RENESAS Crystal-to-LVDS Integrated Frequency Synthesizer/Fanout Buffer

DATASHEET

GENERAL DESCRIPTION

The 84427 is a Crystal-to-LVDS Frequency Synthesizer/Fanout Buffer. The output frequency can be programmed using the frequency select pins. The low phase noise characteristics of the 84427 make it an ideal clock source for 10 Gigabit Ethernet, 10 Gigabit Fibre Channel, OC3 and OC12 applications.

FUNCTION I A	FUNCTION I ABLE						
		Inputs			Output Frequency		
F_XTAL	MR	F_SEL2	F_SEL1	F_SEL0	F_OUT		
X	1	Х	Х	Х	LOW		
19.44MHz	0	1	0	0	77.76MHz		
19.44MHz	0	1	0	1	155.52MHz		
19.44MHz	0	1	1	0	311.04MHz		
19.44MHz	0	1	1	1	622.08MHz		
25MHz	0	0	0	0	78.125MHz		
25MHz	0	0	0	1	156.25MHz		
25MHz	0	0	1	0	312.5 MHz		
25MHz	0	0	1	1	625MHz		
25.5MHz	0	0	0	1	159.375MHz		

FUNCTION TABLE

BLOCK DIAGRAM

FEATURES

- Six LVDS outputs
- · Crystal oscillator interface
- Output frequency range: 77.76MHz to 625MHz
- Crystal input frequency: 19.44MHz, 25MHz or 25.5MHz
- RMS phase jitter at 155.52MHz, using a 19.44MHz crystal (12kHz to 20MHz): 3.4ps (typical)

Phase noise:

Offset	Noise Power
100Hz	95 dBc/Hz
1kHz	110 dBc/Hz
10kHz	120 dBc/Hz
100kHz	121 dBc/Hz

- 3.3V supply voltage
- 0°C to 70°C ambient operating temperature
- Available in lead-free RoHS-compliant package

PIN ASSIGNMENT

Q0 L 1	24 VDD
nQ0 🗖 2	23 🗖 F_SEL0
Q1 🗖 3	22 🗖 F_SEL1
nQ1 🗖 4	21 🗖 MR
Q2 🗖 5	20 🗖 XTAL_IN
nQ2 🗖 6	19 XTAL_OUT
Q3 🗖 7	18 🗖 F_SEL2
nQ3 🗖 8	17 🗖 Vdda
Q4 🗖 9	16 🗖 Vdd
nQ4 🗖 10	15 🗖 PLL_SEL
Q5 🔲 11	14 🗖 GND
nQ5 🗖 12	13 🗖 Vdd
	<u>`</u>

84427 24-Lead, 300-MIL SOIC 7.5mm x 15.33mm x 2.3mm body package M Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	уре	Description
1, 2	Q0, nQ0	Output		Differential output pair. LVDS interface levels.
3, 4	Q1, nQ1	Output		Differential output pair. LVDS interface levels.
5, 6	Q2, nQ2	Output		Differential output pair. LVDS interface levels.
7, 8	Q3, nQ3	Output		Differential output pair. LVDS interface levels.
9, 10	Q4, nQ4	Output		Differential output pair. LVDS interface levels.
11, 12	Q5, nQ5	Output		Differential output pair. LVDS interface levels.
13, 16, 24	V _{DD}	Power		Core supply pins.
14	GND			Power supply ground.
15	PLL_SEL	Input	Pullup	Selects between the PLL and crystal inputs as the input to the dividers. When HIGH, selects PLL. When LOW, selects XTAL_IN and XTAL_OUT. LVCMOS / LVTTL interface levels.
17	V _{DDA}	Power		Analog supply pin.
18	F_SEL2	Input	Pullup	Feedback frequency select pin. LVCMOS/LVTTL interface levels.
19, 20	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
21	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.
22	F_SEL1	Input	Pulldown	Output frequency select pin. LVCMOS/LVTTL interface levels.
23	F_SEL0	Input	Pullup	Output frequency select pin. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V_{DD} + 0.5V
Outputs, I _o Continuous Current Surge Current	10mA 15mA
Package Thermal Impedance, $\boldsymbol{\theta}_{_{JA}}$	50°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 3A. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} - 0.72	3.3	V _{DD}	V
I _{DD}	Power Supply Current				300	mA
I _{DDA}	Analog Supply Current				30	mA

TABLE 3B. LVCMOS / LVTTL DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
		MR, F_SEL1	$V_{DD} = V_{IN} = 3.465V$			150	μA
I _{IH}	Input High Current	PLL_SEL, F_SEL0, F_SEL2	$V_{_{DD}} = V_{_{IN}} = 3.465V$			5	μA
		MR, F_SEL1	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA
I _{IL}	Input Low Current	PLL_SEL, F_SEL0, F_SEL2	$V_{_{DD}} = 3.465$ V, $V_{_{IN}} = 0$ V	-150			μA

Table 3C. LVDS DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{od}	Differential Output Voltage		375	475	575	mV
$\Delta V_{_{ m OD}}$	V _{op} Magnitude Change				50	mV
V _{os}	Offset Voltage		1.3	1.45	1.6	V
ΔV_{os}	V _{os} Magnitude Change				50	mV

TABLE 4. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fu	Indamenta	ıl	
Frequency		19.44		25.5	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

Table 5. AC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, TA = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
F _{out}	Output Frequency		77.76		625	MHz
+::+(0)	RMS Phase Jitter (Random);	155.52MHz, (Integration Range: 12kHz-20MHz)		3.4		ps
tjit(Ø)	NOTE 1	156.25MHz, (Integration Range: 12kHz-20MHz)		3.1		ps
tjit(cc)	Cycle-to-Cycle Jitter; NOTE 2				36	ps
<i>t</i> sk(o)	Output Skew; NOTE 3, 4				85	ps
t _{R/} t _F	Output Rise/Fall Time	20% to 80%	200		600	ps
odc	Output Duty Cycle		47		52	%
t _{LOCK}	PLL Lock Time				1	ms

See Parameter Measurement Information section.

NOTE 1: See Phase Noise Plots.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at the output differential crossing points.

OFFSET FREQUENCY (Hz)

REVISION B 5/6/15

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

POWER SUPPLY FILTERING TECHNIQUES

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 84427 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. *Figure 1* illustrates how a 24 Ω resistor along with a 10 μ F and a .01 μ F bypass capacitor should be connected to each V_{DDA} pin.

FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The 84427 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using an 18pF parallel resonant crystal

and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

LVCMOS TO XTAL INTERFACE

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires

that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

OUTPUTS:

LVDS

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, we recommend that there is no trace attached.

LVDS DRIVER TERMINATION

A general LVDS interface is shown in *Figure 4*. In a 100 Ω differential transmission line environment, LVDS drivers require a matched load termination of 100 Ω across near the receiver

input. For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the un-used outputs.

FIGURE 4. TYPICAL LVDS DRIVER TERMINATION

SCHEMATIC EXAMPLE

Figure 5A shows a schematic example of using an 84427. In this example, the input is a 25MHz parallel resonant crystal with load capacitor CL=18pF. The frequency fine tuning capacitors C1 and C2 is 22pF and 18pF respectively. This example also shows logic control input handling. The configuration is set at $F_SEL[2:0]=101$, therefore, the output frequency is 156.25MHz.

It is recommended to have one decouple capacitor per power pin. Each decoupling capacitor should be located as close as possible to the power pin. The low pass filter R7, C11 and C16 for clean analog supply should also be located as close to the V_{DDA} pin as possible.

FIGURE 5A. 84427 SCHEMATIC EXAMPLE

The following component footprints are used in this layout example:

All the resistors and capacitors are size 0603.

Power and Grounding

Place the decoupling capacitors C3, C5 and C6, as close as possible to the power pins. If space allows, placement of the decoupling capacitor on the component side is preferred. This can reduce unwanted inductance between the decoupling capacitor and the power pin caused by the via.

Maximize the power and ground pad sizes and number of vias capacitors. This can reduce the inductance between the power and ground planes and the component power and ground pins.

The RC filter consisting of R7, C11, and C16 should be placed as close to the $\rm V_{\rm DDA}$ pin as possible.

CLOCK TRACES AND TERMINATION

Poor signal integrity can degrade the system performance or cause system failure. In synchronous high-speed digital systems, the clock signal is less tolerant to poor signal integrity than other signals. Any ringing on the rising or falling edge or excessive ring back can cause system failure. The shape of the trace and the trace delay might be restricted by the available space on the board and the component location. While routing the traces, the clock signal traces should be routed first and should be locked prior to routing other signal traces.

- The differential 100 Ω output traces should have the same length.
- Avoid sharp angles on the clock trace. Sharp angle turns cause the characteristic impedance to change on the transmission lines.
- Keep the clock traces on the same layer. Whenever possible, avoid placing vias on the clock traces. Placement of vias on the traces can affect the trace characteristic impedance and hence degrade signal integrity.
- To prevent cross talk, avoid routing other signal traces in parallel with the clock traces. If running parallel traces is unavoidable, allow a separation of at least three trace widths between the differential clock trace and the other signal trace.
- Make sure no other signal traces are routed between the clock trace pair.
- The matching termination resistors should be located as close to the receiver input pins as possible.

CRYSTAL

The crystal X1 should be located as close as possible to the pins 20 (XTAL_IN) and 19 (XTAL_OUT). The trace length between the X1 and U1 should be kept to a minimum to avoid unwanted parasitic inductance and capacitance. Other signal traces should not be routed near the crystal traces.

FIGURE 5B. PCB BOARD LAYOUT FOR 84427

Power Considerations

This section provides information on power dissipation and junction temperature for the 84427. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 84427 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

Power (core)_{MAX} = V_{DD MAX} * (I_{DD MAX} + I_{DDA MAX}) = 3.465V * (300mA + 30mA) = 1143.45mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + TA

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 43°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}C + 1.143W * 43^{\circ}C/W = 119.1^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

TABLE 6. THERMAL RESISTANCE θ_{JA} FOR 24-PIN SOIC, FORCED CONVECTION

θJA by Velocity (Linear Feet per Minute)				
Multi-Layer PCB, JEDEC Standard Test Boards	0 50°C/W	200 43°C/W	500 38°C/W	
NOTE: Most modern PCB designs use multi-lavered	boards The data i	n the second row i	pertains to most design	

RELIABILITY INFORMATION

TABLE 7. $\boldsymbol{\theta}_{JA} vs.$ Air Flow Table for 24 Lead SOIC

θJA by Velocity (Linear Feet per Minute)					
Multi-Layer PCB, JEDEC Standard Test Boards	0 50°C/W	200 43°C/W	500 38°C/W		
NOTE: Most modern PCB designs use multi-layered	l boards. The data ii	n the second row	pertains to most designs.		

TRANSISTOR COUNT

The transistor count for 84427 is: 2804

PACKAGE OUTLINE - M SUFFIX FOR 24 LEAD SOIC

TABLE 8. PACKAGE DIMENSIONS

SYMBOL	Millimeters		
STMBOL	Minimum	Maximum	
N	24		
A	2.65		
A1	0.10		
A2	2.05	2.55	
В	0.33	0.51	
С	0.18	0.32	
D	15.20	15.85	
E	7.40	7.60	
e	1.27 BASIC		
Н	10.00	10.65	
h	0.25	0.75	
L	0.40	1.27	
α Deference Decor	0°	8°	

Reference Document: JEDEC Publication 95, MS-013, MO-119

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
84427CMLF	ICS84427CMLF	24 Lead "Lead-Free" SOIC	tube	0°C to 70°C
84427CMLFT	ICS84427CMLF	24 Lead "Lead-Free" SOIC	tape & reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS complaint.

	REVISION HISTORY SHEET				
Rev Table Page Description of Change			Date		
В	Т9	14 16	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column.Added Contact Page.	7/27/10	
В	Т9	1 14	Product Discontinuation Notice - PDN CQ-15-03. Ordering Information - removed leaded devices.	5/6/15	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.