844071. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 844071 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 10\% = 3.63V$, which gives worst case results.

- Power (core)_{MAX} = $V_{DD_MAX} * (I_{DD_MAX} + I_{DDA_MAX}) = 3.63V * (135mA + 12mA) = 533.61mW$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_j , to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 90.5°C/W per Table 6 below.

Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

$$70^\circ\text{C} + 0.533\text{W} * 90.5^\circ\text{C/W} = 118.3^\circ\text{C}. \text{ This is below the limit of } 125^\circ\text{C.}$$

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5	89.8

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5	89.8

Transistor Count

The transistor count for 844071 is: 2533

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

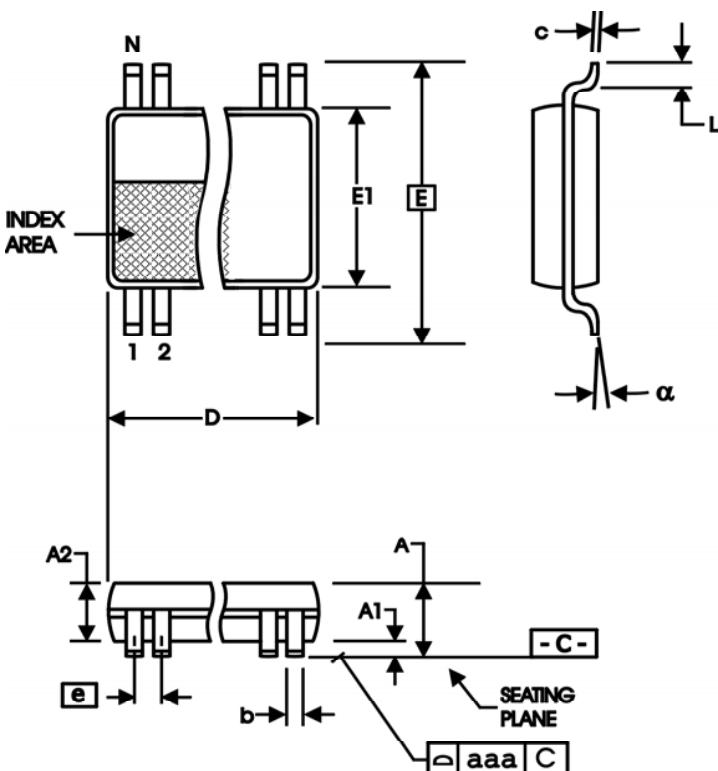


Table 8. Package Dimensions

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	8	
A		1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	2.90	3.10
E	6.40 Basic	
E1	4.30	4.50
e	0.65 Basic	
L	0.45	0.75
alpha	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
844071AGLF	071AL	"Lead-Free" 8 Lead TSSOP	Tube	0°C to 70°C
844071AGLFT	071AL	"Lead-Free" 8 Lead TSSOP	Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A	T8	9 13	Added <i>LVCMOS to XTAL Interface</i> section. Ordering Information Table - added lead-free marking. Updated datasheet format.	9/26/07
B	T3A - T3B T5A - T5B T4	1 3 4 5 7	Pin Assignment - corrected pin 1 from V_{DD} to V_{DDA} . Power Supply Tables - corrected Parameter Column for I_{DDA} from <i>Power</i> to <i>Analog</i> . Crystal Characteristics Table - added note. AC Characteristic Tables - added general note. Parameter Measurement Information - Output Load Test Circuit drawings and Output Rise/Fall Time drawing.	10/10/12
		9	Deleted application note, <i>LVCMOS to XTAL Interface</i> . Updated application note, <i>LVDS Driver Termination</i> .	
		11	Power Considerations - updated <i>Junction Temperature</i> paragraph.	
		12	Package Dimensions - corrected A1 min. spec from 0.5 to 0.05.	
		13	Ordering Information - Part/Order Number column: deleted "ICS" prefix; Shipping	
		14	Packaging column: deleted Tape & Reel count.	
		14	Deleted disclaimer and updated contact page disclaimer.	
			Updated header/footer format.	
B	T9	12	Ordering Information - removed leaded devices. Updated data sheet format.	11/17/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.