

Description

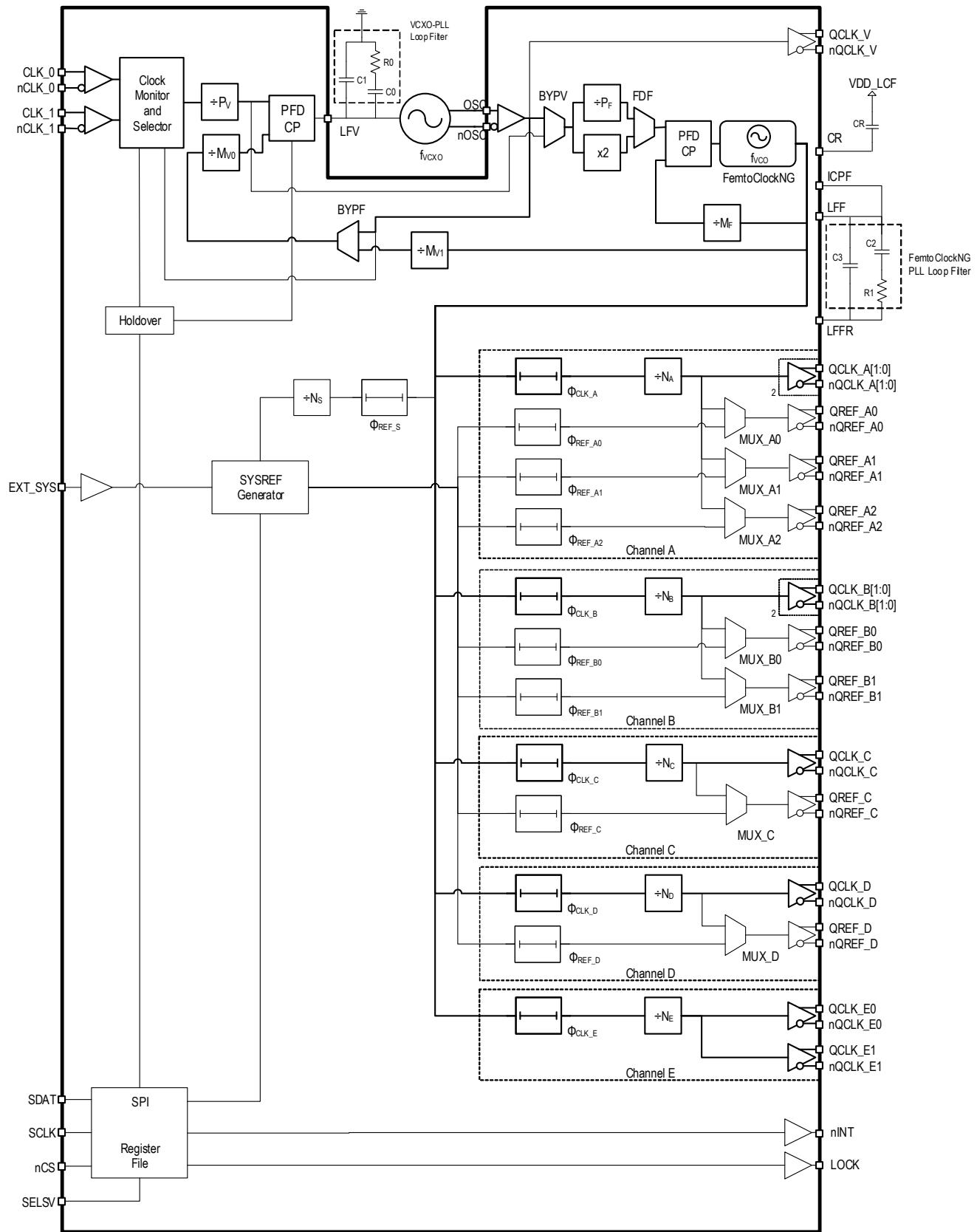
The 8V19N492 is a fully integrated FemtoClock NG jitter attenuator and clock synthesizer designed as a high-performance clock solution for conditioning and frequency/phase management of wireless base station radio equipment boards. The device is optimized to deliver excellent phase noise performance as required in GSM, WCDMA, LTE, and LTE-A radio board implementations. The device supports JESD204B subclass 0 and 1 clocks.

A two-stage PLL architecture supports both jitter attenuation and frequency multiplication. The first stage PLL is the jitter attenuator and uses an external VCXO for best possible phase noise characteristics. The second stage PLL locks on the VCXO-PLL output signal and synthesizes the target frequency.

The device supports the clock generation of high-frequency clocks from the selected VCO and low-frequency synchronization signals (SYSREF). SYSREF signals are internally synchronized to the clock signals. Delay functions exist for achieving alignment and controlled phase delay between system reference and clock signals and to align/delay individual output signals. The four redundant inputs are monitored for activity. Four selectable clock switching modes are provided to handle clock input failure scenarios. Auto-lock, individually programmable output frequency dividers, and phase adjustment capabilities are added for flexibility.

The device is configured through a three-wire SPI interface and reports lock and signal loss status in internal registers and via a lock detect (LOCK) output. Internal status bit changes can also be reported via the nINT output. The 8V19N492 is ideal for driving converter circuits in wireless infrastructure, radar/imaging, and instrumentation/medical applications. The device is a member of the high-performance clock family from Renesas.

Typical Applications


- Wireless infrastructure applications: GSM, WCDMA, LTE, and LTE-A
- Ideal clock driver for jitter-sensitive ADC and DAC circuits
- Low phase noise clock generation
- Ethernet line cards
- Radar and imaging
- Instrumentation and medical

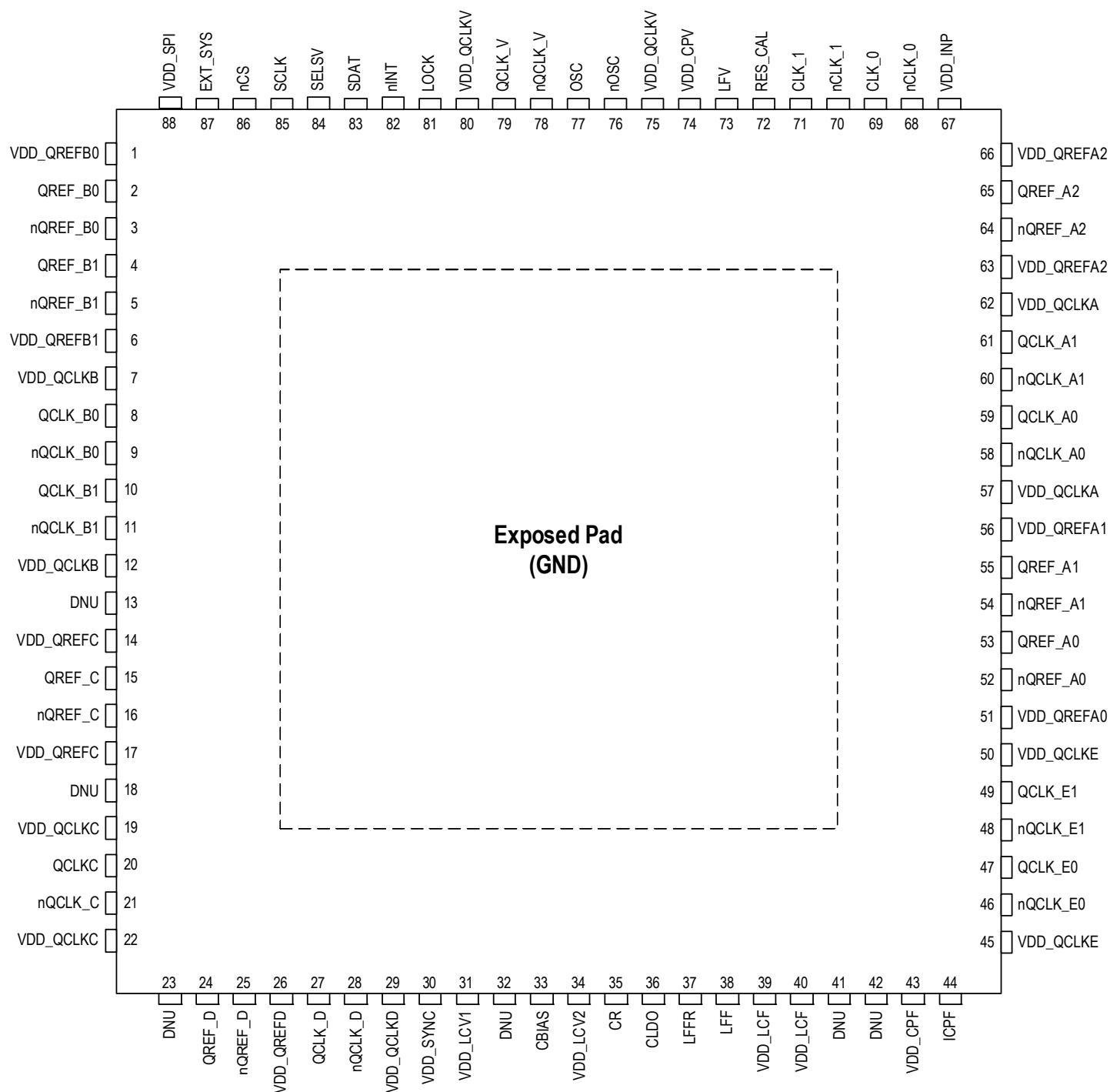
Features

- High-performance clock RF-PLL with support for JESD204B
- Optimized for low phase noise: -150dBc/Hz (800kHz offset; 245.76MHz clock)
- Integrated phase noise of 80fs RMS typical (12kHz–20MHz).
- Dual-PLL architecture
- 1st-PLL stage with external VCXO for clock jitter attenuation
- 2nd-PLL with internal FemtoClockNG PLL: 2949.12MHz
- Six output channels with a total of 16 outputs, organized in:
 - Four JESD204B channels (device clock and SYSREF output) with two, four and five outputs
 - One clock channel with two outputs
 - One VCXO output
- Configurable integer clock frequency dividers
- Supported clock output frequencies include: 2949.12, 1474.56, 983.04, 491.52, 245.76, and 122.88 MHz
- Low-power LVPECL/LVDS outputs support configurable signal amplitude, DC and AC coupling and LVPECL, LVDS line terminations techniques
- Phase delay circuits
 - Clock phase delay with 256 steps of 339ps and a range of 0 to 86.466 ns
 - Individual SYSREF phase delay with 8 steps of 169ps
 - Additional individual SYSREF fine phase delay with 25ps steps
 - Global SYSREF signal delay with 256 steps of 339ps and a range of 0 to 86.466 ns
- Redundant input clock architecture with two inputs and
 - Input activity monitoring
 - Manual and automatic, fault-triggered clock selection modes
 - Priority controlled clock selection
 - Digital holdover and hitless switching
 - Differential inputs accept LVDS and LVPECL signals
- SYSREF generation modes include internal and external trigger mode for JESD204B
- Supply voltage: 3.3V
- SPI and control I/O voltage: 1.8V/3.3V (Selectable)
- Package: 10 x 10 mm 88-VFQFPN
- Temperature range: -40°C to +105°C (Case)

Block Diagram

Figure 1. Block Diagram ($f_{VCO} = 2949.12\text{MHz}$)

Contents


Description	1
Typical Applications	1
Features	1
Block Diagram	2
Pin Assignments	5
Pin Descriptions	6
Principles of Operation	8
Overview	8
Phase-Locked Loop Operation	9
Frequency Generation	9
VCXO-PLL	10
FemtoClockNG PLL	11
Channel Frequency Divider	12
Redundant Inputs	13
Monitoring and LOS of Input Signal	13
Input Re-Validation	13
Clock Selection	14
Holdover	14
Input Priorities	14
Hold-off Counter	15
Revertive Switching	15
Short-Term Holdover	15
Automatic with Holdover ($nM/A[1:0] = 11$)	15
VCXO-PLL Lock Detect	16
FemtoClockNG Loss-of-Lock (LOLF)	17
Channel, Output, and JESD204B Logic	18
Channel	18
Differential Outputs	18
Output Phase Delay	21
Configuration for JESD204B Operation	21
Synchronizing SYSREF and Clock Output Dividers	21
SYSREF Generation	21
Internal SYSREF Generation	23
External SYSREF Generation	23
QCLK to QREF (SYSREF) Phase Alignment	23
Deterministic Phase Relationship and Phase Alignment	24
Status Conditions and Interrupts	25
Device Startup, Reset, and Synchronization	26
Recommended Configuration Sequence (In Order):	26
Changing Frequency Dividers and Phase Delay Values	27
SPI Interface	27
Configuration Registers	30
Channel and Clock Output Registers	33
QREF Output State Registers	35
PLL Frequency Divider Registers	38
VCXO-PLL Control Registers	40
Input Selection Mode Registers	42
SYSREF Control Registers	45

Status Registers	47
General Control Registers	50
Absolute Maximum Ratings	51
Pin Characteristics	52
DC Characteristics	52
AC Characteristics	56
Clock Phase Noise Characteristics	63
Application Information	67
Termination for QCLK_y, QREF_r LVDS Outputs (STYLE = 0)	67
AC Termination for QCLK_y, QREF_r LVDS Outputs (STYLE = 0)	67
Termination for QCLK_y, QREF_r LVPECL Outputs (STYLE = 1)	68
Thermal Characteristics	68
Package Exposed Pad Thermal Release Path	68
Thermal Characteristics	69
Case Temperature Considerations	69
Recommended Application Schematics	70
Package Outline Drawings	73
Marking Diagram	73
Ordering Information	73
Glossary	74
Revision History	74

Pin Assignments

Figure 2. Pinout for 10 x 10 mm, 88-VFQFPN Package with Exposed Pad (Top View)

Pin Descriptions

Table 1. Pin Descriptions [a]

Pin	Name	Type ^[b]		Description
69	CLK_0	Input	PD	Device clock 0 non-inverting and inverting differential clock input. Inverting input is biased to $V_{DD_V}/2$ by default when left floating. Compatible with LVPECL, LVDS and LVCMOS signals.
68	nCLK_0		PD/PU	
71	CLK_1	Input	PD	Device clock 1 non-inverting and inverting differential clock input. Inverting input is biased to $V_{DD_V}/2$ by default when left floating. Compatible with LVPECL, LVDS and LVCMOS signals.
70	nCLK_1		PD/PU	
59, 58	QCLK_A0, nQCLK_A0	Output		Differential clock output A0 (Channel A). Configurable LVPECL/LVDS style and amplitude.
61, 60	QCLK_A1, nQCLK_A1	Output		Differential clock output A1 (Channel A). Configurable LVPECL/LVDS style and amplitude.
53, 52	QREF_A0, nQREF_A0	Output		Differential SYSREF/clock output REF_A0 (Channel A). LVDS style for SYSREF operation, configurable LVPECL/LVDS style and amplitude for clock operation.
55, 54	QREF_A1, nQREF_A1	Output		Differential SYSREF/clock output REF_A1 (Channel A). LVDS style for SYSREF operation, configurable LVPECL/LVDS style and amplitude for clock operation.
65, 64	QREF_A2, nQREF_A2	Output		Differential SYSREF/clock output REF_A2 (Channel A). LVDS style for SYSREF operation, configurable LVPECL/LVDS style and amplitude for clock operation.
8, 9	QCLK_B0, nQCLK_B0	Output		Differential clock output B0 (Channel B). Configurable LVPECL/LVDS style and amplitude.
10, 11	QCLK_B1, nQCLK_B1	Output		Differential clock output B1 (Channel B). Configurable LVPECL/LVDS style and amplitude.
2, 3	QREF_B0, nQREF_B0	Output		Differential SYSREF/clock output REF_B0 (Channel B). LVDS style for SYSREF operation, configurable LVPECL/LVDS style and amplitude for clock operation.
4, 5	QREF_B1, nQREF_B1	Output		Differential SYSREF/clock output REF_B1 (Channel B). LVDS style for SYSREF operation, configurable LVPECL/LVDS style and amplitude for clock operation.
20, 21	QCLK_C, nQCLK_C	Output		Differential clock output C (Channel C). Configurable LVPECL/LVDS style and amplitude.
15, 16	QREF_C, nQREF_C	Output		Differential SYSREF/clock output REF_C (Channel C). LVDS style for SYSREF operation, configurable LVPECL/LVDS style and amplitude for clock operation.
27, 28	QCLK_D, nQCLK_D	Output		Differential clock output D (Channel D). Configurable LVPECL/LVDS style and amplitude.
24, 25	QREF_D, nQREF_D	Output		Differential SYSREF/clock output REF_D (Channel D). LVDS style for SYSREF operation, configurable LVPECL/LVDS style and amplitude for clock operation.
47, 46	QCLK_E0, nQCLK_E0	Output		Differential clock output E0. Configurable LVPECL/LVDS style and amplitude.
49, 48	QCLK_E1, nQCLK_E1	Output		Differential clock output E1. Configurable LVPECL/LVDS style and amplitude.
79, 78	QCLK_V, nQCLK_V	Output		Differential VCXO-PLL clock outputs. Configurable LVPECL/LVDS style and amplitude.
82	nINT	Output		Status output pin for signaling internal changed conditions. Output voltage level is decided by SELSV pin.

Table 1. Pin Descriptions (Cont.)^[a]

Pin	Name	Type ^[b]		Description
81	LOCK	Output		PLL lock detect status output for both PLLs. Output voltage level is decided by SELSV pin.
87	EXT_SYS	Input	PD	External SYSREF pulse trigger input. 1.8V LVCMOS interface levels.
83	SDAT	Input/Output	PU	Serial Control Port SPI Mode Clock Input and Output. Selectable 1.8V/3.3V LVCMOS interface levels. 3.3V tolerant when set to 1.8V and set to input.
85	SCLK	Input	PD	Serial Control Port SPI Mode Clock Input. Selectable 1.8V/3.3V LVCMOS interface levels. 3.3V tolerant when set to 1.8V.
86	nCS	Input	PU	Serial Control Port SPI Chip Select Input. Selectable 1.8V/3.3V LVCMOS interface levels. 3.3V tolerant when set to 1.8V.
84	SELSV	Input	PD	SPI, LOCK, nINT interface voltage selection (see Table 25 for SPI interface selection).
35	CR	Analog		Internal VCO regulator bypass capacitor. Use a 1.0 μ F capacitor between the CR and VDD_LCF pins.
33	CBIAS	Analog		Internal bias circuit for VCO. Connect a 4.7 μ F capacitor to GND.
36	CLDO	Analog		Internal LDO bypass for VCO. Connect a 10 μ F capacitor to GND.
73	LFV	Output		VCXO-PLL charge pump output. Connect to the loop filter for the external VCXO.
77	OSC	Input	PD	VCXO non-inverting and inverting differential clock input. Inverting input is biased to $V_{DD_V}/2$ by default when left floating. Compatible with LVPECL, LVDS and LVCMOS signals.
76	nOSC		PD/PU	
44	ICPF	Analog		Connect to LFF pin (38) and external loop filter.
38	LFF	Output		Loop filter/charge pump output for the FemtoClockNG NG PLL. Connect to the external loop filter.
37	LFFR	Analog		Ground return path pin for the VCO loop filter.
72	RES_CAL	Analog		Connect a 2.8 k Ω (1%) resistor to GND for output current calibration.
13, 18, 23, 32, 41, 42	DNU			Do not use, do not connect.
57, 62	VDD_QCLKA	Power		Positive supply voltage (3.3V) for the QCLK_A[1:0] outputs.
51	VDD_QREFA0	Power		Positive supply voltage (3.3V) for the QREF_A0 outputs.
56	VDD_QREFA1	Power		Positive supply voltage (3.3V) for the QREF_A1 outputs.
63, 66	VDD_QREFA2	Power		Positive supply voltage (3.3V) for the QREF_A2 outputs.
7, 12	VDD_QCLKB	Power		Positive supply voltage (3.3V) for the QCLK_B[1:0] outputs.
1	VDD_QREFB0	Power		Positive supply voltage (3.3V) for the QREF_B0 output.
6	VDD_QREFB1	Power		Positive supply voltage (3.3V) for the QREF_B1 output.
19, 22	VDD_QCLKC	Power		Positive supply voltage (3.3V) for the QCLK_C outputs.
14, 17	VDD_QREFC	Power		Positive supply voltage (3.3V) for the QREF_C outputs.
29	VDD_QCLKD	Power		Positive supply voltage (3.3V) for the QCLK_D outputs.
26	VDD_QREFD	Power		Positive supply voltage (3.3V) for the QREF_D outputs.
45, 50	VDD_QCLKE	Power		Positive supply voltage (3.3V) for the QCLK_E[1:0] outputs.
88	VDD_SPI	Power		Positive supply voltage (3.3V) for the SPI interface.

Table 1. Pin Descriptions (Cont.)^[a]

Pin	Name	Type ^[b]	Description
67	VDD_INP	Power	Positive supply voltage (3.3V) for the differential inputs (CLK0 to CLK1).
31	VDD_LCV1	Power	Positive supply voltage (3.3V) for internal VCXO_PLL circuits.
34	VDD_LCV2	Power	Positive supply voltage (3.3V) for internal VCXO_PLL circuits.
39,40	VDD_LCF	Power	Positive supply voltage (3.3V) for the internal oscillator of the FemtoClockNG PLL.
43	VDD CPF	Power	Positive supply voltage (3.3V) for internal FemtoClockNG circuits.
75, 80	VDD_QCLKV	Power	Positive supply voltage (3.3V) for OSC, nOSC input and QCLKV, nQCLKV output.
74	VDD_CPV	Power	Positive supply voltage (3.3V) for internal VCXO_PLL circuits.
30	VDD_SYNC	Power	Positive supply voltage (3.3V).
Exposed Pad (EP)	GND	Power	Ground supply voltage (GND) and ground return path. Connect to board GND (0V).

[a] See Section “Application Information” on page 67 for essential information on power supply filtering.

[b] PU (pull-up) and PD (pull-down) indicate internal input resistors (see [Table 46](#) for values).

Principles of Operation

Overview

The 8V19N492 generates low-phase noise, synchronized clock and SYSREF output signals locked to an input reference frequency. The device contains two PLLs with configurable frequency dividers. The first PLL (VCXO-PLL, suffix V) uses an external VCXO as the oscillator and provides jitter attenuation. The external loop filter is used to set the VCXO-PLL bandwidth frequency in conjunction with internal parameters. The second, low-phase noise PLL (FemtoClock NG, suffix F) multiplies the VCXO-PL1L frequency to 2949.12MHz. The FemtoClock NG PLL is completely internal and provides a central timing reference point for all output signals. From this point, fully synchronous dividers generate the output frequencies and the internal timing references for JESD204B support.

The device supports the generation of SYSREF pulses synchronous to the clock signals. There are five channels consisting of clock and/or SYSREF outputs. The clock outputs are configurable with support for LVPECL or LVDS formats and a variable output amplitude. Clock and SYSREF offer adjustable phase delay functionality. Individual outputs and channels and unused circuit blocks support powered-down states for operating at lower power consumption. The register map, accessible through SPI interface with read-back capability controls the main device settings and delivers device status information. For redundancy purpose, there are two selectable reference frequency inputs and a configurable switch logic with priority-controlled auto-selection and holdover support.

Phase-Locked Loop Operation

Frequency Generation

Table 2 displays the available frequency dividers for clock generation. The dividers must be set by the user to match input, VCXO and VCO frequency, and to achieve frequency and phase lock on both PLLs. The frequency of the external VCXO is selected by the user; the internal VCO frequency is set to 2949.12MHz. Example divider configurations for typical wireless infrastructure applications are shown in Table 3.

Table 2. PLL Operation and Divider Values

Divider	Range	Operation for $f_{VCO} = 2949.12\text{MHz}$		
		Jitter Attenuation, Dual-PLL with Deterministic Input-to-Output Delay (BYPV = 0, BYPF = 1)	Jitter Attenuation, Dual-PLL (BYPV = 0, BYPF = 0)	Frequency Synthesis (VCXO-PLL Bypassed, BYPV = 1)
VCXO-PLL Pre-Divider P_V	$\div 1 \dots \div 4095$: (12 bit)	Input clock frequency: $f_{CLK} = P_V \times \frac{f_{VCXO}}{P_F} \times \frac{M_F}{M_{V0} \times M_{V1}}$	Input clock frequency: $f_{CLK} = f_{VCXO} \times \frac{P_V}{M_{V0}}$ M _{V1} setting is not applicable to PLL operation.	Input clock frequency: $f_{CLK} = f_{VCO} \times \frac{P_V \times P_F}{M_F}$ M _{V0} and M _{V1} settings are not applicable to the PLL operation. P _F : Set P _F to 0.5 in above equation if the frequency doubler is engaged by setting FDF = 1.
VCXO-PLL Feedback Divider M _{V0}	$\div 1 \dots \div 4095$: (12 bit)			
PLL Feedback Divider ^[a] M _{V1}	$\div 4 \dots \div 511$: (9 bit)			
FemtoClock NG Pre-Divider P _F	$\div 1 \dots \div 63$: (6 bit)	VCXO frequency: $f_{VCXO} = f_{VCO} \times \frac{P_F}{M_F}$		
FemtoClock NG Feedback Dividers M _F	$\div 8 \dots \div 511$: (9 bit)	P _F : Set P _F to 0.5 in above equation if the frequency doubler is engaged by setting FDF = 1.		
Output Divider N _x (x = A, B, C, D, E)	$\div 1 \dots \div 160$	Output frequency: $f_{OUT} = \frac{f_{VCO}}{N_x}$		
SYSREF Divider ^[b] N _S	$\div 16 \dots \div 5120$: $\{2, 4\} \times \{2, 4, 8, 16\} \times \{2, 4, 8, 16\} \times \{2, 3, 4, 5\}$	SYSREF frequency/rate: $f_{SYSREF} = \frac{f_{VCO}}{N_S}$		

[a] For input monitoring, configure M_{V1} as described in [Monitoring and LOS of Input Signal](#).

[b] For SYSREF operation, configure SYNC[6:0] as described in [Status Conditions and Interrupts](#).

VCXO-PLL

The prescaler P_V and the VCXO-PLLs feedback divider M_{V0} and M_{V1} require configuration to match the input frequency to the VCXO-frequency. The BYPF setting allows to route the VCXO-PLLs feedback path through the M_{V0} divider. Alternatively, the feedback path is routed through the second PLL and both the M_{V0} and M_{V1} feedback divider. M_{V0} has a divider value range of 12 bit; M_{V1} has 9 bit.

The feedback path through the second PLL, in combination with the divider setting $P_F=1$, is the preferred setting for achieving deterministic delay from the clock input to the outputs. Multiple divider settings are available to enable support for input frequencies of e.g. 245.76, 122.88, 61.44 and 30.72MHz and the VCXO-frequencies of 122.88MHz, 61.44, 38.4, 30.72 and 245.76 MHz. In addition, the range of available input and feedback dividers allows to adjust the phase detector frequency independent on the input and VCXO frequencies. In general, the phase detector may be set into the range from 120kHz to the input reference frequency. The VCXO-PLL charge pump current is controllable via a register and can be set in 50 μ A steps from 50 μ A to 1.6mA. The VCXO-PLL may be bypassed: the FemtoClockNG PLL locks to the pre-divider input frequency.

Table 3. Example Configurations for $f_{VCXO} = 122.88\text{MHz}$ ^[a]

Input Frequency (MHz)	VCXO-PLL Divider Settings		f_{PFD} (MHz)
	PV	MV0	
245.76	2	1	122.88
	32	16	7.68
	256	128	0.96
	2048	1024	0.12
122.88	1	1	122.88
	16	16	7.68
	128	128	0.96
	1024	1024	0.12

[a] BYPF=0

Table 4. Example Configurations for $f_{VCXO} = 38.4\text{MHz}$ ^[a]

Input Frequency (MHz)	VCXO-PLL Divider Settings		f_{PFD} (MHz)
	PV	MV0	
245.76	32	5	7.68
	128	20	1.92
	512	80	0.48
	2048	320	0.12
122.88	16	5	7.68
	64	20	1.92
	256	80	0.48
	1024	320	0.12

[a] BYPF=0

Table 5. VCXO-PLL Bypass Settings

BYPV	Operation
0	VCXO-PLL operation.
1	VCXO-PLL bypassed and disabled. The reference clock for the FemtoClockNG PLL is the input clock divided by the pre-divider PV. The input clock selection must be set to manual by the user. Clock switching and holdover are not defined. Device will not attenuate input jitter. No external VCXO component and loop filter required.

Table 6. PLL Feedback Path Settings

BYPF	Operation ^[a]
0	VCXO-PLL feedback path through the M_{V0} divider. FemtoClockNG feedback path uses the M_F divider.
1	VCXO-PLL feedback path through the $M_{V1} \times M_{V0}$ dividers. FemtoClockNG feedback path uses the M_F divider. Preferred setting for achieving deterministic delay from input to the outputs.

[a] Regardless of the selected internal feedback path, the MV1 divider should be set to match its internal output frequency to the input reference frequency: the MV1 output signal is the internal reference for input loss-of-signal detect.

FemtoClockNG PLL

This PLL locks to the output signal of the VCXO-PLL (BYPV=0). It requires configuration of the frequency doubler FDF or the pre-divider PF and the feedback divider MF to match the VCXO-PLL frequency to the VCO frequency of 2949.12MHz. This PLL is internally configured to high-bandwidth. Best phase noise is typically achieved by engaging the internal frequency doubler (FDF= 1, x2). If engaged, the signal from the first PLL stage is doubled in frequency, increasing the phase detector frequency of the FemtoClockNG PLL. Enabling the frequency doubler disables the frequency pre-divider PF. If the frequency doubler is not used (FDF=0), the PF pre-divider has to be configured. Typically PF is set to $\div 1$ to keep the phase detector frequency as high as possible. Set PF to other divider values to achieve specific frequency ratios (1 to 19.2, 1 to 76.8, etc.) between first and second PLL stage.

Table 7. Frequency Doubler

FDF	Operation
0	Frequency doubler off. PF divides clock signal from VCXO-PLL or input (in bypass)
1	Frequency doubler on (x2). Signal from VCXO-PLL or input (in bypass) is doubled in frequency. PF divider has no effect.

Table 8. Example PLL Configurations

VCXO-Frequency (MHz)	FemtoClock NG Divider Settings				Output Frequency (MHz)
	FDF	PF	MF	Nx ^[a]	
122.88	x2	-	10	1	2949.12
				2	1474.56
				3	983.04
				4	737.28
				6	491.52
				8	368.64
				12	245.76
				16	184.32
122.88	-	1	20	1	2949.12
				2	1474.56
				3	983.04
				4	737.28
				6	491.52
				8	368.64
				12	245.76
				16	184.32

[a] $x = A$ to E **Channel Frequency Divider**

The device supports five independent channels A to E, each of them has an channel frequency divider Nx ($x = A$ to E) that divides the VCO frequency to the output frequency. Each divider be individually set to a value in the range of $\div 1$ to $\div 160$. See [Table 9](#) for typical divider values and [Table 28](#) for the complete set of supported divider values

Table 9. Integer Frequency Divider Settings

Channel Divider Nx ^[a]	Output Clock Frequency (MHz)
	$f_{VCO} = 2949.12$ (MHz)
$\div 1$	2949.12
$\div 2$	1474.56
$\div 3$	983.04
$\div 4$	737.28
$\div 6$	491.52
$\div 8$	368.64
$\div 12$	245.76
$\div 16$	184.32
$\div 24$	122.88
$\div 30$	98.304
$\div 32$	92.16
$\div 36$	81.92

Table 9. Integer Frequency Divider Settings (Cont.)

Channel Divider Nx ^[a]	Output Clock Frequency (MHz)
	$f_{VCO} = 2949.12$ (MHz)
÷48	61.44
÷60	49.152
÷64	46.08
÷72	40.96
÷96	30.72
÷120	24.576
÷128	23.04

[a] x = A to E

Redundant Inputs

The two inputs are compatible with LVDS, LVPECL signal formats and also support single-ended signals (LVCMS, see Section “Application Information” on page 67 for applicable input interface circuits).

Monitoring and LOS of Input Signal

The two inputs of the device are individually and permanently monitored for activity. Inactivity is defined by a static input signal.

The clock input monitors compare the device input frequency (f_{CLK}) to the frequency of the VCO divided by M_{V1} (regardless of the internal feedback path using or not using M_{V1}). A clock input is declared invalid with the corresponding LOS (Loss-of-input-signal) indicator bit set after three consecutive missing clock edges. For correct operation of the LOS detect circuit, M_{V1} must be powered-on by setting $PD_MV1 = 0$. The M_{V1} divider must be set so that the LOS detect reference frequency matches the input frequency. For instance, if the input frequency is 245.76MHz, M_{V1} should be set to ÷12: The VCO frequency of 2949.12MHz divided by 12 equals the input frequency of 245.76MHz. For an input frequency of 122.88MHz, set M_{V1} to ÷24. Failure to set M_{V1} to match the input frequency will result in added latency to the LOS circuit (if $f_{VCO} \div M_{V1} < f_{CLK}$) or false LOS indication (if $f_{VCO} \div M_{V1} > f_{CLK}$). The minimum frequency that the circuit can monitor is $f_{VCO} / M_{V1}(\text{MAX}) = 5.77$ MHz. In applications with a lower input frequency than 5.77MHz, disable the monitor to trigger the status flags by setting $BLOCK_LOR=1$.

Input Re-Validation

A clock input is declared valid and the corresponding LOS bit is reset after the clock input signal returned for user-configurable number of consecutive input periods. This re-validation of the selected input clock is controlled by the $CNTV$ setting (verification pulse counter).

Clock Selection

The device supports multiple input selection modes: manual, short-term holdover and two automatic switch modes.

Table 10. Clock Selection Settings

Mode	Description	Application
Manual nM/A=00	Input selection follows user-configuration of SEL[1:0]. Selection is <i>never</i> changed by the internal state machine. A failing reference clock will cause a LOS event and the PLL will unlock if the failing clock is selected. Re-validation of the selected input clock will result in the PLL to re-lock on that input clock.	Startup and external selection control
Automatic nM/A=01	<p>Input selection follows LOS status by user preset input switch priorities. A failing input clock will cause a LOS event for that clock input. If the selected clock has a LOS event, the device will immediately initiate a clock failover switch. The switch target is determined by pre-set input priorities.</p> <p>No valid clock scenario:</p> <p>If no valid input clocks exist, the device will not attempt to switch and will not enter the holdover state. The PLL is not locked. Re-validation of any input clock that is not the selected clock will result in the PLL to attempt to lock on that input clock.</p> <p>See "Revertive Switching"</p>	Multiple inputs with qualified clock signals
Short-term Holdover nM/A=10	<p>Input selection follows user-configuration of SEL[1:0]. Selection is never changed by the internal state machine. A failing reference clock will cause a LOS event. If the selected reference fails, the device will enter holdover <i>immediately</i>. Re-validation of the selected input clock is controlled by the CNTV setting. A successful re-validation will result in the PLL to re-lock on that input clock.</p> <p>See "Short-Term Holdover"</p>	Single reference
Automatic with holdover nM/A=11	<p>Input selection follows LOS status by user preset input priorities. Each failing input clock will cause a LOS event for that clock input. If the selected clock detects a LOS event, the device will go into holdover and the hold-off down-counter (CNTH) starts. The device initiates a clock failover switch <i>after</i> expiration of the hold-off counter. The switch target is determined by the preset input priorities.</p> <p>No valid clock scenario:</p> <p>If no valid input clocks exist, the device will not attempt to switch and will remain in the holdover state. Re-validation of any input clock will result in the PLL to attempt to lock on that input clock.</p> <p>See "Automatic with Holdover (nM/A[1:0] = 11)" and See "Revertive Switching"</p>	Multiple inputs

Holdover

In holdover state, the output frequency and phase is derived from an internal, digital value based on previous frequency and phase information. Holdover characteristics are defined in [Table 51](#).

Input Priorities

Configurable settings encompass four selectable priorities with the range 0 (lowest priority) to 3 (highest priority). A user may change the input priorities at any time. In the automatic switch modes, input priority changes may cause immediate input selection changes.

Hold-off Counter

A configurable down-counter applicable to the “Automatic with holdover” selection mode. The purpose of this counter is a deferred, user-configurable, input switch after a LOS event. The counter expires when a zero-transition occurs; this triggers a new reference clock selection. The counter is clocked by the frequency-divided VCXO-PLL signal. The CNTR setting determines the hold-off counter frequency divider and the CNTH setting the start value of the hold-off counter. For instance, set CNTR to a value of $\div 131072$ to achieve 937.5 Hz (or a period of 1.066 ms at $f_{VCXO}=122.88\text{MHz}$): the 8-bit CNTH counter is clocked by 937.5Hz and the user-configurable hold-off period range is 0ms (CNTR=0x00) to 272ms (CNTR=0xFF). After the counter expires, it reloads automatically from the CNTH SPI register. After the LOS status bit (LS_CLK_n) for the corresponding input CLK_n has been cleared by the user, the input is enabled for generating a new LOS event.

The CNTR counter is only clocked if the device is configured in the clock selection mode “Automatic with holdover” *AND* the selected reference clock experiences a LOS event. Otherwise, the counter is automatically disabled (not clocked).

Revertive Switching

Revertive switching: is only applicable to the two automatic switch modes shown in [Table 10](#). Revertive switching enabled: Re-validation of any non-selected input clock(s) will cause a new input selection according to the user-preset input priorities (revertive switch). An input switch is only done if the re-validated input has a higher priority than the currently selected reference clock.

Revertive switching disabled: Re-validation of a non-selected input clock has no impact on the clock selection. Default setting is revertive switching disabled.

Short-Term Holdover

If an LOS event is detected on the reference clock designated by the SEL[1:0] bits:

- Holdover begins immediately
- ST_REF, LS_REF go low immediately
- No transitions will occur of the active REF clock; ST_SEL[1:0] does not change
- The hold-off countdown is not active

When the designated reference clock resumes and has met the programmed validation count of consecutive rising edges:

- Holdover turns off
- ST_SEL[1:0] does not change
- ST_REF returns to 1

LS_REF can be cleared by an SPI write of 1 to that register

Automatic with Holdover (nM/A[1:0] = 11)

If a LOS event is detected on the active reference clock:

- Holdover begins immediately
- Corresponding ST_REF and LS_REF go low immediately
- Hold-off countdown begins immediately.

During this time, all clocks continue to be monitored and their respective ST_CLK, LS_CLK flags are active. LOS events will be indicated on ST_CLK, LS_CLK when they occur.

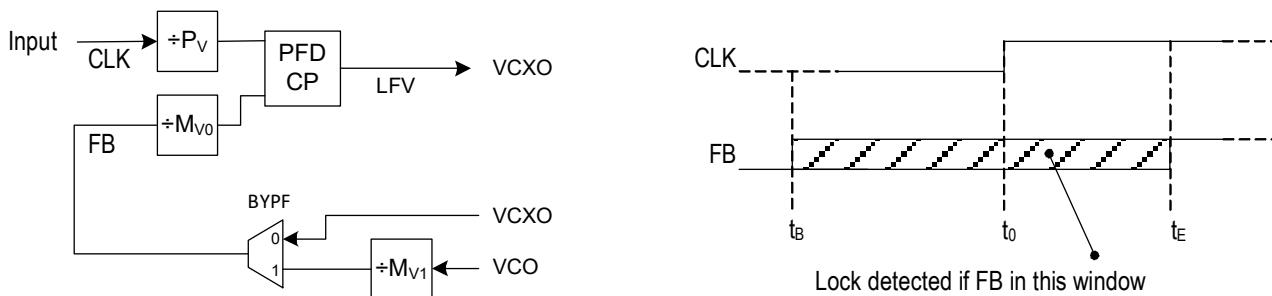
If the active reference clock (or any CLK) resumes and is validated during the hold-off countdown:

- Its ST_CLK status flag will return high and the LS_CLK is available to be cleared by an SPI write of 1 to that register bit.
- No transitions will occur of the active REF clock; ST_SEL[1:0] does not change and the ST_REF, LS_REF remain low even if active REF clock has been validated and its ST_CLK status bit returns high
- Revertive bit has no effect during this time (whether 0 or 1)

When the hold-off countdown reaches zero:

- If the active reference has resumed and has been validated during the countdown, it will maintain being the active reference clock
 - ST_SEL1:0 does not change
 - ST_REF returns to 1
 - LS_REF can be cleared by an SPI write of 1 to that register
 - Holdover turns off and the VCXO-PLL attempts to lock to the active reference clock
- If the active reference has not resumed, but another (sorted by next priority) clock input CLK_n is validated, then
 - ST_SEL1:0 changes to the new active reference
 - ST_REF returns to 1
 - LS_REF can be cleared by an SPI write of 1 to that register
 - Holdover turns off
- If there is no validated CLK:
 - ST_SEL1:0 does not change
 - ST_REF remains low
 - LS_REF cannot be cleared by an SPI write of 1 to that register
 - Holdover remains active

Revertive capability returns if REVS = 1.


VCXO-PLL Lock Detect

The VCXO-PLL lock detect circuit uses the signal phase difference at the phase detector as loss-of-lock criteria. Loss-of-lock is reported if the actual phase difference is larger than a configurable phase detector window set by the $\Phi_{MVO[2:0]}$ and $\Phi_{PV[2:0]}$ configuration bits. A loss-of-lock state is reported through the nST_LOLV and nLS_LOLV status bit, see [Table 22](#).

Loss-of-Lock Window Description

The selected clock input signal is the reference signal (CLK) for lock detection. The rising edge of CLK defines the reference point t_0 . Φ_{PV} configures the start of the lock window t_B (which occurs before t_0) and Φ_{MVO} configures the end of the window t_E (which occurs after t_0). The width of the lock window is defined by $t_E - t_B$. The VCXO-PLL declares lock when the rising edge of the feedback signal (FB) is within this window, otherwise the PLL reports loss-of-lock.

Figure 3. Lock Detect Window

Table 11. t_B and t_E Calculation

Operation	Jitter Attenuation, Dual-PLL with deterministic Input-to-Output Delay (BYPV = 0, BYPF = 1)	Jitter Attenuation, Dual-PLL (BYPV = 0, BYPF = 0)
t_B		$t_B = \frac{2^{\Phi_{PV}} - 1}{f_{CLK}}$
t_E	$t_E = \frac{(2^{\Phi_{MV0}} - 1) \cdot M_{V1}}{f_{VCO}}$	$t_E = \frac{2^{\Phi_{MV0}} - 1}{f_{VCXO}}$

Figure 3 shows that Φ_{PV} configures the start and Φ_{MV0} the end of the window in integer multiples of PLL input and feedback periods. Both Φ_{PV} and Φ_{MV0} use 3 configuration bits with valid settings from 010 to 111 (2 to 7, decimal). This range allows configuring both t_B and t_E from 3 to 127 periods of the input signal (T_{IN}) and the feedback signal (T_{FB}), respectively, is implied.

Loss-of-Lock Window Configuration Example

With given P_V , M_{V0} and M_{V1} divider values, select the corresponding Φ_{PV} and Φ_{MV0} settings from Table 12 and apply the Φ_{PV} and Φ_{MV0} values to the $\Phi_{PV}[1:0]$ and $\Phi_{MV0}[1:0]$ registers. Table 11 shows the lock window calculation formulas. For instance, if an input frequency of 245.76MHz and a P_V divider of 128 is desired, set $\Phi_{PV}[1:0]$ to a binary value of 100 (decimal 4). This results in $t_B = -61.035\text{ns}$ (15 periods of 4.069ns). With a VCXO-PLL (BYPF=0) and a VCXO frequency of 122.88MHz and $M_{V0}=64$, select 011 (decimal 3) resulting in $t_E = 56.96\text{ns}$ (7 periods of 8.138 ns) and an overall lock detect window of $t_E - t_B = 56.96\text{ns} + 61.035\text{ns} = 118.001\text{ns}$. The user may select a smaller lock detect window. For instance, a P_V divider of 128 allows to set $\Phi_{PV}[1:0]$ to 010, 011 or 100 (decimal 2 to 4). Correspondingly, a M_{V0} divider of 64 allows $\Phi_{MV0}[1:0]$ settings from 010 to 011 (decimal 2 to 3). With smaller settings, the lock detect window size is reduced exponentially.

$\Phi_{PV}[1:0]=000$ will set t_B to $0.5 \cdot T_{REF}$ and $\Phi_{PV}[1:0]=001$ will set t_B to $1.5 \cdot T_{REF}$.

$\Phi_{MV0}[1:0]=000$ will set t_E to $0.5 \cdot T_{REF}$ and $\Phi_{MV0}[1:0]=001$ will set t_E to $1.5 \cdot T_{REF}$.

Table 12. Recommended Lock Detector Phase Window Settings

P_V Divider Value	$\Phi_{PV}[1:0]$ Setting	M_{V0} Divider Value	$\Phi_{MV0}[1:0]$ Setting
1 - 31	N/A	1 - 31	N/A
32 - 63	010	32 - 63	010
64-127	≤ 011	64-127	≤ 011
128-255	≤ 100	128-255	≤ 100
256-511	≤ 101	256-511	≤ 101
512-1023	≤ 110	512-1023	≤ 110
1024 and higher	≤ 111	1024 and higher	≤ 111

FemtoClockNG Loss-of-Lock (LOLF)

FemtoClockNG-PLL loss of lock is signaled through the nST_LOLF (momentary) and nLS_LOLF (sticky, resettable) status bits and can be reported as hardware signal on the LOCK output as well as an interrupt signal on the nINT output.

Channel, Output, and JESD204B Logic

Channel

Each of the four channels A to D consists of one to two clock and associated one to three SYSREF outputs. Each SYSREF output in a channel can be individually configured to generate JESD204B (SYSREF) signals or copy the clock signal of that channel. The fifth channel (E) consists of two clock outputs without SYSREF support in that channel.

If JESD204B/SYSREF operation is assigned to a QREF output, the channel logic controls the outputs: outputs automatically turn on and off in a SYSREF sequence. QREF outputs configured to clock operation can individually configure output states.

Table 13. Channel Configuration^[a]

MUX	0	1
Description	Clock configuration	JESD204B
QCLK_y	Clock signal	Clock signal
QREF_r		SYSREF/JESD204B
Frequency Divider	QCLK_y and QREF_r: N _x	QCLK_y: N _x QREF_r: N _S (Global to all QREF_r)
Phase Delay	QCLK_y and QREF_r: Φ_{CLK_x} Φ_{REF_r} settings do not apply	QCLK_y: Φ_{CLK_x} QREF_r: Φ_{REF_r}
Power Down	Per output	Per channel
Output Enable	Per output	Per output

[a] x = A to E, y = A0, A1, B0, B1, C, D, E0, E1; r = A0, A1, A2, B0, B1, C, D

Differential Outputs

Table 14. Output Features

Output	Style	Amplitude ^[a]	Disable	Power Down	Termination
QCLK_y, QREF_r (Clock)	LVPECL	250–1000 mV 4 steps	Yes	Yes	50Ω to V _T
	LVDS				100Ω differential ^[b]
QREF_r (SYSREF)	LVDS	250–1000 mV 4 steps	Controlled by SYSREF ^[c]		100Ω differential ^b
QOSC	LVPECL	250–750 mV 3 steps	Yes	Yes	50Ω to V _T
	LVDS				100Ω differential ^b

[a] Amplitudes are measured single-endedly. Differential amplitudes supported are 500, 1000, 1500 and 2000mV

[b] AC coupling and DC coupling supported.

[c] State of SYSREF outputs is controlled by an internal SYSREF state machine.

Table 15. Individual Clock Output Settings^[a]

PD ^[b]	STYL E	EN ^[c]	A[1:0] ^[d]	Output Power	Termination	State	Amplitude (mV)
1	X	X	X	Off	100Ω differential or no termination	Off	X
0	0	0	XX	On	100Ω differential (LVDS)	Disable (logic low)	X
		00					250
		01					500
		10					750
		11					1000
	1	0	XX		50Ω to V_T (LVPECL)	Enable	X
		00			50Ω to $V_T = V_{DD_V} - 1.50V$ (LVPECL)		250
		01			50Ω to $V_T = V_{DD_V} - 1.75V$ (LVPECL)		500
		10			50Ω to $V_T = V_{DD_V} - 2.00V$ (LVPECL)		750
		11			50Ω to $V_T = V_{DD_V} - 2.25V$ (LVPECL)		1000

[a] Applicable to clock outputs: QCLK_y and QREF_r outputs in clock mode (MUX_r = 0)

[b] Power-down modes are available for the individual channels A-E and the outputs QCLK_y (A0 to E1).

[c] Output enable is supported on each individual QCLK_y and QREF_r output.

[d] Output amplitude control is supported on each individual QCLK_y and QREF_r output.

Table 16. Individual SYSREF Output Settings^[a]

PD	STYLE	EN	nBIAS	A[1:0]	Output Power	Termination	State	Amplitude (mV)
1	X	X	X	X	Off	100Ω differential or no termination	Off	X
0	0	0	0	X	On ^[b]	100Ω differential (LVDS)	Disable (logic low)	X
		00						250
		01						500
		10						750
		11						1000
	1	X	1	XX		50Ω to $V_T = V_{DD_V} - 1.50V$ (LVPECL)	Line bias ^[c]	XX
		0	0	X			Disable (logic low)	X
		00						250
		01						500
		10						750
		11						1000

[a] Applicable QREF_r outputs when configured as SYSREF output (MUX_r = 1).

[b] Output amplitude should be set to a 500 mV swing (A[1:0] to 01) by SPI. SYSREF output states are controlled by an internal state machine. An internal SYSREF event will automatically turn SYSREF outputs on. After the event, outputs are automatically turned off. Setting nBIAS = 1 will bias powered-off outputs to the LVDS midpoint voltage.

[c] Output (both Q, and nQ) bias the line to the differential signal cross-point voltage. Available if output is AC-coupled and set to LVDS style

Table 17. QCLK_V (VCXO-PLL) Output Settings

nPD	STYLE	A[1:0]	Output Power	Termination	Amplitude (mV)
0	X	X	Off	100Ω differential (LVDS) or no termination	X
1	0	00	On	100Ω differential (LVDS)	250
		01			500
		10			750
		11			
	1	00		50Ω to $V_T = V_{DD_V} - 1.50V$ (LVPECL)	250
		01		50Ω to $V_T = V_{DD_V} - 1.75V$ (LVPECL)	500
		10			
		11		50Ω to $V_T = V_{DD_V} - 2.00V$ (LVPECL)	750

Table 18. QREF_r Setting for JESD204B Applications

BIAS_TYPE	nBIAS_r	QREF_r Outputs (LVDS)			Application
		Initial	During SYSREF event	SYSREF completed	
0	0	Static low (QREF = L, nQREF_r = H)	Start switching for the number of configured SYSREF pulses	Released to static low (QREF = L, nQREF_r = H)	QREF_r DC coupled
	1	Static low (QREF = L, nQREF_r = H)			
1	0	Static LVDS crosspoint level (QREF = nQREF_r = VOS)	Start switching for the number of configured SYSREF pulses	Released to static LVDS crosspoint level (QREF = nQREF_r = VOS)	QREF_r AC coupled
	1	Static LVDS crosspoint level (QREF = nQREF_r = VOS)			

Output Phase Delay

Output phase delay is independently supported on both clock and SYSREF outputs.

The phase delay on clock outputs Φ_{CLK_x} , SYSREF outputs coarse delay Φ_{REF_r} and global delay Φ_{REF_S} is derived from the internal VCO frequency of the second PLL (FemtoClock NG PLL). In configurations bypassing the second PLL by setting SRC = 1, the delay unit is derived from the frequency of the external VCXO: use f_{VCXO} instead of f_{VCO} in [Table 19](#).

Table 19. Delay Circuit Settings

Delay Circuit	Unit	Steps	Range (ns)	Alignment ^[a]
Clock ^[b] Φ_{CLK_x}	$\frac{1}{f_{VCO}} = 339\text{ps}$	256	0–86.466 ^[c]	Incident rising clock edges are aligned, independent on the divider N_x across channels
SYSREF Φ_{REF_r}	Coarse delay: $\frac{1}{2f_{VCO}} = 169\text{ps}$	8	0–1.187 ^[c]	SYSREF rising edge is aligned to the incident rising clock edge across channels
	Fine delay: 0, 25, 50, 75, 85, 110, 135, 160 ps	8	0–0.160 ^[d]	
SYSREF (Global) Φ_{REF_S}	$\frac{1}{f_{VCO}} = 339\text{ps}$	256	0–86.466 ^[c]	Global alignment of SYSREF signals

[a] Default configuration (all delay settings = 0). Φ_{REF_r} coarse delay values are exact, fine delay value vary over PVT by $\pm 20\%$.

[b] Clock output inversion supported by setting phase delay to 180° setting.

[c] Exact delay value.

[d] $\pm 20\%$ delay variation over PVT.

Configuration for JESD204B Operation

Synchronizing SYSREF and Clock Output Dividers

The SYNC[6:0] divider controls the release of SYSREF pulses at coincident QCLK_y clock edges. For SYSREF operation, set the SYNC divider value to the least common multiple of the clock divider values N_x ($x = A$ to E). For instance, if $N_A = N_B = \div 2$, $N_C = N_D = \div 3$, $N_E = \div 4$, set the SYNC divider to $\div 12$.

SYSREF Generation

A SYSREF event is the generation of one or more consecutive pulses on the QREF outputs. An event can be triggered by SPI commands or by a signal-transition on the EXT_SYS input. The number of SYSREF pulses generated is programmable from 1 to 255. The SYSREF signal can also be programmed to be continuous. The SYSREF pulse rate is configurable to the frequencies shown in [Table 20](#). SYSREF output pulses are aligned to coincident rising clock edges of the clock outputs QCLK_y. Device settings for phase alignment between QCLK_y and QREF_r outputs is detailed in the section, [QCLK to QREF Phase Alignment](#). The following SYSREF pulse generation modes are available and configurable by SPI:

- Counted pulse mode – 1 to 255 pulses are generated by the device. SYSREF activity stops automatically after the transmission of the selected number of pulses and the QREF output powers down.
- Continuous mode – The SYSREF signal is a clock signal.

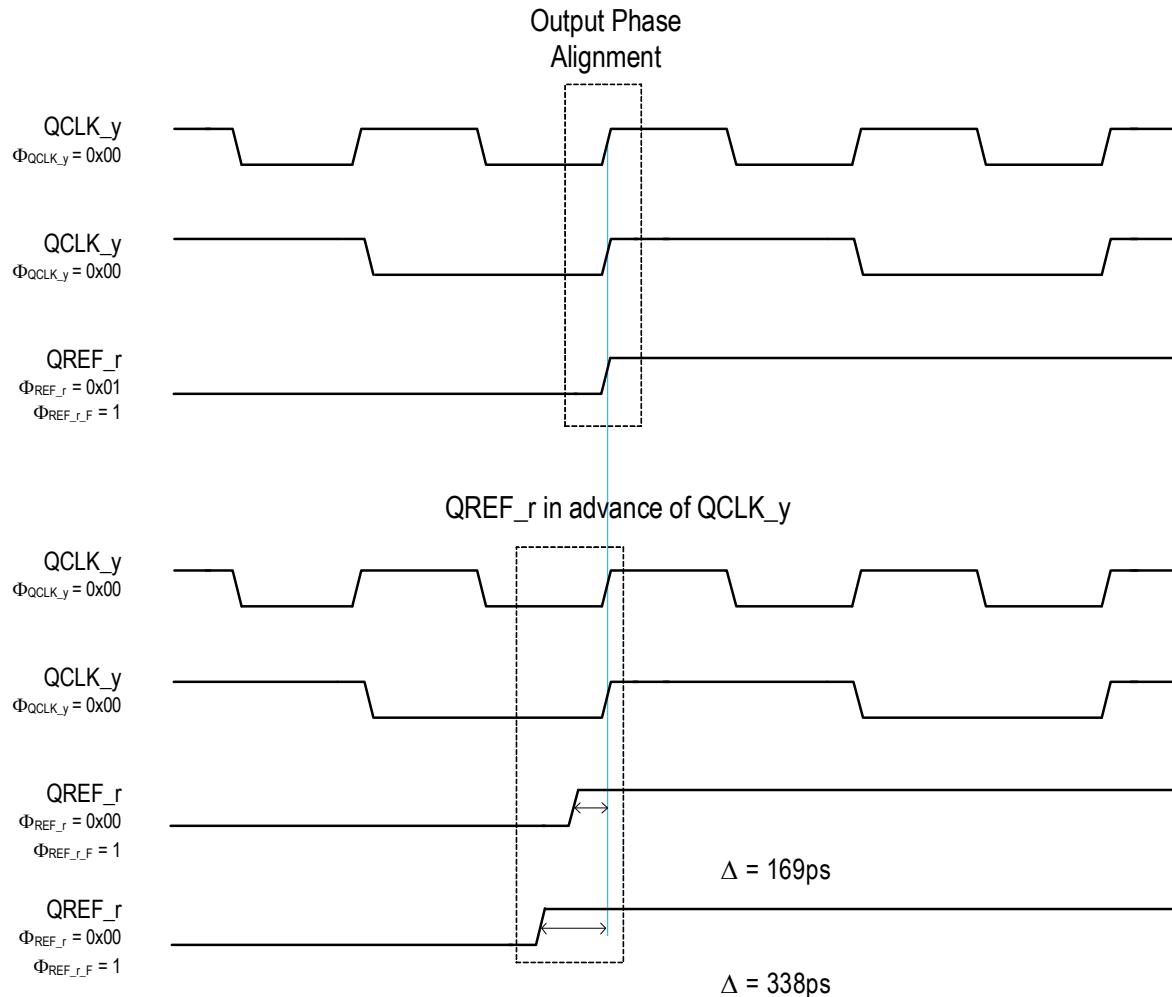
The generation of SYSREF pulses is configured by SPI commands and is available after the initial setup of output clock divider and QREF phase delay stages. A SYSREF event will automatically turn on the SYSREF outputs. After the event, SYSREF outputs are automatically turned off (power-down). SYSREF outputs with the nBIAS bit set high will bias the outputs at the LVDS crosspoint voltage level (requires BIAS_TYPE = 1).

Table 20. SYSREF Generation^[a]

SRO	N _S	SYSREF Operation (f _{SYSREF})	
		f _{VCO} = 2949.12MHz	
0	Counted pulse mode (Use the SRPC register to configure the number of generated SYSREF pulses)		
	÷64	46.08	
	÷96	30.72	
	÷128	23.04	
	÷192	15.36	
	÷256	11.52	
	÷384	7.68	
	÷512	5.76	
	÷768	3.84	
	÷1024	2.88	
	÷2048	1.44	
	÷4096	0.72	
	÷5120	0.576	
1	Continuous pulse mode		
	÷64	46.08	
	÷96	30.72	
	÷128	23.04	
	÷192	15.36	
	÷256	11.52	
	÷384	7.68	
	÷512	5.76	
	÷768	3.84	
	÷1024	2.88	
	÷2048	1.44	
	÷4096	0.72	
	÷5120	0.576	

[a] SRO and SRPC are global settings.

Internal SYSREF Generation


SYSREF generation is set to internal (SRG = 0). The SRO setting defines if SYSREF pulses are counted or continuous and the NS[6:0] divider sets the frequency. In counted pulse mode, the SRPC register contains the number of pulses to generate. Any number from 1 to 255 pulses may be generated. SYSREF pulses are generated upon completion of the SPI command RS (SYSREF release). Setting RS activates the SYSREF outputs, loads the number of pulses from the SRPC register and starts the generation of SYSREF pulses synchronized to the incident edge of the clock signals. After the programmed number of pulses are generated, SYSREF outputs will go into logic low state or bias the output voltage to the static LVDS crosspoint level (see [Table 21](#) for settings and details). In continuous mode, SYSREF is a clock signal and the content of the SRPC signal is ignored.

External SYSREF Generation

SYSREF generation is set to external (SRG = 1): SYSREF pulses are generated in response to the detection of a rising edge at the EXT_SYS input. The EXT_SYS input rising edge releases SYSREF pulses. Both SRO and SRPC register settings apply as in internal SYSREF generation mode for generating single shot and repetitive SYSREF output signals. Set RS = 1 to prepare for SYSREF generation; the generation of SYSREF pulses is triggered by a rising edge at EXT_SYS pin.

QCLK to QREF (SYSREF) Phase Alignment

[Figure 4](#) and [Table 21](#) show how to achieve output phase alignment between the QCLK_y clock and the QREF_r SYSREF outputs in internal SYSREF generation mode (SRG=0). The closest (smallest phase error) output alignment is achieved by setting the clock phase delay register Φ_{QCLK_Y} to 0x00 (clock), the SYSREF output phase delay register Φ_{REF_r} to 0x01 and the global Φ_{REF_S} delay register to 0x29. With a SYSREF phase delay setting of 0x01 or less, $\Phi_{REF_r} = 0$, the QREF_r output phase is in advance of the QCLK_y phase, which is applicable in JESD204B application. Phase delay settings and propagation delays are independent on the clock and SYSREF frequencies, but independent of the SYSREF generation mode (SRG = 0 or SRG = 1). Recommended phase delay setting several device configurations are shown in [Table 21](#).

Figure 4. QCLK to QREF Phase Alignment**Table 21. Recommended Delay Settings for Closest Clock-SYSREF Output Phase Alignment^[a]**

Divider Configuration	Φ_{QCLK_y}	Φ_{QREF_r}	Φ_{REF_S}
$N_S = \div 384$ $N_{A-E} = \div 3$	0x00	0x01	0x29
$N_S = \div 384$ $N_{A-E} = \div 3, \div 6, \div 12$	0x00	0x01	0x29
$N_S = \div 384$ $N_{A-E} = \div 8$	0x00	0x03	0x00

[a] QCLK and QREF outputs are aligned on the incident edge.

Deterministic Phase Relationship and Phase Alignment

Input to output delay is deterministic when the device is configured as dual PLL with the BYPV = 0, BYPF = 1 (PLL feedback path through $M_{V0} \times M_{V1}$). Refer to the application note [AN-952: 8V19N480/490 Design Guide for JESD204B Output Phase Alignment and Termination](#) for additional information on phase alignment, termination and coupling techniques.

Status Conditions and Interrupts

The device has an interrupt output to signal changes in status conditions. Settings for status conditions may be accessed in the Status registers. The device has several conditions that can indicate faults and status changes in the operation of the device. These are shown in [Table 22](#) and can be monitored directly in the status registers. Status bits (named: ST_condition) are read-only and reflect the momentary device status at the time of read-access. Several status bits are also copied into latched bit positions (named: LS_condition). The latched version is controlled by the corresponding fault and status conditions and remains set ("sticky") until reset by the user by writing "1" to the status register bit. The reset of the status condition has only an effect if the corresponding fault condition is removed, otherwise, the status bit will set again.

Setting a status bit on several latched registers can be programmed to generate an interrupt signal (nINT) via settings in the Interrupt Enable bits (named: IE_condition). A setting of "0" in any of these bits will mask the corresponding latched status bit from affecting the interrupt status pin. Setting all IE bits to 0 has the effect of disabling interrupts from the device. Interrupts are cleared by resetting the appropriate bit(s) in the latched register after the underlying fault condition has been resolved. When all valid interrupt sources have been cleared in this manner, this will release the nINT output until the next unmasked fault.

Table 22. Status Bit Functions

Status Bit		Function			Interrupt Enable Bit	
Momentary	Latched	Description	Status if Bit is:			
			1	0		
ST_CLK_0	LS_CLK_0	CLK 0 input status	Active	LOS	IE_CLK_0	
ST_CLK_1	LS_CLK_1	CLK 1 input status	Active	LOS	IE_CLK_1	
nST_LOLV	nLS_LOLV	VCXO-PLL loss of lock	Locked	Loss of lock	IE_LOLV	
nST_LOLF ^[a]	nLS_LOLF	FemtoClockNG-PLL loss of lock	Locked	Loss of lock	IE_LOLF	
nST_HOLD	nLS_HOLD	Holdover	Not in holdover	Device in holdover	IE_HOLD	
ST_VCOF	—	FemtoClockNG VCO calibration	Not completed	Completed	—	
ST_SEL[1:0]	—	Clock input selection in auto-selection mode	00 = CLK_0 01 = CLK_1 10, 11 - not defined		—	
ST_REF	LS_REF	PLL reference status	Valid reference ^[b]	Reference lost	IE_REF	

[a] nST_LOLV and nLS_LOLV report 1 (PLL locked) if the VCXO-PLL is bypassed by setting BYPV = 1

[b] Manual and short-term holdover mode: 0 indicates if the reference selected by SEL[1:0] is lost, 1 if not lost
Automatic with holdover mode: 0 indicates the reference is lost and while still in holdover

Table 23. LOCK Function

Status Bit (PLL)		Status reported on LOCK output
nLS_LOLV (VCXO-PLL)	nLS_LOLF (FemtoClockNG)	
Locked ^[a]	Locked	1
	Not locked	0
Not locked	Locked	0
	Not locked	0

[a] nST_LOLV and nLS_LOLV report 1 (PLL locked) if the VCXO-PLL is bypassed by setting BYPV = 1

Device Startup, Reset, and Synchronization

At startup, an internal POR (power-on reset) resets the device and sets all register bits to its default value. The device forces the VCXO control voltage at the LFV pin to half of the power supply voltage to center the VCXO-frequency. In the default configuration the QCLK_y and QREF_r outputs are disabled at startup.

Recommended Configuration Sequence (In Order):

1. (Optional) Set the value of the CPOL register bit to define the SPI read mode, so that SPI settings can be validated by subsequent SPI read accesses.
2. Configure all PLL settings, output divider and delay circuits as well as other device configurations:
 - BYPF and BYPV for the desired PLL operation mode and configure the PLL dividers P_V , M_{V0} , M_{V1} , M_F and P_F as required to achieve PLL lock. See [Table 2](#) for details
 - VCXO-PLL lock detect window by configuring the phase settings ΦM_{V0} and ΦP_V
 - Charge pump currents for both PLLs (CPV[4:0] and CPF[4:0]) and POLV for the desired VCXO polarity
 - (optional) OSVEN and OFFSET[4:0] for the VCXO-PLL static phase offset
 - Channel dividers (see [Table 8](#))
 - MUX_r for the desired operation of the QREF_r outputs
 - QCLK_y, QREF_r and QOSC output features such as desired output power-down state, style and amplitude
 - Desired input selection and monitoring modes: this involves nM/A[1:0] and SEL[1:0] for input selection. In any of the automatic modes, configure PRIO[1:0]_n, and REVS. Configure the CNTH[7:0], CNTR[1:0] counters for the desired holdover characteristics and DIV4_VAL, CNTV[1:0] for input revalidation if applicable to the operation mode.
 - Individual Φ_{CLK_X} and Φ_{REF_r} registers and the global delay Φ_{REF_S} register for the desired phase delay between clock and SYSREF outputs; see (link to phase alignment section).
 - Interrupt enable configuration bits IE_status_condition, as desired for fault reporting on the nINT output
3. For SYSREF operation:
 - Configure the N_S and SYNC divider as described in the section [Status Conditions and Interrupts](#)
 - Configure the SYSREF registers SRG, SRO and SRPC[7:0] according to the desired SYSREF operation
4. Set the initialization bit INIT_CLK. This will initiate all divider and delay circuits and synchronize them to each other. The INIT_CLK bit will self-clear.
5. Set both the RELOCK bit and PB_CAL bit. This step should not be combined with the previous step (setting INIT_CLK) in a multi SPI-byte register access. Both bits will self-clear.
6. Clear the FVCV bit to release the VCXO control voltage and VCXO-PLL will attempt to lock to the input clock signal starting from its center frequency.
7. Clear the status flags.
8. At this point, the basic configuration of the registers 0x00 to 0x73 should be completed and the SPI transfer ended (set nCS to high level).
9. In a separate SPI write access, enable the outputs as desired by accessing the output-enable registers 0x74 and 0x76.
10. For SYSREF operation: set the RS bit to start (or re-start) generating the configured number of SYSREF pulses. The RS bit will auto-clear.
 - In internal SYSREF generation mode (SRG = 0) the SYSREF pulses are generated as a result of setting the RS bit.
 - In external SYSREF mode the SYSREF pulses are generated at the next rising edge of the EXT_SYS input.

Reserved registers and registers in the address range 0x78 to 0xFF should not be used. Do not write into any registers in the 0x78 to 0xFF range.

Changing Frequency Dividers and Phase Delay Values

Clock Frequency Divider and Delay

The following procedure must be applied for a change of a clock divider and phase delay value N_{A-E} , and Φ_{CLKA-E} :

1. (Optional) Set the value of the CPOL register to define the SPI read mode, so that SPI settings can be validated by subsequent SPI read accesses.
2. (Optional) Disable the outputs whose frequency divider or delay value is changed.
3. Configure the N_{A-E} dividers and the delay circuits Φ_{CLKA-E} to the desired new values.
4. (Optional) configure the SYNC divider if required for synchronization between clock and SYSREF signals.
5. Set the initialization bit INIT_CLK. This will initiate all divider and delay circuits and synchronize them to each other. The INIT_CLK bit will self-clear. During this initialization step, all QCLK_y and QREF_r outputs are reset to the logic low state.
6. Set the RELOCK bit. This step should not be combined with the setting INIT_CLK in a multi SPI-byte register access. Bit will self-clear.
7. (Optional) enable the outputs whose frequency divider was changed.

SYSREF Frequency Divider, Delay and Starting/Re-Starting SYSREF Pulse Sequences

The following procedure must be applied for a change of a SYSREF divider and phase delay value N_S and Φ_{REF_S} :

1. (Optional) Set the value of the CPOL register to define the SPI read mode, so that SPI settings can be validated by subsequent SPI read accesses.
2. (Optional) Disable the outputs whose frequency divider or delay value is changed.
3. Configure any N_S divider and any delay circuits Φ_{REF_S} to their desired new values.
4. Configure the SYNC divider if required for synchronization between clock and SYSREF signals.
5. Set the initialization bit INIT_CLK. This will initiate all divider and delay circuits and synchronize them to each other. The INIT_CLK bit will self-clear. During this initialization step, all QCLK_y and QREF_r outputs are reset to the logic low state.
6. Set the RELOCK bit. This step should not be combined with the setting INIT_CLK in a multi SPI-byte register access. Bit will self-clear.
7. Set the SRO bit to counted pulse mode or to continues pulse mode, as desired
8. (Optional) enable the outputs whose frequency divider was changed.
9. For SYSREF operation: set the RS bit to start (or re-start) generating the configured number of SYSREF pulses. The RS bit will auto-clear.
 - In internal SYSREF generation mode (SRG = 0) the SYSREF pulses are generated as a result of setting the RS bit.
 - In external SYSREF mode the SYSREF pulses are generated at the next rising edge of the EXT_SYS input.

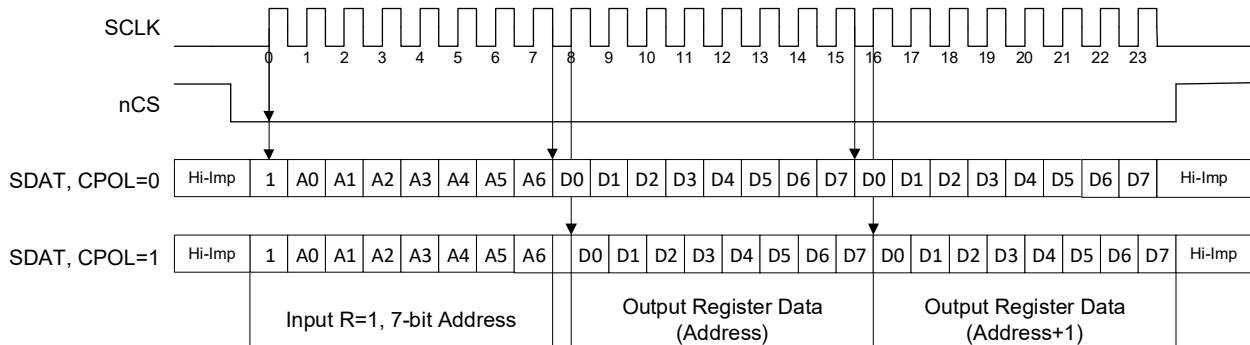
SPI Interface

The device has a 3-wire serial control port capable of responding as a slave in an SPI configuration to allow read and write access to any of the internal registers for device programming or read back. The SPI interface consists of the SCLK (clock), SDAT (serial data input and output), and nCS (chip select) pins. A data transfer consists any integer multiple of 8 bits and is always initiated by the SPI master on the bus. Internal register data is organized in SPI bytes of 8 bit each.

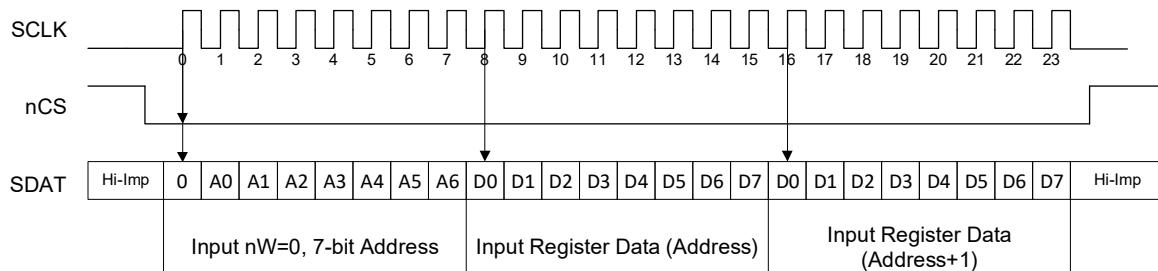
If nCS is at logic high, the SDAT data I/O is in high-impedance state and the SPI interface of the device is disabled.

In a write operation, data on SDAT will be clocked in on the rising edge of SCLK. In a read operation, data on SDAT will be clocked out on the falling or rising edge of SCLK depending on the CPOL setting (CPOL=0: output data changes on the falling edge, CPOL=1: output data changes on the rising edge).

Starting a data transfer requires nCS to set and hold at logic low level during the entire transfer. Setting nCS = 0 will enable the SPI interface with SDAT in data input mode. The master must initiate the first 8-bit transfer. The first bit presented by the SPI master in each transfer is the LSB (least significant bit). The first bit presented to the slave is the direction bit R/nW (1 = Read, 0 = Write) and the following seven bits are the address bits A[0:6] pointing to an internal register in the address space 0 to 127.


Read operation from an internal register: a read operation starts with an 8 bit transfer from the master to the slave: SDAT is clocked on the *rising* edge of SCLK. The first bit is the direction bit R/nW which must be to 1 to indicate a read transfer, followed by 7 address bits A[0:6]. After the first 8 bits are clocked into SDAT, the SDAT I/O changes to output: The register content addressed by A[0:6] are loaded into the shift register and the next 8 SCLK *falling* (CPOL=1) clock cycles will then present the loaded register data on the SDAT output and transfer these to the master. Transfers must be completed with de-asserting nCS after any multiple 8 SCLK cycles. If nCS is de-asserted at any other number of SCLKs, the SPI behavior is undefined. SPI byte (8 bit) and back-to-back read transfers of multiple registers are supported with an address auto-increment. During multiple transfers, nCS must stay at logic low level and SDAT will present multiple registers (A), (A+1), (A+2), etc. with each 8 SCLK cycles. During SPI Read operations, the user may continue to hold nCS low and provide further bytes of data for up to a total of 127 bytes in a single block read.

Write operation to a device register: During a write transfer, a SPI master transfers one or more bytes of data into the internal registers of the device. A write transfer starts by asserting nCS to low logic level. The first bit presented by the master must set the direction bit R/nW to 0 (Write) and the 7 address bits A[0:6] must contain the 7-bit register address. Bits D0 to D7 contain 8 bit of payload data, which is written into the register addressed by A[0:6] at the end of a 8-bit write transfer. Multiple, subsequent register transfers from the master to the slave are supported by holding nCS asserted at logic low level during write transfers. The 7 bit register address will auto-increment. Transfers must be completed with de-asserting nCS after any multiple 8 SCLK cycles. If nCS is de-asserted at any other number of SCLKs, the SPI behavior is undefined.


End of transfer: After nCS is de-asserted to logic 1, the SPI bus is available to transfers to other slaves on the SPI bus. See also the READ diagram ([Figure 5](#)) and WRITE ([Figure 6](#)) displaying the transfer of two bytes of data from and into registers.

Registers 0x78 to 0xFF. Registers in the address range 0x78 to 0xFF should not be used. Do not write into any registers in the 0x78 to 0xFF range.

Figure 5. Logic Diagram: READ Data from Registers for CPOL = 0 and CPOL = 1

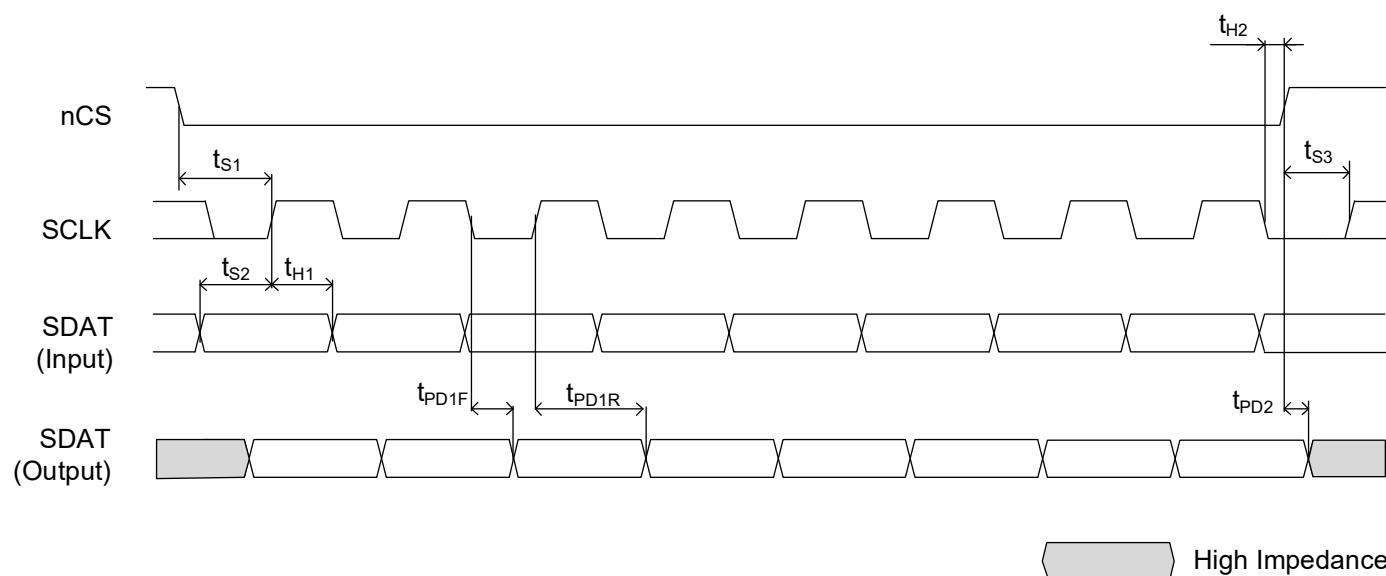


Figure 6. Logic Diagram: WRITE Data into Registers

Table 24. SPI Read / Write Cycle Timing Parameters

Symbol	Parameter	Test Condition	Minimum	Maximum	Unit
f_{SCLK}	SCLK frequency			20	MHz
t_{S1}	Setup time, nCS (falling) to SCLK (rising)		5		ns
t_{S2}	Setup time, SDAT (input) to SCLK (rising)		5		ns
t_{S3}	Setup time, nCS (rising) to SCLK (rising)		5		ns
t_{H1}	Hold time, SCLK (rising) to SDAT (input)		5		ns
t_{H2}	Hold time, SCLK (falling) to nCS (rising)		5		ns
t_{PD2F}	Propagation delay, SCLK (falling) to SDAT	CPOL = 0		12	ns
t_{PD2R}	Propagation delay, SCLK (rising) to SDAT	CPOL = 1		12	ns
t_{PD3}	Propagation delay, nCS to SDAT disable			12	ns

Figure 7. SPI Timing Diagram**Table 25. Serial Interface Logic Voltage**

SELV	SPI Interface (SCLK, SDAT, nCS), LOCK, nINT Logic Voltage
0 (default)	1.8V
1	3.3V

Configuration Registers

This section contains all addressable registers, sorted by function, followed for a detailed description of each bit field for each register. Several functional blocks with multiple instances in this device have individual registers controlling their settings, but since the registers have an identical format and bit meaning, they are described only once, with an additional table to indicate their addresses and default values. All writable register fields will come up with a default values as indicated in the Factory Defaults column unless altered by values loaded from non-volatile storage during the initialization sequence.

Fixed read-only bits will have defaults as indicated in their specific register descriptions. Read-only status bits will reflect valid status of the conditions they are designed to monitor once the internal power-up reset has been released. Unused registers and bit positions are Reserved. Reserved bit fields may be used for internal debug test and debug functions.

Table 26. Configuration Registers

Register Address	Register Description
0x00–0x01	PLL Frequency Divider: Φ_{MV} , MV0
0x02–0x03	PLL Frequency Divider: MV1, BYPF
0x04–0x05	VCXO-PLL Control: Frequency Divider, Φ_{PV} , PV
0x06–0x07	Reserved
0x08–0x09	PLL Frequency Divider MF
0x0A	VCXO-PLL Control BYPV
0x0B	Reserved
0x0C	PLL Frequency Divider: PF, FDF
0x0D–0x0F	Reserved
0x10–0x12	VCXO-PLL Control, output state QOSC
0x13	Reserved
0x14	Input Selection Mode Priority
0x15	Input Selection Mode Switching
0x16	Input Selection Mode CNTH
0x17	Input Selection Mode: CNTR, CNTV
0x18	SYSREF control: Divider, PD
0x19	SYSREF control SYNC
0x1A	SYSREF control SRPC
0x1B	SYSREF control Φ_{REF_S}
0x1C	SYSREF control SRG, SRO
0x1D–0x1F	Reserved
0x20–0x22	Channel A
0x23	Reserved
0x24	Output State QCLK_A0
0x25	Output State QCLK_A1
0x26	Reserved
0x27	Reserved
0x28	QREF_A0: Delay, MUX

Table 26. Configuration Registers (Cont.)

Register Address	Register Description
0x29	QREF_A1: Delay, MUX
0x2A	QREF_A2: Delay, MUX
0x2B	Reserved
0x2C	Output State QREF_A0
0x2D	Output State QREF_A1
0x2E	Output State QREF_A2
0x2F	Reserved
0x30–0x32	Channel B
0x33	Reserved
0x34	Output State QCLK_B0
0x35	Output State QCLK_B1
0x36–0x37	Reserved
0x38	QREF_B0: Delay, MUX
0x39	QREF_B1: Delay, MUX
0x3A–0x3B	Reserved
0x3C	Output State QREF_B0
0x3D	Output State QREF_B1
0x3E–0x3F	Reserved
0x40–0x42	Channel C
0x43–0x44	Reserved
0x45	Output State QCLK_C
0x46–0x48	Reserved
0x49	QREF_C Delay, MUX
0x4A–0x4C	Reserved
0x4D	Output State QREF_C
0x4E–0x4F	Reserved
0x50–0x52	Channel D
0x53	Reserved
0x54	Output State QCLK_D
0x55–0x57	Reserved
0x58	QREF_D Delay, MUX
0x59–0x5B	Reserved
0x5C	Output State QREF_D
0x5D–0x5F	Reserved
0x60–0x62	Channel E
0x63	Reserved

Table 26. Configuration Registers (Cont.)

Register Address	Register Description
0x64	Output State QCLK_E0
0x65	Output State QCLK_E1
0x66–0x67	Reserved
0x68–0x69	Interrupt Enable
0x6A–0x6B	Reserved
0x6C	Status (Latched)
0x6D	Status (Momentary)
0x6E	Status (Latched)
0x6F	Status (Momentary)
0x70	SYSREF control RS
0x71–0x73	General Control
0x74–0x75	Output State QCLK
0x76	Output State QREF
0x70	SYSREF control RS
0x77	Reserved
0x78–0x7A	Reserved
0x7B	Reserved
0x7C–0x7F	Reserved
0x80–0xFF	Reserved

Channel and Clock Output Registers

The content of the channel register and clock output registers set the channel state, the clock divider, the QCLK output state and clock phase delay.

Table 27. Channel and Clock Output Register Bit Field Locations

Bit Field Location								
Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x20: Channel A	N_A[7:0]							
0x30: Channel B	N_B[7:0]							
0x40: Channel C	N_C[7:0]							
0x50: Channel D	N_D[7:0]							
0x60: Channel E	N_E[7:0]							
0x21: Channel A	ΦCLK_A[7:0]							
0x31: Channel B	ΦCLK_B[7:0]							
0x41: Channel C	ΦCLK_C[7:0]							
0x51: Channel D	ΦCLK_D[7:0]							
0x61: Channel E	ΦCLK_E[7:0]							
0x22: Channel A	PD_A							
0x32: Channel B	PD_B							
0x42: Channel C	PD_C	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
0x52: Channel D	PD_D							
0x62: Channel E	PD_E							
0x24: QCLK_A0	PD_A0	Reserved	Reserved	STYLE_A0	A_A0[1:0]		Reserved	
0x25: QCLK_A1	PD_A1			STYLE_A1	A_A1[1:0]			
0x34: QCLK_B0	PD_B0	Reserved	Reserved	STYLE_B0	A_B0[1:0]		Reserved	
0x35: QCLK_B1	PD_B1			STYLE_B1	A_B1[1:0]			
0x45: QCLK_C	PD_C	Reserved	Reserved	STYLE_C	A_C		Reserved	
0x54: QCLK_D	PD_D	Reserved	Reserved	STYLE_D	A_D		Reserved	
0x64: QCLK_E0	PD_E0	Reserved	Reserved	STYLE_E0	A_E0[1:0]		Reserved	
0x65: QCLK_E1	PD_E1			STYLE_E1	A_E1[1:0]			
0x74	EN_QCLK_A0	EN_QCLK_A1	Reserved	EN_QCLK_B0	EN_QCLK_B1	Reserved	EN_QCLK_C	EN_QCLK_D
0x75	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	EN_QCLK_E1	EN_QCLK_E0

Table 28. Channel and Clock Output Register Descriptions^[a]

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
N_x[7:0]	R/W	0000 0100 Value= ÷6	Output Frequency Divider N N_x[7:0]Divider Value
			1000 0000 ÷1 0100 0011 ÷10
			0000 0000 ÷2 0100 0100 ÷12
			0000 0001 ÷3 0100 0110 ÷16
			0000 0010 ÷4 0100 1011 ÷20
			0000 0011 ÷5 0100 1100 ÷24
			0000 0100 ÷6
			0000 0110 ÷8
			0101 0011 ÷30 0101 1011 ÷40
			0100 1110 ÷32 0101 0110 ÷48
			0101 0100 ÷36
			0110 0011 ÷50 0110 0100 ÷60
			0101 1110 ÷64
			0101 1111 ÷72 0110 0110 ÷80
			0110 1110 ÷96 0111 1011 ÷100
			0111 1100 ÷120
			0111 0110 ÷128
			0111 1110 ÷160
PD_x	R/W	0	0 = Channel x is powered up 1 = Channel x is power down
PD_y	R/W	0	0 = Output QCLK_y is powered up 1 = Output QCLK_y is power down
ΦCLK_x[7:0]	R/W	0000 0000	CLK_x phase delay ΦCLK_x[7:0]
			Delay in ps = ΦCLK_x × 339ps (256 steps) 0000 0000 = 0 ps ... 1111 1111 = 86.466ns

Table 28. Channel and Clock Output Register Descriptions^[a]

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
A_y[1:0]	R/W	00	QCLK_y Output amplitude
			Setting for STYLE = 0 (LVDS)
			Setting for STYLE = 1 (LVPECL)
			A[1:0] = 00: 250mV
			A[1:0] = 01: 500mV
			A[1:0] = 10: 750mV
STYLE_y	R/W	0	A[1:0] = 11: 1000mV
			Termination: 100Ω across
EN_y	R/W	0	Termination: 50Ω to VT
			QCLK_y Output format 0 = Output is LVDS (Requires LVDS 100Ω output termination) 1 = Output is LVPECL (Requires LVPECL 50Ω output termination of to the specified recommended termination voltage).
EN_y	R/W	0	QCLK_y Output enable 0 = QCLK_y Output is disabled at the logic low state 1 = QCLK_y Output is enabled

[a] x = A, B, C, D, E; y=A0, A1, B0, B1, C, D, E0, E1; r=A0, A1, A2, B0, B1, C, D

QREF Output State Registers

The content of the output registers set the output frequency and divider, several output states, the power state, the output style and amplitude.

Table 29. QREF Output State Register Bit Field Locations^[a]

Bit Field Location								
Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x28: QREF_A0	Reserved	ΦREF_F[1:0]_A0	MUX_A0	ΦREF_A0[2:0]	ΦREF_A1[2:0]	ΦREF_A2[2:0]	ΦREF_F[2]_A0	ΦREF_F[2]_A1
0x29: QREF_A1								
0x2A: QREF_A2								
0x38: QREF_B0	Reserved	ΦREF_F[1:0]_B0	MUX_B0	ΦREF_B0[2:0]	ΦREF_B1[2:0]	ΦREF_F[2]_B0	ΦREF_F[2]_B1	ΦREF_F[2]_B1
0x39: QREF_B1								
0x49: QREF_C	Reserved	ΦREF_F[1:0]_C	MUX_C	ΦREF_C[2:0]			ΦREF_F[2]_C	
0x58: QREF_D	Reserved	ΦREF_F[1:0]_D	MUX_D	ΦREF_D[2:0]			ΦREF_F[2]_D	

Table 29. QREF Output State Register Bit Field Locations^[a]

Bit Field Location								
Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x2C: QREF_A0	PD_A0		nBIAS_A0	STYLE_A0	A_A0[1:0]			
0x2D: QREF_A1	PD_A1	Reserved	nBIAS_A1	STYLE_A1	A_A1[1:0]		Reserved	
0x2E: QREF_A2	PD_A2		nBIAS_A2	STYLE_A2	A_A2[1:0]			
0x3C: QREF_B0	PD_B0	Reserved	nBIAS_B0	STYLE_B0	A_B0[1:0]		Reserved	
0x3D: QREF_B1	PD_B1		nBIAS_B1	STYLE_B1	A_B1[1:0]			
0x4D: QREF_C	PD_C	Reserved	nBIAS_C	STYLE_C	A_C[1:0]		Reserved	
0x5C: QREF_D	PD_D	Reserved	nBIAS_D	STYLE_D	A_D[1:0]		Reserved	
0x76	EN_QREF_A0	EN_QREF_A1	EN_QREF_A2	EN_QREF_B0	EN_QREF_B1	Reserved	EN_QREF_C	EN_QCLK_D

[a] x = A, B, C, D, E; y = A0, A1, B0, B1, C, D, E0, E1; r = A0, A1, A2, B0, B1, C, D

Table 30. QREF Output State Register Descriptions^[a]

Bit Field Location				
Bit Field Name	Field Type	Default (Binary)	Description	
MUX_r	R/W	1	0 = QREF_r output signal source is the channel's clock signal 1 = QREF_r output signal source is the centrally generated SYSREF signal	
ΦREF_r[2:0]	R/W	000	SYSREF coarse phase delay ΦREF_r[2:0]	
			Delay in ps = ΦREF_r[2:0] × 169 ps (8 steps) 000 = 0 ps ... 111 = 1.187 ns	

Table 30. QREF Output State Register Descriptions^[a]

Bit Field Location															
Bit Field Name	Field Type	Default (Binary)	Description												
ΦREF_F[2:0]_r	R/W	000	<p>SYSREF fine phase delay</p> <p>ΦREF_F[2:0]_r</p> <p>Insert a SYSREF fine phase delay in ps (8 steps) in addition to the delay value in ΦREF_r[2:0].</p> <p>000 = 0ps 001 = 25ps 010 = 50ps 011 = 75ps 100 = 85ps 101 = 110ps 110 = 135ps 111 = 160ps</p>												
nBIAS_r	R/W	0	<p>QREF_r Output Bias Voltage</p> <p>0 = Output is not voltage biased.</p> <p>1 = Output is biased to the LVDS cross-point voltage if BIAS_TYPE (register 0x19, bit 7) is set to 1. Bit has no effect if BIAS_TYPE = 0.</p> <p>Output bias = 1 requires AC coupling and LVDS style on the corresponding output.</p>												
A_r[1:0]	R/W	00	<p>QREF_r Output amplitude</p> <table> <tr> <td>Setting for STYLE_r = 0 (LVDS)</td> <td>Setting for STYLE_r = 1 (LVPECL)</td> </tr> <tr> <td>A[1:0] = 00: 250mV</td> <td>A[1:0] = 00: 250mV</td> </tr> <tr> <td>A[1:0] = 01: 500mV</td> <td>A[1:0] = 01: 500mV</td> </tr> <tr> <td>A[1:0] = 10: 750mV</td> <td>A[1:0] = 10: 750mV</td> </tr> <tr> <td>A[1:0] = 11: 1000mV</td> <td>A[1:0] = 11: 1000mV</td> </tr> <tr> <td>Termination: 100Ω across</td> <td>Termination: 50Ω to VT</td> </tr> </table>	Setting for STYLE_r = 0 (LVDS)	Setting for STYLE_r = 1 (LVPECL)	A[1:0] = 00: 250mV	A[1:0] = 00: 250mV	A[1:0] = 01: 500mV	A[1:0] = 01: 500mV	A[1:0] = 10: 750mV	A[1:0] = 10: 750mV	A[1:0] = 11: 1000mV	A[1:0] = 11: 1000mV	Termination: 100Ω across	Termination: 50Ω to VT
Setting for STYLE_r = 0 (LVDS)	Setting for STYLE_r = 1 (LVPECL)														
A[1:0] = 00: 250mV	A[1:0] = 00: 250mV														
A[1:0] = 01: 500mV	A[1:0] = 01: 500mV														
A[1:0] = 10: 750mV	A[1:0] = 10: 750mV														
A[1:0] = 11: 1000mV	A[1:0] = 11: 1000mV														
Termination: 100Ω across	Termination: 50Ω to VT														
PD_r	R/W	0	<p>QREF_r Output Power Down</p> <p>0 = Output is powered up</p> <p>1 = Output is power down. STYLE, EN and A[1:0] settings have no effect.</p>												
STYLE_r	R/W	0	<p>QREF_r Output format</p> <p>0 = Output is LVDS (Requires LVDS 100Ω output termination)</p> <p>1 = Output is LVPECL (Requires LVPECL 50Ω output termination to the specified recommended termination voltage).</p>												
EN_r	R/W	0	<p>QREF_r Output enable</p> <p>0 = Output is disabled at the logic low state</p> <p>1 = Output is enabled</p>												

[a] x = A, B, C, D, E; y=A0, A1, B0, B1, C, D, E0, E1; r=A0, A1, A2, B0, B1, C, D

PLL Frequency Divider Registers

Table 31. PLL Frequency Divider Register Bit Field Locations

Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x00		ΦMV0[2:0]		PD_MV1			MV0[11:8]	
0x01					MV0[7:0]			
0x02					MV1[7:0]			
0x03	MV[8]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	BYPF
0x04		ΦPV[2:0]		Reserved			PV[11:8]	
0x05					PV[7:0]			
0x08	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	MF[8]
0x09					MF[7:0]			
0x0A	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	BYPV
0x0C	FDF	Reserved			PF[5:0]			

Table 32. PLL Frequency Divider Register Descriptions

Bit Field Location																			
Bit Field Name	Field Type	Default (Binary)	Description																
ΦMV0[2:0]	R/W	000	<p>Phase of the M_{V0} feedback divider. Determines the PLL lock-detect phase window in conjunction with $ΦPV[2:0]$. Sampling clock phase is relative to the VCXO-PLL phase detector clock edge. Set $ΦMV0[2:0]$ in relationship to M_{V0}:</p> <table> <tr> <td>M_{V0} Divider Value</td> <td>$ΦMV0[2:0]$ Setting</td> </tr> <tr> <td>1 - 31</td> <td>010</td> </tr> <tr> <td>32 - 63</td> <td>011</td> </tr> <tr> <td>64-127</td> <td>100</td> </tr> <tr> <td>128-255</td> <td>101</td> </tr> <tr> <td>256-511</td> <td>110</td> </tr> <tr> <td>512-1023</td> <td></td> </tr> <tr> <td>1024+</td> <td>111</td> </tr> </table>	M_{V0} Divider Value	$ΦMV0[2:0]$ Setting	1 - 31	010	32 - 63	011	64-127	100	128-255	101	256-511	110	512-1023		1024+	111
M_{V0} Divider Value	$ΦMV0[2:0]$ Setting																		
1 - 31	010																		
32 - 63	011																		
64-127	100																		
128-255	101																		
256-511	110																		
512-1023																			
1024+	111																		

Table 32. PLL Frequency Divider Register Descriptions

Bit Field Location																			
Bit Field Name	Field Type	Default (Binary)	Description																
MV0[11:0]	R/W	1100 0000 0000 Value=÷3072	VCXO-PLL Feedback-Divider The value of the frequency divider (binary coding) Range: ÷1 to ÷4095																
MV1[8:0]	R/W	0 0110 0000 Value = ÷96	PLL Feedback-Divider. The value of the frequency divider (binary coding) Range: ÷4 to ÷511																
PD_MV1	R/W	0 Value = MV1 enabled	PLL Feedback-Divider MV1 Power Down/Disabled. 0 = MV1 Divider is enabled 1 = MV1 Divider is powered down and disabled Disabled MV1 to save power consumption in configurations not using the input clock monitors.																
ΦPV[2:0]	R/W		Phase of the P_V input (reference) divider. Determines the PLL lock-detect phase window in conjunction with $\Phi MV0[2:0]$. Sampling clock phase is relative to the VCXO-PLL phase detector clock edge. Set $\Phi PV[2:0]$ in relationship to P_V : <table> <tr> <td>P_V Divider Value</td> <td>$\Phi PV[2:0]$ Setting</td> </tr> <tr> <td>1-31</td> <td>010</td> </tr> <tr> <td>32-63</td> <td>011</td> </tr> <tr> <td>64-127</td> <td>100</td> </tr> <tr> <td>128-255</td> <td>101</td> </tr> <tr> <td>256-511</td> <td>110</td> </tr> <tr> <td>512-1023</td> <td>111</td> </tr> <tr> <td>1024+</td> <td></td> </tr> </table>	P_V Divider Value	$\Phi PV[2:0]$ Setting	1-31	010	32-63	011	64-127	100	128-255	101	256-511	110	512-1023	111	1024+	
P_V Divider Value	$\Phi PV[2:0]$ Setting																		
1-31	010																		
32-63	011																		
64-127	100																		
128-255	101																		
256-511	110																		
512-1023	111																		
1024+																			
PV[11:0]	R/W	1100 0000 0000 Value=÷3072	VCXO-PLL Input Frequency Pre-Divider The value of the frequency divider (binary coding) Range: ÷1 to ÷4095																
MF[8:0]	R/W	0 0001 1000 Value = ÷24	FemtoClock NG Pre-Divider The value of the frequency divider (binary coding) Range: ÷8 to ÷511																
PF[5:0]	R/W	00 0000 Value = Bypass	FemtoClockNG Pre-Divider The value of the frequency divider (binary coding) Range: ÷1 to ÷63 00 0000: PF is bypassed																
FDF	R/W	0 Value = $f_{VCXO} \div PF$	Frequency Doubler The input frequency of the FemtoClockNG PLL (2nd stage) is: 0 = The output signal of the BYPV multiplexer, divided by the PF divider 1 = The output signal of the BYPV multiplexer, doubled in frequency. Use this setting to improve phase noise. The PF divider has no effect if FDF=1.																

VCXO-PLL Control Registers

Table 33. VCXO-PLL Control Bit Field Locations

Bit Field Location								
Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x03	MV[8]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	BYPF
0x0A	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	BYPV
0x10	POLV	FVCV	Reserved					CPV[4:0]
0x11	nPD_QOSC	STYLE_QO SC	OSVEN					OFFSET[4:0]
0x12	Reserved	A_QOSC[1:0]						CPF[4:0]

Table 34. VCXO-PLL Control Register Descriptions

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
BYPF	R/W	0	PLL feedback Bypass 0 = VCXO-PLL feedback divider: MV0 1 = VCXO-PLL feedback divider: MV0 × MV1
BYPV	R/W	0	VCXO-PLL Bypass 0 = VCXO-PLL is enabled. 1 = VCXO-PLL is disabled and bypassed.
POLV	R/W	0	VCXO Polarity 0 = Positive polarity. Use for an external VCXO with a positive $f(V_C)$ characteristics 1 = Negative polarity. Use for an external VCXO with a negative $f(V_C)$ characteristics
FVCV	R/W	1	VCXO-PLL Force VC control voltage 0 = Normal operation. 1 = Forces the voltage at the LFV control pin (VCXO input) to $V_{DD_V}/2$. VCXO-PLL unlocks and the VCXO is forced to its mid-point frequency. FVCV=1 is the default setting at startup to center the VCXO frequency. FVCV should be cleared after startup to enable the PLL to lock to the reference frequency.
CPV[4:0]	R/W	1 1000 Value: 1.25mA	VCXO-PLL Charge-Pump Current Controls the charge pump current I_{CPV} of the VCXO-PLL. Charge pump current is the binary value of this register plus one multiplied by 50 μ A. $I_{CPV} = 50\mu A \times (CPV[4:0] + 1)$. CPV[4:0] = 00000 sets ICPV to the min. current of 50 μ A. Max. charge pump current is 1.6 mA. Default setting is 1.25mA: $((24 + 1) \times 50\mu A)$.

Table 34. VCXO-PLL Control Register Descriptions

Bit Field Location															
Bit Field Name	Field Type	Default (Binary)	Description												
nPD_QOSC	R/W	0	QOSC Power State 0 = Output QOSC is powered down 1 = Output QOSC is power up												
STYLE_QOSC	R/W	0	QOSC Output format 0 = Output is LVDS (Requires LVDS 100Ω output termination) 1 = Output is LVPECL (Requires LVPECL 50Ω output termination of to the specified recommended termination voltage).												
OSVEN	R/W	0	VCXO-PLL Offset Enable 0 = No offset 1 = Offset enabled. A static phase offset of OFFSET[4:0] is applied to the PFD of the VCXO-PLL												
OFFSET[4:0]	R/W	0 0000 Value: 0°	VCXO-PLL Static Phase Offset Controls the static phase detector offset of the VCXO-PLL. Phase offset is the binary value of this register multiplied by 0.9° of the PFD input signal ($\text{OFFSET}[4:0] \times f_{\text{PFD}} \div 400$). Max. offset is $31 \times 0.9^\circ = 27.9^\circ$. Setting OFFSET to 0.0° eliminates the thermal noise of an offset current. If the VCXO-PLL input jitter period T_{JIT} exceeds the average input period: set OFFSET to a value larger than $f_{\text{PFD}} \times T_{\text{JIT}} \times 400$ to achieve a better charge pump linearity and lower in-band noise of the PLL.												
CPF[4:0]	R/W	1 1000 Value: 5.0mA	FemtoClockNG-PLL Charge-Pump Current Controls the charge pump current I_{CPF} of the FemtoClockNG PLL. Charge pump current is the binary value of this register plus one multiplied by 200μA. $I_{\text{CPF}} = 200\mu\text{A} \times (\text{CPF}[4:0] + 1)$. CPV[4:0] = 00000 sets I_{CPF} to the min. current of 200μA. Max. charge pump current is 6.4 mA. Default setting is 5.0 mA: $((24+1) \times 200\mu\text{A})$												
A_QOSC	R/W	00 Value: 250mV	<p>QOSC Output amplitude</p> <table border="1"> <tr> <td>Setting for STYLE_r = 0 (LVDS)</td> <td>Setting for STYLE_r = 1 (LVPECL)</td> </tr> <tr> <td>A[1:0] = 00: 250mV</td> <td>A[1:0] = 00: 250mV</td> </tr> <tr> <td>A[1:0] = 01: 500mV</td> <td>A[1:0] = 01: 500mV</td> </tr> <tr> <td>A[1:0] = 10: 500mV</td> <td>A[1:0] = 10: 500mV</td> </tr> <tr> <td>A[1:0] = 11: 750mV</td> <td>A[1:0] = 11: 750mV</td> </tr> <tr> <td>Termination: 100Ω across</td> <td>Termination: 50Ω to VT</td> </tr> </table>	Setting for STYLE_r = 0 (LVDS)	Setting for STYLE_r = 1 (LVPECL)	A[1:0] = 00: 250mV	A[1:0] = 00: 250mV	A[1:0] = 01: 500mV	A[1:0] = 01: 500mV	A[1:0] = 10: 500mV	A[1:0] = 10: 500mV	A[1:0] = 11: 750mV	A[1:0] = 11: 750mV	Termination: 100Ω across	Termination: 50Ω to VT
Setting for STYLE_r = 0 (LVDS)	Setting for STYLE_r = 1 (LVPECL)														
A[1:0] = 00: 250mV	A[1:0] = 00: 250mV														
A[1:0] = 01: 500mV	A[1:0] = 01: 500mV														
A[1:0] = 10: 500mV	A[1:0] = 10: 500mV														
A[1:0] = 11: 750mV	A[1:0] = 11: 750mV														
Termination: 100Ω across	Termination: 50Ω to VT														

Input Selection Mode Registers

Table 35. Input Selection Mode Bit Field Locations

Bit Field Location								
Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x14		PRI0_0[1:0]		PRI0_1[1:0]		PRI0_2[1:0]		PRI0_3[1:0]
0x15	Reserved	BLOCK_LOR	DIV4_VAL	REVS	nM/A[1:0]		SEL[1:0]	
0x16				CNTH[7:0]				
0x17	CNTR[1:0]		Reserved	Reserved	PD_CLKn		CNTV[1:0]	

Table 36. Input Selection Mode Register Descriptions

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
PRI0_n[1:0]	R/W	CLK_0: 11 CLK_1: 10	Controls the auto-selection priority of the clock input CLK_n ($n=0\dots3$). If multiple inputs have equal priority, the order within that priority is from CLK0 (highest) to CLK3 (lowest). 00 = Priority 0 (lowest) 01 = Priority 1 10 = Priority 2 11 = Priority 3 (highest)
DIV4_VAL	R/W	0 Value: $\div 1$	Pre-divider for CNTV[1:0]. Use the $\div 4$ pre-divider for input frequencies $> 250\text{MHz}$. 0 = $\div 1$ 1 = $\div 4$
REVS	R/W	0 (Value: off)	Revertive Switching. The revertive input switching setting is only applicable to the two automatic selection modes shown in Table 10 . If nM/A[1:0] = X0, the REVS setting has no meaning. 0 = Disabled: Re-validation of a non-selected input clock has no impact on the clock selection. 1 = Enabled: Re-validation of any non-selected input clock(s) will cause an new input selection according to the pre-set input priorities (revertive switch). An input switch is only done if the re-validated input has a higher priority than the current VCXO-PLL reference clock. Default setting is revertive switching turned off.

Table 36. Input Selection Mode Register Descriptions

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
nM/A[1:0]	R/W	00 Value: Manual Selection	Reference Input Selection Mode. In any of the manual selection modes (nM/A[1:0] = 00 or 10), the VCXO-PLL reference input is selected by SEL[1:0]. In any of the automatic selection modes, the VCXO-PLL reference input is selected by an internal state machine according to the input LOS states and the priorities in the input priority registers 00 = Manual selection. 01 = Automatic selection (no holdover) 10 = Short-term holdover. 11 = Automatic selection with holdover
SEL[1:0]	R/W	00 Value: CLK0 selected	VCXO-PLL Input Reference Selection Controls the selection of the VCXO-PLL reference input in manual selection mode. In automatic selection modes (nM/A[1:0]=X1), SEL[1:0] has no meaning. 00 = CLK_0 01 = CLK_1
CNTH[7:0]	R/W	1000 0000 (value: 136ms)	nMA[1:0]=10 Short-term holdover: Hold-off counter period. The device initiates a clock failover switch upon counter expiration (zero transition). The counters start to counts backwards after a LOS event is detected. The hold-off counter period is determined by the binary number of VCXO-PLL output pulses divided by CNTR[1:0]. With a VCXO frequency of 122.88 MHz and CNTR[1:0]=10, the counter has a period of (1.066 ms × binary setting). After each zero-transition, the counter automatically re-loads to the setting in this register. The default setting is 136ms (VCXO=122.88MHz: 1/122.88MHz × 2 ¹⁷ × 128)
CNTR[1:0]	R/W	10 (Value: 2 ¹⁷)	Short-term holdover reference divider
			CNTR[1:0] CNTH frequency (period; range)
			122.88MHz VCXO 38.4MHz VCXO
			00 = $f_{VCXO} \div 2^{15}$ 1171Hz (0.853ms; 0-217.6ms)
			01 = $f_{VCXO} \div 2^{16}$ 1875Hz (0.533ms; 0-136ms)
			10 = $f_{VCXO} \div 2^{17}$ 937.5Hz (1.066ms; 0-272ms)

Table 36. Input Selection Mode Register Descriptions

Bit Field Location													
Bit Field Name	Field Type	Default (Binary)	Description										
CNTV[1:0]	R/W	10 (value: 32)	<p>Controls the number of required consecutive, valid input reference pulses for clock re-validation on CLK_{_n} (n=0...3), in number of input periods. At a LOS event, the re-validation counter loads this setting from the register and counts down by one with every valid, consecutive input signal period. Missing input edges (for one input period) will cause this counter to re-load its setting. An input is re-validated when the counter transitions to zero and the corresponding LOS flag is reset.</p> <table> <tr> <td>DIV4_VAL = 0</td><td>DIV4_VAL = 1</td></tr> <tr> <td>00 = 2 (shortest possible)</td><td>00 = 8 (shortest possible)</td></tr> <tr> <td>01 = 16</td><td>01 = 64</td></tr> <tr> <td>10 = 32</td><td>10 = 128</td></tr> <tr> <td>11 = 64</td><td>11 = 256</td></tr> </table>	DIV4_VAL = 0	DIV4_VAL = 1	00 = 2 (shortest possible)	00 = 8 (shortest possible)	01 = 16	01 = 64	10 = 32	10 = 128	11 = 64	11 = 256
DIV4_VAL = 0	DIV4_VAL = 1												
00 = 2 (shortest possible)	00 = 8 (shortest possible)												
01 = 16	01 = 64												
10 = 32	10 = 128												
11 = 64	11 = 256												
PD_CLK _{_n}	R/W	0 Power up/Enabled	<p>Input CLK_{_n} Power Down/Disable. 0 = Input CLK_{_n} is enabled 1 = Input CLK_{_n} is power down and disabled</p> <p>Disable individual Input CLK_{_n} input to save power consumption in configurations not using the respective input and in manual switching or short-term holdover mode. Enable inputs CLK_{_n} in configurations with automatic switching.</p>										
BLOCK_LOR	R/W	0 Value: Not blocked	<p>Block loss-of-reference (input activity) indicator VCXO-PLL loss of lock signals nST_LOLV and nLS_LOLV are triggered by: 0 = VCXO-PLL loss of lock or by inactivity of the selected reference clock 1 = Only VCXO-PLL loss of lock. BLOCK_LOR = 1 will also block loss-of-reference from triggering a failure on the LOCK output pin.</p>										

SYSREF Control Registers

Table 37. SYSREF Control Register Bit Field Locations

Bit Field Location								
Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x18	PD_S				NS[6:0]			
0x19	BIAS_TYPE				SYNC[6:0]			
0x1A					SRPC[7:0]			
0x1B					ΦREF_S[7:0]			
0x1C	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	SRG	SRO
0x70	RS	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

Table 38. SYSREF Control Register Descriptions

Bit Field Location								
Bit Field Name	Field Type	Default (Binary)	Description					
PD_S	R/W	0	SYSREF global power down (incl. global delay ΦS, SYSREF frequency divider NS) 0 = SYSREF functional blocks are powered up. 1 = SYSREF functional blocks are powered down.					
NS[6:0]	R/W	010 11 11 Value = ÷1280	SYSREF Frequency Divider. The value of the frequency divider is set by the product of NS[6] × NS[5:4] × NS[3:2] × NS[1:0] NS[6] NS[5:4] NS[3:2] NS[1:0] 0 = ÷2 00 = ÷2 00 = ÷2 00 = ÷2 1 = ÷4 01 = ÷4 01 = ÷4 01 = ÷3 10 = ÷8 10 = ÷8 10 = ÷8 10 = ÷4 11 = ÷16 11 = ÷16 11 = ÷16 11 = ÷5					
BIAS_TYPE	R/W	1	SYSREF output voltage bias 0 = QREF_r outputs are in a low/high state when nBIAS_r is set to 1 or during a SYSREF event 1 = QREF_r outputs are in a cross-point biased state when nBIAS_r is set to 1 or during a SYSREF event.					

Table 38. SYSREF Control Register Descriptions

Bit Field Location																					
Bit Field Name	Field Type	Default (Binary)	Description																		
SYNC[6:0]	R/W	00 00 001	<p>SYSREF Synchronizer divider value. This divider controls the release of SYSREF pulses at coincident QCLK clock edges. For SYSREF operation, set this divider value to the least common multiple of the clock divider values Nx (x = A to E). For instance, if NA=NB=÷2, NC=ND=÷3, NE=÷4 set the SYNC divider to ÷12.</p> <p>SYNC6 Description</p> <p>0 = SYNC[6] = 0: output frequency divider set by SYNC[2:0]</p> <p>1 = SYNC[6] = 1: output frequency divider set by the product of SYNC[5:3] × SYNC[2:0].</p> <table> <thead> <tr> <th>SYNC[5:3]</th> <th>SYNC[2:0]</th> </tr> </thead> <tbody> <tr> <td>000 = ÷2</td> <td>000 = ÷2</td> </tr> <tr> <td>001 = ÷4</td> <td>001 = ÷3</td> </tr> <tr> <td>010 = ÷6</td> <td>010 = ÷4</td> </tr> <tr> <td>011 = ÷8</td> <td>011 = ÷5</td> </tr> <tr> <td>100 = ÷4</td> <td>100 = ÷6</td> </tr> <tr> <td>101 = ÷8</td> <td>101 = ÷7</td> </tr> <tr> <td>110 = ÷12</td> <td>110 = ÷8</td> </tr> <tr> <td>111 = ÷16</td> <td>111 = ÷9</td> </tr> </tbody> </table> <p>The frequency divider SYNC is composed of 2 serial dividers that can be individually controlled by the bit fields SYNC[5:3] and SYNC[2:0].</p> <p>Set SYNC[6] = 0 to achieve an output divider in the range of {2,3,4,5,6,7,8,9}</p> <p>Set SYNC[6] = 1 to achieve an output divider value of {2,4,6,8,12,16} × {2,3,4,5,6,7,8,9}.</p> <p>For instance, the output divider of ÷32 = {4} × {8} is set by SYNC[6:0] = 1001110.</p> <p>If a given output divider can be achieved by multiple SYNC[6:0] settings, a setting with SYNC[6]=0 is preferred. If SYNC[6]=1, the higher divider value should be configured with SYNC[2:0].</p>	SYNC[5:3]	SYNC[2:0]	000 = ÷2	000 = ÷2	001 = ÷4	001 = ÷3	010 = ÷6	010 = ÷4	011 = ÷8	011 = ÷5	100 = ÷4	100 = ÷6	101 = ÷8	101 = ÷7	110 = ÷12	110 = ÷8	111 = ÷16	111 = ÷9
SYNC[5:3]	SYNC[2:0]																				
000 = ÷2	000 = ÷2																				
001 = ÷4	001 = ÷3																				
010 = ÷6	010 = ÷4																				
011 = ÷8	011 = ÷5																				
100 = ÷4	100 = ÷6																				
101 = ÷8	101 = ÷7																				
110 = ÷12	110 = ÷8																				
111 = ÷16	111 = ÷9																				
SRPC[7:0]	R/W	0000 0010 (value: 2)	<p>SYSREF pulse count</p> <p>Binary value of the SYSREF pulses generated and output at all enabled QREF outputs. Allows to generate 1 to 255 pulses after each write access. Requires to set SRG = 0 and SRO = 0.</p>																		
ΦREF_S[7:0]	R/W	00000	<p>ΦREF_S global SYSREF phase delay. This setting affects all QREF_r outputs configured as SYSREF.</p> <p>ΦREF_S[7:0]</p> <p>Delay in ps = ΦREF_S × 339ps (256 steps)</p> <p>0000 0000 = 0ps</p> <p>...</p> <p>1111 1111 = 86.466ns</p>																		

Table 38. SYSREF Control Register Descriptions

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
SRG	R/W	0	SYSREF pulse generation 0 = Internal, SPI controlled SYSREF generation using the RS bit. 1 = External controlled SYSREF generation using the EXT_SYS pin.
SRO	R/W	0	SYSREF pulse mode 0 = Counted SYSREF pulse generation mode. Number of pulses is controlled by SRPC[7:0]. 1 = Continuous SYSREF pulse generation.
RS	W only Auto-Clear	X	Set RS = 1 to initiate the SYSREF pulse generation of SRPC-number of pulses. Powers up the SYSREF circuitry and releases the SYSREF pulse(s) as configured. Requires SRG=0 and SRO=0, otherwise no function. RS = 1 also phase-aligns the QREF outputs to the QCLK outputs and adds the programmed delay values into the QREF paths.

Status Registers

Table 39. Status Register Bit Field Locations

Bit Field Location								
Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x68	Reserved	Reserved	IE_LOLF	IE_LOLV	Reserved	Reserved	IE_CLK_1	IE_CLK_0
0x69	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	IE_REF	IE_HOLD
0x6C	Reserved	Reserved	nLS_LOLF	nLS_LOLV	Reserved	Reserved	LS_CLK_1	LS_CLK_0
0x6D	ST_SEL[1:0]		nST_LOLF	nST_LOLV	Reserved	Reserved	ST_CLK_1	ST_CLK_0
0x6E	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	LS_REF	nLS_HOLD
0x6F	Reserved	Reserved	Reserved	Reserved	Reserved	ST_VCOF	ST_REF	nST_HOLD

Table 40. Status Register Descriptions^[a]

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
IE_LOLF	R/W	0	Interrupt Enable for FemtoClockNG-PLL loss of lock 0 = Disabled: Setting LS_LOLF will not cause an interrupt on nINT 1 = Enabled: Setting LS_LOLF will assert the nINT output (nINT=0, interrupt)
IE_LOLV	R/W	0	Interrupt Enable for VCXO-PLL loss of lock 0 = Disabled: Setting LS_LOLV will not cause an interrupt on nINT 1 = Enabled: Setting LS_LOLV will assert the nINT output (nINT=0, interrupt)
IE_CLK_n	R/W	0	Interrupt Enable for CLK _n input loss-of-signal 0 = Disabled: Setting LS_CLK_n will not cause an interrupt on nINT 1 = Enabled: Setting LS_CLK_n will assert the nINT output (nINT=0, interrupt)
IE_REF	R/W	0	Interrupt Enable for LS_REF 0 = Disabled: any changes to LS_REF will not cause an interrupt on nINT 1 = Enabled: any changes to LS_REF will assert the nINT output (nINT=0, interrupt)
IE_HOLD	R/W	0	Interrupt Enable for holdover 0 = Disabled: Setting LS_HOLD will not cause an interrupt on nINT 1 = Enabled: Setting LS_HOLD will assert the nINT output (nINT=0, interrupt)
nLS_LOLF	R/W	-	FemtoClockNG-PLL loss of lock (latched status of nST_LOLF) Read 0 = ≥ 1 loss-of-lock events detected after the last status latch clear Read 1 = No loss-of-lock detected after the last status latch clear Write 1 = Clear status latch (clears pending nLS_LOLF interrupt)
nLS_LOLV	R/W	-	VCXO-PLL loss of lock (latched status of nST_LOLV) Read 0 = ≥ 1 loss-of-lock events detected after the last status latch clear. Read 1 = No loss-of-lock detected after the last nLS_LOLV clear Write 1 = Clear status latch (clears pending nLS_LOLV interrupt)
LS_CLK_n	R/W	-	Input CLK _n status (latched status of ST_CLK_n) Read 0 = ≥ 1 LOS events detected on CLK _n after the last LS_CLK_n clear Read 1 = No loss-of-signal detected on CLK _n input after the last LS_CLK_n clear Write 1 = Clear LS_CLK_n status latch (clears pending LS_CLK_n interrupts on nINT)
ST_SEL[1:0]	R	-	Input selection (momentary status) Reference Input Selection Status of the state machine. In any input selection mode, reflects the input selected by the state machine. 00 = CLK_0 01 = CLK_1
nST_LOLF	R	-	FemtoClockNG-PLL loss of lock (momentary status) Read 0 = ≥ 1 loss-of-lock events detected Read 1 = No loss-of-lock detected A latched version of these status bit is available (nLS_LOLF)

Table 40. Status Register Descriptions^[a]

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
nST_LOLV	R	-	VCXO-PLL loss of lock (momentary status bit) Read 0 = ≥ 1 loss-of-lock events detected Read 1 = No loss-of-lock detected A latched version of these status bits is available (nLS_LOLV)
ST_CLK _n	R	-	Input CLK _n status (momentary) 0 = LOS detected on CLK _n 1 = No LOS detected, CLK _n input is active A latched version of these status bits are available (LS_CLK _n)
LS_REF	R/W	-	PLL reference status (latched status of ST_REF) Read 0 = Reference is lost since last reset of this status bit. Read 1 = Reference is valid since last reset of this status bit. Write 1 = Clear LS_REF status latch (clears pending IE_REF interrupts on nINT)
nLS_HOLD	R/W		Holdover status indicator (latched status of ST_HOLD) Read 0 = VCXO-PLL has entered holdover state ≥ 1 times after reset of this status bit Read 1 = VCXO-PLL is (or attempts to) lock(ed) to an input clock Write 1 = Clear status latch (clears pending nLS_HOLD interrupt)
ST_VCOF	R	-	FemtoClockNG-PLL calibration status (momentary) Read 0 = FemtoClockNG PLL auto-calibration is completed Read 1 = FemtoClockNG PLL calibration is active (not completed)
ST_REF	R	-	Input reference status 0 = No input reference present 1 = Input reference is present at the clock input selected by SEL[1:0]
nST_HOLD	R	-	Holdover status indicator (momentary) 0 = VCXO-PLL in holdover state, not locked to any input clock 1 = VCXO-PLL is (or attempts to) lock(ed) to input clock A latched version of this status bit is available (nLS_HOLD)

[a] CLK_n = CLK0, CLK1, CLK2, CLK3.

General Control Registers

Table 41. General Control Register Bit Field Locations

Bit Field Location								
Register Address	D7	D6	D5	D4	D3	D2	D1	D0
0x71	INIT_CLK	Reserved						
0x72	RELOCK	Reserved						
0x73	PB_CAL	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	CPOL

Table 42. General Control Register Descriptions

Bit Field Location			
Bit Field Name	Field Type	Default (Binary)	Description
INIT_CLK	W only Auto-Clear	X	Set INIT_CLK = 1 to initialize divider functions. Required as part of the startup procedure.
RELOCK	W only Auto-Clear	X	Setting this bit to 1 will force the FemtoClockNG PLL to re-lock.
PB_CAL	W only Auto-Clear	X	Precision Bias Calibration Setting this bit to 1 will start the calibration of an internal precision bias current source. The bias current is used as reference for outputs configured as LVDS and for as reference for the charge pump currents. This bit will auto-clear after the calibration completed. Set as part of the startup procedure.
CPOL	R/W	0	SPI Read Operation SCLK Polarity 0 = Data bits on SDAT are output at the falling edge of SCLK edge. 1 = Data bits on SDAT are output at the rising edge of SCLK edge.

Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 8V19N492 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 43. Absolute Maximum Ratings

Item	Rating
Supply Voltage, V_{DD_V}	3.6V
Inputs	-0.5V to $V_{DD_V} + 0.5V$
Outputs, V_O (LVCMOS)	-0.5V to $V_{DD_V} + 0.5V$
Outputs, I_O (LVPECL) Continuous Current Surge Current	50mA 100mA
Outputs, I_O (LVDS) Continuous Current Surge Current	50mA 100mA
Input termination current, I_{VT}	$\pm 35mA$
Operating Junction Temperature, T_J	125°C
Storage Temperature, T_{STG}	-65°C to 150°C
ESD - Human Body Model ^[a]	2000V
ESD - Charged Device Model ^a	500V

[a] According to JEDEC JS-001-2012/JESD22-C101

Pin Characteristics

Table 44. Pin Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case)^[a]

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
$C_{IN}^{[b]}$	Input Capacitance	OSC, nOSC		2	4	pF
		Other inputs		2	4	pF
R_{PU}	Input Pull-Up Resistor	SDAT, nCS, nCLK_0, nCLK_1		51		kΩ
R_{PD}	Input Pull-Down Resistor	EXT_SYS, SCLK, CLK_0, CLK_1		51		kΩ
R_{OUT}	LVC MOS Output Impedance	nINT, LOCK		25		Ω

[a] Design target specifications.

[b] Guaranteed by design

DC Characteristics

Table 45. Power Supply DC Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case)^{[a][b]}

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
V_{DD_V}	Core Supply Voltage		3.135	3.3	3.465	V
I_{DD_V}	Power Supply Current	[c]		845.5	943.85	mA

[a] Design target specifications.

[b] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

[c] Test Case 2 of Table 46 with QREFs-On at 7.68MHz and 500mV LVDS.

Table 46. Typical Power Supply DC Current Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case)^[a]

Symbol	Supply Pin Current	Test Case						Unit
		1	2	3	4	5	6	
QCLK_y	Style	LVPECL	LVPECL	LVPECL	LVPECL	LVDS	LVDS	
	State	On	On	On	On	On	On	
	Amplitude	500	750	1000	250	500	750	mV
QREF_r	Style	LVDS	LVDS	LVDS	LVDS	LVDS	LVDS	
	State	On	On	Off	On	Off	Off	
	Amplitude	500	500		250			mV
I _{DD_CA}	Current through VDD_QCLKA pin	85	101	113	75	69	85	mA
I _{DD_CB}	Current through VDD_QCLKB pin	89	101	112	79	69	85	mA
I _{DD_CC}	Current through VDD_QCLKC pin	64	69	75	58	53	61	mA
I _{DD_CD}	Current through VDD_QCLKD pin	60	66	72	55	49	57	mA
I _{DD_CE}	Current through VDD_QCLKE pin	91	102	113	80	69	85	mA
I _{DD_RA}	Current through VDD_QREFA pin	77.3	77.1	0	55.7	0	0	mA
I _{DD_RB}	Current through VDD_QREFB pin	51.3	51.3	0	36.9	0	0	mA
I _{DD_RC}	Current through VDD_QREFC pin	27.3	25.3	0	20.9	0	0	mA
I _{DD_RD}	Current through VDD_QREFD pin	26.1	25.9	0	18.7	0	0	mA
I _{DD_INP}	Current through VDD_INP pin	60.50	61	61.8	60.1	62.6	63.3	mA
I _{DD_SPI}	Current through VDD_SPI pin	6.0	6.5	6.4	4.4	5.9	6.0	mA
I _{DD_OSC +} I _{DD_CP}	Current through VDD_OSC and VDD_CP pins	38.7	38.8	38.9	38.6	39.3	39.0	mA
I _{DD_SYNC}	Current through VDD_SYNC pin	82.6	82.6	1.9	82.8	1.9	1.9	mA
I _{DD_CPF}	Current through VDD_CPF pin	59.4	59.5	59.4	59.4	59.4	60.2	mA
I _{DD_LCV}	Current through VDD_LCV pin	72.3	72.3	72.2	72.3	74.4	76.9	mA
I _{DD_LCF}	Current through VDD_LCF pin	52.2	52.0	52.5	52.5	52.4	52.4	mA
P _{TOT}	Total Device Power Consumption	2.7	2.8	2.0	2.5	2.0	2.2	W
P _{TOT, SYS}	Total System Power Consumption ^[b]	3.1	3.3	2.6	2.8	2.0	2.2	W

[a] Configuration: f_{CLK} (input) = 122.88MHz, f_{SYSREF} = 7.68MHz, internal SYSREF generation (continuous), QA[2:0] = 1474.56MHz, QB[1:0] = 245.76MHz, QC[1:0] = 245.76MHz, QD = 491.52MHz, QE[1:0] = 122.88MHz. QCLK_y outputs terminated according to amplitude settings. QREF_r outputs unterminated when SYSREF is turned off.

[b] Includes total device power consumption and the power dissipated in external output termination components.

Table 47. LVC MOS DC Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
Control Input SELSV (3.3V Logic)						
V_{IH}	Input High Voltage		2.0		V_{DD_V}	V
V_{IL}	Input Low Voltage		-0.3		0.8	V
I_{IH}	Input High Current	$V_{DD_V} = 3.3V$, $V_{IN} = 3.3V$			150	μA
I_{IL}	Input Low Current	$V_{DD_V} = 3.3V$, $V_{IN} = 0V$	-5			μA
SYSREF Trigger Input EXT_SYS (1.8V/3.3V Selectable Logic)						
V_{IH}	Input High Voltage	1.8V logic (SELSV = 0)	1.17		V_{DD_V}	V
		3.3V logic (SELSV = 1)	2.0		V_{DD_V}	V
V_{IL}	Input Low Voltage	1.8V logic (SELSV = 0)	-0.3		0.63	V
		3.3V logic (SELSV = 1)	-0.3		0.8	V
I_{IH}	Input High Current	$V_{DD_V} = 3.3V$, $V_{IN} = 1.8V$ or 3.3V			150	μA
I_{IL}	Input Low Current	$V_{DD_V} = 3.3V$, $V_{IN} = 0V$	-5			μA
SPI Inputs SDAT (when input), SCLK, nCS (1.8V/3.3V Selectable Logic with Input Hysteresis)						
V_I	Input Voltage		-0.3		V_{DD_V}	V
V_{T+}	Positive-going Input Threshold Voltage	1.8V logic (SELSV = 0)	0.660		1.350	V
		3.3V logic (SELSV = 1)		1.8–2.1		V
V_{T-}	Negative-going Input Threshold Voltage	1.8V logic (SELSV = 0)	0.495		1.170	V
		3.3V logic (SELSV = 1)		0.75–0.97		V
V_H	Hysteresis Voltage	$V_{T+} - V_{T-}$	0.165		0.780	V
I_{IH}	Input High Current	Inputs with pull-down resistor ^[a]	$V_{DD_V} = 3.3V$, $V_{IH} = 1.8V$		150	μA
		Inputs with pull-up resistor ^[b]			5	
I_{IL}	Input Low Current	Inputs with pull-down resistor ^[a]	$V_{DD_V} = 3.465V$, $V_{IL} = 0V$	-5		μA
		Inputs with pull-up resistor ^[b]		-150		
SPI output DAT (when output), nINT, LOCK (1.8V/3.3V selectable logic)						
V_{OH}	Output High Voltage	1.8V logic (SELSV = 0) $I_{OH} = -4\text{mA}$	1.35			V
		3.3V logic (SELSV = 1) $I_{OH} = -4\text{mA}$	2.4			V
V_{OL}	Output Low Voltage	1.8V logic (SELSV = 0) $I_{OL} = 4\text{mA}$			0.45	V
		3.3V logic (SELSV = 1) $I_{OL} = 4\text{mA}$			0.4	V

[a] SCLK, EXT_SYS.

[b] nCS, SDAT (when input)

Table 48. Differential Input DC Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+85^\circ C$ ^{[a][b]}

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
I_{IH}	Input High Current	Inputs with pull-down resistor ^[c]	$V_{DD_V} = V_{IN} = 3.465V$			150	µA
		Pull-down/pull-up inputs ^[d]				150	µA
I_{IL}	Input Low Current	Inputs with pull-down resistor	$V_{DD_V} = 3.465V, V_{IN} = 0V$	-150			µA
		Pull-down/pull-up inputs ^[d]		-150			µA

[a] Design target specifications.

[b] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

[c] Non-Inverting inputs: CLK_n, OSC

[d] Inverting inputs: nCLK_n, nOSC

Table 49. LVPECL DC Characteristics (QCLK_y, QREF_r, STYLE = 1), $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case)

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
V_{OH}	Output High Voltage ^[a]	250mV amplitude setting	$V_{DD_V} - 0.975$	$V_{DD_V} - 0.875$	$V_{DD_V} - 0.774$	V
		500mV amplitude setting	$V_{DD_V} - 1.000$	$V_{DD_V} - 0.904$	$V_{DD_V} - 0.805$	V
		750mV amplitude setting	$V_{DD_V} - 1.100$	$V_{DD_V} - 0.937$	$V_{DD_V} - 0.829$	V
		1000mV amplitude setting	$V_{DD_V} - 1.100$	$V_{DD_V} - 0.962$	$V_{DD_V} - 0.861$	V
V_{OL}	Output Low Voltage	250mV amplitude setting	$V_{DD_V} - 1.250$	$V_{DD_V} - 1.150$	$V_{DD_V} - 1.040$	V
		500mV amplitude setting	$V_{DD_V} - 1.540$	$V_{DD_V} - 1.420$	$V_{DD_V} - 1.131$	V
		750mV amplitude setting	$V_{DD_V} - 1.810$	$V_{DD_V} - 1.690$	$V_{DD_V} - 1.580$	V
		1000mV amplitude setting	$V_{DD_V} - 2.090$	$V_{DD_V} - 1.960$	$V_{DD_V} - 1.840$	V

[a] Outputs terminated with 50Ω to $V_{DD_V} - 1.5V$ (250mV amplitude setting), $V_{DD_V} - 1.75V$ (500mV amplitude setting), $V_{DD_V} - 2.0V$ (750mV amplitude setting), $V_{DD_V} - 2.25V$ (1000mV amplitude setting).

Table 50. LVDS DC Characteristics (QCLK_y, QREF_r, STYLE = 0), $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case)

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
V_{OS}	Offset Voltage ^[a]	250mV amplitude setting	2.10	2.40	2.70	V
		500mV amplitude setting	1.90	2.23	2.60	V
		750mV amplitude setting	1.80	2.08	2.4	V
		1000mV amplitude setting	1.60	1.93	2.20	V
ΔV_{OS}	V_{OS} Magnitude Change				80	mV

[a] V_{OS} changes with V_{DD_V} .

AC Characteristics

Table 51. AC Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case) ^{[a][b][c]}

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
f_{VCO}	VCO Frequency		2920	2949.12	3000	MHz
f_{OUT}	Output Frequency	QCLK_y, QREF_r (Clock), $N=1$		2949.12		MHz
		QCLK_y, QREF_r (Clock), $N=2$		1474.56		MHz
		QCLK_y, QREF_r (Clock), $N=3$		983.04		MHz
		QCLK_y, QREF_r (Clock), $N=6$		491.52		MHz
		QCLK_y, QREF_r (Clock), $N=12$		245.76		MHz
		QCLK_y, QREF_r (Clock), $N=24$		122.88		MHz
		QREF_r (SYSREF)	0.576		30.72	MHz
f_{CLK}	Input Frequency	CLK_n	1.92 ^[d]	245.76	2000	MHz
f_{VCXO}	VCXO Frequency		30.72	122.88	500	MHz
Δ_{fp}	Static Frequency Error	$f_{CLK} = 0$ ppb frequency deviation			0	ppb
Δ_{frms}	Dynamic Frequency Error RMS ^[e]	$f_{CLK} = 0$ ppb frequency deviation			0.5	ppb
V_{IN}	Input Voltage Amplitude ^[f]	CLK_n, nCLK_n	0.15		1.2	V
V_{DIFF_IN}	Differential Input Voltage Amplitude ^{[f][g]}	CLK_n - nCLK_n	0.3		2.4	V
V_{CMR}	Common Mode Input Voltage		1.0		$V_{DD_V} - (V_{IN}/2)$	V
odc	Output Duty Cycle	QCLK_y, QREF_r (Clock)	45	50	55	%
t_R / t_F	Output Rise/Fall Time, Differential	QCLK_y, QREF_r (LVPECL), 20–80%			250	ps
		QCLK_y, QREF_r (LVDS), 20–80%			250	ps
		QREF_r (SYSREF, LVDS), 20–80%			250	ps
	Output Rise/Fall Time	LVCMOS outputs, 20%–80%			1	ns
$V_{O(PP)}^{[h]}$	LVPECL Output Voltage Swing, Peak-to-peak, 1474.56MHz	250mV Amplitude Setting	190	272	367	mV
		500mV Amplitude Setting	394	505	634	mV
		750mV Amplitude Setting	598	733	875	mV
		1000mV Amplitude Setting	784	946	1090	mV
	LVPECL Differential Output Voltage Swing, Peak-to-peak, 1474.56MHz	250mV Amplitude Setting	380	544	734	mV
		500mV Amplitude Setting	788	1010	1268	mV
		750mV Amplitude Setting	1196	1466	1750	mV
		1000mV Amplitude Setting	1585	1892	2180	mV

Table 51. AC Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case) [a][b][c]

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
$V_{OD}^{[i]}$	LVDS Output Voltage Swing, Peak-to-peak, 1474.56MHz	250mV Amplitude Setting	128	193	273	mV
		500mV Amplitude Setting	312	404	512	mV
		750mV Amplitude Setting	490	615	757	mV
		1000mV Amplitude Setting	676	822	992	mV
	LVDS Differential Output Voltage Swing, Peak-to-peak, 1474.56MHz	250mV Amplitude Setting	256	386	546	mV
		500mV Amplitude Setting	624	808	1024	mV
		750mV Amplitude Setting	980	1230	1514	mV
		1000mV Amplitude Setting	1352	1644	1984	mV
Δt_{PD}	Propagation delay variation between reference input and any QCLK_y output		-200		+200	ps
$t_{sk(o)}$	Output Skew ^{[j][k]} All delays set to 0	QCLK_y (same N divider)			100	ps
		QCLK_y (any N divider, incident rising edge)			100	ps
		QREF_r (Clock)			100	ps
		QREF_r (SYSREF)			100	ps
		QREF_r (Clock) to QCLK_y (any divider, incident rising QCLK edge)			150	ps
		QREF_r (SYSREF) to QCLK_y (any divider, incident rising QCLK edge)			150	ps
$\Delta\phi$	Output isolation between any neighboring clock output	$f_{OUT} = 983.04\text{MHz}$		77		dB
		$f_{OUT} = 491.52\text{MHz}$	65	83		dB
		$f_{OUT} = 245.76\text{MHz}$	70	86		dB
$\Delta\phi$	Output isolation between any QCLK_y, QREF_r (SYSREF ^[l]) output	Both SYSREF and clock signals active	50	60		dB
$t_{D, LOS}$	LOS state detected (Measured in input reference periods)	$f_{IN} = 122.88\text{MHz}$			2	T_{IN}
		$f_{IN} = 245.76\text{MHz}$			3	
$t_{D, LOCK}$	PLL lock detect	PLL re-lock time after a short-term holdover scenario. Measured from LOS to both PLLs lock-detect asserted; hold-off timer = 200ms, initial frequency error <200 ppm. PLL1 BW 100Hz PLL1 BW 30Hz		42 100	300 300	ms
$t_{D, RES}$	PLL lock residual time error	Refer to PLL lock detect $t_{D, LOCK}$. Reference point: final value of clock output phase after all phase transitions settled. PLL1 BW 100Hz PLL1 BW 30Hz		0.0099 0.0019	20 20	ns

Table 51. AC Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case) [a][b][c]

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
Δf_{HOLD}	Holdover accuracy	Max. frequency deviation during a holdover duration of 200ms and after the clock re-validate event PLL1 BW 100Hz PLL1 BW 30Hz		1.62 0.5	± 5 ± 5	ppm
$t_{D, RES-H}$	Holdover residual error.	Measured 50ms after the reference clock re-appeared in a holdover scenario. Reference point: final value of clock output phase after all phase transitions settled. PLL1 BW 100Hz PLL1 BW 30Hz		4.32 4.63	± 8.138 ± 8.138	ns
t_H	Hold Time	EXT_SYS to CLK_n ^[m]	2.5			ns
t_S	Setup Time	EXT_SYS to CLK_n ^[m]	0			ns
t_W	Pulse Width	EXT_SYS ^[m]	4			ns

[a] Design target specifications.

[b] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

[c] VCXO-PLL bandwidth = 100Hz.

[d] Minimum input frequency for the loss the input reference detector is $f_{VCO}/MV1(MAX)$

[e] RMS frequency error, measured at any QCLK_y output, caused by Gaussian noise. Weighted with a 1ms low pass time window filter.

[f] V_{IL} should not be less than -0.3V and V_{IH} should not be greater than V_{DD_V}

[g] Common Mode Input Voltage is defined as the cross-point voltage.

[h] LVPECL outputs terminated with 50Ω to $V_{CCO} - 1.5V$ (250mV amplitude setting), $V_{CCO} - 1.75V$ (500mV amplitude setting), $V_{CCO} - 2.0V$ (750mV amplitude setting), $V_{CCO} - 2.25V$ (1000mV amplitude setting)

[i] LVDS outputs terminated 100Ω across terminals

[j] This parameter is defined in accordance with JEDEC standard 65

[k] Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points

[l] SYSREF frequencies: 30.72, 15.36, 7.68MHz

[m]SYSREF external trigger mode, BYPV = 0, BYPF = 1 (PLL feedback through M_{V0} and M_{V1}), $P_{V0} = \div 1024$, $M_{V0} = \div 1024$, $M_{V1} = \div 12$, $N_S = \div 384$, SYNC = $\div 12$, $f_{IN} = 245.76MHz$ (see Figure 8).

Table 52. Clock Phase Noise Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case) [a][b][c][d]

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
$t_{jitter}(\emptyset)$	Clock RMS Phase Jitter (Random)		Integration Range: 1kHz - 76.8MHz		72	125	fs
			Integration Range: 12kHz - 20MHz		57	88	fs
$\Phi_N(10)$	Clock single-side band phase noise	1474.56MHz	10Hz offset (determined by VCXO)		-66.83	-51	dBc/Hz
$\Phi_N(100)$			100Hz offset (determined by VCXO)		-93.74	-80	dBc/Hz
$\Phi_N(500)$			500Hz offset from Carrier (VCXO: -99dBc/Hz)		-112.72	-102	dBc/Hz
$\Phi_N(1k)$			1kHz offset from Carrier		-118.24	-112	dBc/Hz
$\Phi_N(10k)$			10kHz offset from Carrier		-123.02	-121	dBc/Hz
$\Phi_N(60k)$			60kHz offset from Carrier		-124.69	-122	dBc/Hz
$\Phi_N(100k)$			100kHz offset from Carrier		-126.21	-125	dBc/Hz
$\Phi_N(200k)$			200kHz offset from Carrier		-128.86	-128	dBc/Hz
$\Phi_N(800k)$			800kHz offset from Carrier		-138.17	-137	dBc/Hz
$\Phi_N(5M)$			5MHz offset from Carrier		-151.10	-149	dBc/Hz
$\Phi_N(\geq 10M)$			$\geq 10MHz$ offset from Carrier and Noise Floor		-152.12	-150	dBc/Hz
$\Phi_N(10)$	Clock single-side band phase noise	491.52 MHz	10Hz offset (determined by VCXO)		-72.26	-53	dBc/Hz
$\Phi_N(100)$			100Hz offset (determined by VCXO)		-103.63	-85	dBc/Hz
$\Phi_N(500)$			500Hz offset from Carrier (VCXO: -99dBc/Hz)		-122.40	-106	dBc/Hz
$\Phi_N(1k)$			1kHz offset from Carrier		-127.31	-112	dBc/Hz
$\Phi_N(10k)$			10kHz offset from Carrier		-131.50	-123	dBc/Hz
$\Phi_N(60k)$			60kHz offset from Carrier		-133.20	-123	dBc/Hz
$\Phi_N(100k)$			100kHz offset from Carrier		-134.86	-126	dBc/Hz
$\Phi_N(200k)$			200kHz offset from Carrier		-137.74	-129	dBc/Hz
$\Phi_N(800k)$			800kHz offset from Carrier		-147.12	-144	dBc/Hz
$\Phi_N(5M)$			5MHz offset from Carrier		-155.97	-150	dBc/Hz
$\Phi_N(\geq 10M)$			$\geq 10MHz$ offset from Carrier and Noise Floor		-156.18	-153	dBc/Hz

Table 52. Clock Phase Noise Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case) [a][b][c][d]

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
$\Phi_N(10)$	Clock single-side band phase noise	10Hz offset (determined by VCXO)		-82.47	-59	dBc/Hz
$\Phi_N(100)$		100Hz offset (determined by VCXO)		-109.05	-91	dBc/Hz
$\Phi_N(500)$		500Hz offset from Carrier (VCXO: -99dBc/Hz)		-127.35	-112	dBc/Hz
$\Phi_N(1k)$		1kHz offset from Carrier		-131.91	-118	dBc/Hz
$\Phi_N(10k)$		10kHz offset from Carrier		-138.09	-129	dBc/Hz
$\Phi_N(60k)$		60kHz offset from Carrier		-139.97	-129	dBc/Hz
$\Phi_N(100k)$		100kHz offset from Carrier		-141.54	-134	dBc/Hz
$\Phi_N(200k)$		200kHz offset from Carrier		-144.12	-135	dBc/Hz
$\Phi_N(800k)$		800kHz offset from Carrier		-152.58	-150	dBc/Hz
$\Phi_N(5M)$		5MHz offset from Carrier		-159.27	-153	dBc/Hz
$\Phi_N(\geq 10M)$		$\geq 10MHz$ offset from Carrier and Noise Floor		-159.52	-153	dBc/Hz

[a] Design target specifications.

[b] Phase noise and spurious specifications apply for device operation with QREF_r outputs inactive (no SYSREF pulses generated).

[c] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

[d] Phase noise specifications are applicable for all outputs active, Nx not equal. Measured without crystal reference noise.

Table 53. Clock Spurious Signals Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case) [a] [b]

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
Φ	Spurious Signals (QCLK, QREF as clock)	983.04MHz	100Hz–300Hz		-75.6	-67.5
			300Hz–100kHz		-101.0	-90.3
			100kHz–100MHz		-93.7	-86.2
			122.88MHz reference spurious ^[c]		-77.8	-70
			245.76MHz reference spurious ^[d]		-84.6	-70
			491.52MHz reference spurious ^[e]		-78.3	-65
		491.52MHz	100Hz–300Hz		-82.1	-74.9
			300Hz–100kHz		-97.9	-86.1
			100kHz–100MHz		-92.7	-84.7
			122.88MHz reference spurious ^[c]		-92.2	-70
			245.76MHz reference spurious ^[d]		-84	-70
		245.76MHz	100Hz–300Hz		-87.6	-80.3
			300Hz–100kHz		-109.0	-102.2
			100kHz–100MHz		-90.9	-87.9
			122.88MHz reference spurious ^[c]		-86.7	-70

[a] Spurious specifications apply for device operation with QREF_r outputs inactive (no SYSREF pulses generated).

[b] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpmin. The device will meet specifications after thermal equilibrium has been reached under these conditions.

[c] Measured at all offset frequencies except at $f_{OFFSET} = 122.88\text{MHz}$.

[d] Measured at all offset frequencies except at $f_{OFFSET} = 245.76\text{MHz}$.

[e] Measured at all offset frequencies except at $f_{OFFSET} = 491.52\text{MHz}$.

Table 54. SYSREF Phase Noise Characteristics, $V_{DD_V} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $+105^\circ C$ (Case)^{[a][b][c]}

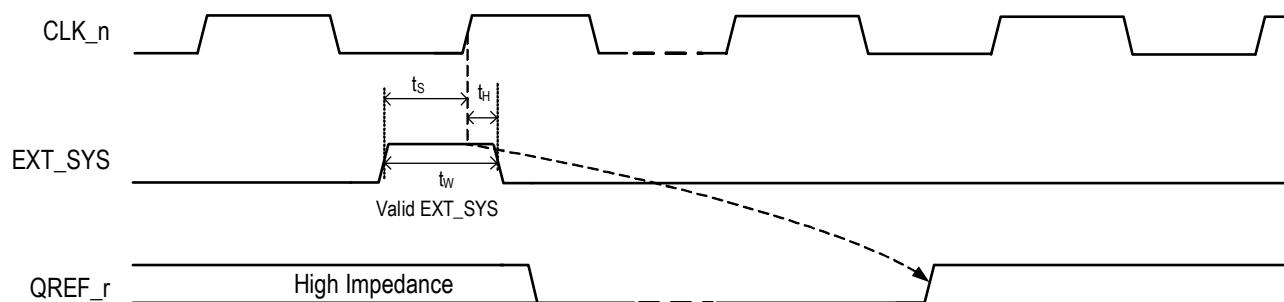
Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
$\Phi_N(500)$	SYSREF single-side band phase noise	30.72 MHz	500Hz offset		-144.58	-130	dBc/Hz
$\Phi_N(10k)$			10kHz offset from Carrier		-154.66	-130	dBc/Hz
$\Phi_N(60k)$			60kHz offset from Carrier		-155.10	-140	dBc/Hz
$\Phi_N(800k)$			800kHz offset from Carrier		-158.13	-145	dBc/Hz
$\Phi_N(\geq 3M)$			≥ 3 MHz offset from Carrier and Noise Floor		-158.11	-145	dBc/Hz
$\Phi_N(500)$	SYSREF single-side band phase noise	15.36 MHz	500Hz offset		-148.16	-130	dBc/Hz
$\Phi_N(10k)$			10kHz offset from Carrier		-157.15	-130	dBc/Hz
$\Phi_N(60k)$			60kHz offset from Carrier		-158.24	-140	dBc/Hz
$\Phi_N(800k)$			800kHz offset from Carrier		-159.62	-145	dBc/Hz
$\Phi_N(\geq 3M)$			≥ 3 MHz offset from Carrier and Noise Floor		-159.63	-145	dBc/Hz
$\Phi_N(500)$	SYSREF single-side band phase noise	7.68 MHz	500Hz offset		-138.09	-130	dBc/Hz
$\Phi_N(10k)$			10kHz offset from Carrier		-148.86	-130	dBc/Hz
$\Phi_N(60k)$			60kHz offset from Carrier		-158.12	-140	dBc/Hz
$\Phi_N(800k)$			800kHz offset from Carrier			-145	dBc/Hz
$\Phi_N(\geq 3M)$			≥ 3 MHz offset from Carrier and Noise Floor			-145	dBc/Hz
Φ	Spurious signals ^[d]	30.72MHz	> 500Hz		-60	-56	dBc
		15.36MHz	> 500Hz		-60	-56	dBc
		7.68MHz	> 500Hz		-60	-56	dBc

[a] Design target specifications.

[b] Phase noise is measured as additive phase noise contribution by the device on all SYSREF outputs, dividers and channel logic. SYSREF signals measured as continued clock signal. Clock signals (QCLK) are turned on.

[c] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

[d] Measured as sum of all spurious amplitudes in one side band in the offset frequency range above 500Hz, excluding the harmonics of the fundamental frequency of $n \cdot f_{SYSREF}$ (e.g., $n \cdot 7.68MHz$).


Table 55. AC Characteristics: Typical QCLK_y Output Amplitude, $V_{DD_V} = 3.3V$, $T_A = 85^\circ C$ ^[a]

Symbol	Parameter	Test Conditions	QCLK_y Output Frequency in MHz						Unit
			2949.12	1474.56	983.04	737.28	491.52	245.76	
$V_{O(PP)}$ ^[b]	LVPECL Output Voltage Swing, Peak-to-peak	250mV Amplitude Setting	214	283	260	262	264	281	mV
		500mV Amplitude Setting	376	520	492	484	508	520	mV
		750mV Amplitude Setting	512	748	740	716	730	768	mV
		1000mV Amplitude Setting	628	960	984	944	968	1008	mV
V_{OD} ^[c]	LVDS Output Voltage Swing, Peak-to-peak	250mV Amplitude Setting	120	190	200	210	215	225	mV
		500mV Amplitude Setting	250	390	410	430	440	470	mV
		750mV Amplitude Setting	370	592	650	670	682	710	mV
		1000mV Amplitude Setting	475	790	870	900	920	980	mV

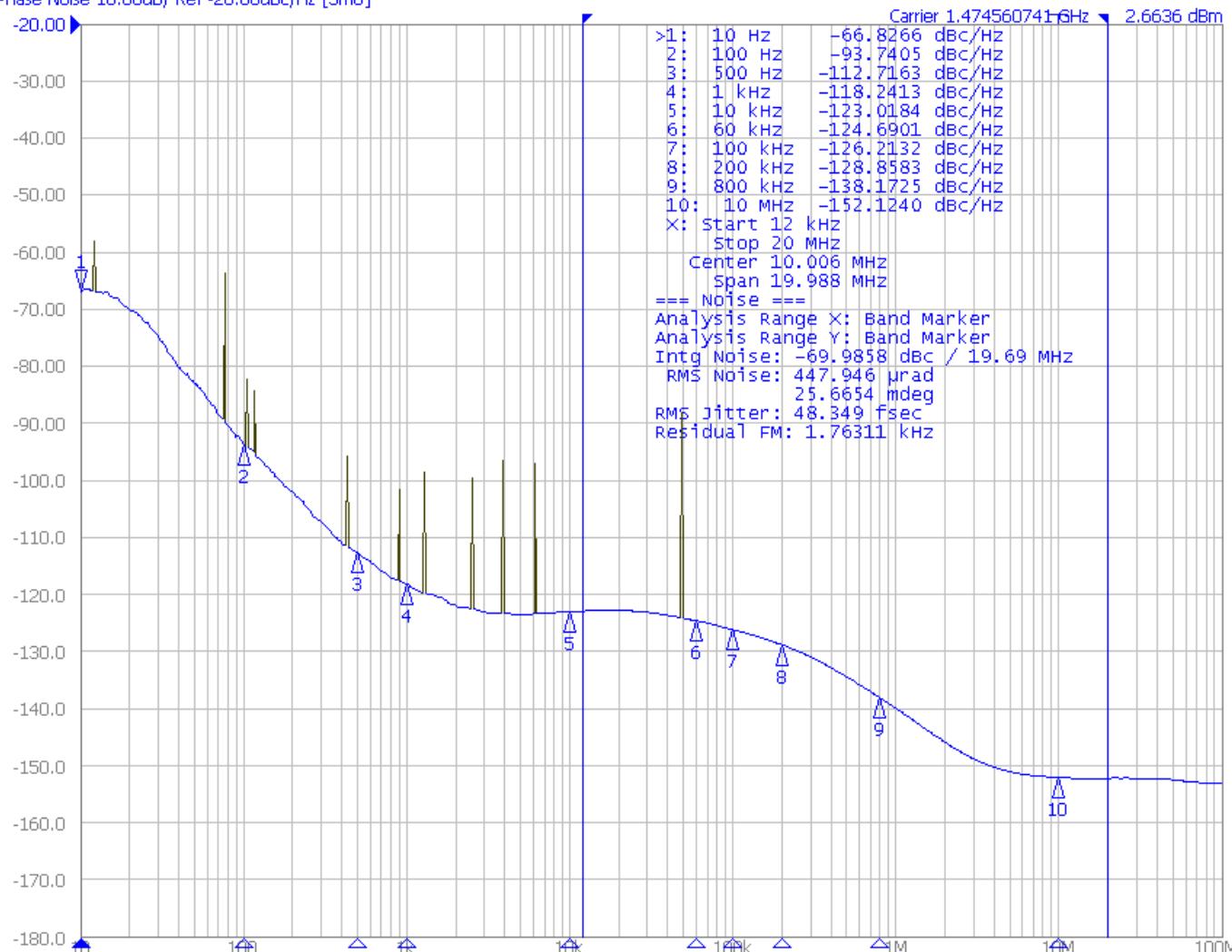
[a] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

[b] LVPECL outputs terminated with 50Ω to $V_{DD_V} - 1.5V$ (250mV amplitude setting), $V_{DD_V} - 1.75V$ (500mV amplitude setting), $V_{DD_V} - 2.0V$ (750mV amplitude setting), $V_{CCO} - 2.25V$ (1000mV amplitude setting)

[c] LVDS outputs terminated 100Ω across terminals

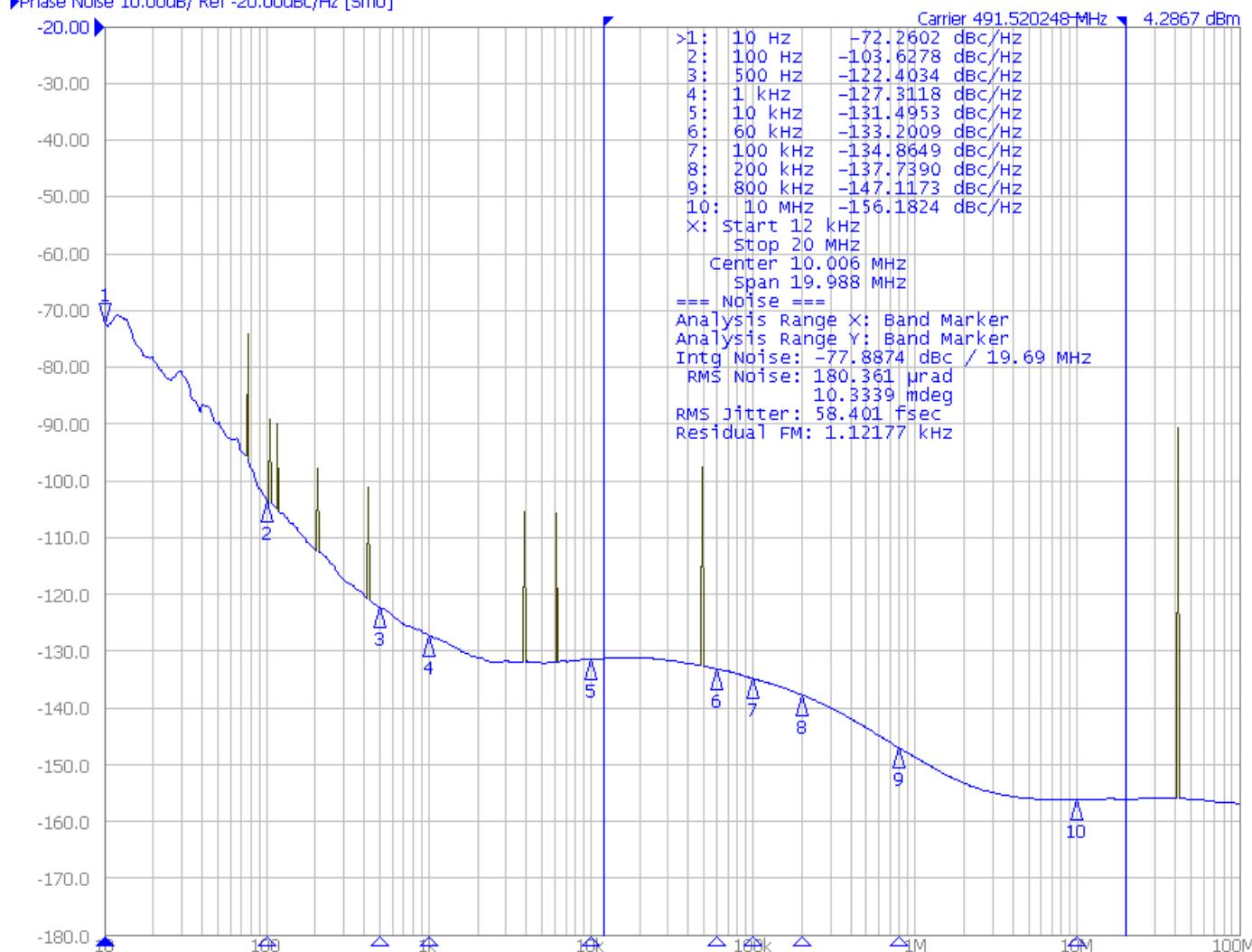
Figure 8. EXT_SYS Input Timing Diagram

Clock Phase Noise Characteristics

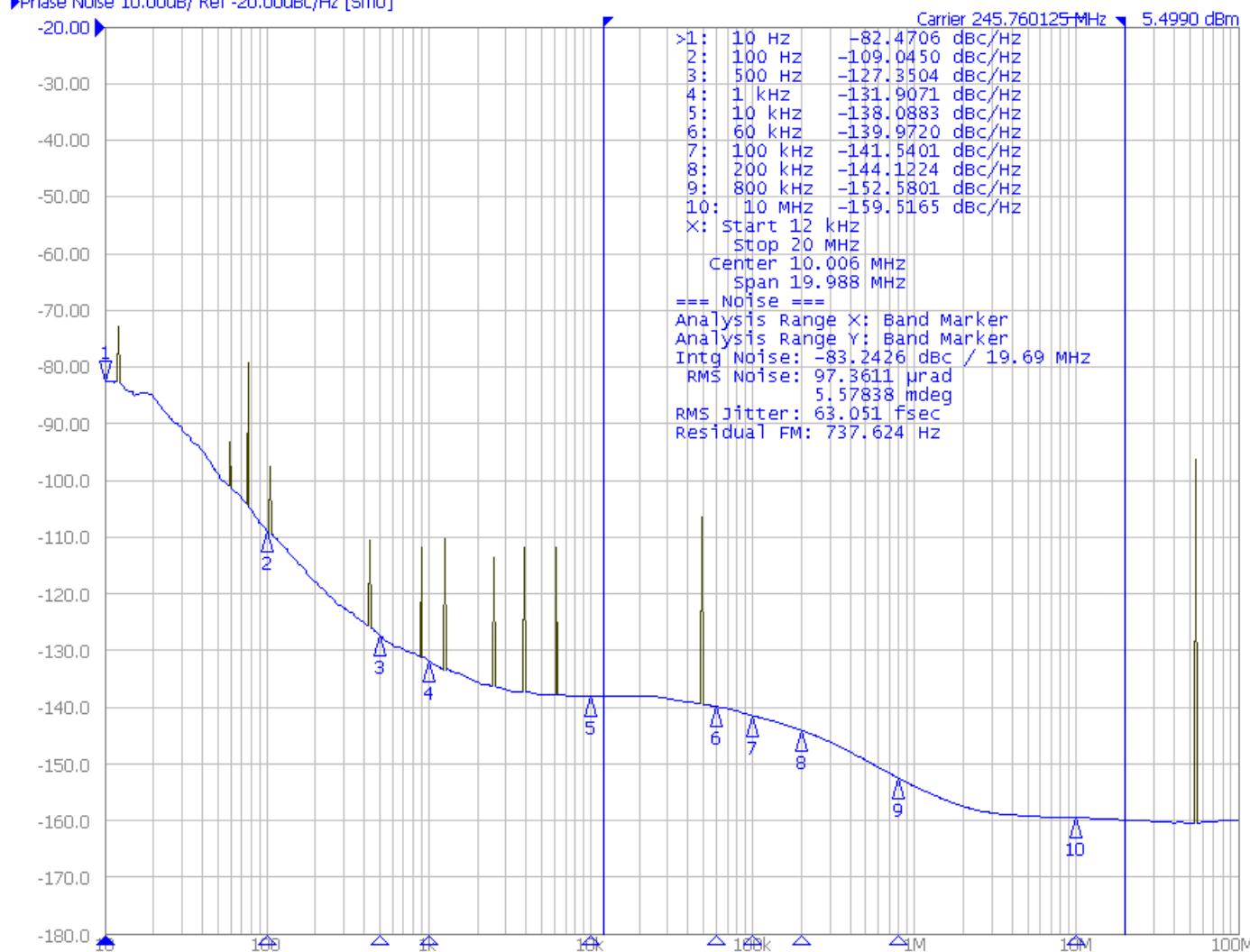

Conditions for Phase Noise Characteristics:

VCXO characteristics: $f=122.88$ MHz and phase noise: -85 dBc/Hz(10Hz), -115 dBc/Hz(100Hz), -145 dBc/Hz(1kHz), -155 dBc/Hz(10kHz), -160 dBc/Hz(100kHz)

- Input reference frequency: 122.88MHz
- VCXO-PLL bandwidth: 27Hz
- VCXO-PLL charge pump current: 0.75mA
- FemtoClock-NG PLL bandwidth: 139kHz
- $V_{DD_V} = 3.3V$, $T_A = 25^\circ C$


Figure 9. 1474.56MHz Output Phase Noise

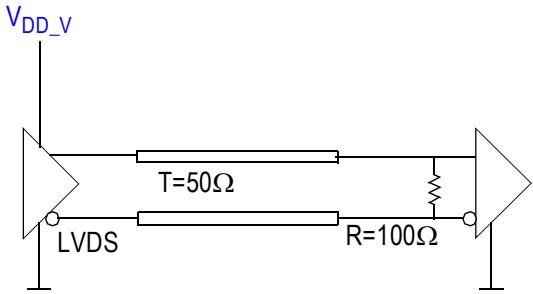
►Phase Noise 10.00dB/ Ref -20.00dBc/Hz [Smo]


Figure 10. 491.52MHz Output Phase Noise

►Phase Noise 10.00dB/ Ref -20.00dBc/Hz [Smo]

Figure 11. 245.76MHz Output Phase Noise

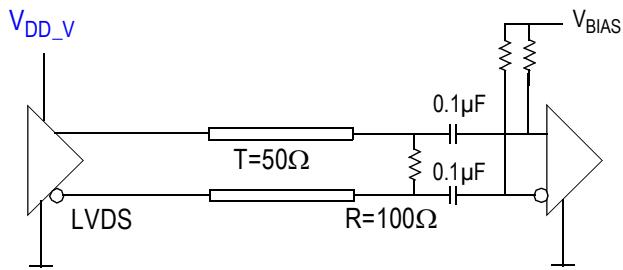
►Phase Noise 10.00dB/ Ref -20.00dBc/Hz [Smo]



Application Information

Termination for QCLK_y, QREF_r LVDS Outputs (STYLE = 0)

Figure 12 shows an example termination for the QCLK_y, QREF_r LVDS outputs. In this example, the characteristic transmission line impedance is 50Ω . The termination resistor R (100Ω) is matched to the line impedance. The termination resistor must be placed at the line end. No external termination resistor is required if R is an internal part of the receiver circuit. The LVDS termination in Figure 12 is applicable for any output amplitude setting specified in Table 15.


Figure 12. LVDS (STYLE=0) Output Termination

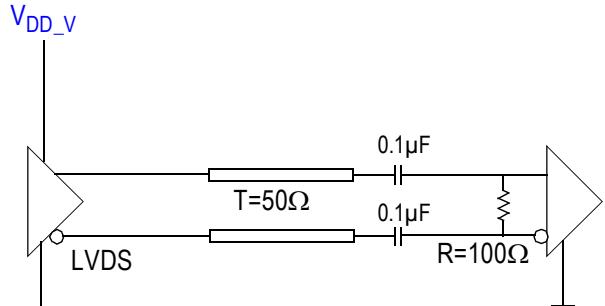

AC Termination for QCLK_y, QREF_r LVDS Outputs (STYLE = 0)

Figure 13 and Figure 14 show example AC terminations for the QCLK_y, QREF_r LVDS outputs. In the examples, the characteristic transmission line impedance is 50Ω . In Figure 13, the termination resistor R (100Ω) is placed at the line end. No external termination resistor is required if R is an internal part of the receiver circuit, which is shown in Figure 14. The LVDS terminations in both Figure 13 and Figure 14 are applicable for any output amplitude setting specified in Table 15. The receiver input should be re-biased according to its common mode range specifications.

Figure 13. LVDS (STYLE = 0) AC Output Termination

Figure 14. LVDS (STYLE = 0) AC Output Termination

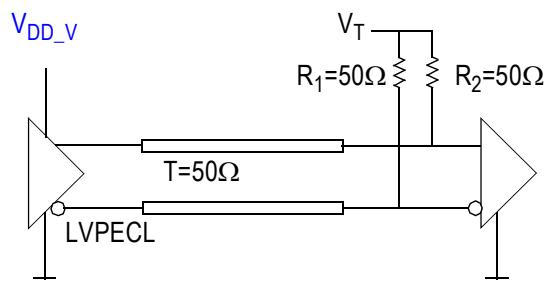
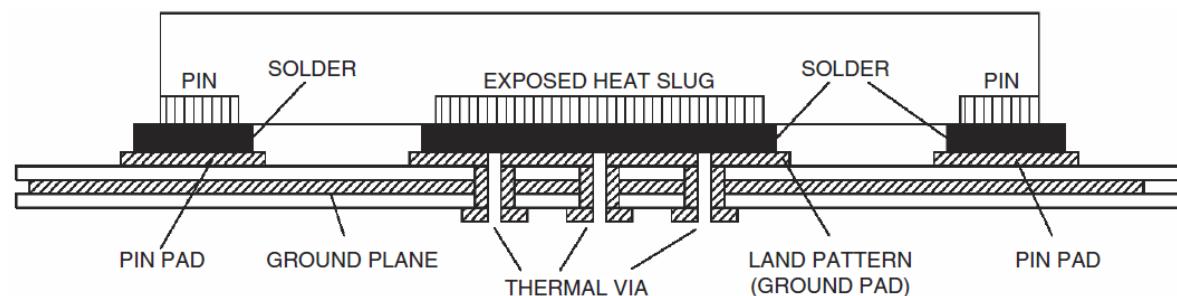

Termination for QCLK_y, QREF_r LVPECL Outputs (STYLE = 1)

Figure 15 shows an example termination for the QCLK_y, QREF_r LVPECL outputs. In this example, the characteristic transmission line impedance is 50Ω . The R_1 (50Ω) and R_2 (50Ω) resistors are matched load terminations. The output is terminated to the termination voltage V_T . The V_T must be set according to the output amplitude setting defined in Table 15. The termination resistors must be placed close at the line end.

Figure 15. LVPECL (STYLE = 1) Output Termination

$$V_T = V_{DD_V} - 1.50V \text{ (250 mV Amplitude)}$$

$$V_T = V_{DD_V} - 1.75V \text{ (500 mV Amplitude)}$$



Thermal Characteristics

Package Exposed Pad Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 16. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

Figure 16. Assembly for Exposed Pad Thermal Release Path – Side View (Drawing not to Scale)

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes.” The number of vias (i.e., “heat pipes”) are application-specific and are dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13 mils (0.30 to 0.33 mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern.

Note: These recommendations are to be used as a guideline only. For more information, refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Lead-frame Base Package, Amkor Technology.

Thermal Characteristics

The 8V19N492 is a multi-functional, high-speed device that targets a wide variety of clock frequencies and applications. Since this device is highly programmable with a broad range of features and functionality, the power consumption will vary as each of these features and functions is enabled. The device was designed and characterized to operate within the industrial temperature range of -40°C to +105°C (Case). The ambient temperature represents the temperature around the device, not the junction temperature. When using the device in extreme cases, such as maximum operating frequency and high ambient temperature, external air flow may be required in order to ensure a safe and reliable junction temperature. Extreme care must be taken to avoid exceeding 125°C junction temperature. For any concerns on calculating the power dissipation for your own specific configuration, please contact Renesas technical support.

Table 56. Thermal Resistance^[a]

Symbol	Thermal Parameter	Condition	Value	Unit
Θ_{JA}	Junction to Ambient	0 m/s air flow	17.2	°C/W
		1 m/s air flow	16.1	°C/W
		2 m/s air flow	15.6	°C/W
Θ_{JC}	Junction to Case		22.6	°C/W
Θ_{JB}	Junction to Board		0.9	°C/W

[a] Standard JEDEC 2S2P multilayer PCB.

Case Temperature Considerations

The 8V19N492 supports applications in a natural convection environment that does not have any thermal conductivity through ambient air. The PCB is typically in a sealed enclosure without any natural or forced air flow and is kept at or below a specific temperature. The device package design incorporates an exposed pad (ePad) with enhanced thermal parameters that is soldered to the PCB where most of the heat escapes from the bottom exposed pad. For this type of application, it is recommended to use the junction-to-board thermal characterization parameter Ψ_{JB} (Psi-JB) to calculate the junction temperature (T_J) and ensure it does not exceed the maximum allowed junction temperature in [Absolute Maximum Ratings](#).

The junction-to-board thermal characterization parameter, Ψ_{JB} , is calculated using the following equation:


$$T_J = T_{CB} + \Psi_{JB} \times P_D, \text{ where}$$

T_J = Junction temperature at steady state condition in (°C).

T_{CB} = Case temperature (Bottom) at steady state condition in (°C).

Ψ_{JB} = Thermal characterization parameter to report the difference between junction temperature and the temperature of the board measured at the top surface of the board.

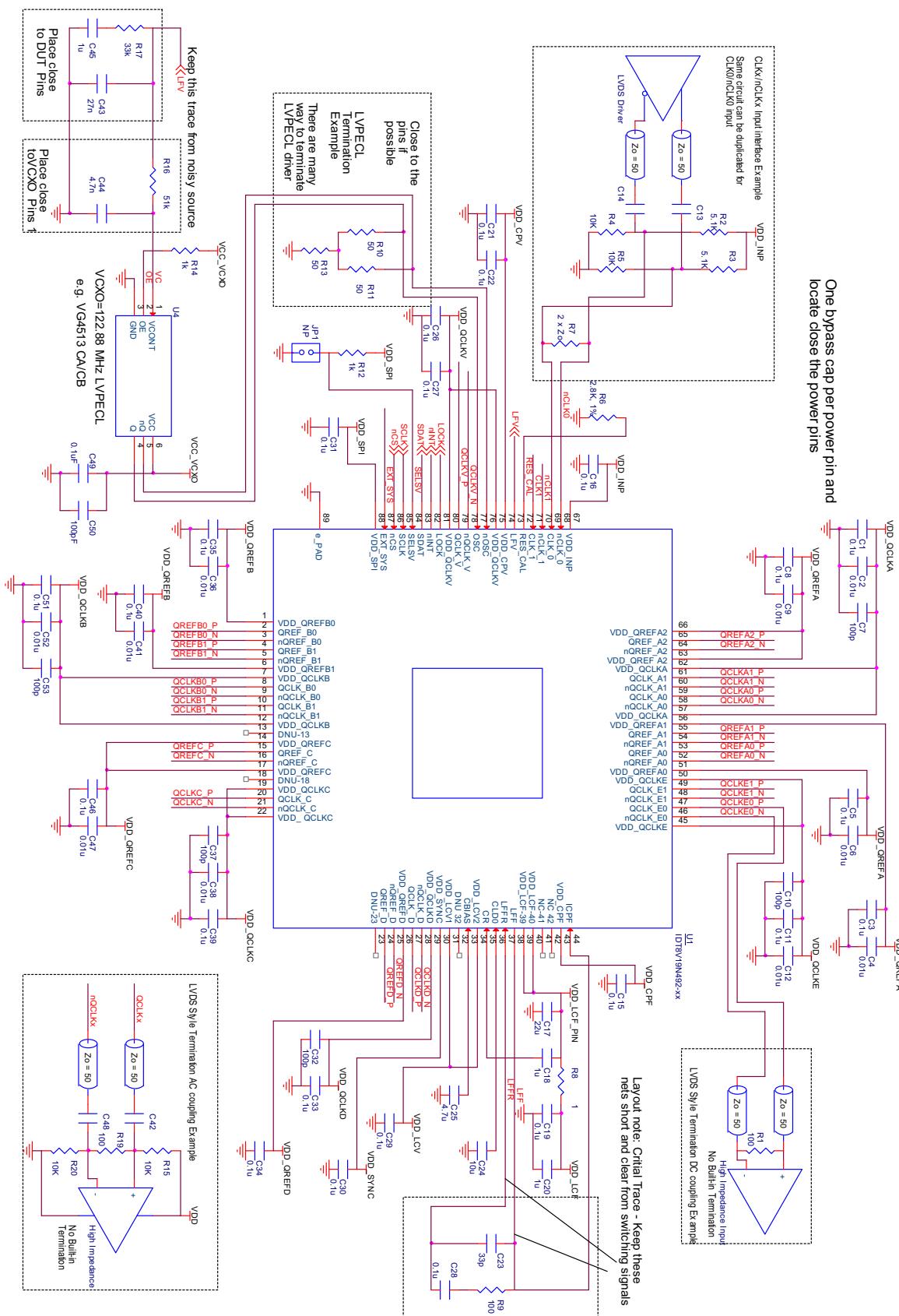
P_D = Power dissipation (W) in desired operating configuration.

The ePad provides a low thermal resistance path for heat transfer to the PCB and represents the key pathway to transfer heat away from the IC to the PCB. It is critical that the connection of the exposed pad to the PCB is properly constructed to maintain the desired IC case temperature (T_{CB}). A good connection ensures that temperature at the exposed pad (T_{CB}) and the board temperature (T_B) are relatively the same. An improper connection can lead to increased junction temperature, increased power consumption, and decreased electrical performance. In addition, there could be long-term reliability issues and increased failure rate.

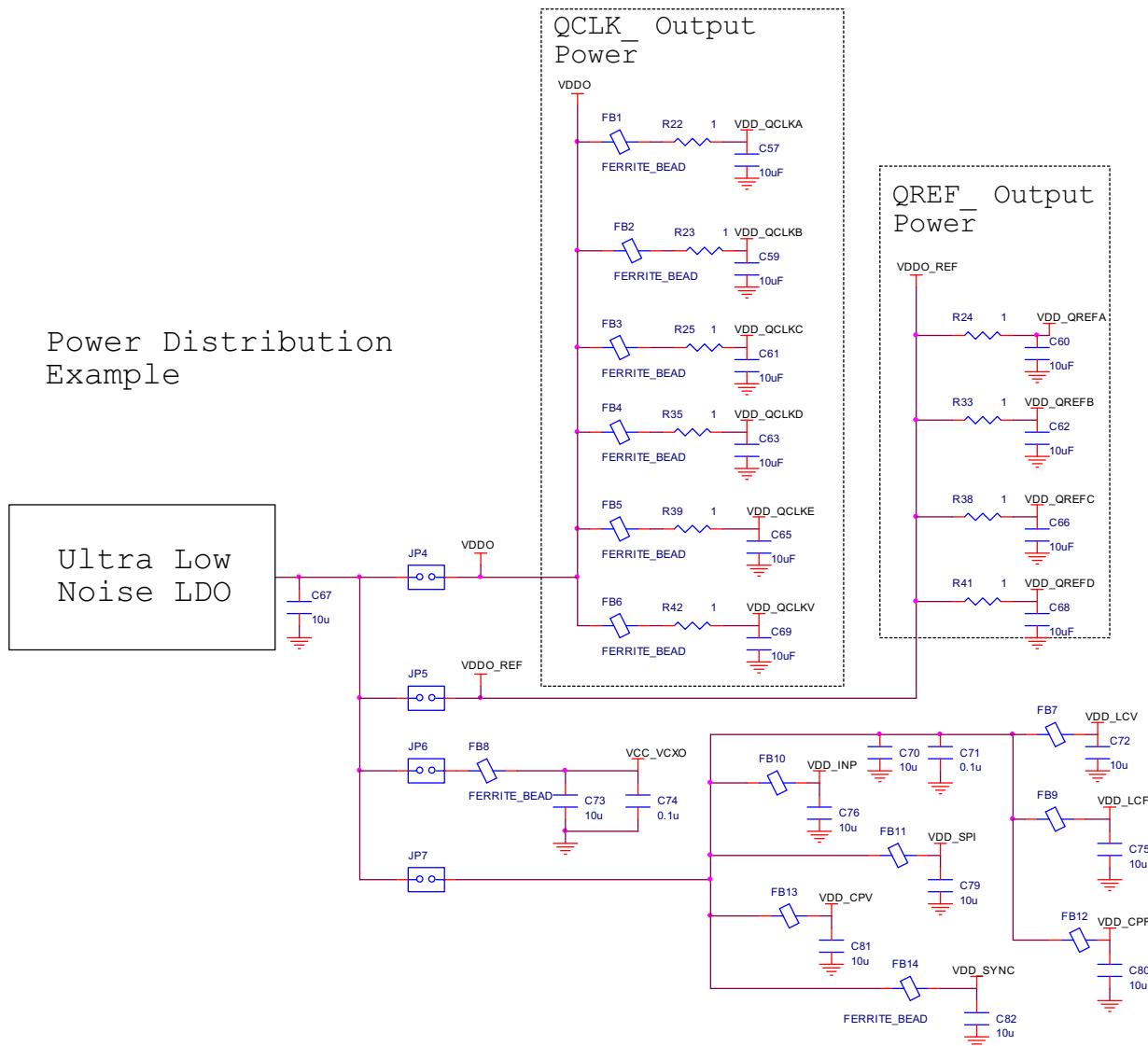
Example Calculation for Junction Temperature (T_J): $T_J = T_{CB} + \Psi_{JB} \times P_D$

$P_D = 3.27\text{W}$ (P_D is calculated from [Table 45](#))

$$T_J = 105^\circ\text{C} + 0.7^\circ\text{C/W} \times 3.27\text{W} = 107.3^\circ\text{C} < 125^\circ\text{C}$$


Table 57. Thermal Resistance for 88-VFQFPN Package

Package Type	88-VFQFPN
Body size (mm)	10 × 10 mm
ePad size (mm)	8 × 8 mm ²
Thermal Via	8 × 8 Matrix
Ψ_{JB}	0.7°C/W
T_{CB}	105°C


Recommended Application Schematics

[Figure 17](#) and [Figure 18](#) show an 8V19N492 application schematic example in which the device is operated from a 3.3V power supply. To ensure the logic control inputs are properly set for the application, see [Pin Descriptions](#).

Figure 17. Application Schematics – Page 1

Figure 18. Application Schematics – Page 2

Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see [Ordering Information](#) for POD links). The package information is the most current data available and is subject to change without revision of this document.

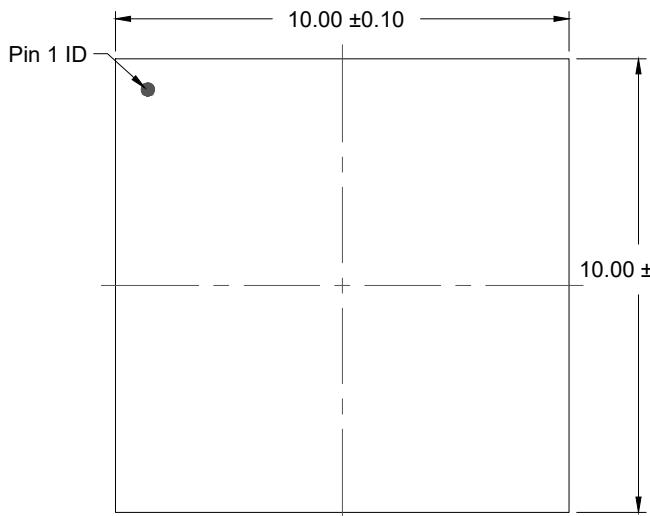
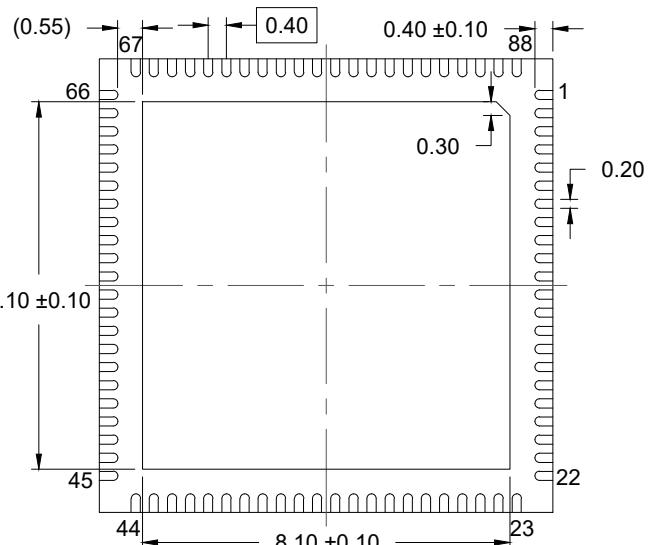
Marking Diagram

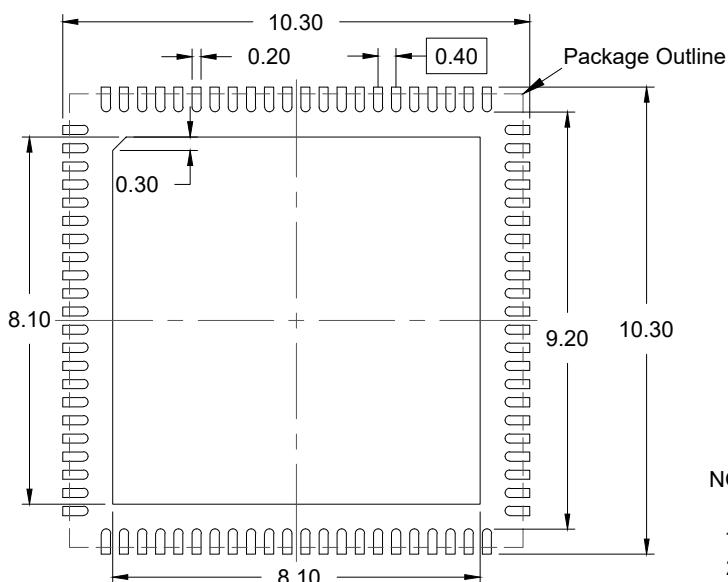
- Line 1 is the part number.
- Line 2 indicates the following:
 - “#” denotes stepping.
 - “YY” is the last two digits of the year and “WW” is a work week number that the part was assembled.
 - “\$” denotes the mark code.
- Line 3 is the assembly lot number.

Ordering Information

Orderable Part Number	Package	Carrier Type	Temperature
8V19N492NLGI	10 x 10 mm, 88-VFQFPN RoHS 6/6 ePad option P2: 8.1 x 8.1mm nominal	Tray	-40°C to +105°C (Case)
8V19N492NLGI8		Tape and Reel, Pin 1 Orientation: EIA-481-C	
8V19N492NLGI/W		Tape and Reel, Pin 1 Orientation: EIA-481-D/E	

Table 58. Pin 1 Orientation in Tape and Reel Packaging



Part Number Suffix	Pin 1 Orientation	Illustration
8	Quadrant 1 (EIA-481-C)	
/W	Quadrant 2 (EIA-481-D/E)	


Glossary

Abbreviation	Description
Index <i>n</i>	Denominates a clock input CLK_ <i>n</i> . Range: 0 to 1.
Index <i>x</i>	Denominates a channel, channel frequency divider and the associated configuration bits. Range: A, B, C, D, E.
Index <i>y</i>	Denominates a QCLK output and associated configuration bits. Range: A0, A1, B0, B1, C, D, E0, E1.
Index <i>r</i>	Denominates a QREF output and associated configuration bits. Range: A0, A1, A2, B0, B1, C, D.
V _{DD_V}	Denominates voltage supply pins. Range: VDD_QCLKA, VDD_QCLKB, VDD_QCLKC, VDD_QCLKD, VDD_QCLKE, VDD_QREFA0, VDD_QREFA1, VDD_QREFA2, VDD_QREFB0, VDD_QREFB1, VDD_QREFC, VDD_QREFD, VDD_SPI, VDD_QCLKV, VDD_CPV, VDD_INP, VDD_CPF, VDD_LCF, VDD_LCV1, VDD_LCV2, VDD_SYNC
[...]	Index brackets describe a group associated with a logical function or a bank of outputs.
{...}	List of discrete values.
Suffix V	Denominates a function associated with the VCXO-PLL.
Suffix F	Denominates a function associated with the 2nd stage PLL (FemtoClock NG).

Revision History

Revision Date	Description of Change
November 10, 2022	Updated SELSV, nINT, and LOCK pin descriptions (Table 1 , Table 25).
November 5, 2020	Updated Output Phase Delay
April 20, 2020	Updated the description of pin 85 in Table 1 .
December 17, 2019	Updated the description of pin 35 in Table 1 .
September 19, 2018	Initial release.

TOP VIEW

BOTTOM VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN
(PCB Top View, NSMD Design)

NOTES:

1. JEDEC compatible.
2. All dimensions are in mm and angles are in degrees.
3. Use ± 0.05 mm for the non-toleranced dimensions.
4. Numbers in () are for references only.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.