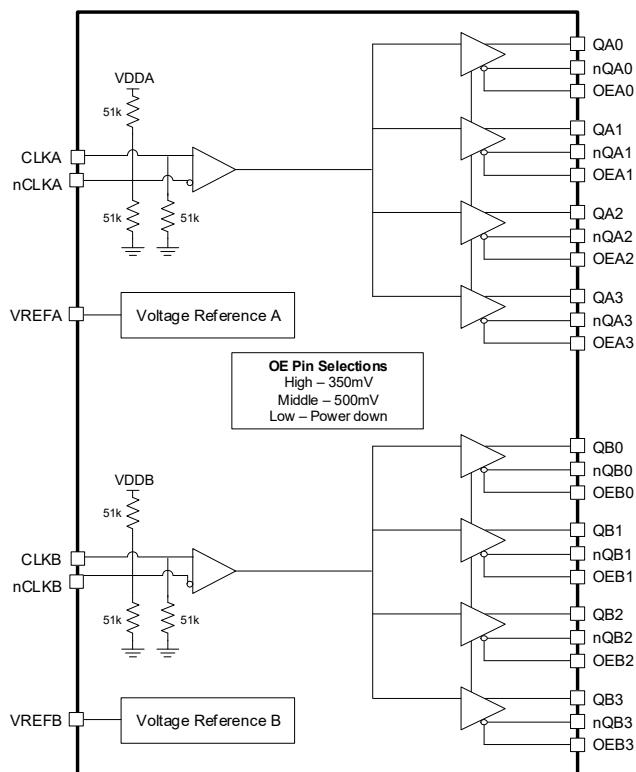


8P34S2104-1


Dual 1:4 LVDS Output 1.8V / 2.5V Fanout Buffer with OE/Swing Control

Description

The 8P34S2104-1 is a differential dual 1:4 LVDS output 1.8V/2.5V fanout buffer that boasts high performance and low power consumption. It is engineered to support fail-safe operation and specifically designed for the fanout of high-frequency clock and data signals with minimal additive phase-noise. The device comprises two independent buffer channels, and each of these channels has four outputs with low skew. High isolation between the channels ensures minimal noise coupling.

The 8P34S2104-1 excels in clock distribution applications that require well-defined performance and repeatability due to its guaranteed output-to-output and part-to-part skew characteristics. The device can operate using a 1.8V or 2.5V power supply. Its integrated bias voltage references allow for the easy interfacing of AC-coupled signals with the device's inputs.

The 8P34S2104-1 has the individual OE / Swing control pin for each output, which provides the excellent control over both swing and output enable functions.

Features

- Dual 1:4 low skew, low additive jitter LVDS fanout buffers
- Individual OE / Swing control pin for each output.
- Matched AC characteristics across both channels
- High isolation between channels
- Both differential CLKA, nCLKA and CLKB, nCLKB inputs accept LVDS, LVPECL, and single-ended LVCMOS levels
- Maximum input clock frequency of 2GHz
- Selectable output amplitudes: 350mV, 500mV, or disable
- Output skew: 20ps typical
- Low additive phase jitter, RMS: 50fs typical ($f_{REF} = 156.25\text{MHz}$, 12kHz–20MHz)
- Full 1.8V and 2.5V supply voltage mode
- Lead-free (RoHS 6), 40-lead VFQFPN packaging
- -40°C to +85°C ambient operating temperature
- Supports case temperature up to +105°C

Applications

- 4G and 5G RU and DU system
- Ethernet switches / routers
- Medical imaging
- Professional audio and video
- Data center and server

Contents

1. Pin Information	3
1.1 Pin Assignments	3
1.2 Pin Descriptions	3
1.3 OE Output Amplitude Selection (Static Control)	4
2. Specifications	5
2.1 Absolute Maximum Ratings	5
2.2 Recommended Operating Conditions	5
2.3 Thermal Specifications	5
2.4 DC Input Characteristics	6
2.5 Power Supply DC Characteristics	6
2.6 Power Supply DC Characteristics	6
2.7 LVCMOS/LVTTL Input DC Characteristics	6
2.8 Differential Input Characteristics	7
2.9 LVDS AC and DC Characteristics	7
2.10 AC Characteristics	8
3. Additive Phase Jitter	9
4. Applications Information	10
4.1 Fail-Safe Operation	10
4.2 Recommendations for Unused Input and Output Pins	10
4.2.1 Inputs	10
4.2.2 Outputs	10
4.3 Wiring the Differential Input to Accept Single-Ended Levels	10
4.4 1.8V Differential Clock Input Interface	11
4.5 LVDS Driver Termination	12
5. Package Outline Drawings	13
6. Marking Diagram	13
7. Ordering Information	13
8. Revision History	14

1. Pin Information

1.1 Pin Assignments

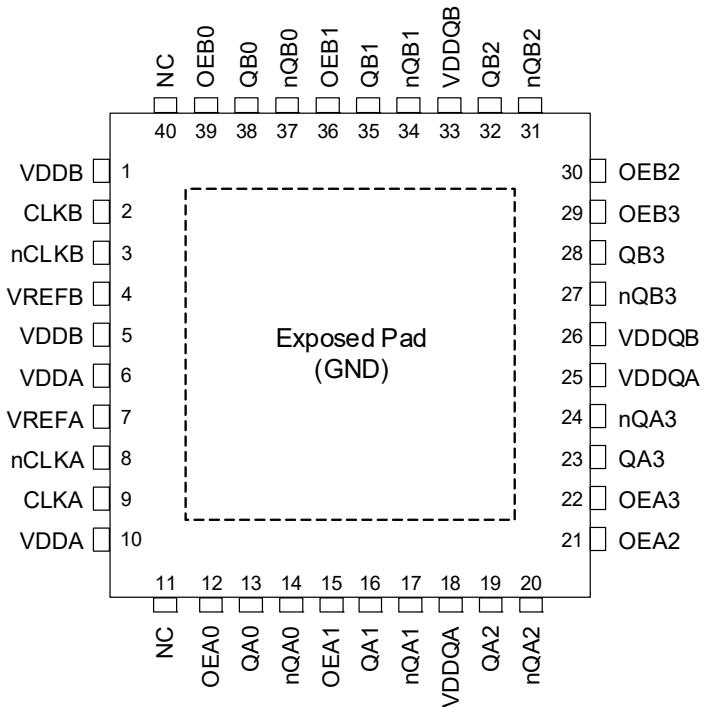


Figure 1. Pin Assignments – Top View

1.2 Pin Descriptions

Table 1. Pin Descriptions

Pin Number	Pin Name	Type	Description
1	VDDB	Power	Power supply pins for the core and inputs of channel B.
2	CLKB	Input (PD)	Non-inverting differential clock/data input for channel B.
3	nCLKB	Input (PD/PU)	Inverting differential clock/data input for channel B.
4	VREFB	Power	Bias voltage reference for the CLKB, nCLKB input pairs.
5	VDDB	Power	Power supply pins for the core and inputs of channel B.
6	VDDA	Power	Power supply pins for the core and inputs of channel A.
7	VREFA	Power	Bias voltage reference for the CLKA, nCLKA input pairs.
8	nCLKA	Input (PD/PU)	Inverting differential clock/data input for channel A.
9	CLKA	Input (PD)	Non-inverting differential clock/data input for channel A.
10	VDDA	Power	Power supply pins for the core and inputs of channel A.
11	NC	-	No connect.
12	OEA0	Input	Controls output enables and swing for QA0. LVCMS/TTL input levels.
13	QA0	Output	Differential output pair A0. LVDS interface levels.
14	nQA0	Output	Differential output pair A0. LVDS interface levels.
15	OEA1	Input	Controls output enables and swing for QA1. LVCMS/TTL input levels.

Table 1. Pin Descriptions (Cont.)

Pin Number	Pin Name	Type	Description
16	QA1	Output	Differential output pair A1. LVDS interface levels.
17	nQA1	Output	Differential output pair A1. LVDS interface levels.
18	VDDQA	Power	Power supply pin for the channel A outputs QA[0:3].
19	QA2	Output	Differential output pair A2. LVDS interface levels.
20	nQA2	Output	Differential output pair A2. LVDS interface levels.
21	OEA2	Input	Controls output enables and swing for QA2. LVCMOS/TTL input levels.
22	OEA3	Input	Controls output enables and swing for QA3. LVCMOS/TTL input levels.
23	QA3	Output	Differential output pair A3. LVDS interface levels.
24	nQA3	Output	Differential output pair A3. LVDS interface levels.
25	VDDQA	Power	Power supply pin for the channel A outputs QA[0:3].
26	VDDQB	Power	Power supply pin for the channel B outputs QB[0:3].
27	nQB3	Output	Differential output pair B3. LVDS interface levels.
28	QB3	Output	Differential output pair B3. LVDS interface levels.
29	OEB3	Input	Controls output enables and swing for QB3. LVCMOS/TTL input levels.
30	OEB2	Input	Controls output enables and swing for QB2. LVCMOS/TTL input levels.
31	nQB2	Output	Differential output pair B2. LVDS interface levels.
32	QB2	Output	Differential output pair B2. LVDS interface levels.
33	VDDQB	Power	Power supply pin for the channel B outputs QB[0:3].
34	nQB1	Output	Differential output pair B1. LVDS interface levels.
35	QB1	Output	Differential output pair B1. LVDS interface levels.
36	OEB1	Input	Controls output enables and swing for QB1. LVCMOS/TTL input levels.
37	nQB0	Output	Differential output pair B0. LVDS interface levels.
38	QB0	Output	Differential output pair B0. LVDS interface levels.
39	OEB0	Input	Controls output enables and swing for QB0. LVCMOS/TTL input levels.
40	NC	-	No connect.
-	ePAD	Power	EPAD connect to GND.

1.3 OE Output Amplitude Selection (Static Control)

OE Pin	QA and QB Output Amplitude (mV)
1	350
Float (default)	500
0	Disable (power-down)

2. Specifications

2.1 Absolute Maximum Ratings

Caution: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

Figure 2. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Unit
Supply Voltage, V_{DD}	-	4.6	V
Input, V_I	-0.5	4.6	V
Input, I_I	-	20m	A
Outputs, I_O	-	10	mA
Continuous Current	-	15	
Surge Current	-		
Input Sink/Source, I_{REF}	-	± 2	mA
Maximum Junction Temperature, T_{JMAX}	-	125	°C
Storage Temperature, T_{STG}	-65	150	°C
ESD – Human Body Model	-	2000	V
ESD – Charged Device Model	-	1500	V

2.2 Recommended Operating Conditions

Table 2. Recommended Operating Conditions [1][2]

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
T_J	Maximum Junction Temperature	-	-	-	125	°C
T_A	Ambient Operating Temperature	-	-40	-	85	°C
V_{DDx}	Supply Voltage with Respect to Ground	Any V_{DD} pin, 1.8V supply	1.71	1.8	1.89	V
		Any V_{DD} pin, 2.5V supply	2.1	2.5	2.7	V

1. All electrical characteristics are specified over Recommended Operating Conditions unless noted otherwise.

2. All conditions in this table must be met to guarantee device functionality and performance.

2.3 Thermal Specifications

Parameter	Package	Symbol	Conditions	Typical Value	Unit
Thermal Resistance	40-VFQFPN, 6.0 × 6.0 mm	θ_{JA0}	Junction to ambient, still air	24	°C/W
		θ_{JA1}	Junction to ambient, 1 m/s air flow	21	°C/W
		θ_{JA2}	Junction to ambient, 2 m/s air flow	19	°C/W
		θ_{JB}	Junction to board	1.4	°C/W
		θ_{JC}	Junction to case	19.2	°C/W

2.4 DC Input Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
C_{IN}	Input Capacitance	-	-	2	-	pF
$R_{PULLDOWN}$	Input Pull-down Resistor	-	-	51	-	k ohms
R_{PULLUP}	Input Pull-up Resistor	-	-	51	-	k ohms

2.5 Power Supply DC Characteristics

$V_{DD} = 1.8V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
V_{DD}	Power Supply Voltage	-	1.71	1.8	1.89	V
I_{DD}	Power Supply Current	All QA, QB output terminated 100 ohm. Output swing is 500mV	-	230	295	mA
I_{DD}	Power Supply Current	All QA, QB output terminated 100 ohm. Output swing is 350mV	-	175	220	mA
I_{DD}	Power Supply Current	All QA, QB output disabled.	-	65	85	mA

2.6 Power Supply DC Characteristics

$V_{DD} = 2.1V$ to $2.7V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
V_{DD}	Power Supply Voltage	-	2.1	2.5	2.7	V
I_{DD}	Power Supply Current	All QA, QB output terminated 100 ohm. Output swing is 500mV	-	240	325	mA
I_{DD}	Power Supply Current	All QA, QB output terminated 100 ohm. Output swing is 350mV	-	180	230	mA
I_{DD}	Power Supply Current	All QA, QB output disabled.	-	70	90	mA

2.7 LVCMOS/LVTTL Input DC Characteristics

$V_{DD} = 1.8V \pm 5\%$, $2.1V$ to $2.7V$, $T_A = -40^\circ C$ to $85^\circ C$.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
V_{IH}	Input High Voltage	$V_{DD} = 1.89V, 2.7V$	$0.75 \times V_{DD}$	-	$V_{DD} + 0.3$	V
V_{IM}	Input Middle Voltage	$V_{DD} = 1.89V, 2.7V$	$0.45 \times V_{DD}$	-	$0.55 \times V_{DD}$	V
V_{IL}	Input Low Voltage	$V_{DD} = 1.89V, 2.7V$	-0.3	-	$0.25 \times V_{DD}$	V
I_{IH}	Input High Current, OE0 to OE7	$V_{DD} = V_{IN} = 1.89V, 2.7V$	-	-	150	μA

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
I_{IL}	Input Low Current, OEx	$V_{DD} = 1.89V, 2.7V$, $V_{IN} = 0V$	-10	-	-	μA
I_{LEAK}	Input Leakage Current, OEx	$V_{IN} = 2.7V$, $V_{DD} = 0V$	-	-	250	μA

2.8 Differential Input Characteristics

$V_{DD} = 1.8V \pm 5\%$, 2.1V to 2.7V, $T_A = -40^\circ C$ to $85^\circ C$.

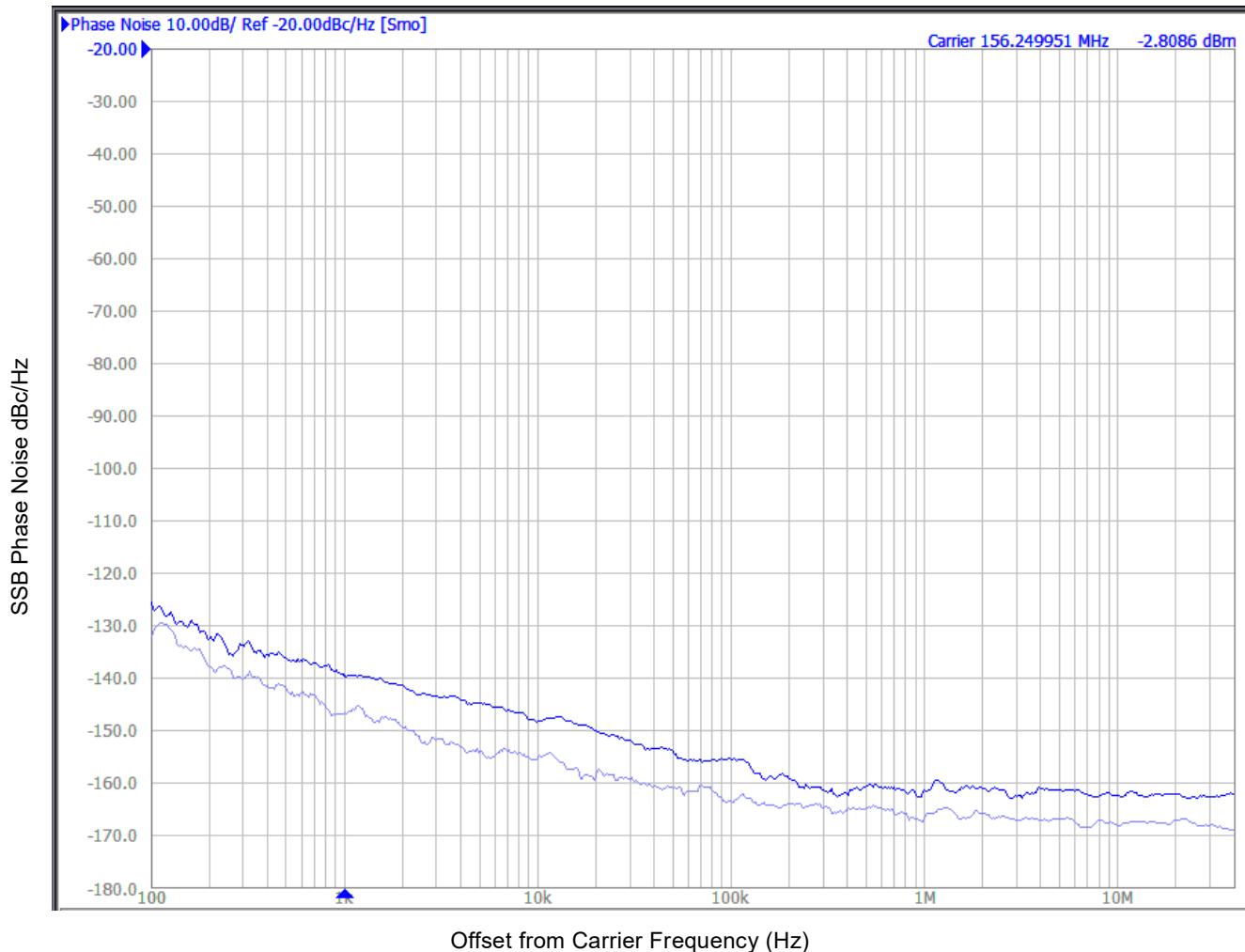
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
I_{IH}	Input High Current CLKA, nCLKA; CLKB, nCLKB	$V_{DD} = V_{IN} = 1.89V, 2.7V$	-	-	150	μA
I_{IL}	Input Low Current CLKA, CLKB	$V_{IN} = 0V$, $V_{DD} = 1.89V$, 2.7V	-150	-	-	μA
	Input Low Current nCLKA, nCLKB	$V_{IN} = 0V$, $V_{DD} = 1.89V$, 2.7V	-150	-	-	μA
I_{LEAK}	Input Leakage Current	$V_{IN} = 2.7V$, $V_{DD} = 0V$	-	-	250	μA
V_{REF}	Reference Voltage for Input Bias	$I_{REF} = -100\mu A$; $V_{DD} = 1.8V, 2.5V$	$0.7 \times V_{DD}$	-	$0.85 \times V_{DD}$	V
V_{PP}	Peak-to-peak Voltage	$V_{DD} = 1.89V, 2.7V$	0.2	-	1	V
V_{CMR}	Common Mode Input Voltage	-	0.9	-	$V_{DD} - (V_{PP}/2)$	V

2.9 LVDS AC and DC Characteristics

$V_{DD} = 1.8V \pm 5\%$, 2.1V to 2.7V, $T_A = -40^\circ C$ to $85^\circ C$.

Symbol	Parameter [1]	Test Conditions	Minimum	Typical	Maximum	Unit
δV_{OD}	V_{OD} Magnitude Change	-	-	-	50	mV
δV_{OD}	V_{OD} Magnitude Change	-	-	-	50	mV
V_{OD}	Differential Output Voltage	Output = 350mV, $f_{REF} < 1.5GHz$	247	350	454	mV
		Output = 500mV, $f_{REF} < 1.5GHz$	350	500	650	mV

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.


2.10 AC Characteristics

$V_{DD} = 1.8V \pm 5\%$ or 2.1 to $2.7V$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions		Minimum	Typical	Maximum	Unit
f_{REF}	Input Frequency	-		0	-	2	GHz
dV/dt	Input Edge Rate	-		1.5	-	-	V/ns
t_{PD}	Propagation Delay	$CLK[0:1]$, $nCLK[0:1]$ to any Q_x , nQ_x		100	285	450	ps
$tsk(o)$	Output Skew	-		-	20	40	ps
$tsk(p)$	Pulse Skew	$f_{REF} = 100MHz$		-	5	20	ps
$tsk(pp)$	Part-to-part Skew	-		-	-	200	ps
t_{jit}	Buffer Additive Phase Jitter, RMS	$f_{REF} = 122.88MHz$ Square Wave, $VPP = 1V$, Integration Range: 12kHz to 20MHz		-	50	-	fs
		$f_{REF} = 156.25MHz$ Square Wave, $VPP = 1V$, Integration Range: 12kHz to 20MHz		-	50	-	fs
		$f_{REF} = 156.25MHz$ Square Wave, $VPP = 0.5V$, Integration Range: 12kHz to 20MHz		-	50	-	fs
PNF	Phase noise floor	Phase noise floor carrier frequency at 122.88MHz at 20MHz offset		-	-160	-	dBc/Hz
t_R / t_F	Output Rise/ Fall Time	$V_{DD} = 1.8V \pm 5\%$, outputs loaded with 100ohm	10% to 90%	-	150	400	ps
			20% to 80%	-	90	160	ps
		$V_{DD} = 2.1V, 2.5V, 2.7V$, outputs loaded with 100ohm	10% to 90%	-	200	420	ps
			20% to 80%	-	110	190	ps
$MUX_{isolation}$	Mux Isolation	$f_{REF} = 100MHz$		-	80	-	dB

3. Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a phase noise plot, and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm), or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

Figure 3. Additive Phase Jitter. Frequency: 156.25MHz, Integration Range: 12kHz to 20MHz = 45fs Typical

As with most timing specifications, phase noise measurements have issues relating to the limitations of the measurement equipment. The noise floor of the equipment can be higher or lower than the noise floor of the device. Additive phase noise is dependent on both the noise floor of the input source and measurement equipment.

Note: The phase noise plot was measured using a Wenzel 156.25MHz Oscillator as the input source.

4. Applications Information

4.1 Fail-Safe Operation

All clock inputs support fail-safe operation. That is, when the device is powered down, the clock inputs can be held at a DC voltage of up to 4.6V without damaging the device or the input pins.

4.2 Recommendations for Unused Input and Output Pins

4.2.1 Inputs

4.2.1.1 CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from CLK to ground.

4.2.2 Outputs

4.2.2.1 LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating there should be no trace attached.

4.2.2.2 VREFX

The unused VREFA and VREFB pins can be left floating. We recommend that there is no trace attached.

4.3 Wiring the Differential Input to Accept Single-Ended Levels

Figure 4 shows an example of how a differential input can be wired to accept single-ended levels. To satisfy the V_{CMR} requirement, the reference voltage V_1 is set to 1.2V which is generated by the bias resistors R_1 and R_2 . The bypass capacitor (C_1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R_1 and R_2 might need to be adjusted to position the V_1 to meet the V_{CMR} requirement. For example, if the input clock swing is 1.8V and $V_{DD} = 1.8\text{V}$, the R_1 and R_2 values should be adjusted to set V_1 at 1.2V in this example.

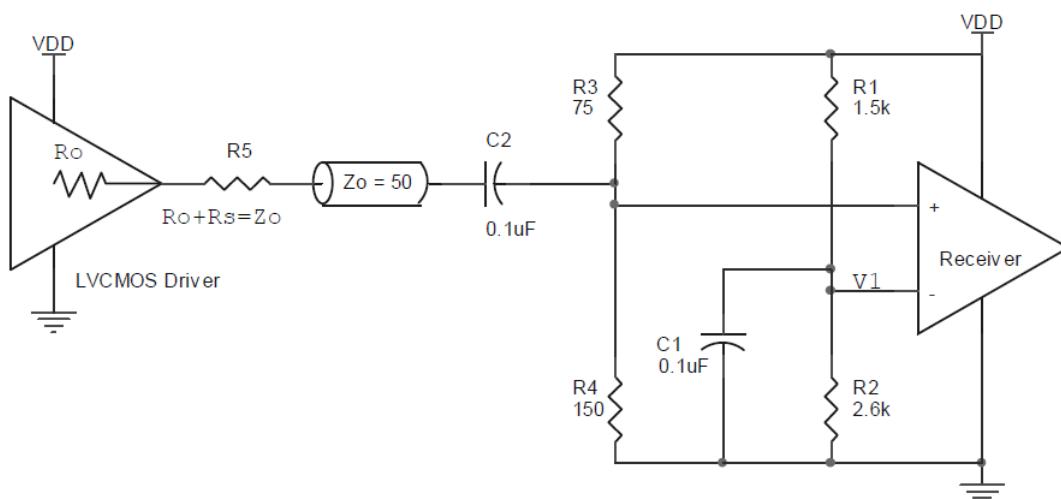


Figure 4. Example Schematic for Wiring a Differential Input to Accept Single-ended Levels

The values in the figure are for when both the single-ended swing and V_{DD} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (R_O) and the series resistance (R_S) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R_3 and R_4 in parallel should equal the transmission line

impedance and the signal DC offset after AC coupling should be equal to V1 (in other words, 1.2V in this example). For most $Z_O = 50\Omega$ applications, $R3 = 75\Omega$ and $R4$ can be 130Ω . By keeping the same $R3/R4$ ratio, the values of the resistors can be increased to reduce the loading for a slower or weaker LVCMOS driver.

When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the input can handle larger amplitude signaling, it is recommended that the amplitude be reduced. For single-ended applications, the swing can be larger. Make sure the single-ended logic high and logic low signal operates within the specification limit. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be used for debugging purposes. The datasheet specifications are characterized and confirmed by using a differential signal.

4.4 1.8V Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, and other differential signals. The differential input signal must meet both the V_{PP} and V_{CMR} input requirements. [Figure 5](#) to [Figure 7](#) show interface examples for the CLK /nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

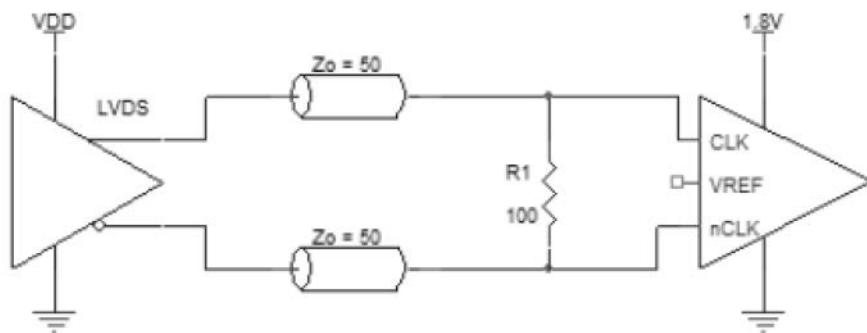


Figure 5. Differential Input Driven by an LVDS Driver – DC Coupling

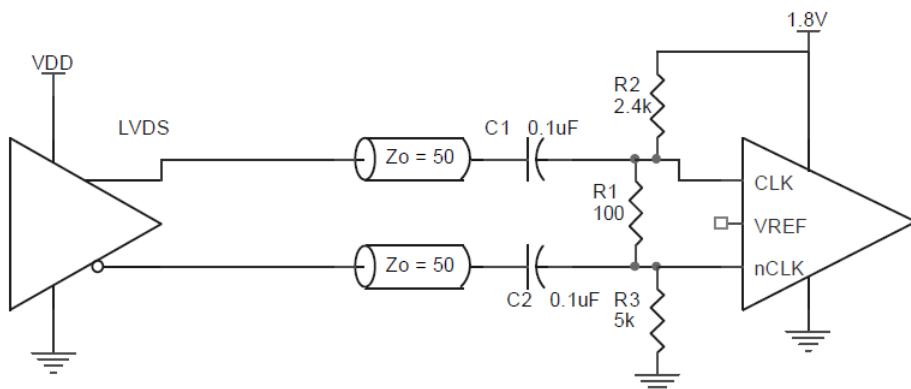


Figure 6. Differential Input Driven by an LVDS Driver – AC Coupling

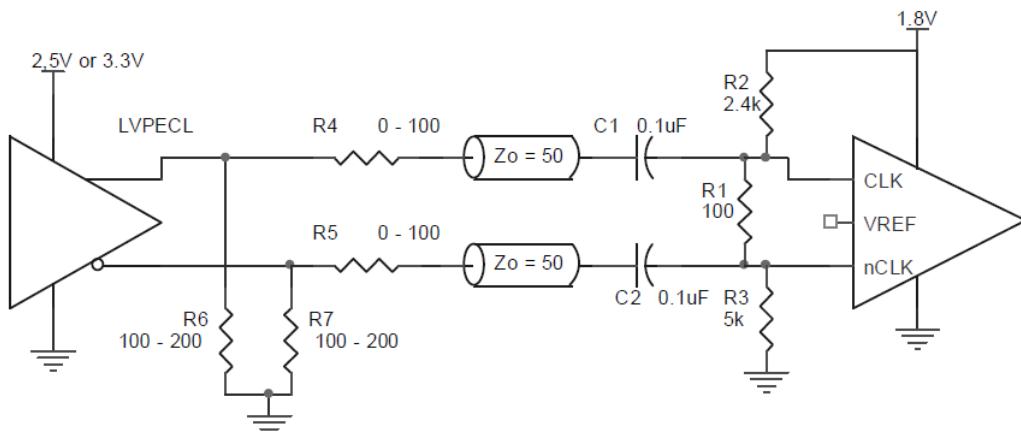


Figure 7. Differential Input Driven by an LVPECL Driver – AC Coupling

4.5 LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between 90Ω and 132Ω . The actual value should be selected to match the differential impedance (Z_O) of your transmission line. A typical point-to-point LVDS design uses a 100Ω parallel resistor at the receiver and a 100Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface-mounted and must be placed as close to the receiver as possible. Renesas offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source.

The standard termination schematic as shown in [Figure 8](#) can be used with either type of output structure. [Figure 9](#), which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF . If using a non-standard termination, it is recommended to contact Renesas and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

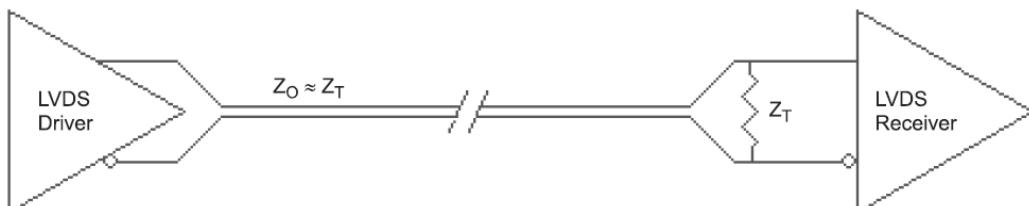


Figure 8. Standard LVDS Termination

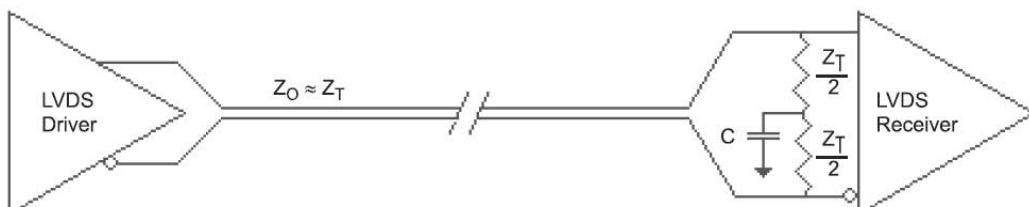
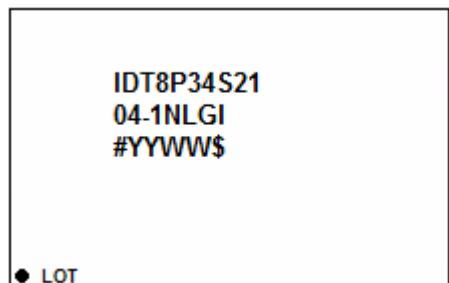



Figure 9. Optional LVDS Termination

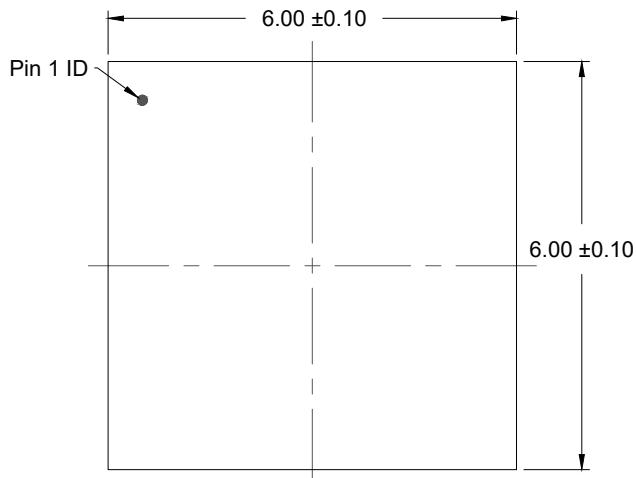
5. Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see [Ordering Information](#) for POD links). The package information is the most current data available and is subject to change without revision of this document.

6. Marking Diagram

- Lines 1 and 2: part number.
- Line 3:
 - "#" denotes the stepping number.
 - "YYWW" denotes the last two digits of the year and workweek that the part was assembled.
 - "\$" denotes the lot sequence.
- "LOT" denotes the lot number.

7. Ordering Information



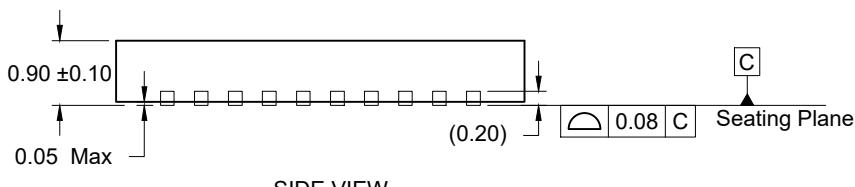
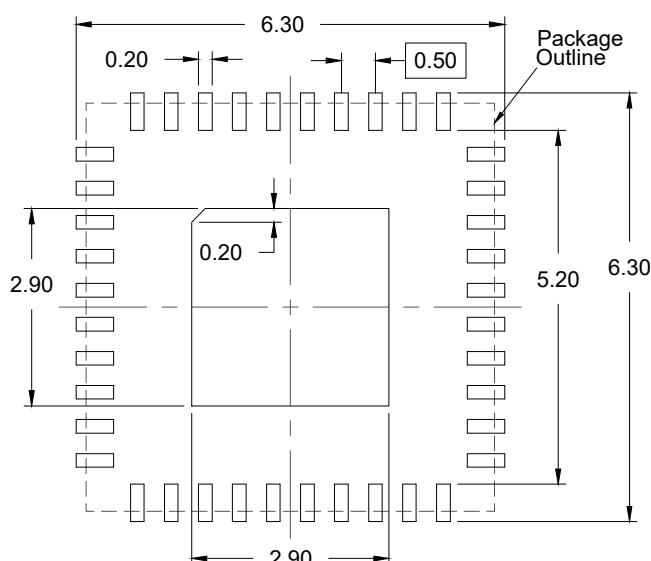


Part Number	Package Description	Carrier Type	Temperature Range
8P34S2104-1NLGI	40-VFQFPN, 6.0 × 6.0 mm	Tray	-40 to +85°C
8P34S2104-1NLGI8		Tape and Reel, Pin 1 Orientation: EIA-481-C (see Table 3)	
8P34S2104-1NLGI/W	40-VFQFPN, 6.0 × 6.0 mm	Tape and Reel, Pin 1 Orientation: EIA-481-D (see Table 3)	

Table 3. Pin 1 Orientation in Tape and Reel Packaging

Part Number Suffix	Pin 1 Orientation	Illustration
8	Quadrant 1 (EIA-481-C)	
/W	Quadrant 2 (EIA-481-D)	

8. Revision History

Revision	Date	Description
1.01	May 6, 2025	Updated Power Supply Voltage (V_{DD}) values in section 2.6 .
1.00	Jul 31, 2024	Initial release.

TOP VIEW

BOTTOM VIEW

SIDE VIEW

NOTES:

1. JEDEC compatible.
2. All dimensions are in mm and angles are in degrees.
3. Use ± 0.05 mm for the non-toleranced dimensions.
4. Numbers in () are for references only.

RECOMMENDED LAND PATTERN
 (PCB Top View, NSMD Design)

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.