RENESAS

9DBL02x2/9DBL04x2/9DBL06x1/9DBL08x1C

2 to 8-Output 3.3V PCIe Zero-Delay/Fanout Buffers

The 9DBL02x2/9DBL04x2/9DBL06x1/9DBL08x1C buffers are low-power, high-performance members of Renesas' full-featured PCIe family. The buffers support PCIe Gen1 through Gen6.

PCIe Clocking Architectures

- Common Clocked (CC)
- Independent Reference (IR) with and without spread spectrum (SRIS, SRNS)

Typical Applications

- PCIe Riser Cards
- nVME Storage
- Networking
- Accelerators
- Industrial Control/Embedded

Key Specifications

- Additive PCIe Gen6 CC jitter < 18fs RMS (fanout mode)
- PCIe Gen6 CC jitter < 100fs RMS (High-BW ZDB Mode)

Features

- 2 to 8 Low-Power HCSL (LP-HCSL) outputs eliminate 4 resistors per output pair
- 9DBL0x4x devices provide integrated 100Ω terminations
- 9DBL0x5x devices provide integrated 85Ω terminations
- See AN-891 for easy coupling to other logic families
- Spread-spectrum compatible
- Dedicated OE# pin for each output
- 1MHz to 200MHz operation in fan-out mode
- 3 selectable SMBus addresses
- Extensive SMBus-selectable features allow optimization to customer requirements
- SMBus interface not required for device operation
- -40°C to +85°C operating temperature range
- Space-saving packages:
 - 4 × 4 mm 24-VFQFPN (9DBL02x2C)
 - 5 × 5 mm 32-VFQFPN (9DBL04x2C)
 - 5 × 5 mm 40-VFQFPN (9DBL06x1C)
 - 6 × 6 mm 48-VFQFPN (9DBL08x1C)

Figure 1. Block Diagram

Contents

1.	Pin l	nformation	3
	1.1	Pin Assignments – 9DBL02x2C	3
	1.2	Pin Assignments – 9DBL04x2C	4
	1.3	Pin Assignments – 9DBL06x1C	5
	1.4	Pin Assignments – 9DBL08x1C	6
	1.5	Pin Descriptions	6
2.	Spec	ifications	9
	2.1	Absolute Maximum Ratings	9
	2.2	Thermal Characteristics	9
	2.3	Electrical Specifications	0
	2.4	Power Management	7
	2.5	ZDB Operating Mode	7
3.	Test	Loads 1	7
4.	Alter	nate Terminations	8
	4.1	Alternate HCSL Terminations 1	8
5.	Gene	eral SMBus Serial Interface Information1	9
	5.1	How to Write	9
	5.2	How to Read	9
6.	Pack	age Outline Drawings	:6
7.	Mark	ing Diagrams	26
	7.1	9DBL02x2C	26
	7.2	9DBL04x2C	26
	7.3	9DBL06x1C	26
	7.4	9DBL08x1C	27
8.	Orde	ring Information	27
9.	Revi	sion History	28

1. Pin Information

1.1 Pin Assignments – 9DBL02x2C

Figure 2. Pin Assignments for 4 × 4 mm 24-VFQFPN Package – Top View

1.2 Pin Assignments – 9DBL04x2C

^v prefix indicates internal 120kOhm pull-up and pull-down resistors (biased to VDD/2)

v prefix indicates internal 120kOhm pull-down resistor

^ prefix indicates internal 120kOhm pull-up resistor

Figure 3. Pin Assignments for 5 × 5 mm 32-VFQFPN Package – Top View

1.3 Pin Assignments – 9DBL06x1C

^v prefix indicates internal 120kOhm pull-up and pull-down resistor (biased to VDD/2)
 v prefix indicates internal 120kOhm pull-down resistor
 ^ prefix indicates internal 120kOhm pull-up resistor

Figure 4. Pin Assignments for 5 × 5 mm 40-VFQFPN Package – Top View

1.4 Pin Assignments – 9DBL08x1C

48-pin VFQFPN, 6x6 mm, 0.4mm pitch

v prefix indicates internal 120kOhm pull-up and pull-down resistor (biased to VDD/2)
 v prefix indicates internal 120kOhm pull-down resistor
 ^ prefix indicates internal 120kOhm pull-up resistor

Figure 5. Pin Assignments for 6 × 6 mm 48-VFQFPN Package – Top View

1.5 **Pin Descriptions**

Table 1. Pin Descriptions

Pin Name [1] [2] [3]	Туре	Description	08x1C Pin No.	06x1C Pin No.	04x2C Pin No.	02x2C Pin No.
^CKPWRGD_PD#	Input	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal $120k\Omega$ pull-up resistor.	48	40	31	22
^vHIBW_BYPM_LOBW#	Latched In	Tri-level input to select High BW, Bypass or Low BW mode. This pin is biased to VDD/2 (Bypass mode) with internal pull-up/pull-down resistors.	2	2	1	24
CLK_IN	Input	True input of differential input clock.	6	6	5	4
CLK_IN#	Input	Complementary input if differential input clock.	7	7	6	5
DIF0	Output	Differential true clock output.	15	14	13	13

Pin Name ^[1] ^[2] ^[3]	Туре	Description	08x1C Pin No.	06x1C Pin No.	04x2C Pin No.	02x2C Pin No.
DIF0#	Output	Differential complementary clock output.	16	15	14	14
DIF1	Output	Differential true clock output.	18	18	17	17
DIF1#	Output	Differential complementary clock output.	19	19	18	18
DIF2	Output	Differential true clock output.	23	22	22	-
DIF2#	Output	Differential complementary clock output.	24	23	23	-
DIF3	Output	Differential true clock output.	26	27	27	-
DIF3#	Output	Differential complementary clock output.	27	28	28	-
DIF4	Output	Differential true clock output.	32	33	-	-
DIF4#	Output	Differential complementary clock output.	33	34	-	-
DIF5	Output	Differential true clock output.	35	36	-	-
DIF5#	Output	Differential complementary clock output.	36	37	-	-
DIF6	Output	Differential true clock output.	41	-	-	-
DIF6#	Output	Differential complementary clock output.	42	-	-	-
DIF7	Output	Differential true clock output.	44	-	-	-
DIF7#	Output	Differential complementary clock output.	45	-	-	-
EPAD	GND	Connect to ground.	49	41	33	25
FB_DNC	DNC	True clock of differential feedback. The feedback output and feedback input are connected internally on this pin. Do not connect anything to this pin.	3	3	2	1
FB_DNC#	DNC	Complement clock of differential feedback. The feedback output and feedback input are connected internally on this pin. Do not connect anything to this pin.	4	4	3	2
GND	GND	Ground pin.	22, 40	-	-	-
GNDA	GND	Ground pin for the PLL core.	29	-	-	-
GNDDIG	GND	Ground pin for digital circuitry.	9	8	8	6
GNDR	GND	Analog ground pin for the differential input (receiver).	8	-	-	-
NC	_	No connection.	-	20, 30	7, 16, 20, 26, 30	11, 12, 20
SCLK_3.3	Input	Clock pin of SMBus circuitry, 3.3V tolerant.	10	9	9	9
SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.	11	10	10	7
VDD3.3	Power	Power supply for outputs, nominally 3.3V.	20, 38	16, 31	-	-
VDDA3.3	Power	3.3V power for the PLL core.	30	25	21	16
VDDDIG3.3	Power	3.3V digital power (dirty power).	12	11	11	8
VDDIO	Power	Power supply for differential outputs.	13, 21, 31, 39, 47	12, 17, 26, 32, 39	-	-
VDDO3.3	Power	Power supply for outputs. Nominally 3.3V.	-	-	15, 25	10, 21

Table 1. Pin Descriptions (Cont.)

Pin Name ^[1] ^[2] ^[3]	Туре	Description	08x1C Pin No.	06x1C Pin No.	04x2C Pin No.	02x2C Pin No.
VDDR3.3	Power	3.3V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered appropriately.	5	5	4	3
vOE0#	Input	Active low input for enabling output 0. This pin has an internal 120kΩ pull-down. 1 = disable outputs, 0 = enable outputs	14	13	12	15
vOE1#	Input	Active low input for enabling output 1. This pin has an internal $120k\Omega$ pull-down. 1 = disable outputs, 0 = enable outputs	17	21	19	19
vOE2#	Input	Active low input for enabling output 2. This pin has an internal $120k\Omega$ pull-down. 1 = disable outputs, 0 = enable outputs	25	24	24	_
vOE3#	Input	Active low input for enabling output 3. This pin has an internal $120k\Omega$ pull-down. 1 = disable outputs, 0 = enable outputs	28	29	29	_
vOE4#	Input	Active low input for enabling output 4. This pin has an internal $120k\Omega$ pull-down. 1 = disable outputs, 0 = enable outputs	34	35	_	_
vOE5#	Input	Active low input for enabling output 5. This pin has an internal $120k\Omega$ pull-down. 1 = disable outputs, 0 = enable outputs	37	38	_	_
vOE6#	Input	Active low input for enabling output 6. This pin has an internal $120k\Omega$ pull-down. 1 = disable outputs, 0 = enable outputs	43	_	_	_
vOE7#	Input	Active low input for enabling output 7. This pin has an internal $120k\Omega$ pull-down. 1 = disable outputs, 0 = enable outputs	46	_	_	_
vSADR_tri	Latched In	Tri-level latch to select SMBus Address. It has an internal pull-down resistor. See the SMBus Address Selection table.	1	1	32	23

Table 1. Pin Descriptions (Cont.)

1. A '^' prefix indicates internal $120k\Omega$ pull-up resistor.

2. A '^v' prefix indicates internal 120k Ω pull-up and pull-down resistor (biased to VDD/2).

3. A 'v' prefix indicates internal $120k\Omega$ pull-down resistor.

2. Specifications

2.1 Absolute Maximum Ratings

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{DDx}	Supply Voltage ^[2]	Applies to V_{DD} , V_{DDA} and V_{DDIO} .	-0.5	-	3.9	V
V _{IN}	Input Voltage ^[3]		-0.5	-	V _{DD} + 0.5	V
V _{IHSMB}	Input High Voltage, SMBus	SMBus clock and data pins.	-	-	3.9	V
Ts	Storage Temperature		-65	-	150	°C
Tj	Junction Temperature		-	-	125	°C
ESD prot	Input ESD Protection	Human Body Model.	2500	-	-	V

Table 2. Absolute Maximum Ratings^[1]

1. Confirmed by design and characterization, not 100% tested in production.

2. Operation under these conditions is neither implied nor guaranteed.

3. Not to exceed 3.9V.

2.2 Thermal Characteristics

Table 3. Thermal Characteristics ^[1]

Parameter	Symbol	Conditions	Package	Typical Values	Unit
	θ _{JC}	Junction to case.		33	°C/W
-	θ _{Jb}	Junction to base.		2	°C/W
9DBL08xxC Thermal	θ _{JAO}	Junction to air, still air.	NDG48	37	°C/W
Resistance	θ_{JA1}	Junction to air, 1 m/s air flow.	NDG40	30	°C/W
-	θ _{JA3}	Junction to air, 3 m/s air flow.		27	°C/W
-	θ_{JA5}	Junction to air, 5 m/s air flow.		26	°C/W
	θ _{JC}	Junction to case.		42	°C/W
9DBL06xxC	θ_{Jb}	Junction to base.		2	°C/W
9DBL00xxC	θ _{JA0}	Junction to air, still air.	NDG40	39	°C/W
Thermal	θ_{JA1}	Junction to air, 1 m/s air flow.	NLG32	33	°C/W
Resistance -	θ _{JA3}	Junction to air, 3 m/s air flow.		28	°C/W
-	θ_{JA5}	Junction to air, 5 m/s air flow.		27	°C/W
	θ _{JC}	Junction to case.		60	°C/W
-	θ _{Jb}	Junction to base.		5.4	°C/W
9DBL02xxC	θ _{JA0}	Junction to air, still air.	NLG24	50	°C/W
Thermal Resistance	θ_{JA1}	Junction to air, 1 m/s air flow.	INLG24	43	°C/W
-	θ_{JA3}	Junction to air, 3 m/s air flow.		39	°C/W
-	θ_{JA5}	Junction to air, 5 m/s air flow.		38	°C/W

1. Epad soldered to ground.

2.3 Electrical Specifications

Symbol	Parameter	Condition	Typical	Maximum	Specification Limit ^[3]	Unit
t _{jphPCleG1-CC}		PCle Gen1 (2.5 GT/s)	1913	2327	86,000	fs p-p
+		PCle Gen2 Lo Band (5.0 GT/s)	55	72	3,100	
^t jphPCIeG2-CC	Additive PCIe Phase Jitter	PCle Gen2 Hi Band (5.0 GT/s)	160	222	3,000	
t _{jphPCleG3-CC}	(Common Clocked Architecture)	PCle Gen3 (8.0 GT/s)	54	75	1,000	
t _{jphPCleG4-CC}	-	PCle Gen4 (16.0 GT/s) ^{[4] [5]}	54	75	500	fs RMS
t _{jphPCleG5-CC}		PCle Gen5 (32.0 GT/s) ^{[4] [6]}	21	30	150	
t _{jphPCleG6-CC}		PCle Gen6 (64.0 GT/s) ^{[4] [7]}	13	18	100	
t _{jphPCleG2-IR}	Additive PCIe Phase Jitter	PCle Gen2 (5.0 GT/s)	143	193		
t _{jphPCleG3-IR}	(IR Architectures - SRIS, SRNS)	PCle Gen3 (8.0 GT/s)	56	76		
t _{jphPCleG4-IR}	SSC ≤ -0.5%	PCle Gen4 (16.0 GT/s) [5]	58	78	[8]	fs RMS
t _{jphPCleG5-IR}	Additive PCIe Phase Jitter (IR Architectures - SRIS, SRNS) SSC ≤ -0.3%	PCle Gen5 (32.0 GT/s) [6]	16	22		
t _{jphPCleG6-IR}		PCle Gen6 (64.0 GT/s) ^[7]	12	16		

Table 4. Additive PCIe Phase Jitter (Fan-out Buffer Mode) ^[1] ^[2]

1. The Refclk jitter is measured after applying the filter functions found in the *PCI Express Base Specification 6.2*. For the exact measurement setup, see Test Loads. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all measurements.

2. Jitter measurements are made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements can be made with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83.

- 3. The rms sum of the source jitter and the additive jitter (arithmetic sum for PCIe Gen1) must be less than the jitter specification listed.
- 4. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content.
- 5. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 6. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 7. Note that 0.15ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 8. The PCI Express Base Specification 6.2 provides the filters necessary to calculate SRIS jitter values; it does not provide specification limits, therefore, the reference to this footnote in the Limit column. SRIS values are informative only. A common practice is to split the common clock budget in half. For 16GT/s data rates and above, the user must choose whether to use the output jitter specification, or the input jitter specification, which includes an allocation for the jitter added by the channel. Using 32GT/s, the Refclk jitter budget is 150fs RMS. One half of the Refclk jitter budget is 106fs RMS. At the clock input, the system must deliver 250fs RMS. One half of this value is 177fs RMS. If the clock is placed next to the PCIe device in an SRIS system, the channel is very short and the user can choose to use this more relaxed value as the jitter limit.

Symbol	Parameter	Conditions	Typical	Maximum	Specification Limit ^[3]	Unit
t _{jphPCleG1-CC}		PCle Gen1 (2.5 GT/s)	16019	18835	86,000	fs p-p
+		PCle Gen2 Lo Band (5.0 GT/s)	1148	1396	3,100	
t _{jphPCleG2-CC}	-	PCle Gen2 Hi Band (5.0 GT/s)	780	1052	3,000	1
t _{jphPCleG3-CC}	Additive PCIe Phase Jitter	PCIe Gen3 (8.0 GT/s)	333	428	1,000	
t _{jphPCleG4-CC}	(Common Clocked Architecture) SSC ≤ -0.5%	PCIe Gen4 (16.0 GT/s) ^{[4] [5]} High bandwidth	322	385	500	fs RMS
t _{jphPCleG5-CC}		PCIe Gen5 (32.0 GT/s) ^{[4] [6]} High bandwidth	99	114	150	
t _{jphPCleG6-CC}	-	PCIe Gen6 (64.0 GT/s) ^{[4] [7]} High bandwidth	69	83	100	
t _{jphPCleG2-IR}		PCle Gen2 (5.0 GT/s)	1898	2139		
t _{jphPCleG3-IR}	Additive PCIe Phase Jitter (IR Architectures - SRIS, SRNS)	PCIe Gen3 (8.0 GT/s) Hi bandwidth	668	720		
t _{jphPCleG4-IR}	SSC ≤ -0.5%	PCIe Gen4 (16.0 GT/s) ^[5] Hi bandwidth	558	637	[8]	fs RMS
t _{jphPCle} G5-IR	Additive PCIe Phase Jitter	PCIe Gen5 (32.0 GT/s) ^[6] Hi bandwidth	135	149		
t _{jphPCleG6-IR}	(IR Architectures - SRIS, SRNS) SSC ≤ -0.3%	PCIe Gen6 (64.0 GT/s) ^[7] Hi bandwidth	110	127		

Table 5. PCle Phase Jitte	r (Zero-Delay Buffer Mode) ^{[1] [2]}
---------------------------	---

1. The Refclk jitter is measured after applying the filter functions found in the *PCI Express Base Specification 6.2*. For the exact measurement setup, see Test Loads. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all measurements.

2. Jitter measurements are made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results the RTO result must be used.

- 3. The rms sum of the source jitter and the additive jitter (arithmetic sum for PCle Gen1) must be less than the jitter specification listed. NOTE: if ZDB mode is used, ALL PCle clocks must be sourced from the 9DBL buffer. If the system is operating at PCle Gen3 or higher, any additional downstream buffers must be in fanout buffer mode.
- 4. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content.
- 5. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 6. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 7. Note that 0.15ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 8. The PCI Express Base Specification 6.2 provides the filters necessary to calculate SRIS jitter values; it does not provide specification limits, therefore, the reference to this footnote in the Limit column. SRIS values are informative only. A common practice is to split the common clock budget in half. For 16GT/s data rates and above, the user must choose whether to use the output jitter specification, or the input jitter specification, which includes an allocation for the jitter added by the channel. Using 32GT/s, the Refclk jitter budget is 150fs RMS. One half of the Refclk jitter budget is 106fs RMS. At the clock input, the system must deliver 250fs RMS. One half of this value is 177fs RMS. If the clock is placed next to the PCIe device in an SRIS system, the channel is very short and the user can choose to use this more relaxed value as the jitter limit.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
t _{jph156M12k-20}	Additive Phase Jitter, Fanout Mode	156.25MHz, 12kHz to 20MHz.	-	249	-	fs (rms)

Table 6. 12kHz to 20MHz Phase Jitter ^[1] ^[2]

1. Confirmed by design and characterization, not 100% tested in production.

2. Additive jitter is calculated using Root-Sum-Square (RSS) subtraction.

Table 7. Clock Input Parameters

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CROSS}	Input Crossover Voltage [1]	Crossover voltage.	150	-	900	mV
V _{SWING}	Input Swing [1]	Differential value.	300	-		mV
dv/dt	Input Slew Rate ^{[1] [2]}	Measured differentially.	0.4	-	8	V/ns
I _{IN}	Input Leakage Current	$V_{IN} = V_{DD}$, $V_{IN} = GND$.	-5	-	5	μA
d _{tin}	Input Duty Cycle [1]	Differential measurement.	45	-	55	%
J _{DIFIn}	Input Jitter – Cycle to Cycle [1]	Differential measurement.	0	-	125	ps

1. Confirmed by design and characterization, not 100% tested in production.

2. Slew rate measured through ±75mV window centered around differential zero.

Table 8. Output Duty Cycle, Skew and PLL Characteristics ^[1]

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
BW	PLL BW ^[2]	-3dB point in High BW Mode (100MHz).	2	2.8	4	MHz
DVV		-3dB point in Low BW Mode (100MHz).	1	1.3	2	MHz
t _{JPEAK}	PLL Jitter Peaking	Peak Pass band gain (100MHz).	-	1.1	2	dB
t _{DC}	Duty Cycle ^[3]	Measured differentially, PLL Mode.	45	50	55	%
t _{DCD}	Duty Cycle Distortion [3] [4]	Measured differentially, Bypass Mode.	-1	-0.9	1	%
t _{pdBYP}	Skew, Input to Output ^[5]	Bypass Mode, V _T = 50%.	1400	1884	2200	ps
t _{pdPLL}	Skew, input to Output ^{toj}	PLL Mode V _T = 50%.	-100	9	100	ps
t _{sk3}	Skew, Output to Output ^[5]	V _T = 50%.	-	32	50	ps
t _{jcyc-cyc}	Jitter, Cycle to Cycle	PLL Mode.	-	21	50	ps

1. Confirmed by design and characterization, not 100% tested in production.

2. The Minimum/Typical/Maximum values of each BW setting track each other, i.e., maximum low BW will never occur with minimum high BW.

3. Measured from differential waveform.

4. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

5. All outputs at default slew rate.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
dV/dt	Slew Rate ^[1] ^[2] ^[3]	Scope averaging on, fast setting.	2.9	3.7	4.7	V/ns
uv/ut		Scope averaging on, slow setting.	2	2.7	3.7	v/115
∆tR/tF	Rise/Fall Matching ^{[1] [4]}	Single-ended measurement.	-	6	20	%
V _{HIGH}	Voltage High ^[5]	Statistical measurement on single-	660	761	850	
V _{LOW}	Voltage Low ^[5]	ended signal using oscilloscope math function (scope averaging on).	-150	-7	150	
Vmax	Max Voltage ^[5]	Measurement on single ended signal	-	819	1150	mV
Vmin	Min Voltage ^[5]	using absolute value (scope averaging off).	-300	-46	-	IIIV
Vcross_abs	Crossing Voltage (abs) ^{[1][6]}	Scope averaging off.	250	409	550	
Δ-Vcross	Crossing Voltage (var) ^{[1][7]}	Scope averaging off.	-	14	140	

Table 9. LP-HCSL (DIF) Output Characteristics

1. Confirmed by design and characterization, not 100% tested in production.

- 2. Measured from differential waveform.
- 3. Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a ±150mV window around differential 0V.
- 4. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
- 5. At default SMBus settings.
- 6. Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).
- 7. The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ -Vcross to be smaller than Vcross absolute.

Symbol	Parameter Conditions		Minimum	Typical	Maximum	Unit
I _{DDDIG}	Operating Supply Current,	VDDDIG, all outputs at 100MHz.	-	0.8	1	mA
I _{DDO+O+R}	ZDB Mode	VDDA+VDDO+VDDR, all outputs at 100MHz.	-	30	35	mA
I _{DDDIG}	Operating Supply Current	VDDDIG, all outputs at 100MHz	-	0.5	1	mA
I _{DDO+O+R}	Operating Supply Current, Fanout (bypass) Mode	VDDA+VDDO+VDDR, all outputs at 100MHz.	-	22	26	mA
IDDDIGPD		VDDDIG, CKPWRGD_PD# = 0.	-	0.5	0.6	mA
I _{DDO+O+RPD}	Powerdown Current ^[1]	VDDA+VDDO+VDDR, CKPWRGD_PD# = 0.	-	2.1	2.5	mA

Table 10. Current Consumption – 9DBL02xxC

1. Input clock stopped.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{DDDIG}	Operating Supply Current, ZDB	VDDDIG, all outputs at 100MHz	-	0.8	1	mA
I _{DDO+O+R}	Mode	VDDA+VDDO+VDDR, all outputs at 100MHz.	-	37	44	mA
I _{DDDIG}	Operating Supply Current,	VDDDIG, all outputs at 100MHz	-	0.5	1	mA
I _{DDO+O+R}	Fanout (bypass) Mode	VDDA+VDDO+VDDR, all outputs at 100MHz.	-	30	36	mA
IDDDIGPD		VDDDIG, CKPWRGD_PD# = 0.	-	0.5	1	mA
I _{DDO+O+RPD}	Powerdown Current ^[1]	VDDA+VDDO+VDDR, CKPWRGD_PD# = 0.	-	1.9	3	mA

Table 11. Current Consumption – 9DBL04xxC

1. Input clock stopped.

Table 12. Current Consumption – 9DBL06xxC

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{DDA}		VDDA, PLL Mode at 100MHz.	-	8.1	10	mA
I _{DDDIG}	Operating Supply	VDDDIG, all outputs active at 100MHz.	-	0.80	1.0	mA
I _{DD+R}	Current, PLL Mode	VDD3.3 + VDDR, all outputs active at 100MHz.	-	18	22	mA
I _{DDIO}		VDDIO, all outputs active at 100MHz.		22	26	mA
I _{DDA}		VDDA, BP Mode, at 100MHz.	-	0.94	1.1	mA
I _{DDDIG}	Operating Supply	VDDDIG, BP Mode, all outputs active at 100MHz.	-	0.49	0.6	mA
I _{DD+R}	Operating Supply Current, BP Mode	VDD3.3 + VDDR, BP Mode, all outputs active at 100MHz.	-	17	20	mA
I _{DDIO}		VDDIO, BP Mode, all outputs active at 100MHz.		22	26	mA
I _{DDAPD}		VDDA, CKPWRGD_PD# = 0.	-	0.94	1.1	mA
IDDDIGPD	Powerdown Current ^[1]	VDDIG, CKPWRGD_PD# = 0.	-	0.49	0.6	mA
I _{DD+RPD}		VDD3.3 + VDDR, CKPWRGD_PD# = 0.	-	1.04	1.3	mA
IDDIOPD		VDDIO, CKPWRGD_PD# = 0.		0.04	0.1	mA

1. Input clock stopped.

Table 13. Current Consumption – 9DBL08xxC

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{DDA}		VDDA, PLL Mode at 100MHz.	-	7.9	10	mA
I _{DDDIG}	Operating Supply	VDDDIG, all outputs active at 100MHz.	-	0.8	1.0	mA
I _{DD+R}	Current, PLL Mode	VDD3.3 + VDDR, all outputs active at 100MHz.	-	20.1	25	mA
I _{DDIO}		VDDIO, all outputs active at 100MHz.		27.6	33	mA
I _{DDA}		VDDA, BP Mode, at 100MHz.	-	0.9	1.1	mA
I _{DDDIG}	Operating Supply	VDDDIG, BP Mode, all outputs active at 100MHz.	-	0.5	0.6	mA
I _{DD+R}	Operating Supply Current, BP Mode	VDD3.3 + VDDR, BP Mode, all outputs active at 100MHz.	-	18.4	23	mA
I _{DDIO}		VDDIO, BP Mode, all outputs active at 100MHz.		28.2	33	mA

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{DDAPD}	Powerdown Current ^[1]	VDDA, CKPWRGD_PD# = 0.	-	0.92	1.1	mA
IDDDIGPD		VDDx, CKPWRGD_PD# = 0.	-	0.5	0.6	mA
I _{DD+RPD}		VDD3.3 + VDDR, CKPWRGD_PD# = 0.	-	1.4	2	mA
IDDIOPD		VDDIO, CKPWRGD_PD# = 0.		0.039	0.1	mA

Table 13. Current Consumption – 9DBL08xxC (Cont.)

1. Input clock stopped.

Table 14. Input/Supply/Common Parameters – Normal Operating Conditions

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
VDDx	Supply Voltage	Supply voltage for core and analog.	3.135	3.3	3.465	V
VDDIO	Output Supply Voltage [1]	Supply voltage for Low Power HCSL outputs.	0.95	1.05-3.3	3.465	V
T _{AMB}	Ambient Operating Temperature	Industrial range.	-40	25	85	°C
V _{IH}	Input High Voltage	Single-ended inputs, except SMBus.	0.75 V _{DDx}	-	V _{DDx} + 0.3	V
V _{IL}	Input Low Voltage	Single-ended inputs, except SMBus.	-0.3	-	0.25 V _{DDx}	V
V _{IHtri}	Input High Voltage		0.75 V _{DDx}	-	V _{DD} + 0.3	V
V _{IMtri}	Input Mid Voltage	Single-ended tri-level inputs ('_tri' suffix).	0.4 V _{DDx}	0.5 V _{DDx}	0.6 V _{DDx}	V
V _{ILtri}	Input Low Voltage	()	-0.3		0.25 V _{DDx}	V
IIL _{OE}		V _{IN} = 0V	-1	-	1	μA
IIH _{OE}	OE Input Leakage	V _{IN} = V _{DD}	20	-	35	μA
IIL _{PWRGD_PD}	PWRGD_PD Input	V _{IN} = 0V	-35	-	-20	μA
IIH _{PWRGD_PD}	Leakage	V _{IN} = V _{DD}	-1	-	1	μA
IIL _{HI_BYP_LO}		V _{IN} = 0V	-35	-	-20	μA
IIM _{HI_BYP_LO}	HI_BYP_LO Input Leakage	V _{IN} = V _{DD} /2	-1	-	1	μA
IIH _{HI_BYP_LO}	Loanago	V _{IN} = V _{DD}	20	-	35	μA
IIL _{SAR_Tri}		V _{IN} = 0V	-1	-	1	μA
IIM _{SAR_Tri}	SADR_Tri Input Leakage	V _{IN} = V _{DD} /2	5	-	20	μA
IIH _{SAR_Tri}	Loanago	V _{IN} = V _{DD}	20	-	35	μA
IIL _{SCLK, SDATA}	SMBUS Input	V _{IN} = 0V	-1	-	1	μA
IIH _{SCLK, SDATA}	Leakage	V _{IN} = V _{DD}	-1	-	1	μA
		Bypass Mode.	1	-	200	MHz
_		100MHz PLL Mode.	60	100.00	140	MHz
F _{IN}	Input Frequency	50MHz PLL Mode.	30	50.00	65	MHz
		125MHz PLL Mode.	75	125.00	175	MHz
L _{pin}	Pin Inductance ^[2]	-	-	-	7	nH
C _{IN}		Logic Inputs, except DIF_IN.	1.5	-	5	pF
C _{INDIF_IN}	Capacitance ^[2]	DIF_IN differential clock inputs.	1.5	-	2.7	pF
C _{OUT}		Output pin capacitance.	-	-	6	pF

Symbol	Symbol Parameter Conditions		Minimum	Typical	Maximum	Unit
T _{STAB} Clk Stabilization ^[3]		From V_{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock.	-	-	1	ms
Input SS Modulation		PCIe applications.	30	-	33	kHz
[†] SSCMODIN	Frequency	Non-PCIe applications.	0	-	66	kHz
t _{LATOE} #	OE# Latency ^{[2] [3]}	DIF start after OE# assertion DIF stop after OE# deassertion.	3	4	5	clocks
t _F	t _F Tfall ^[3] Fall time of single-ended control in		-	-	5	ns
t _R Trise ^[3] Rise time of single-ended cont		Rise time of single-ended control inputs.	-	-	5	ns

Table 14. Input/Supply/Common Parameters – Normal Operating Conditions (Cont.)

1. Only present on 9DBL06xxC and 9DBL08xxC devices.

2. Confirmed by design and characterization, not 100% tested in production.

3. Control inputs must be monotonic from 20% to 80% of input swing.

Table 15. SMBus Parameters

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{ILSMB}	SMBus Input Low Voltage	V _{DDSMB} = 3.3V.	-	-	0.8	V
V _{IHSMB}	SMBus Input High Voltage	V _{DDSMB} = 3.3V.	2.1	-	3.6	V
V _{OLSMB}	SMBus Output Low Voltage	At I _{PULLUP.}	-	-	0.4	V
I _{PULLUP}	SMBus Sink Current	At V _{OL.}	4	-		mA
V _{DDSMB}	Nominal Bus Voltage		2.7	-	3.6	V
t _{RSMB}	SCLK/SDATA Rise Time ^[1]	(Max VIL - 0.15) to (Min VIH + 0.15).	-	-	1000	ns
t _{FSMB}	SCLK/SDATA Fall Time ^[1]	(Min VIH + 0.15) to (Max VIL - 0.15).	-	-	300	ns
f _{SMB}	SMBus Operating Frequency ^[2] ^[3]	SMBus operating frequency.	-	-	500	kHz

1. Confirmed by design and characterization, not 100% tested in production.

2. The device must be powered up for the SMBus to function.

3. The differential input clock must be running for the SMBus to be active.

2.4 Power Management

CKPWRGD_PD#	CLK_IN	SMBus OEn bit	OEn# Pin	DIFn	DIFn#	PLL State (ZDB Mode)
0	Х	X	х	Low ^[1]	Low ^[1]	Off
1	Running	0	Х	Low ^[1]	Low ^[1]	On ^[2]
1	Running	1	0	Running	Running	On ^[2]
1	Running	1	1	Low ^[1]	Low ^[1]	On ^[2]

Table 16. Power Management

1. The output state is set by B11[1:0] (Low/Low default).

2. If Bypass mode is selected, the PLL will always be off.

2.5 ZDB Operating Mode

Table 17. ZDB (PLL) Operating Mode^[1]

HiBW_BypM_LoBW#	Operating Mode	Byte1 [7:6] Readback	Byte1 [4:3] Control
0	Low Bandwidth PLL (ZDB) Mode	00	00
Mid-level (VDD/2)	Bypass Mode (Fanout buffer)	01	01
1	High Bandwidth PLL (ZDB) Mode	11	11

1. '10' value is reserved.

3. Test Loads

Figure 6. Test Load for AC/DC Measurements

Parameters Measured	Clock Source	Device Under Test (DUT)	Differential Zo (Ω)	L (cm)	C _L (pF)
AC/DC Parameters	SMA100B	9DBL0x5xC	85	12.7	2
AGIDG Falameters	SMA100B	9DBL0x4xC	100	12.7	2

1. A DSO is used for all measurements in this table. Equipment noise is removed from all jitter measurements taken with this setup.

Figure 7. Test Loads for Phase Jitter Measurements

Parameters Measured	Clock Source	Device Under Test (DUT)	Differential Zo (Ω)	L (cm)	C _L (pF)
Additive Phase Jitter in Fanout Buffer Mode	SMA100B	9DBL0x5xC	85	12.7	2
	SMA100B	9DBL0x4xC	100	12.7	2
ZDB Mode Jitter	9SQ440	9DBL0x5xC	85	12.7	2
	9SQ440	9DBL0x4xC	100	12.7	2

Table 19. Parameters for Measurements Using Test Setup in Figure 7

4. Alternate Terminations

The LP-HCSL output can easily drive other logic families. See "AN-891 Driving LVPECL, LVDS, and CML Logic with "Universal" Low-Power HCSL Outputs" for termination schemes for LVPECL, LVDS, CML and SSTL.

4.1 Alternate HCSL Terminations

Device	Differential Zo (Ω)	Rs (Ω)
9DBLxx4xC	85	N/A
9DBLxx4xC	100	None Needed
9DBLxx5xC	85	None Needed
9DBLxx5xC	100	7.5

5. General SMBus Serial Interface Information

5.1 How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location = N
- Renesas clock will acknowledge
- Controller (host) sends the byte count = X
- Renesas clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- Renesas clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

	Index Blo	ck W	rite Operation
Contro	oller (Host)		Renesas (Slave/Receiver)
Т	starT bit		
Slave	e Address	1 1	
WR	WRite		
		1 [ACK
Beginn	ing Byte = N	1 1	
		1 1	ACK
Data By	te Count = X		
			ACK
Begini	ning Byte N		
			ACK
0			
0		X Byte	0
0		- e	0
		1 [0
Byte	Byte N + X - 1		
			ACK
Р	stoP bit	1	

5.2 How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location = N
- Renesas clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- Renesas clock will acknowledge
- Renesas clock will send the data byte count = X
- Renesas clock sends Byte N+X-1
- Renesas clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block Re	ad Op	eration
C	ontroller (Host)		Renesas
Т	starT bit	1	
	Slave Address		
WR	WRite		
			ACK
Be	eginning Byte = N		
			ACK
RT	Repeat starT		
	Slave Address		
RD	ReaD		
			ACK
		-	Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		e	0
	0	X Byte	0
	0	×	0
	0		
	1		Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

State of SADR_tri pin on first high assertion of CKPWRGD_PD#	Address ^[1]
0	1101011x
М	1101100x
1	1101101x

Table 20. SMBus Address Selection

1. 'x' is the Read/Write bit.

Table 21. Byte 0: Output Enable Control

Byte 0	Bit	7	6	5	4	3	2	1	0		
	Function	Output Enable	-	-	-	-	-	-	-		
	Туре	RW	RW	RW	RW	RW	RW	RW	RW		
Device	Definition			1	0 = Output is = OE# Pin C	s disabled ^[1] ontrols Outpi	ut				
9DBL08xxC	Name	DIF7oe	DIF6oe	DIF5oe	DIF4oe	DIF3oe	DIF2oe	DIF1oe	DIF0oe		
9DDL00XXC	Default	1	1	1	1	1	1	1	1		
9DBL06xxC	Name	DIF5oe	DIF4oe	Reserved	DIF3oe	DIF2oe	DIF1oe	Reserved	DIF0oe		
9DDL00XXC	Default	1	1	_	1	1	1	-	1		
9DBL04xxC	Name	Reserved	DIF3oe	Reserved	DIF2oe	DIF1oe	Reserved	DIF0oe	Reserved		
9DDL04XXC	Default	-	1	-	1	1	-	1	-		
9DBL02xxC	Name	Reserved			DIF1oe	DIF0oe	Reserved				
300002780	Default	-	-	-	1	1	-	-	-		

1. See Byte11[1:0] for disabled state.

Table 22. Byte 1: PLL Operating Mode and Output Amplitude Control

Byte 1	Bit	7	6	5	4	3	2	1	0	
	Function	PLL Mode Readback		Enable software PLL Mode control	Software PLL Mode Control ^[1]				Output Amplitude	
	Туре	R	R	RW	RW	RW	-	RW	RW	
	Definition	See Table 17 (ZDB Operating Mode)		0 = B1[7:6] sets PLL Mode 1 = B1[4:3] sets PLL Mode		e 17 (ZDB ng Mode)	Reserved	-		
All Devices	Name	PLLrbk1	PLLrbk0	PLLmdctrl	PLLmd1	PLLmd0	-	Amp1	Amp0	
All Devices	Default	Latch	Latch	0	0	0	1	1	0	

1. B1[5] must be set to a 1 for these bits to have any effect on the part.

Byte 2	Bit	7	6	5	4	3	2	1	0		
	Function		Slew Rate Selection								
	Туре	RW	RW	RW	RW	RW	RW	RW	RW		
	0 = Slow Setting										
Device	Definition		1 = Fast Setting								
		See electrical characteristics for actual slew rates.									
	Name	DIF7slew	DIF6slew	DIF5slew	DIF4slew	DIF3slew	DIF2slew	DIF1slew	DIF0slew		
9DBL08xxC	Default	1	1	1	1	1	1	1	1		
9DBL06xxC	Name	DIF5slew	DIF4slew	Reserved	DIF3slew	DIF2slew	DIF1slew	Reserved	DIF0slew		
9DDL00XXC	Default	1	1	-	1	1	1	-	1		
9DBL04xxC	Name	Reserved	DIF3slew	Reserved	DIF2slew	DIF1slew	Reserved	DIF0slew	Reserved		
900L04XXC	Default	-	1	-	1	1	-	1	-		
9DBL02xxC	Name		Reserved		DIF1slew	DIF0slew	Reserved				
300L02XXC	Default	-	-	-	1	1	-	-	-		

Table 23. Byte 2: Slew Rate Control 0

Table 24. Byte 3: ZDB Mode Frequency Select and Feedback Slew Rate Control

Byte 3	Bit	7	6	5	4	3	2	1	0				
-	Function	-	-	Enable software (SW) selection of ZDB frequency		ZDB Frequency Select ^[1]						-	Feedback Slew Rate
-	Туре	-	-	RW RW RW		-	-	RW					
-	Definition	Rese	erved	0 = SW frequency select disabled 1 = SW frequency select enabled	01 = 10 =	100M 50M 125M eserved	Rese	erved	0 = Slow Setting 1 = Fast Setting				
All	Name	-	-	FSelEn	FSel1	Fsel0	-	-	FBKslew				
Devices	Default	1	1	0	0	0	1	1	1				

1. B3[5] must be set to a 1 for these bits to have any effect on the part.

Byte 4 is Reserved

Table 25. Byte 5: Revision ID/Vendor ID

Byte 5	Bit	7	6	5	4	3	2	1	0
-	Function		Revis	ion ID		VENDOR ID			
-	Туре	R	R	R	R	R	R	R	R
All	Name	RID3	RID2	RID1	RID0	VID3	VID2	VID1	VID0
Devices	Default		C rev :	= 0010			0001	= IDT	

Byte 6	Bit	7	6	5	4	3	2	1	0
-	Function	Device Type				Devi	ce ID		
-	Туре	R	R	R	R	R	R	R	R
	Name	DevType 1	DevType0	Dev ID5	Dev ID4	Dev ID3	Dev ID2	Dev ID1	Dev ID0
All Devices	Default	01 = DBx	ZDB/FOB	9DBL08x1C = 0b00 9DBL06x1C = 0b00 9DBL04x2C = 0b00 9DBL02x2C = 0b00					

Table 26. Byte 6: Device Type/Device ID

Table 27. Byte 7: Byte Count

Byte 7	Bit	7	6	5	4	3	2	1	0	
-	Function	-	-	-	Byte Count Programming					
-	Туре	-	-	-	RW	RW	RW	RW	RW	
Device	Definition		Reserved			Writing to this register will configure how many bytes will be back on a block read. Default is = 8 bytes.				
All	Name	-	-	-	BC4	BC3	BC2	BC1	BC0	
-	Default	0	0	0	0	1	0	0	0	

Bytes 8 and 9 are reserved

Table 28. Byte 10: Power-Down (PD) Restore

Byte 10	Bit	7	6	5	4	3	2	1	0
-	Function	-	Restore Default Config in Power Down	-	-	-	-	-	-
-	Туре	-	RW	-	-	-	-	-	-
-	Definition	Reserved	0 = Clear Config. in Power Down 1 = Keep Config. in Power Down			Rese	rved		
All	Name	-	PD_Restore	-	-	-	-	-	-
Devices	Default	Reserved	1	0	0	0	0	0	0

Table 29. Byte 11: Impedance Control 0 and Stop State

Byte 11	Bit	7	6	5	4	3	2	1	0
-	Function	Output Impedance - Feedback		-	-	-	-	DIF/DIF#	Disable State
-	Туре	RW	RW	-	-	-	-	RW	RW
Device	Definition	00 = Reserved 01 = 850hm 10 = 1000hm 11 = Reserved			Rese	erved		01 = 10 = I	Low/Low HiZ/HiZ High/Low Low/High
	Name	FBz1	FBz0	-	-	-	-	Stop1	Stop0
All	Default	10 = 9DBLxx4xC 01 = 9DBLxx5xC		0	0	0	0	0	0

Byte 12	Bit	7	6	5	4	3	2	1	0
-	Function		Output Impedance						
-	Туре	RW	RW	RW	RW	RW	RW	RW	RW
Device	Definition		00	= Reserved,	01 = 85ohm,	10 = 100ohm	, 11 = Reserv	ved	
	Name	DIF3z1	DIF3z0	DIF2z1	DIF2z0	DIF1z1	DIF1z0	DIF0z1	DIF0z0
9DBL08xxC	Default		9DBL084xC= 0b10101010 9DBL085xC = 0b01010101						
	Name	DIF2z1	DIF2z0	DIF1z1	DIF1z0	Rese	erved	DIF0z1	DIF0z0
9DBL06xxC	Default				9DBL064xC = 9DBL065xC =				
	Name	DIF1z1	DIF1z0	Rese	erved	DIF0z1	DIF0z0	Rese	erved
9DBL04xxC	Default		9DBL044xC = 0b10xx10xx 9DBL045xC = 0b01xx01xx						
	Name	ame DIF0z1 DIF0z0 Reserved							
9DBL02xxC	Default				9DBL024xC = 9DBL025xC =				

Table 30. Byte 12: Impedance Control 1

Table 31. Byte 13: Impedance Control 2

Byte 13	Bit	7	6	5	4	3	2	1	0	
-	Function		Output Impedance							
-	Туре	RW	RW	RW	RW	RW	RW	RW	RW	
Device	Definition		00 = Reserved, 01 = 85ohm, 10 = 100ohm, 11 = Reserved							
	Name	DIF7z1	DIF7z0	DIF6z1	DIF6z0	DIF5z1	DIF5z0	DIF4z1	DIF4z0	
9DBL08xxC	Default		9DBL084xC = 0b10101010 9DBL085xC = 0b01010101							
	Name	DIF5z1	DIF5z0	DIF4z1	DIF4z0	Rese	erved	DIF3z1	DIF3z0	
9DBL06xxC	Default				9DBL064xC = 9DBL065xC =					
	Name	Rese	erved	DIF3z1	DIF3z0	Rese	erved	DIF2z1	DIF2z0	
9DBL04xxC	Default		9DBL044xC = 0bxx10xx10 9DBL045xC = 0bxx01xx01							
	Name		Reserved DIF1z1 DIF							
9DBL02xxC	Default		9DBL024xC = 0bxxxxxx10 9DBL025xC = 0bxxxxxx01							

Byte 14	Bit	7	6	5	4	3	2	1	0
-	Function			Pull-u	p (PuP)/Pull-d	lown (Pdwn)	control		
-	Туре	RW	RW	RW	RW	RW	RW	RW	RW
Device	Definition			00 = None,	01 = Pdwn, 1	0 = Pup, 11 =	Pup+Pdwn		
9DBL08xxC	Name	OE3pu/pd1	OE3pu/pd0	OE2pu/pd1	OE2pu/pd0	OE1pu/pd1	OE1pu/pd0	OE0pu/pd1	OE0pu/pd0
	Default	0	1	0	1	0	1	0	1
9DBL06xxC	Name	OE2pu/pd1	OE2pu/pd0	OE1pu/pd1	OE1pu/pd0	Rese	erved	OE0pu/pd1	OE0pu/pd0
	Default	0	1	0	1	-	-	0	1
9DBL04xxC	Name	OE1pu/pd1	OE1pu/pd0	Rese	erved	OE0pu/pd1	OE0pu/pd0	Rese	erved
	Default	0	1	-	-	0	1	-	-
9DBL02xxC	Name	OE0pu/pd1	OE0pu/pd0			Rese	erved		
	Default	0	1	-	-	-	-	-	-

Table 32. Byte 14: Pull-up/Pull-down Control 0

Table 33. Byte 15: Pull-up/Pull-down Control 1

Byte 15	Bit	7	6	5	4	3	2	1	0
-	Function			Pull-u	p (PuP)/Pull-c	lown (Pdwn) o	control		
-	Туре	RW	RW	RW	RW	RW	RW	RW	RW
Device	Definition		00 = None, 01 = Pdwn, 10 = Pup, 11 = Pup+Pdwn						
9DBL08xxC	Name	OE7pu/pd1	OE7pu/pd0	OE6pu/pd1	OE6pu/pd0	OE5pu/pd1	OE5pu/pd0	OE4pu/pd1	OE4pu/pd0
	Default	0	1	0	1	0	1	0	1
9DBL06xxC	Name	OE5pu/pd1	OE5pu/pd0	OE4pu/pd1	OE4pu/pd0	Rese	erved	OE3pu/pd1	OE3pu/pd0
	Default	0	1	0	1	-	-	0	1
9DBL04xxC	Name	Rese	erved	OE3pu/pd1	OE3pu/pd0	Rese	erved	OE2pu/pd1	OE2pu/pd0
	Default	-	-	0	1	-	-	0	1
9DBL02xxC	Name			Rese	erved			OE1pu/pd1	OE1pu/pd0
	Default	-	-	-	-	-	-	0	1

Byte 16	Bit	7	6	5	4	3	2	1	0
-	Function	-	-	-	-	-	-	Pull-up Pull-down (F	o(PuP)/ Pdwn) control
-	Туре	-	-	-	-	-	-	RW	RW
Device	Definition			Reser	ved	00 = None, 10 = Pup, 11	01 = Pdwn, = Pup+Pdwn		
All	Name	-	-	-	-	-	-	CKPWRGD_PD_ pu/pd1	CKPWRGD_PD_ pu/pd0
	Default			Reser	ved		1	0	

Table 34. Byte 16: Pull-up_Pull-down Control 2

Byte 17 is Reserved

Byte 18	Bit	7	6	5	4	3	2	1	0	
-	Function				OE pin polarity					
-	Туре	RW	RW	RW	RW	RW	RW	RW	RW	
Device	Definition				Itput enabled	-				
9DBL08xxC	Name	OE7pol	OE6pol	OE5pol	OE4pol	OE3pol	OE2pol	OE1pol	OE0pol	
	Default	0	0	0	0	0	0	0	0	
9DBL06xxC	Name	OE5pol	OE4pol	Reserved	OE3pol	OE2pol	OE1pol	Reserved	OE0pol	
	Default	0	0	0	0	0	0	0	0	
9DBL04xxC	Name	Reserved	OE3pol	Reserved	OE2pol	OE1pol	Reserved	OE0pol	Reserved	
	Default	0	0	0	0	0	0	0	0	
9DBL02xxC	Name		Reserved		OE1pol	OE0pol		Reserved		
	Default	0	0	0	0	0	0	0	0	

Table 35. Byte 18: Polarity Control 0

Table 36. Byte 19: Polarity Control 1

Byte 19	Bit	7	6	5	4	3	2	1	0
-	Function	-	-	-	-	-	-	-	CKPWRGD_PD pin polarity
-	Туре	-	-	-	-	-	-	-	RW
-	Definition				0 = Power Down when Low 1 = Power Down when High				
All Devices	Name	-	-	-	-	-	-	-	CKPWRGD_Pdpol
All Devices	Default	0	0	0	0	0	0	0	0

6. Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see Ordering Information for POD links). The package information is the most current data available and is subject to change without revision of this document.

7. Marking Diagrams

7.1 9DBL02x2C

7.2 9DBL04x2C

• L0442CIL YYWW COO LOT	● ICS L0452CIL YYWW COO LOT	 Line 2: truncated part number. "I" denotes industrial temperature range. Line 3: "YYWW" is the last two digits of the year and work week the part was assembled. Line 4: "COO" denotes country of origin.
		 Line 5: "LOT" is the lot sequence

7.3 9DBL06x1C

●	●	 Line 2: truncated part number. "I" denotes industrial
BL0641CI	BL0651CI	temperature range. Line 3: "YYWW" is the last two
YYWW	YYWW	digits of the year and work week
COO	COO	the part was assembled. Line 4: "COO" denotes country
LOT	LOT	of origin.

• Line 5: "LOT" is the lot sequence number.

number.

7.4 9DBL08x1C

• ICS DBL0841CI YYWW COO LOT	• ICS DBL0851CI YYWW COO LOT	 Line 2: truncated part number. "I" denotes industrial temperature range. Line 3: "YYWW" is the last two digits of the year and work week the part was assembled. Line 4: "COO" denotes country of origin.
---	---	--

• Line 5: "LOT" is the lot sequence number.

8. Ordering Information

Table 37. Ordering Information ^[1] ^[2] ^[3] ^[4]

Output Impedance (ohms)	Number of Clock Outputs	Package Description	Part Number	Carrier Type
85 -	2	24-VFQFPN - 4 × 4 × 0.9 mm, 0.50mm Pitch	9DBL0252CKILF	Тгау
			9DBL0252CKILFT	"T" = Tape and Reel
	4	32-VFQFPN - 5 × 5 × 0.9 mm, 0.50mm Pitch	9DBL0452CKILF	Тгау
			9DBL0452CKILFT	"T" = Tape and Reel
	6	40-VFQFPN - 5 × 5 × 0.9 mm, 0.40mm Pitch	9DBL0651CKILF	Tray
			9DBL0651CKILFT	"T" = Tape and Reel
	8	48-VFQFPN - 6 × 6 × 0.9 mm, 0.40mm Pitch	9DBL0851CKILF	Тгау
			9DBL0851CKILFT	"T" = Tape and Reel
100	2	24-VFQFPN - 4 × 4 × 0.9 mm, 0.50mm Pitch	9DBL0242CKILF	Tray
			9DBL0242CKILFT	"T" = Tape and Reel
	4	32-VFQFPN - 5 × 5 × 0.9 mm, 0.50mm Pitch	9DBL0442CKILF	Tray
			9DBL0442CKILFT	"T" = Tape and Reel
	6	40-VFQFPN - 5 × 5 × 0.9 mm, 0.40mm Pitch	9DBL0641CKILF	Tray
			9DBL0641CKILFT	"T" = Tape and Reel
	8	48-VFQFPN - 6 × 6 × 0.9 mm, 0.40mm Pitch	9DBL0841CKILF	Tray
			9DBL0841CKILFT	"T" = Tape and Reel

1. "C" is the device revision designator (will not correlate with the datasheet revision).

2. "LF" denotes Pb-free configuration, RoHS compliant.

3. "I" indicates that all devices are specified over the -40°C to +85°C (industrial) temperature range.

4. "T" = Tape and Reel, Pin 1 Orientation: EIA-481C (see Table 38 for more details).

Part Number Suffix	Pin 1 Orientation	Illustration	
т	Quadrant 1 (EIA-481-C)	Correct Pin 1 ORIENTATION CARRIER TAPE TOPSIDE (Round Sprocket Holes)	

Table 38. Pin 1 Orientation in Tape and Reel Packaging

9. Revision History

Revision	Date	Description
1.04	Mar 28, 2025	Update the pin description for VDD3.3 to "Power supply for outputs, nominally 3.3V" from "Power supply, nominal 3.3V" in Table 1.
1.03	May 20, 2024	Updated Additive PCIe Phase Jitter (Fan-out Buffer Mode) and PCIe Phase Jitter (Zero-Delay Buffer Mode) to show support for PCIe Gen6.
1.02	Nov 25, 2022	 Changed the default value of Bit 7 in Byte 10 to Reserved (see Table 28). Changed the default value of Bit 7-2 in Byte 16 to Reserved (see Table 34).
1.01	Jul 25, 2022	 Updated I_{DDO+O+RPD} maximum value in Table 10. Updated I_{DDIOPD} maximum value in Table 13. Removed Single-ended Input Current parameter in Table 14.
1.00	Jul 7, 2022	Initial release.

RENESAS

Package Outline Drawing

PSC-4192-03 NLG24P3 24-VFQFPN 4.0 x 4.0 x 0.9 mm Body, 0.5mm Pitch Rev.06, May 07, 2025

Package Outline Drawing

PSC-4171-01 NLG32P1 32-VFQFPN 5.0 x 5.0 x 0.9 mm Body, 0.5mm Pitch Rev.05, Apr 30, 2025

Package Outline Drawing

RENESAS

PSC-4292-02 NDG40P2 40-VFQFPN 5.0 x 5.0 x 0.9 mm Body, 0.4 mm Pitch Rev.03, May 20, 2025

Package Outline Drawing

Package Code:NDG48P2 48-VFQFPN 6.0 x 6.0 x 0.9 mm Body, 0.4mm Pitch PSC-4212-02, Revision: 04, Date Created: Sep 28, 2022

[©] Renesas Electronics Corporation

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.