GENERAL DESCRIPTION The 86004-01 is a high performance 1-to-4 LVCMOS/LVTTL Clock Buffer and a member of the family of High Performance Clock Solutions from IDT. The 86004-01 has a fully integrated PLL and can be configured as zero delay buffer and has an input and output frequency range of 62.5MHz to 250MHz. The external feedback allows the device to achieve "zero delay" between the input clock and the output clocks. The PLL_SEL pin can be used to bypass the PLL for system test and debug purposes. In bypass mode, the reference clock is routed around the PLL and into the internal output divider. #### CONTROL INPUT FUNCTION TABLE | Input | Input/Output
Frequency Range (MHz) | | | |-------|---------------------------------------|---------|--| | F_SEL | Minimum | Maximum | | | 0 | 125 | 250 | | | 1 | 62.5 | 125 | | ## **BLOCK DIAGRAM** ### **FEATURES** - Four LVCMOS/LVTTL outputs, 7Ω typical output impedance - Single LVCMOS/LVTTL clock input - · CLK accepts the following input levels: LVCMOS or LVTTL - Output frequency range: 62.5MHz to 250MHz - Input frequency range: 62.5MHz to 250MHz - External feedback for "zero delay" clock regeneration with configurable frequencies - · Fully integrated PLL - Cycle-to-cycle jitter, (F_SEL = 1): 45ps (maximum) - · Output skew: 60ps (maximum) - Supply Voltage Modes: (Core/Output) 3.3V/3.3V 3.3V/2.5V 2.5V/2.5V - · 5V tolerant input - -40°C to 70°C ambient operating temperature - · Available in lead-free (RoHS 6) package ## PIN ASSIGNMENT **86004-01 16-Lead TSSOP**4.4mm x 5.0mm x 0.925mm package body **G Package**Top View TABLE 1. PIN DESCRIPTIONS | Number | Name | Т | уре | Description | |-----------------|-------------------|--------|----------|---| | 1, 3,
13, 15 | Q1, Q0,
Q3, Q2 | Output | | Clock outputs. 7Ω typical output impedance. LVCMOS/LVTTL interface levels. | | 2, 7, 14 | GND | Power | | Power supply ground. | | 4 | F_SEL | Input | Pulldown | Frequency range select input. When LOW, I/O frequency range is from 125MHz to 250Mz. When HIGH, I/O frequency range is from 62.5MHz to 125MHz. LVCMOS/LVTTL interface levels. | | 5 | V _{DD} | Power | | Core supply pin. | | 6 | CLK | Input | Pulldown | LVCMOS/LVTTL clock input. | | 8 | V _{DDA} | Power | | Analog supply pin. | | 9 | PLL_SEL | Input | Pullup | Selects between the PLL and reference clock as input to the dividers. When LOW, selects the reference clock (PLL Bypass). When HIGH, selects PLL (PLL Enabled). LVCMOS/LVTTL interface levels. | | 10 | FB_IN | Input | Pulldown | Feedback input to phase detector for regenerating clocks with "zero delay". Connect to one of the outputs. LVCMOS/LVTTL interface levels. | | 11 | MR | Input | Pulldown | Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing the outputs to go low. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS/LVTTL interface levels. | | 12, 16 | V _{DDO} | Power | | Output supply pins. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-------------------------------|----------------------------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R | Input Pullup Resistor | | | 51 | | kΩ | | R | Input Pulldown Resistor | | | 51 | | kΩ | | | Power Dissipation Capacitance | $V_{_{DD}}, V_{_{DDO}} = 3.465V$ | | | 23 | pF | | PD | (per output) | $V_{_{DD}}, V_{_{DDO}} = 2.625V$ | | | 17 | pF | | R _{OUT} | Output Impedance | 3.3V ± 5% | 5 | 7 | 12 | Ω | TABLE 3. CONTROL INPUT FUNCTION TABLE | Input | Input/Output
Frequency Range (MHz) | | | | |-------|---------------------------------------|---------|--|--| | F_SEL | Minimum | Maximum | | | | 0 | 125 | 250 | | | | 1 | 62.5 | 125 | | | ### **ABSOLUTE MAXIMUM RATINGS** Supply Voltage, V_{DD} 4.6V Inputs, V -0.5V to +5.0V Outputs, V_{o} -0.5V to V_{dd} + 0.5V Package Thermal Impedance, $\theta_{\text{\tiny IA}}$ 89°C/W (0 Ifpm) Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DDA} | Analog Supply Voltage | | 3.135 | 3.3 | V | V | | V _{DDO} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{DD} | Power Supply Current | | | | 100 | mA | | DDA | Analog Supply Current | | | | 16 | mA | | I _{DDO} | Output Supply Current | | | | 6 | mA | NOTE: Special thermal handling maybe required in some configurations. Table 4B. Power Supply DC Characteristics, $V_{_{DD}} = 3.3V \pm 5\%$, $V_{_{DDO}} = 2.5V \pm 5\%$, Ta = -40°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V | Analog Supply Voltage | | 3.135 | 3.3 | V | V | | V _{DDO} | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | I _{DD} | Power Supply Current | | | | 100 | mA | | DDA | Analog Supply Current | | | | 16 | mA | |
 DDO | Output Supply Current | | | | 6 | mA | Table 4C. Power Supply DC Characteristics, $V_{DD} = V_{DDD} = 2.5V \pm 5\%$, Ta = -40°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | V _{DDA} | Analog Supply Voltage | | 2.375 | 2.5 | V | V | | V _{DDO} | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | I _{DD} | Power Supply Current | | | | 96 | mA | |
 DDA | Analog Supply Current | | | | 15 | mA | | DDO | Output Supply Current | | | | 6 | mA | NOTE: Special thermal handling maybe required in some configurations. Table 4D. LVCMOS / LVTTL DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = -40°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------------|--------------------------|--|---------|---------|---------|-------| | V | Input High Voltage | | V _{DD} = 3.465V | 2.0 | | 5.0 | V | | V _{IH} | Imput riigh voltage | | V _{DD} = 2.625V | 1.7 | | 5.0 | V | | V | Input Low Voltage | | V _{DD} = 3.465V | -0.3 | | 0.8 | V | | V | Imput Low voltage | | $V_{_{DD}} = 2.625V$ | -0.3 | | 0.7 | V | | I | Input High Current | CLK, MR,
FB_IN, F_SEL | $V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$ | | | 150 | μΑ | | " | | PLL_SEL | $V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$ | | | 5 | μA | | | Input Low Current | CLK, MR,
FB_IN, F_SEL | $V_{DD} = 3.465V \text{ or } 2.625V,$
$V_{IN} = 0V$ | -5 | | | μА | | ' _{IL} | Imput Low Guiterit | PLL_SEL | $V_{DD} = 3.465V \text{ or } 2.625V,$
$V_{IN} = 0V$ | -150 | | | μА | | \ <u></u> | Output High Voltage; NOTE 1 | | $V_{_{DDO}} = 3.465V$ | 2.6 | | | V | | V _{OH} | | | V _{DDO} = 2.625V | 1.8 | | | V | | V _{OL} | Output Low Voltage; | NOTE 1 | $V_{DDO} = 3.465 \text{V} \text{ or } 2.625 \text{V}$ | | | 0.5 | V | NOTE 1: Outputs terminated with 50Ω to $V_{ppo}/2$. See Parameter Measurement Information Section, Output Load Test Circuit diagrams. **Table 5A. AC Characteristics,** $V_{DD} = V_{DDD} = 3.3V \pm 5\%$, Ta = -40°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|------------------------------|---------|---------|---------|-------| | f | Output Fraguency | F_SEL = 0 | 125 | | 250 | MHz | | MAX | Output Frequency | F_SEL = 1 | 62.5 | | 125 | MHz | | tp _{LH} | Propagation Delay, Low-to-High; NOTE 1 | PLL_SEL = 0V,
Bypass Mode | 4.1 | 5.1 | 6.1 | ns | | t(Ø) | Static Phase Offset; NOTE 2, 4 | PLL_SEL = 3.3V | -75 | 50 | 175 | ps | | tsk(o) | Output Skew; NOTE 3, 4 | PLL_SEL = 0V | | | 60 | ps | | tjit(cc) | Cycle-to-Cycle Jitter; NOTE 4 | F_SEL = 0 | | | 65 | ps | | | Cycle-to-Cycle Sitter, NOTE 4 | F_SEL = 1 | | | 45 | ps | | t_ | PLL Lock Time | | | | 1 | mS | | t _R / t _F | Output Rise/Fall Time | | 300 | | 750 | ps | | | Output Duty Cycle | F_SEL = 0 | 44 | 50 | 56 | % | | odc | Output Duty Cycle | F_SEL = 1 | 47 | 50 | 53 | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. All parameters measured at f noted otherwise. All parameters measured at f $_{\text{\tiny MAX}}$ unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the output at V $_{\text{\tiny DDO}}/2$. NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable. NOTE 3: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at V_{DDO}/2. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. **Table 5B. AC Characteristics,** $V_{DD} = 3.3V \pm 5\%$, $V_{DDD} = 2.5V \pm 5\%$, $TA = -40^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|------------------------------|---------|---------|---------|-------| | f | Output Fraguenay | F_SEL = 0 | 125 | | 250 | MHz | | MAX | Output Frequency | F_SEL = 1 | 62.5 | | 125 | MHz | | tp _{LH} | Propagation Delay, Low-to-High; NOTE 1 | PLL_SEL = 0V,
Bypass Mode | 4.25 | 5.25 | 6.25 | ns | | t(Ø) | Static Phase Offset; NOTE 2, 4 | PLL_SEL = 3.3V | -300 | | 0 | ps | | tsk(o) | Output Skew; NOTE 3, 4 | PLL_SEL = 0V | | | 60 | ps | | tiit(co) | Cycle-to-Cycle Jitter; NOTE 4 | F_SEL = 0 | | | 65 | ps | | tjit(cc) | Cycle-to-Cycle Sitter, NOTE 4 | F_SEL = 1 | | | 45 | ps | | t | PLL Lock Time | | | | 1 | mS | | t _R / t _F | Output Rise/Fall Time | | 300 | | 700 | ps | | odc | Output Duty Cycle | | 45 | 50 | 55 | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. All parameters measured at f_{MAX} unless noted otherwise. All parameters measured at $f_{_{\text{\scriptsize MAX}}}$ unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the output at V___/2. NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable. NOTE 3: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at V_{pp}/2. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. **Table 5C. AC Characteristics,** $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, Ta = -40°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|------------------------------|---------|---------|---------|-------| | f | Output Fraguenay | F_SEL = 0 | 125 | | 250 | MHz | | f _{MAX} | Output Frequency | F_SEL = 1 | 62.5 | | 125 | MHz | | tp _{LH} | Propagation Delay, Low-to-High; NOTE 1 | PLL_SEL = 0V,
Bypass Mode | 4.5 | 5.5 | 6.5 | ns | | t(Ø) | Static Phase Offset; NOTE 2, 4 | PLL_SEL = 3.3V | -100 | | 250 | ps | | tsk(o) | Output Skew; NOTE 3, 4 | PLL_SEL = 0V | | | 55 | ps | | tjit(cc) | Cycle-to-Cycle Jitter; NOTE 4 | F_SEL = 0 | | | 65 | ps | | ווו(ככ) | Cycle-to-Cycle Sitter, NOTE 4 | F_SEL = 1 | | | 45 | ps | | t_ | PLL Lock Time | | | | 1 | mS | | t _r / t _r | Output Rise/Fall Time | | 300 | | 700 | ps | | odc | Output Duty Cycle | | 45 | 50 | 55 | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. All parameters measured at f unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the output at $V_{pool}/2$. NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable. NOTE 3: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at $V_{poo}/2$. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. # PARAMETER MEASUREMENT INFORMATION ### 3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT ## 3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT ### 2.5VCore/ 2.5V OUTPUT LOAD AC TEST CIRCUIT ## CYCLE-TO-CYCLE JITTER $t(\emptyset)$ mean = Static Phase Offset (where $t(\emptyset)$ is any random sample, and $t(\emptyset)$ mean is the average of the sampled cycles measured on controlled edges) ### **OUTPUT SKEW** ### STATIC PHASE OFFSET ## OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD ## OUTPUT RISE/FALL TIME ## PROPAGATION DELAY ## **APPLICATION INFORMATION** ### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 86004-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\scriptscriptstyle DD}$, $V_{\scriptscriptstyle DDA}$ and $V_{\scriptscriptstyle DDO}$ should be individually connected to the power supply plane through vias, and $0.01\mu F$ bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic $V_{\scriptscriptstyle DD}$ pin and also shows that $V_{\scriptscriptstyle DDA}$ requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the $V_{\scriptscriptstyle DDA}$ pin. FIGURE 1. POWER SUPPLY FILTERING ### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS ### INPUTS: #### LVCMOS CONTROL PINS: All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. ### **OUTPUTS:** #### **LVCMOS OUTPUTS:** All unused LVCMOS output can be left floating. We recommend that there is no trace attached. ### SCHEMATIC EXAMPLE Figure 2 shows a schematic example of using an 86004-01. It is recommended to have one decouple capacitor per power pin. Each decoupling capacitor should be located as close as possible to the power pin. The low pass filter R7, C11 and C16 for clean analog supply should also be located as close to the $V_{\tiny DDA}$ pin as possible. FIGURE 2. 86004-01 SCHEMATIC EXAMPLE ## RELIABILITY INFORMATION Table 6. $\theta_{_{JA}} \text{vs. Air Flow Table for 16 Lead TSSOP}$ ## θ_{JA} by Velocity (Linear Feet per Minute) 0200500Single-Layer PCB, JEDEC Standard Test Boards137.1°C/W118.2°C/W106.8°C/WMulti-Layer PCB, JEDEC Standard Test Boards89.0°C/W81.8°C/W78.1°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### **TRANSISTOR COUNT** The transistor count for 86004-01 is: 2496 # PACKAGE OUTLINE AND DIMENSIONS ### PACKAGE OUTLINE - G SUFFIX 16 LEAD TSSOP TABLE 7. PACKAGE DIMENSIONS | SYMBOL | Millim | neters | |---------|---------|---------| | STWIDOL | Minimum | Maximum | | N | 1 | 6 | | Α | | 1.20 | | A1 | 0.05 | 0.15 | | A2 | 0.80 | 1.05 | | b | 0.19 | 0.30 | | С | 0.09 | 0.20 | | D | 4.90 | 5.10 | | Е | 6.40 E | BASIC | | E1 | 4.30 | 4.50 | | е | 0.65 E | BASIC | | L | 0.45 | 0.75 | | α | 0° 8° | | | aaa | | 0.10 | Reference Document: JEDEC Publication 95, MO-153 ## Table 8. Ordering Information | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|----------|---------------------------|--------------------|--------------| | 86004BG-01LF | 6004B01L | 16 lead "Lead Free" TSSOP | Tube | 0°C to +70°C | | 86004BG-01LFT | 6004B01L | 16 lead "Lead Free" TSSOP | Tape and Reel | 0°C to +70°C | | REVISION HISTORY SHEET | | | | | |------------------------|-------------------------|------------------------|--|---------| | Rev | Table | Page | Description of Change | | | Α | | | Throughout data sheet, changed part number from ICS86004I-01 to ICS86004-01. | | | Α | T7 | 1
11 | Features section - added Lead-Free bullet. Ordering Information table - added Lead Free part number. | | | А | | | Changed temperature range throughout the data sheet from "-40°C - 85°C" to "0°C - 70°C". | | | В | T4A
T4B
T4C
T7 | 1
3
3
3
11 | Features section - changed Ambient Operating Temperature from 0°C to -40°C and throughout the datasheet. 3.3V Power Supply Table - changed V max. from 3.465V to V Added note. 3.3V/2.5V Power Supply Table - changed V max. from 3.465V to V Added note. 2.5V Power Supply Table - changed V max. from 3.465V to V Added note. Ordering Information Table - added lead-free note. | | | С | T4D | 4 | LVCMOS DC Characteristics Table - defined 2.5V V pp v specs. | | | D | T4B
T4D
T5A - T5C | 3
3
4
5 - 6 | Absolute Maximum Ratings - Inputs, V _I changed from -0.5V to V _{DD} + 0.5V to -0.5V to 5.0V. Mix Power Supply Table - corrected V _{DD} and V _{DDA} from 2.5V± to 3.3V±. LVCMOS DC Characteristics Table - V _{IH} rows - changed max. from V _{DD} + 0.3V to 5.0V. AC Tables - added ambient temperature note. | 1/19/09 | | D | Т8 | 1
1
10 | Removed ICS from the part number where needed. General Description - Deleted ICS Chip and HiPerClockS. Features Section - removed reference to leaded package. Ordering Information - removed quantity for tape and reel. Deleted LF note below the table. Updated header and footer. | 1/21/16 | Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales Tech Support www.idt.com/go/support DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Copyright ©2016 Integrated Device Technology, Inc. All rights reserved