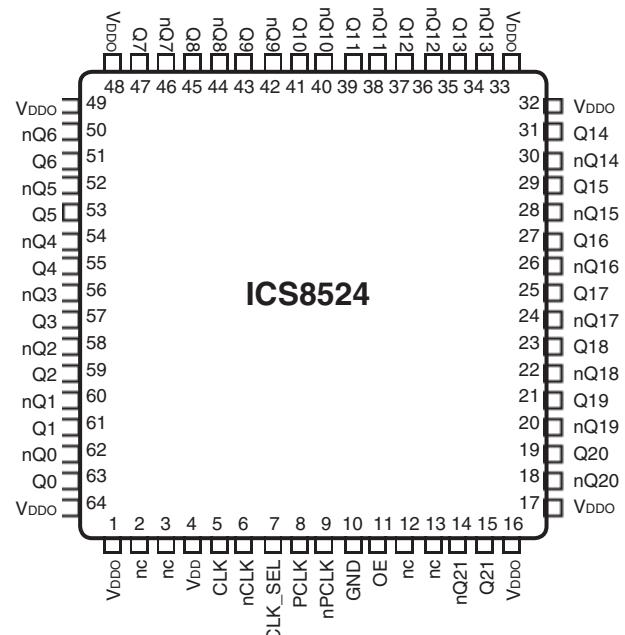

GENERAL DESCRIPTION

The 8524 is a low skew, 1-to-22 Differential-to-HSTL Fanout Buffer. The 8524 has two selectable clock inputs. The CLK, nCLK pair can accept most standard differential input levels. The PCLK, nPCLK pair can accept LVPECL, CML, or SSTL input levels. The device is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the OE pin. The 8524's low output and part-to-part skew characteristics make it ideal for workstation, server, and other high performance clock distribution applications.


FEATURES

- Twenty-two differential HSTL outputs each with the ability to drive 50Ω to ground
- Selectable differential CLK, nCLK or LVPECL clock inputs
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, HSTL, SSTL, HCSL
- PCLK, nPCLK supports the following input types: LVPECL, CML, SSTL
- Maximum output frequency: 500MHz
- Translates any single-ended input signal (LVCMOS, LVTTL, GTL) to HSTL levels with resistor bias on nCLK input
- Output skew: 80ps (maximum)
- Part-to-part skew: 700ps (maximum)
- Jitter, RMS: 0.04ps (typical)
- LVPECL and HSTL mode operating voltage supply range: $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.6V$ to $2V$, GND = 0V
- 0°C to 85°C ambient operating temperature

Block Diagram

PIN ASSIGNMENT

64-Lead TQFP E-Pad
10mm x 10mm x 1.0mm package body
Y package
Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type	Description	
1, 16, 17, 32, 33, 48, 49, 64	V_{DDO}	Power	Output supply pins.	
2, 3, 12, 13	nc	Unused	No connect.	
4	V_{DD}	Power	Core supply pin.	
5	CLK	Input	Pulldown	Non-inverting differential clock input pair.
6	nCLK	Input	Pullup/ Pulldown	Inverting differential clock input pair. Biased to $\frac{2}{3} V_{CC}$.
7	CLK_SEL	Input	Pullup	Clock select input. When HIGH, selects PCLK, nPCLK inputs. When LOW, selects CLK, nCLK inputs. LVCMOS / LVTTL interface levels.
8	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input pair.
9	nPCLK	Input	Pullup/ Pulldown	Inverting differential LVPECL clock input pair. Biased to $\frac{2}{3} V_{CC}$.
10	GND	Power		Power supply ground.
11	OE	Input	Pullup	Output enable. Controls enabling and disabling of outputs Q0:Q21, nQ0:nQ21. LVCMOS / LVTTL interface levels.
14, 15	nQ21, Q21	Output		Differential clock outputs. HSTL interface levels.
18, 19	nQ20, Q20	Output		Differential clock outputs. HSTL interface levels.
20, 21	nQ19, Q19	Output		Differential clock outputs. HSTL interface levels.
22, 23	nQ18, Q18	Output		Differential clock outputs. HSTL interface levels.
24, 25	nQ17, Q17	Output		Differential clock outputs. HSTL interface levels.
26, 27	nQ16, Q16	Output		Differential clock outputs. HSTL interface levels.
28, 29	nQ15, Q15	Output		Differential clock outputs. HSTL interface levels.
30, 31	nQ14, Q14	Output		Differential clock outputs. HSTL interface levels.
34, 35	nQ13, Q13	Output		Differential clock outputs. HSTL interface levels.
36, 37	nQ12, Q12	Output		Differential clock outputs. HSTL interface levels.
38, 39	nQ11, Q11	Output		Differential clock outputs. HSTL interface levels.
40, 41	nQ10, Q10	Output		Differential clock outputs. HSTL interface levels.
42, 43	nQ9, Q9	Output		Differential clock outputs. HSTL interface levels.
44, 45	nQ8, Q8	Output		Differential clock outputs. HSTL interface levels.
46, 47	nQ7, Q7	Output		Differential clock outputs. HSTL interface levels.
50, 51	nQ6, Q6	Output		Differential clock outputs. HSTL interface levels.
52, 53	nQ5, Q5	Output		Differential clock outputs. HSTL interface levels.
54, 55	nQ4, Q4	Output		Differential clock outputs. HSTL interface levels.
56, 57	nQ3, Q3	Output		Differential clock outputs. HSTL interface levels.
58, 59	nQ2, Q2	Output		Differential clock outputs. HSTL interface levels.
60, 61	nQ1, Q1	Output		Differential clock outputs. HSTL interface levels.
62, 63	nQ0, Q0	Output		Differential clock outputs. HSTL interface levels.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
R_{PULLUP}	Input Pullup Resistor			37		K Ω
$R_{PULLDOWN}$	Input Pulldown Resistor			75		K Ω

TABLE 3A. CONTROL INPUT FUNCTION TABLE

Inputs		Outputs	
OE	CLK_SEL	Q0:Q21	nQ0:nQ21
0	0	LOW	HIGH
0	1	LOW	HIGH
1	0	CLK	nCLK
1	1	PCLK	nPCLK

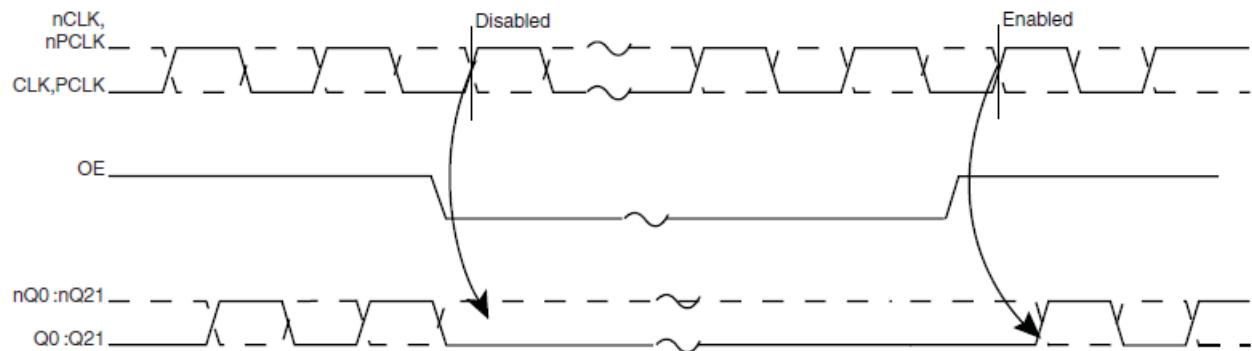


FIGURE 1. OE TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Outputs, I_O	
Continuous Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	22.3°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Power Supply Voltage		1.6	1.8	2.0	V
I_{DD}	Power Supply Current				220	mA
I_{DDO}	Output Supply Current	No Load		1		mA

TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		2		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage		-0.3		0.8	V
I_{IH}	Input High Current	OE, CLK_SEL			5	μA
I_{IL}	Input Low Current	OE, CLK_SEL	-150			μA

TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	CLK, nCLK	$V_{DD} = V_{IN} = 3.465V$		150	μA
I_{IL}	Input Low Current	CLK, nCLK	$V_{DD} = 3.465V$, $V_{IN} = 0V$	-150		μA
V_{PP}	Peak-to-Peak Input Voltage		0.15		1.3	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2		GND + 0.5		$V_{DD} - 0.85$	V

NOTE 1: Common mode voltage is defined as V_{IH} .

NOTE 2: For single ended applications, the maximum input voltage for CLK and nCLK is $V_{DD} + 0.3V$.

TABLE 4D. LVPECL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current PCLK, nPCLK	$V_{DD} = V_{IN} = 3.465V$			150	μA
I_{IL}	Input Low Current PCLK, nPCLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-150			μA
V_{PP}	Peak-to-Peak Input Voltage		0.3		1	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2		GND + 1.5		V_{DD}	V

NOTE 1: Common mode voltage is defined as V_{IH} .NOTE 2: For single ended applications, the maximum input voltage for PCLK and nPCLK is $V_{DD} + 0.3V$.**TABLE 4E. HSTL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $85^\circ C$**

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		1.0		1.4	V
V_{OL}	Output Low Voltage; NOTE 1		0		0.4	V
V_{OX}	Output Crossover Voltage; NOTE 2		40		60	%
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.1	V

NOTE 1: Outputs terminated with 50Ω to ground.

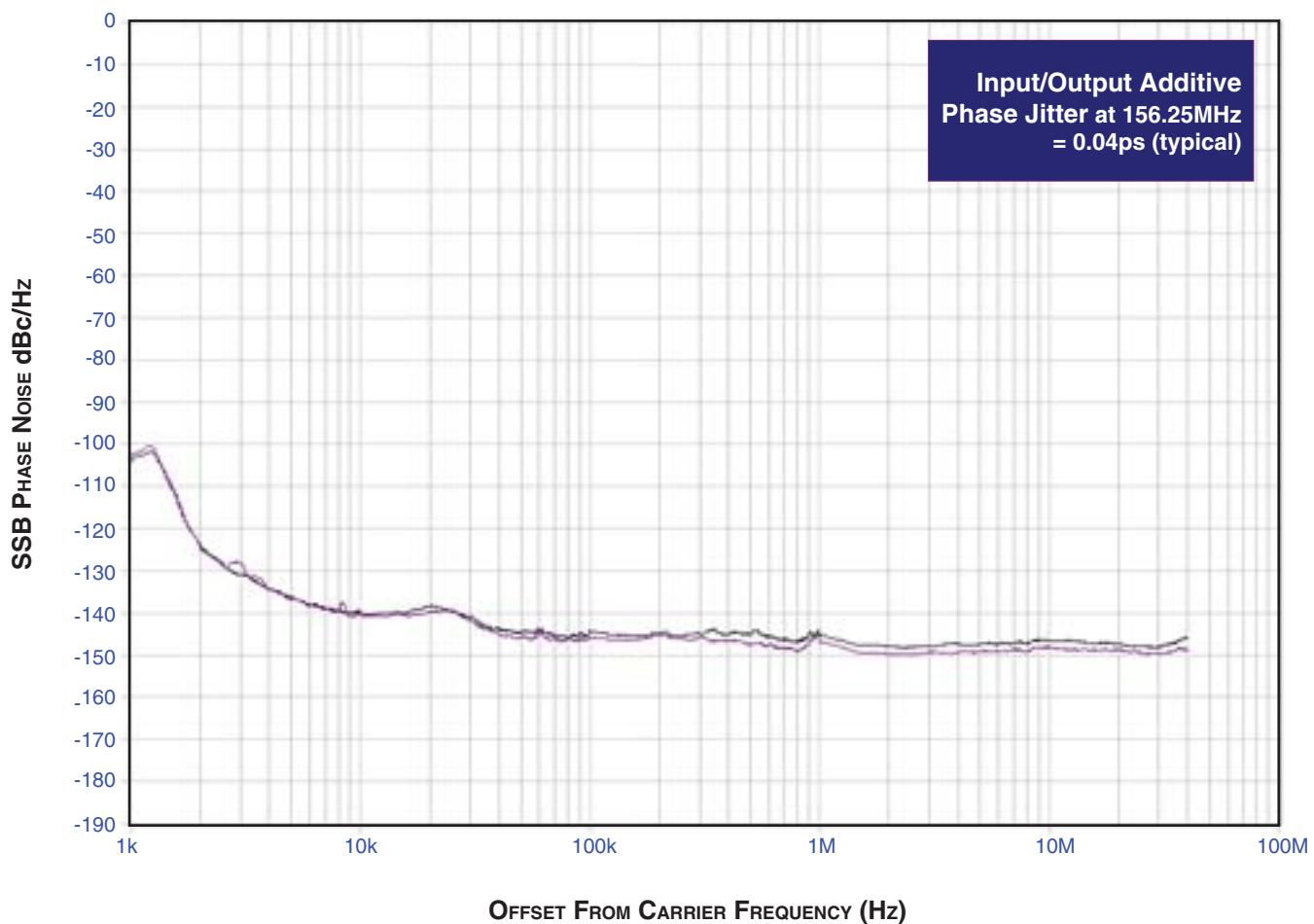
NOTE 2: Defined with respect to output voltage swing at a given condition.

TABLE 5. AC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency				500	MHz
t_{PD}	Propagation Delay; NOTE 1		1.7		2.7	ns
$tsk(o)$	Output Skew; NOTE 2, 4				80	ps
$tsk(pp)$	Part-to-Part Skew; NOTE 3, 4				700	ps
t_{jit}	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter section			0.04		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	300		700	ps
t_S	Setup Time		1.0			ns
t_H	Hold Time		0.5			ns
odc	Output Duty Cycle	$f \leq 133MHz$	49		51	%
		$133 < f \leq 266MHz$	48		52	%

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

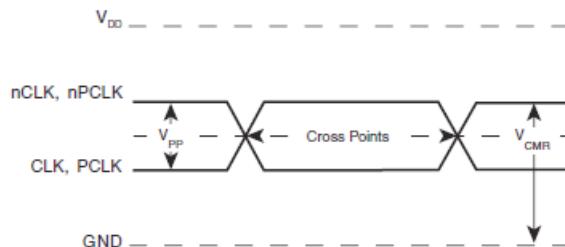

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions at the same temperature. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

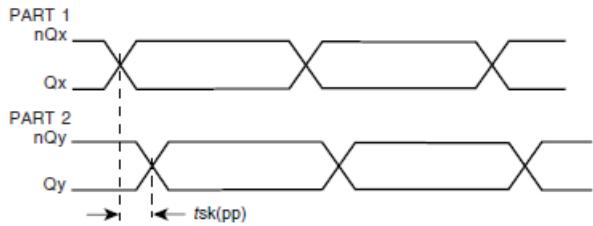
ADDITIVE PHASE JITTER

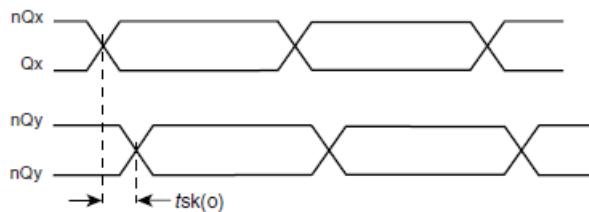
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise**. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the

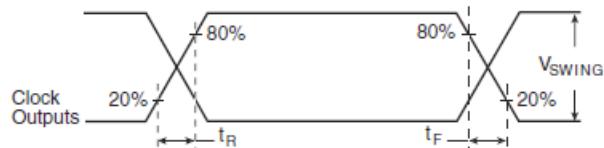
1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

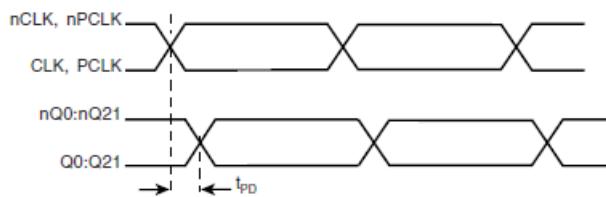

As with most timing specifications, phase noise measurements have issues. The primary issue relates to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The

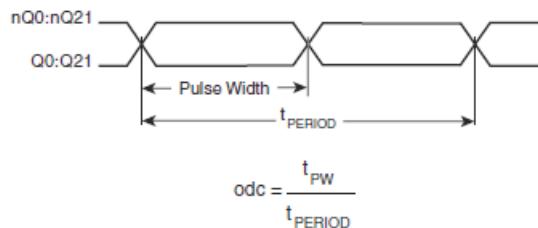
device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependant on the input source and measurement equipment.


PARAMETER MEASUREMENT INFORMATION


3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVEL


PART-TO-PART SKEW


OUTPUT SKEW

OUTPUT RISE/FALL TIME

PROPAGATION DELAY

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT CROSSOVER VOLTAGE

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

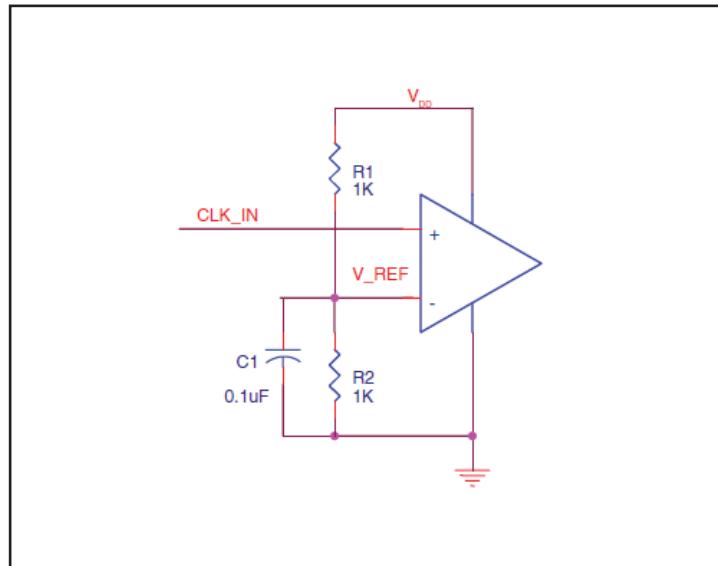
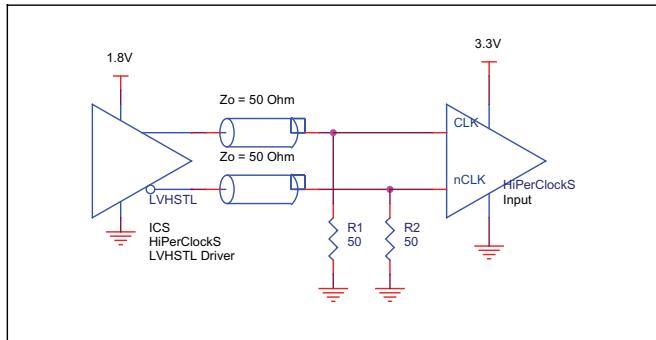
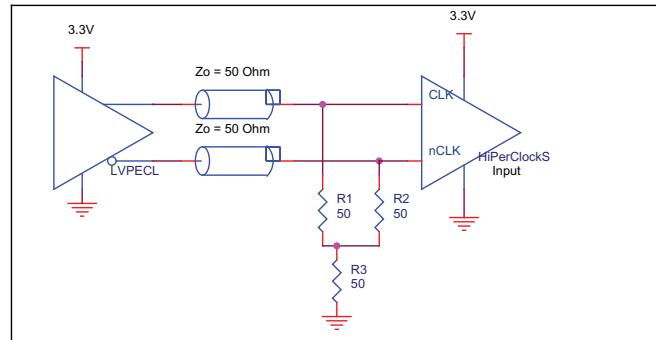
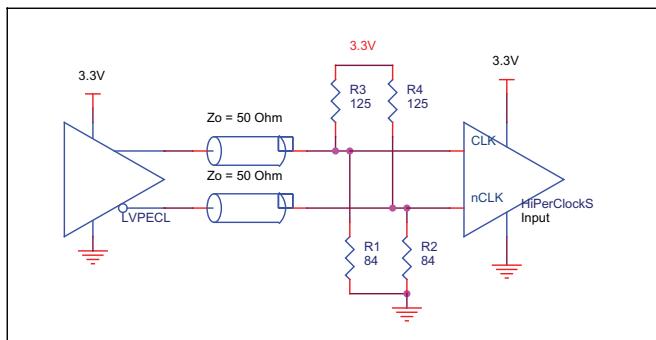
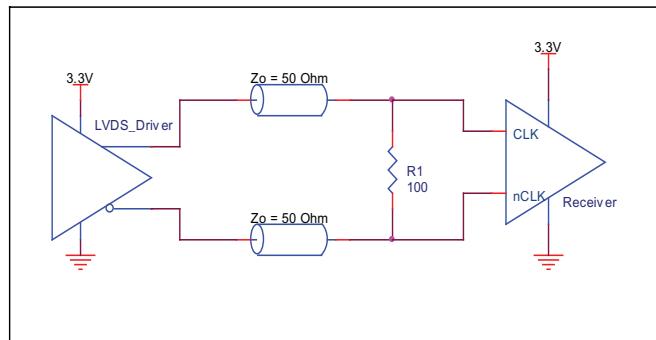



FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT


DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are


examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 4A*, the input termination applies for HSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.


FIGURE 3A. CLK/nCLK INPUT DRIVEN BY HSTL DRIVER

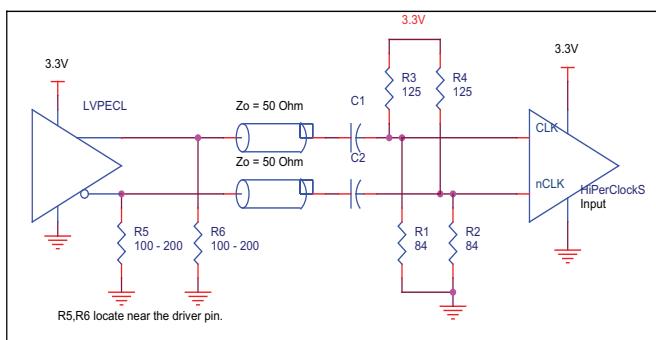

FIGURE 3B. CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

FIGURE 3C. CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

FIGURE 3D. CLK/nCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

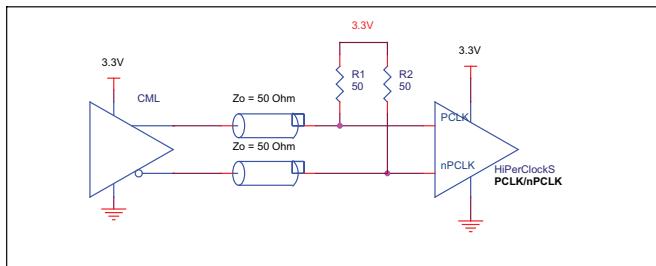
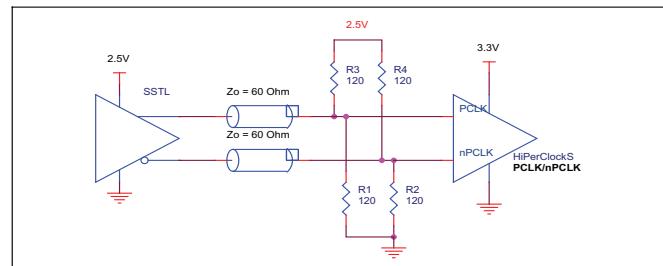
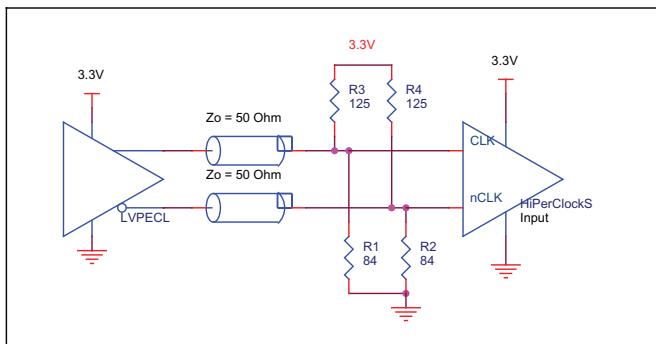
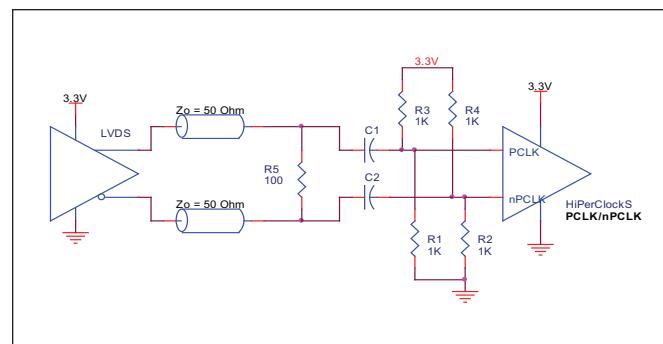


FIGURE 3E. CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE


LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 4A to 4E* show interface examples for the PCLK/nPCLK input driven by the most common driver types. The input interfaces suggested


here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.


FIGURE 4A. PCLK/nPCLK INPUT DRIVEN BY A CML DRIVER

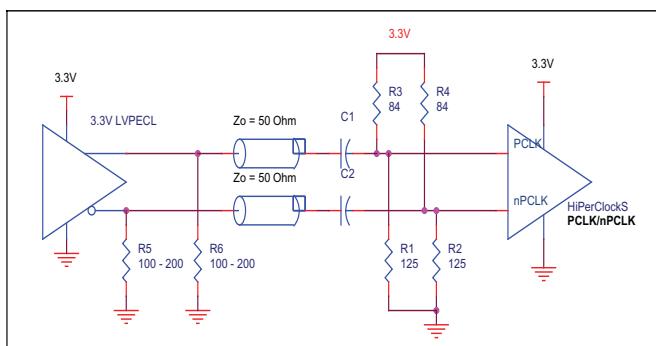

FIGURE 4B. PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER

FIGURE 4C. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

FIGURE 4D. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

FIGURE 4E. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE

SCHEMATIC EXAMPLE

Figure 5 shows a schematic example of the 8524. In this example, the input is driven by a HSTL driver. The decoupling

capacitors should be physically located near the power pin. For 8524, the unused clock outputs can be left floating.

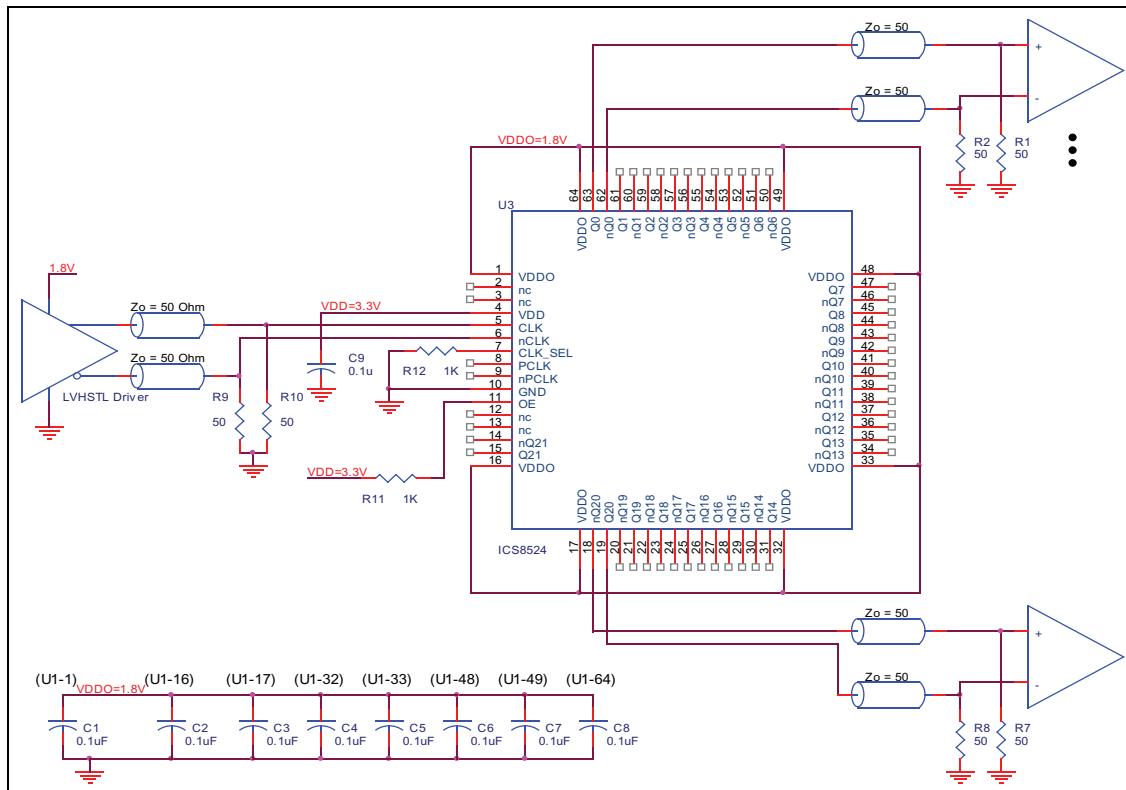


FIGURE 5. 8524 HSTL BUFFER SCHEMATIC EXAMPLE

THERMAL RELEASE PATH

The expose metal pad provides heat transfer from the device to the P.C. board. The expose metal pad is ground pad connected to ground plane through thermal via. The exposed pad on the device to the exposed metal pad on the PCB is contacted

through solder as shown in Figure 6. For further information, please refer to the Application Note on Surface Mount Assembly of Amkor's Thermally /Electrically Enhance Leadframe Base Package, Amkor Technology.

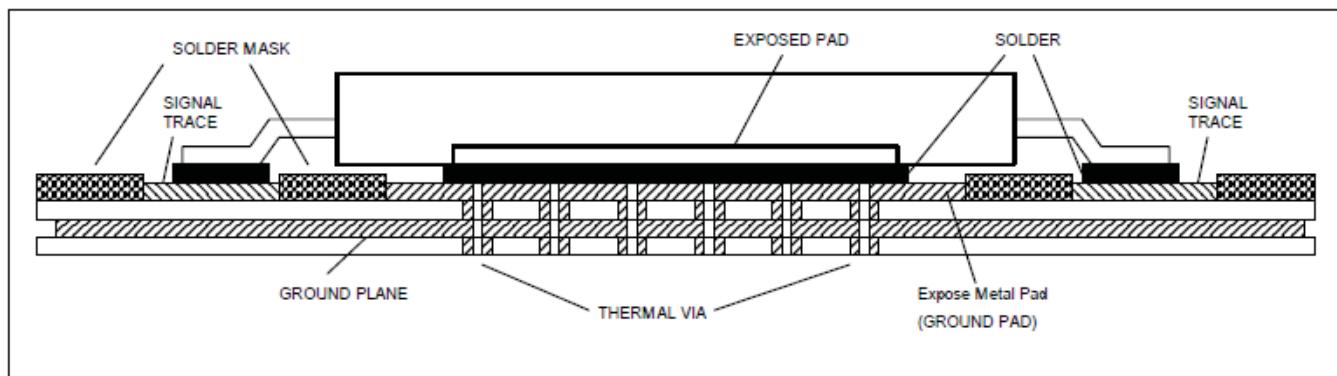


FIGURE 6. P.C. BOARD FOR EXPOSED PAD THERMAL RELEASE PATH EXAMPLE

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 8524. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8524 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = $V_{DD_MAX} * I_{DD_MAX} = 3.465V * 220mA = 762.3mW$
- Power (outputs)_{MAX} = **32.8mW/Loaded Output pair**
If all outputs are loaded, the total power is $22 * 32.8mW = 721.6mW$

Total Power_{MAX} (3.465V, with all outputs switching) = $762.3mW + 721.6mW = 1483.9mW$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming an air flow of 500 linear feet per minute and a multi-layer board, the appropriate value is 15.1°C/W per Table 6 below.

Therefore, T_j for an ambient temperature of 85°C with all outputs switching is:

$85^\circ C + 1.484W * 15.1^\circ C/W = 107.4^\circ C$. This is well below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

TABLE 6. THERMAL RESISTANCE θ_{JA} FOR 64-PIN TQFP, E-PAD FORCED CONVECTION

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Multi-Layer PCB, JEDEC Standard Test Boards	22.3°C/W	17.2°C/W	15.1°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

HSTL output driver circuit and termination are shown in *Figure 7*.

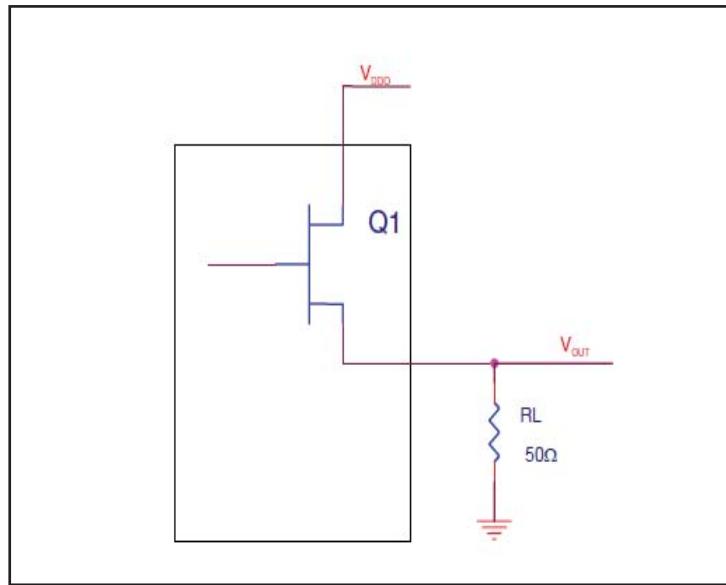


FIGURE 7. HSTL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = (V_{OH_MIN}/R_L) * (V_{DDO_MAX} - V_{OH_MIN})$$

$$Pd_L = (V_{OL_MAX}/R_L) * (V_{DDO_MAX} - V_{OL_MAX})$$

$$Pd_H = (1V/50\Omega) * (2V - 1V) = 20mW$$

$$Pd_L = (0.4V/50\Omega) * (2V - 0.4V) = 12.8mW$$

$$\text{Total Power Dissipation per output pair} = Pd_H + Pd_L = 32.8mW$$

RELIABILITY INFORMATION

TABLE 7. θ_{JA} vs. AIR FLOW TABLE FOR 64 LEAD TQFP, E-PAD

θ_{JA} by Velocity (Linear Feet per Minute)

	0	200	500
Multi-Layer PCB, JEDEC Standard Test Boards	22.3°C/W	17.2°C/W	15.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for 8524 is: 1474

PACKAGE OUTLINE - Y SUFFIX FOR 64 LEAD TQFP, E-PAD

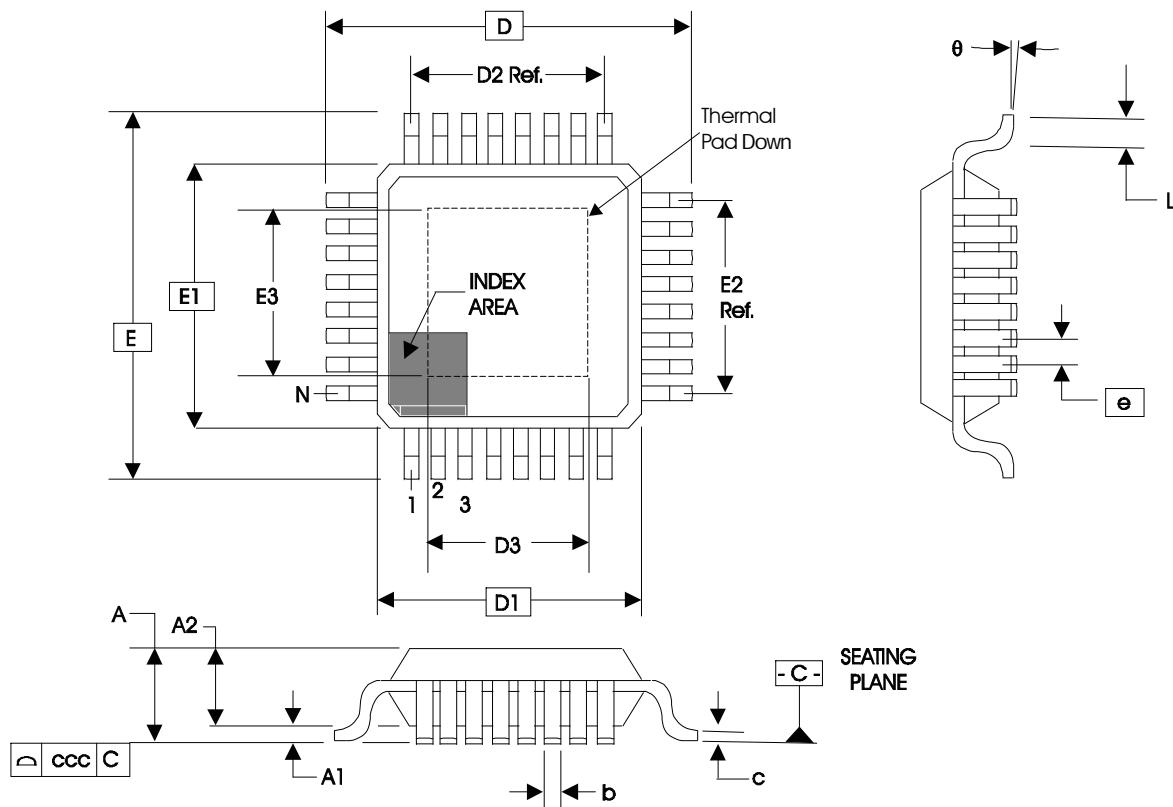


TABLE 8. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS			
SYMBOL	ACD-HD		
	MINIMUM	NOMINAL	MAXIMUM
N	64		
A	--	--	1.20
A1	0.05	0.10	0.15
A2	0.95	1.0	1.05
b	0.17	0.22	0.27
c	0.09	--	0.20
D	12.00 BASIC		
D1	10.00 BASIC		
D2	7.50 Ref.		
E	12.00 BASIC		
E1	10.00 BASIC		
E2	7.50 Ref.		
e	0.50 BASIC		
L	0.45	0.60	0.75
θ	0°	--	7°
ccc	--	--	0.08
D3 & E3	2.0	--	10.0

Reference Document: JEDEC Publication 95, MS-026

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8524AYLF	ICS8524AYLF	64 lead TQFP, E-Pad	tray	0°C to 85°C
8524AYLFT	ICS8524AYLF	64 lead TQFP, E-Pad	Tape and Reel	0°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS com

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
B	T5	1	Added Phase Jitter to Features section.	
		5	AC Characteristics Table - added Phase Jitter row.	9/18/03
		6	Added Additive Phase Jitter section.	
B		15	Updated Package Outline and Package Dimensions Table.	11/19/04
B	T9	16	Ordering Information Table - Added LF Marking and note	8/1/07
B	T9	10	Updated datasheet's header/footer with IDT from ICS.	
		12	Removed ICS prefix from Part/Order Number column.	12/6/10
			Added Contact Page.	
B	T9	16	Ordering Information - removed leaded devices. Updated data sheet format.	11/9/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.