GENERAL DESCRIPTION

The 8761 is a low voltage, low skew PCI / PCI-X Clock Generator. The 8761 has a selectable REF CLK or crystal input. The REF_CLK input accepts LVC-MOS or LVTTL input levels. The 8761 has a fully intgrated PLL along with frequency configurable clock and feedback outputs for multiplying and regenerating clocks with "zero delay". Using a 20MHz or 25MHz crystal or a 33.333MHz or 66.666MHz reference frequency, the 8761 will generate output frequencies of 33.333MHz, 66.666MHz, 100MHz and 133.333MHz simultaneously.

The low impedance LVCMOS/LVTTL outputs of the 8761 are designed to drive 50Ω series or parallel terminated transmission lines.

BLOCK DIAGRAM

OEA MR D_SELA0

FEATURES

- Fully integrated PLL
- Seventeen LVCMOS/LVTTL outputs, • 15Ω typical output impedance
- · Selectable crystal oscillator interface or LVCMOS/LVTTL REF_CLK
- Maximum output frequency: 166.67MHz
- Maximum crystal input frequency: 38MHz
- Maximum REF_CLK input frequency: 83.33MHz
- Individual banks with selectable output dividers for generating 33.333MHz, 66.66MHz, 100MHz and 133.333MHz simultaneously
- Separate feedback control for generating PCI / PCI-X • frequencies from a 20MHz or 25MHz crystal or 33.333MHz or 66.666MHz reference frequency
- Cycle-to-cycle jitter: 70ps (maximum)
- Period jitter, RMS: 17ps (maximum)
- Output skew: 230ps (maximum)
- Bank skew: 40ps (maximum)
- Static phase offset: 0 ± 150ps (maximum)
- Full 3.3V or 3.3V core, 2.5V multiple output supply modes
- 0°C to 85°C ambient operating temperature
- Available in lead-free RoHS-compliant package

PIN ASSIGNMENT

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	уре	Description
1	REF_CLK	Input	Pulldown	Reference clock input. LVCMOS / LVTTL interface levels.
2, 16, 17, 21, 25, 29, 33, 48, 52, 56, 60, 64	GND	Power		Power supply ground.
3, 4	XTAL1, XTAL2	Input		Crystal oscillator interface. XTAL1 is the input. XTAL2 is the output.
5, 9, 40, 44	V _{DD}	Power		Core supply pins.
6	XTAL_SEL	Input	Pullup	Selects between crystal oscillator or reference clock as the PLL reference source. Selects XTAL inputs when HIGH. Selects REF_CLK when LOW. LVCMOS / LVTTL interface levels.
7	PLL_SEL	Input	Pullup	Selects between PLL and bypass mode. When HIGH, selects PLL. When LOW, selects reference clock. LVCMOS / LVTTL interface levels.
8	V _{dda}	Power		Analog supply pin. See Applications Note for filtering.
10, 11	D_SELC0, D_SELC1	Input	Pulldown	Selects divide value for Bank C outputs as described in Table 3. LVCMOS / LVTTL interface levels.
12	OEC	Input	Pullup	Determines state of Bank C outputs. When HIGH, outputs are enabled. When LOW, outputs are disabled. LVCMOS / LVTTL interface levels.
13	OEA	Input	Pullup	Determines state of Bank A outputs. When HIGH, outputs are enabled. When LOW, outputs are disabled. LVCMOS / LVTTL interface levels.
14, 15	D_SELA0, D_SELA1	Input	Pulldown	Selects divider value for Bank A outputs as described in Table 3. LVCMOS / LVTTL interface levels.
18, 20, 22, 24	QA0, QA1, QA2, QA3	Output		Bank A clock outputs. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
19, 23	V _{DDOA}	Power		Output supply pins for Bank A outputs.
26, 28, 30, 32	QB0, QB1, QB2, QB3	Output		Bank B clock outputs. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
27, 31	V _{DDOB}	Power		Output supply pins for Bank B outputs.
34, 35	D_SELB1, D_SELB0	Input	Pulldown	Selects divider value for Bank B outputs as described in Table 3. LVCMOS / LVTTL interface levels.
36	OEB	Input	Pullup	Determines state of Bank B outputs. When HIGH, outputs are enabled. When LOW, outputs are disabled. LVCMOS / LVTTL interface levels.
37	OED	Input	Pullup	Determines state of Bank D outputs. When HIGH, outputs are enabled. When LOW, outputs are disabled. LVCMOS / LVTTL interface levels.
38, 39	D_SELD1, D_SELD0	Input	Pulldown	Selects divider value for Bank D outputs as described in Table 3. LVCMOS / LVTTL interface levels.
41	MR	Input	Pulldown	Active HIGH Master reset. When logic HIGH, the internal dividers are reset causing the outputs to go low. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.
42	FBDIV_SEL1	Input	Pulldown	Selects divider value for bank feedback output as described in Table 3. LVCMOS / LVTTL interface levels.
43	FBDIV_SEL0	Input	Pullup	Selects divider value for bank feedback output as described in Table 3. LVCMOS / LVTTL interface levels.
45	FB_IN	Input	Pulldown	Feedback input to phase detector for generating clocks with "zero delay". LVCMOS / LVTTL interface levels.

Number	Name	Туре		Description
46	V _{DDOFB}	Power		Output supply pin for FB_Out output.
47	FB_OUT	Output		Feedback output. Connect to FB_IN. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
49, 51, 53, 55	QD3, QD2, QD1, QD0	Output		Bank D clock outputs. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
50, 54	V _{DDOD}	Power		Output supply pins for Bank D outputs.
57, 59, 61, 63	QC3, QC2, QC1, QC0	Output		Bank C clock outputs. 15Ω typical output impedance. LVCMOS / LVTTL interface levels.
58, 62	V _{DDOC}	Power		Output supply pins for Bank C outputs.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor				51	kΩ
R _{PULLDOWN}	Input Pulldown Resistor				51	kΩ
C	Power Dissipation Capacitance	$V_{DD}, V_{DDA} = 3.465 V; V_{DDOx} = 3.465 V$			9	pF
C _{PD} (I	(per output); NOTE 1	$V_{DD}, V_{DDA} = 3.465V; V_{DDOx} = 2.625V$			11	pF
R _{OUT}	Output Impedance			15		Ω

NOTE 1: V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} , V_{DDOD} , V_{DDOFB} .

TABLE 3A. OUTPUT CONTROL PIN FUNCTION TABLE

Inputs					Outputs			
MR	OEA	OEB	OEC	OED	QA0:QA3	QB0:QB3	QC0:QC3	QD0:QD3
1	1	1	1	1	LOW	LOW	LOW	LOW
0	1	1	1	1	Active	Active	Active	Active
Х	0	0	0	0	HiZ	HiZ	HiZ	HiZ

TABLE 3B. OPERATING MODE FUNCTION TABLE

Inputs	Operating Mode			
PLL_SEL	Operating Mode			
0	Bypass			
1	PLL			

TABLE 3C. PLL INPUT FUNCTION TABLE

Inputs				
XTAL_SEL	PLL Input			
0	REF_CLK			
1	XTAL Oscillator			

TABLE 3D. CONTROL FUNCTION TABLE

		Input	to			Outputs		
		Input	15		PLL_SEL =1 Frequency			
D_SELx1	D_SELx0	FBDIV_SEL1	FBDIV_SEL0	Reference Fre- quency Range (MHz)	QX0:QX3	QX0:QX3 (MHz)	FB_OUT (MHz)	
0	0	0	0	41.6 - 83.33	x 2	83.33 - 166.67	41.6 - 83.33	
0	0	0	1	20.83 - 41.67	x 4	83.33 - 166.67	20.83 - 41.67	
0	0	1	0	15.62 - 31.25	x 5.33	83.33 - 166.67	15.62 - 31.25	
0	0	1	1	12.5 - 25	x 6.67	83.33 - 166.67	12.5 - 25	
0	1	0	0	41.6 - 83.33	x 1.5	62.4 - 125	41.6 - 83.33	
0	1	0	1	20.83 - 41.67	x 3	62.4 - 125	20.83 - 41.67	
0	1	1	0	15.62 - 31.25	x 4	62.4 - 125	15.62 - 31.25	
0	1	1	1	12.5 - 25	x 5	62.4 - 125	12.5 - 25	
1	0	0	0	41.6 - 83.33	x 1	41.6 - 83.33	41.6 - 83.33	
1	0	0	1	20.83 - 41.67	x 2	41.6 - 83.33	20.83 - 41.67	
1	0	1	0	15.62 - 31.25	x 2.67	41.6 - 83.33	15.62 - 31.25	
1	0	1	1	12.5 - 25	x 3.33	41.6 - 83.33	12.5 - 25	
1	1	0	0	41.6 - 83.33	÷ 2	20.8 - 41.67	41.6 - 83.33	
1	1	0	1	20.83 - 41.67	÷ 1	20.8 - 41.67	20.83 - 41.67	
1	1	1	0	15.62 - 31.25	x 1.33	20.8 - 41.67	15.62 - 31.25	
1	1	1	1	12.5 - 25	x 1.67	20.8 - 41.67	12.5 - 25	

NOTE: D_SELX1 denotes D_SELA1, D_SELB1, D_SELC1, and D_SELD1. D_SELX0 denotes D_SELA0, D_SELB0, D_SELC0, and D_SELD0. QX0:QX3 denotes QA0:QA3, QB0:QB3, QC0:QC3, and QD0:QD3.

TABLE 3E. CONTROL FUNCTION TAB	LE (PCI CONFIGURATION)
--------------------------------	------------------------

		lav	outs			Outputs	
		ար	PLL_SEL = 1	Freque	ency		
D_SELx1	D_SELx0	FBDIV_SEL1	FBDIV_SEL0	Reference Frequency (MHz)	QX0:QX3	QX0:QX3 (MHz)	FB_OUT (MHz)
0	0	0	0	66.67	x 2	133	66.67
0	0	0	1	33.33	x 4	133	33.33
0	0	1	0	25	x 5.33	133	25
0	0	1	1	20	x 6.67	133	20
0	1	0	0	66.67	x 1.5	100	66.67
0	1	0	1	33.33	x 3	100	33.33
0	1	1	0	25	x 4	100	25
0	1	1	1	20	x 5	100	20
1	0	0	0	66.67	x 1	66.67	66.67
1	0	0	1	33.33	x 2	66.67	33.33
1	0	1	0	25	x 2.67	66.67	25
1	0	1	1	20	x 3.33	66.67	20
1	1	0	0	66.67	÷ 2	33.33	66.67
1	1	0	1	33.33	÷ 1	33.33	33.33
1	1	1	0	25	x 1.33	33.33	25
1	1	1	1	20	x 1.67	33.33	20

NOTE: D_SELx1 denotes D_SELA1, D_SELB1, D_SELC1, and D_SELD1. D_SELx0 denotes D_SELA0, D_SELB0, D_SELC0, and D_SELD0. QX0:QX3 denotes QA0:QA3, QB0:QB3, QC0:QC3, and QD0:QD3.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, $V_{_{DD}}$	4.6V
Inputs, V _I	-0.5V to V $_{\rm DD}$ + 0.5 V
Outputs, V _o	-0.5V to V_{DDOx} + 0.5V
Package Thermal Impedance, $\boldsymbol{\theta}_{_{JA}}$	41.1°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = V_{DDOX} = 3.3V \pm 5\%$, Ta = 0°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
V _{DDOx}	Output Supply Voltage; NOTE 1		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				175	mA
	Analog Supply Current				55	mA
I _{DDOx}	Output Supply Current; NOTE 2				25	mA

NOTE 1: V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} , V_{DDOD} , and V_{DDOFB} . NOTE 2: I_{DDOx} denotes I_{DDOA} , I_{DDOB} , I_{DDOC} , I_{DDOD} , and I_{DDOFB} .

Table 4B. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, $V_{DDOx} = 2.5V \pm 5\%$, Ta = 0°C to 85°C t

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
V _{DDOx}	Output Supply Voltage; NOTE 1		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				160	mA
I _{DDA}	Analog Supply Current				50	mA
I _{DDOx}	Output Supply Current; NOTE 2				210	mA

NOTE 1: V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} , V_{DDOD} , and V_{DDOFB} . NOTE 2: I_{DDOx} denotes I_{DDOA} , I_{DDOB} , I_{DDOC} , I_{DDOD} , and I_{DDOFB} .

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	OEA:OED, XTAL_SEL, MR, D_SE- LA0:D_SELD0, FB_IN, D_SELA1:D_SELD1, PLL_SEL, FBDIV_SEL0, FBDIV_SEL1		2		V _{DD} + 0.3	V
		REF_CLK 2	2		V _{DD} + 0.3	V	
V _{IL}	Input Low Voltage	OEA:OED, XTAL_SEL, MR, D_SE- LA0:D_SELD0, FB_IN, D_SELA1, D_SELD1, PLL_SEL		-0.3		0.8	V
		REF_CLK		-0.3		1.3	V
Input	D_SELA0:D_SELD0, FB_IN, MR, D_SELA1:D_SELD1, REF_CLK, FBDIV_SEL1	$V_{DD} = V_{IN} = 3.465V$			150	μA	
	High Current	XTAL_SEL, PLL_SEL, FBDIV_ SEL0, OEA:OED	$V_{DD} = V_{IN} = 3.465V$			5	μA
	Input	D_SELA0:D_SELD0, FB_IN, MR, D_SELA1:D_SELD1, REF_CLK, FBDIV_SEL1	$V_{_{DD}} = 3.465V,$ $V_{_{IN}} = 0V$	-5			μA
	Low Current	XTAL_SEL, PLL_SEL, FBDIV_ SEL0, OEA:OED	$V_{DD} = 3.465V,$ $V_{IN} = 0V$	-150			μA
V			$V_{DDOx} = 3.465V$	2.6			V
V _{OH}	Output High V	oltage; NOTE 1	$V_{DDOx} = 2.625V$	1.8			V
V _{ol}	Output Low Voltage; NOTE 1		V _{DDOx} = 3.465V or 2.625V			0.5	V
I _{ozl}	Output Tristate	e Current Low		-5			μA
I _{ozh}	Output Tristate	e Current High				5	μA

TABLE 4C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDA} = V_{DDOX} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = 0°C to 85° C

NOTE 1: Outputs terminated with 50W to $V_{DDOx}/2$. See Parameter Measurement Information section, "Output Load Test Circuit" Diagrams.

TABLE 5. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fu	Indamenta	ıl	
Frequency		10		38	MHz
Equivalent Series Resistance (ESR)				70	Ω
Shunt Capacitance			7		pF
Drive Level				1	mW

Table 6. PLL Input Reference Characteristics, $V_{DD} = V_{DDA} = V_{DDOX} = 3.3V \pm 5\%$, Ta = 0°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{REF}	Reference Frequency		10		83.33	MHz

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				166.67	MHz
t(Ø)	Static Phase Offset; NOTE 1, 7	f = 50MHz	-150		150	ps
tsk(b)	Bank Skew; NOTE 2, 6				40	ps
tsk(o)	Output Skew; NOTE 3, 6				230	ps
tjit(cc)		f = 50MHz; NOTE 4, 7			70	ps
	Cycle-to-Cycle Jitter; 6	f = 25MHz XTAL, 133.3MHz out			190	ps
tjit(per)	Period Jitter, RMS; NOTE 4, 6, 7, 8				17	ps
t	PLL Lock Time				1	ms
t _R	Output Rise Time	20% to 80%	300		800	ps
t _F	Output Fall Time	20% to 80%	300		800	ps
odc	Output Duty Cycle; NOTE 5, 7		45		55	%

TABLE 7A. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDOX} = 3.3V \pm 5\%$, TA = 0°C to 85°C

NOTE 1: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked and the input reference frequency is stable. Measured from $V_{_{DD}}/2$ of the input to

 $V_{\text{DDD}}/2$ of the output.

NOTE 2: Defined as skew within a bank of outputs at the same voltages and with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at $V_{\text{DDOx}}/2$.

NOTE 4: Jitter performance using LVCMOS inputs.

NOTE 5: Measured using REF_CLK. For XTAL input, refer to Application Note.

NOTE 6: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 7: Tested with D_SELXX =10 (divide by 6); FBDIV_SEL = 00 (divide by 6).

NOTE 8: This parameter is defined as an RMS value.

TABLE 7B. AC CHARACTERISTICS,	$V_{DD} = V_{DDA} = 3.3V \pm 5\%, V_{DDC}$	_{ох} = 2.5V±5%, Та = 0°С то 85°С
-------------------------------	--	---

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				166.67	MHz
t(Ø)	Static Phase Offset; NOTE 1, 7	f = 50MHz	-350		20	ps
tsk(b)	Bank Skew; NOTE 2, 6				40	ps
tsk(o)	Output Skew; NOTE 3, 6				230	ps
tjit(cc)		f = 50MHz; NOTE 4, 7				ps
	Cycle-to-Cycle Jitter; NOTE 6	f = 25MHz XTAL, 133.3MHz out				ps
tjit(per)	Period Jitter, RMS; NOTE 4, 6, 7, 8				17	ps
t	PLL Lock Time				1	ms
t _R	Output Rise Time	20% to 80%	300		800	ps
t _F	Output Fall Time	20% to 80%	300		800	ps
odc	Output Duty Cycle; NOTE 5, 7		45		55	%

See notes in Table 7A above.

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

POWER SUPPLY FILTERING TECHNIQUES

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 8761 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} , and V_{DDOx} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. *Figure 1* illustrates how a ferrite bead along with a 10μ F and a $.01\mu$ F bypass capacitor should be connected to each V_{DDA} .

FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The 8761 crystal interface is shown in *Figure 2.* While layout the PC Board, it is recommended to provide C1 and C2 spare footprints for frequency fine tuning. For an 18pF parallel res-

onant crystal, the C1 and C2 are expected to be ${\sim}10\text{pF}$ and ${\sim}5\text{pF}$ respectively.

FIGURE 2. CRYSTAL INPUT INTERFACE

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

NPUTS:

CRYSTAL INPUT:

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

REF_CLK INPUT:

For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the REF_CLK to ground.

LVCMOS CONTROL PINS:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS:

LVCMOS OUTPUT:

All unused LVCMOS output can be left floating. We recommend that there is no trace attached.

SCHEMATIC EXAMPLE

Figure 3 shows a schematic example of the 8761. In this example, the input is driven by an ICS LVHSTL driver. The decoupling capacitors should be physically located near

the power pin. For 8761, the unused clock outputs can be left floating. The optional C1 and C2 are spare footprints for frequency fine tuning.

FIGURE 3. 8761 CLOCK GENERATOR SCHEMATIC EXAMPLE

RELIABILITY INFORMATION

Table 8. $\boldsymbol{\theta}_{JA} \text{vs.}$ Air Flow Table for 64 Lead TSSOP

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	58.8°C/W	48.5°C/W	43.2°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	41.1°C/W	35.8°C/W	33.6°C/W

TRANSISTOR COUNT

The transistor count for 8761 is: 6040

PACKAGE OUTLINE - Y SUFFIX FOR 64 LEAD TSSOP

TABLE 9. PACKAGE DIMENSIONS

	JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS					
SYMBOL		BCD				
SYMBOL	MINIMUM	NOMINAL	MAXIMUM			
Ν		64				
Α			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
b	0.17		0.27			
с	0.09		0.20			
D	12.00 BASIC					
D1	10.00 BASIC					
D2		7.50 Ref.				
E		12.00 BASIC				
E1		10.00 BASIC				
E2		7.50 Ref.				
е		0.50 BASIC				
L	0.45		0.75			
θ	0°		7°			
ccc			0.08			

Reference Document: JEDEC Publication 95, MS-026

TABLE 10. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8761CYLF	ICS8761CYLF	64 Lead "Lead-Free" LQFP	tray	0°C to 85°C
8761CYLFT	ICS8761CYLF	64 Lead "Lead-Free" LQFP	tape & reel	0°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

			REVISION HISTORY SHEET	
Rev	Table	Page	Description of Change	Date
А	T1	2	Pin Description Table, revised Master Reset description.	8/15/02
	T1	2	Pin Description Table, pin 43 should be labeled at a PULLUP instead of a PULL-DOWN.	11/05/00
A	T4B, T4D	6, 8	LVCMOS DC Characteristics table -in the I_{H} and I_{L} rows, FBDIV_SEL0 was deleted from the "pulldown" row and was added to the "pullup" row.	11/05/02
		1	Features section, changed max. output frequency from 200MHz to 183.3MHz, and max. REF_CLK input frequency from 100MHz to 91.6MHz.	
В	T3D	4	Control Function Table - revised Reference Frequency Range column and Fre- quency columns to reflect the output frequency change.	11/06/02
	T5A, T5B	7, 9	AC Characteristics tables - changed Output Frequency from 200MHz max. to 183.3MHz max.	
	T1	2	Pin Description Table, revised crystal description.	
В	T5A, T5B	7, 9	AC Characteristics tables - changed Period Jitter measurement to Period Jitter, RMS and added NOTE 8.	1/20/03
		10 11	Added Crystal information. Added Schematic Example in the Application Information Section.	
	T1	2	Pin Description Table - revised MR description.	
В	T4A, T4C	5, 7	Power Supply Tables - changed V _{DD} parameter to read "Core Supply Voltage" from "Positive Supply Voltage".	3/25/03
		10 10	Deleted Crystal Input Interface section. Updated Schematic Example diagram.	
		1	Updated Features to reflect T5A, 3.3V AC Characteristics (see below).	
	T3D	4	Adjusted Ref. Frequency Range and Frequency columns.	
С	T4A	5	Changed I_{DD} max. from 150mA to 175mA, I_{DDA} max. from 50mA to 55mA, and I_{DDD} max. from 330mA to 25mA.	4/10/03
	T5A & T5B	6 & 8	Changed f _{Max} from 183.3MHz max. to 166.67MHz max. Changed RMS tjit(per) from 20ps max. to 17ps max.	
		1	Features Section - added Lead-Free bullet.	
С		10	Added Crystal Section.	8/2/04
		14	Ordering Information Table - added Lead-Free/Annealed Part Number.	
С		14	Ordering Information Table - added Lead-Free Part Number.	8/7/04
	T2 T5	3 6	Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical. Crystal Characteristics Table - added Drive Level.	
	15	9	Power Supply Filtering Techniques - corrected last sentence in the paragraph to	
		Ū	read "Figure 1 illustrates how a ferrite bead along" from	
D			"Figure 1 illustrates how a 10W resistor along"".	1/13/06
			Corrected Power Supply Filtering diagram.	
		10	Added Recommendations for Unused Input and Output Pins.	
	T10	11 14	Corrected Schematic Example diagram. Ordering Information Table - added Lead-Free note.	
			Updated datasheet's header/footer with IDT from ICS.	
Е	T10	14	Removed ICS prefix from Part/Order Number column.	7/26/10
		16	Added Contact Page.	
E	T10	14	Ordering Information - removed leaded devices PDN CQ-13-02	2/18/15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.