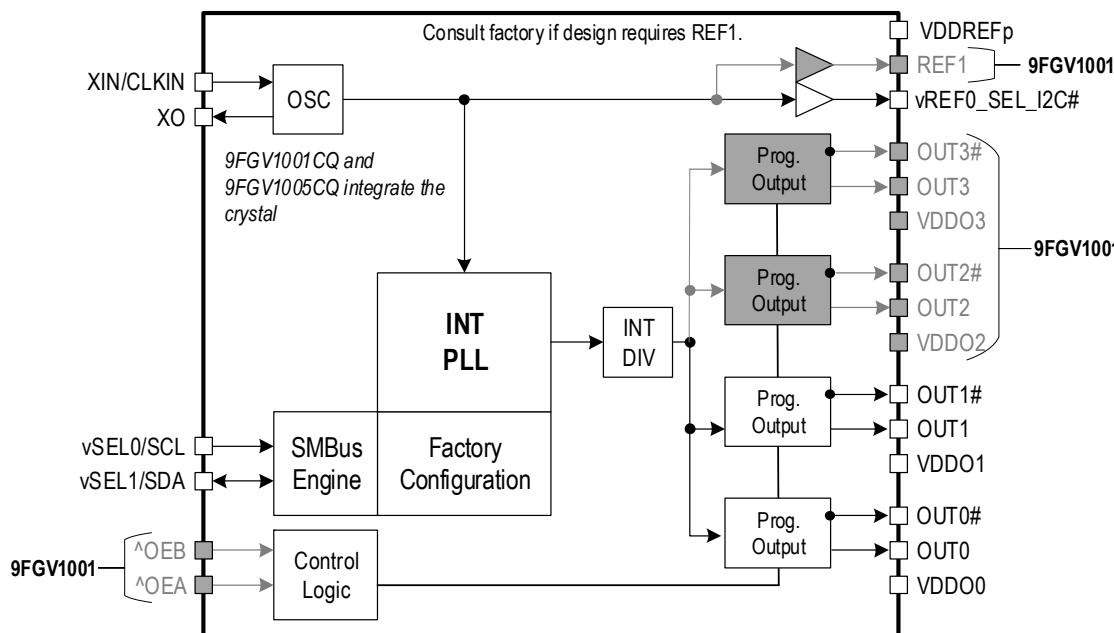


Description

The 9FGV1001C / 9FGV1005C are members of the Renesas PhiClock™ programmable clock generator family. The devices are optimized for low phase noise in non-spread spectrum applications such as Ethernet or PCI Express. Four user-defined configurations may be selected via two hardware select pins or two I²C bits, allowing easy software selection of the desired configuration.

Typical Applications

- High-performance Computing (HPC)
- Enterprise Storage including eSSDs
- 10G / 25G / 100G Ethernet
- Data Center Accelerators
- Multiple XO replacement


PCIe Clocking Architectures

- Common Clocked (CC)
- Independent Reference without spread spectrum (SRnS)

Output Features

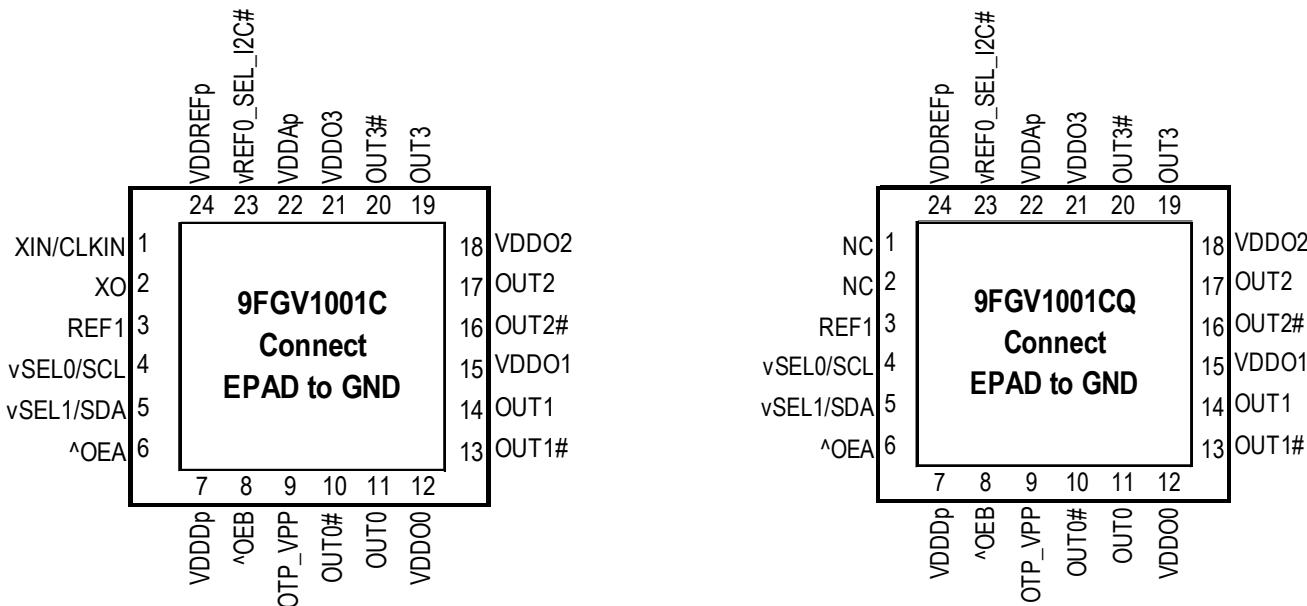
- 9FGV1001: 4 programmable output pairs plus 2 REF outputs
- 9FGV1005: 2 programmable output pairs plus 1 REF output
- 1 integer output frequency per configuration
- 1MHz–325MHz differential outputs
- 1MHz–200MHz single-ended outputs

Block Diagram

Features

- 1.8V to 3.3V power supplies
- Individual 1.8V to 3.3V V_{DDO} for each output pair
- Supports HCSL, LVDS and LVCMS I/O standards
- HCSL utilizes Renesas' LP-HCSL technology for improved performance, lower power and higher integration:
 - Programmable output impedance of 85Ω or 100Ω
- Supports LVPECL and CML logic with easy AC coupling. See application note [AN-891](#) for alternate terminations
- On-board OTP supports up to 4 complete configurations
- Configuration selected via strapping pins or I²C
- Internal crystal load capacitors
- < 125mW at 1.8V, LP-HCSL outputs at 100MHz (9FGV1001C)
- < 100mW at 1.8V, LP-HCSL outputs at 100MHz (9FGV1005C)
- 4 programmable I²C addresses: D0, D2, D4, D6
- Easily configured with Renesas [Timing Commander™](#) software or Web Configuration tool
- 4 × 4 mm 24-VFQFPN and 24-LGA packages (9FGV1001)
- 3 × 3 mm 16-LGA package (9FGV1005)
- Integrated crystal option available

Key Specifications


- 261fs RMS 12kHz–20MHz typical phase jitter at 156.25MHz
- PCIe Gen5 jitter (CC) < 0.08ps RMS
- PCIe Gen5 jitter (SRNS) < 0.07ps RMS

Contents

Description	1
Typical Applications	1
PCIe Clocking Architectures	1
Output Features	1
Features	1
Key Specifications	1
Block Diagram	1
9FGV1001 Pin Assignments and Descriptions	3
9FGV1005 Pin Assignments and Descriptions	5
Phase Noise Plots	7
Absolute Maximum Ratings	8
Recommended Operating Conditions	8
Electrical Characteristics	9
I2C Bus Characteristics	15
Test Loads	16
Crystal Characteristics	18
Power Sequencing Recommendations	18
Package Outline Drawings	19
Thermal Characteristics	19
Marking Diagrams	20
Standard Configurations	20
Ordering Information	21
Revision History	22

9FGV1001 Pin Assignments and Descriptions

Figure 1. Pin Assignments for 9FGV1001C 4 x 4 mm 24-VFQFPN and 24-LGA Packages – Top View

4 × 4 mm 24-VFQFPN, 0.5mm pitch

[^] prefix indicates internal pull-up resistor

v prefix indicates internal pull-down resistor

4 × 4 mm 24-LGA, 0.5mm pitch

[^] prefix indicates internal pull-up resistor

v prefix indicates internal pull-down resistor

Table 1. 9FGV1001C Pin Descriptions^[a]

Number	Name	Type	Description
1 ^[b]	XIN/CLKIN	Input	Crystal input or reference clock input.
2 ^[b]	XO	Output	Crystal output.
3	REF1	Output	LVCMOS reference output.
4	vSEL0/SCL	Input	Select pin for internal frequency configurations/I ² C clock pin. Function is determined by state of SEL_I2C# upon power-up. This pin has an internal pull-down.
5	vSEL1/SDA	I/O	Select pin for internal frequency configurations/I ² C data pin. Function is determined by state of SEL_I2C# upon power-up. This pin has an internal pull-down.
6	[^] OEA	Input	Active high input for enabling outputs. This pin has an internal pull-up resistor. 0 = disable outputs, 1 = enable outputs.
7	VDDDp	Power	Digital power. Connect to 1.8V, 2.5V or 3.3V.
8	[^] OEB	Input	Active high input for enabling outputs. This pin has an internal pull-up resistor. 0 = disable outputs, 1 = enable outputs.
9	OTP_VPP	Power	Voltage for programming OTP. During normal operation, this pin should be connected to the same power rail as V _{DDD} .
10	OUT0#	Output	Complementary output clock 0.
11	OUT0	Output	Output clock 0.
12	VDDO0	Power	Power supply for output 0.
13	OUT1#	Output	Complementary output clock 1.

Table 1. 9FGV1001C Pin Descriptions^[a] (Cont.)

Number	Name	Type	Description
14	OUT1	Output	Output clock 1.
15	VDDO1	Power	Power supply for output 1.
16	OUT2#	Output	Complementary output clock 2.
17	OUT2	Output	Output clock 2.
18	VDDO2	Power	Power supply for output 2.
19	OUT3	Output	Output clock 3.
20	OUT3#	Output	Complementary output clock 3.
21	VDDO3	Power	Power supply for output 3.
22	VDDAp	Power	Analog power. Connect to same voltage as VDDDp, with proper filtering.
23	vREF0_SEL_I2C#	Latched I/O	Latched input/LVCMOS output. At power-up, the state of this pin is latched to select the state of the I ² C pins. After power-up, the pin acts as an LVCMOS reference output. This pin has an internal pull-down. 1 = SEL0/SEL1. 0 = SCL/SDA.
24	VDDREFp	Power	Power supply for REF outputs and the internal XO. Nominal voltages are 1.8V, 2.5V or 3.3V.
25	EPAD	GND	Connect to ground.

[a] Unused outputs can be programmed off and left floating. Output supplies V_{DDREF} and V_{DDO2} have to be connected. If OUT0 is used, V_{DDO1} must also be connected.

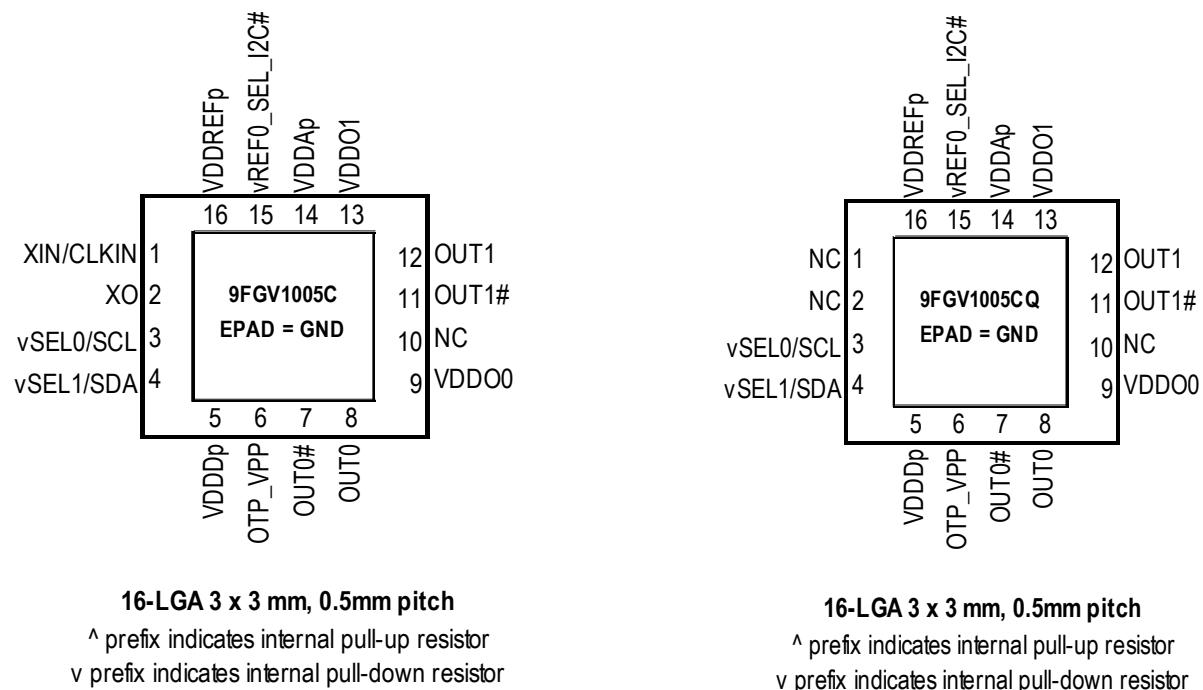

[b] These pins are 'No Connect' on 9FGV1001CQ integrated quartz versions and should have no stubs.

Table 2. 9FGV1001 OE Mapping

OE[B:A]	OUT0	OUT1	OUT2	OUT3	REF0	REF1
00	Running	Stopped	Stopped	Stopped	Running	Running
01	Running	Running	Stopped	Stopped	Running	Running
10	Running	Running	Running	Stopped	Running	Running
11	Running	Running	Running	Running	Running	Running

9FGV1005 Pin Assignments and Descriptions

Figure 2. Pin Assignments for 9FGV1005C 3 x 3 mm 16-LGA Package – Top View

Table 3. 9FGV1005C Pin Descriptions^[a]

Number	Name	Type	Description
1 ^[b]	XIN/CLKIN	Input	Crystal input or reference clock input.
2 ^[b]	XO	Output	Crystal output.
3	vSEL0/SCL	Input	Select pin for internal frequency configurations/I ² C Clock pin. Function is determined by state of SEL_I2C# upon power-up. This pin has an internal pull-down.
4	vSEL1/SDA	I/O	Select pin for internal frequency configurations/I ² C Data pin. Function is determined by state of SEL_I2C# upon power-up. This pin has an internal pull-down.
5	VDDAp	Power	Digital power. Connect to 1.8V, 2.5V or 3.3V.
6	OTP_VPP	Power	Voltage for programming OTP. During normal operation, this pin should be connected to the same power rail as V _{DDD} .
7	OUT0#	Output	Complementary output clock 0.
8	OUT0	Output	Output clock 0.
9	VDDO0	Power	Power supply for output 0.
10	NC	N/A	No connection.
11	OUT1#	Output	Complementary output clock 1.
12	OUT1	Output	Output clock 1.
13	VDDO1	Power	Power supply for output 1.
14	VDDREFp	Power	Analog power. Connect to same voltage as VDDAp, with proper filtering.

Table 3. 9FGV1005C Pin Descriptions^[a] (Cont.)

Number	Name	Type	Description
15	vREF0_SEL_I2C#	Latched I/O	Latched input/LVCMOS output. At power-up, the state of this pin is latched to select the state of the I ² C pins. After power-up, the pin acts as an LVCMOS reference output. This pin has an internal pull-down. 1 = SEL0/SEL1. 0 = SCL/SDA.
16	VDDREFp	Power	Power supply for REF outputs and the internal XO. Nominal voltages are 1.8V, 2.5V or 3.3V.
17	EPAD	GND	Connect to ground.

[a] Unused outputs can be programmed off and left floating. Output supplies V_{DDREF} and V_{DD01} have to be connected. This means that if only one output is to be used, it must be OUT1. If OUT0 is used, pin 10 must be connected. They may share the same power filter.

[b] These pins are 'No Connect' on 9FGV1005CQ integrated quartz version and should have no stubs.

Phase Noise Plots

Figure 3. 9FGV1001C Phase Noise Plot, 3.3V, 25°C

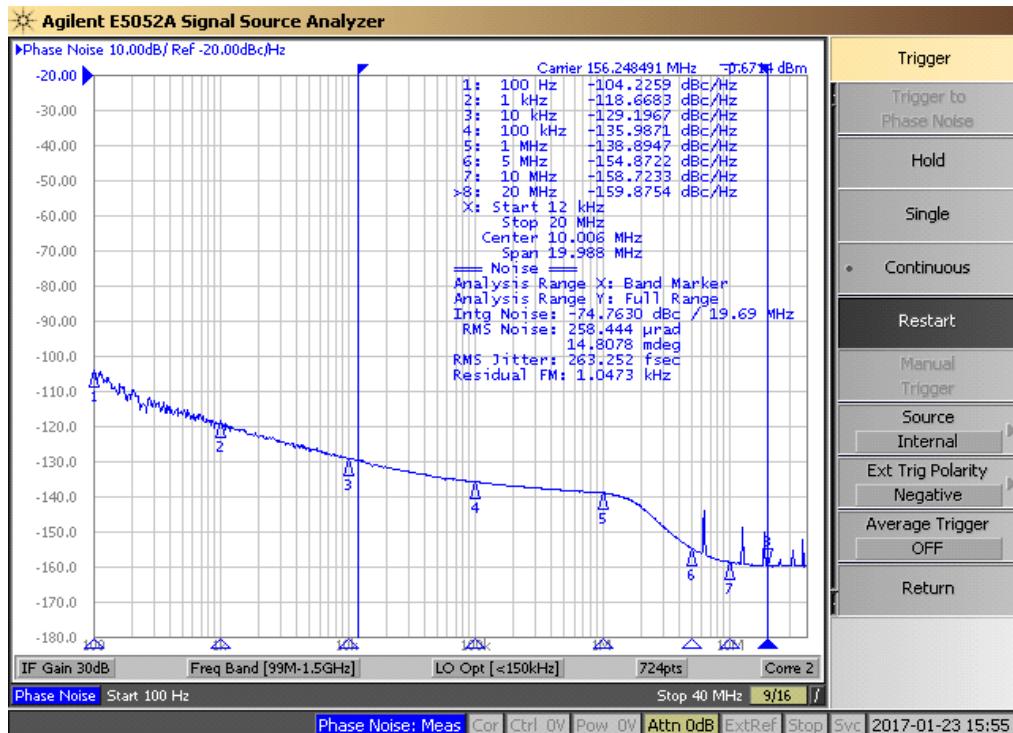
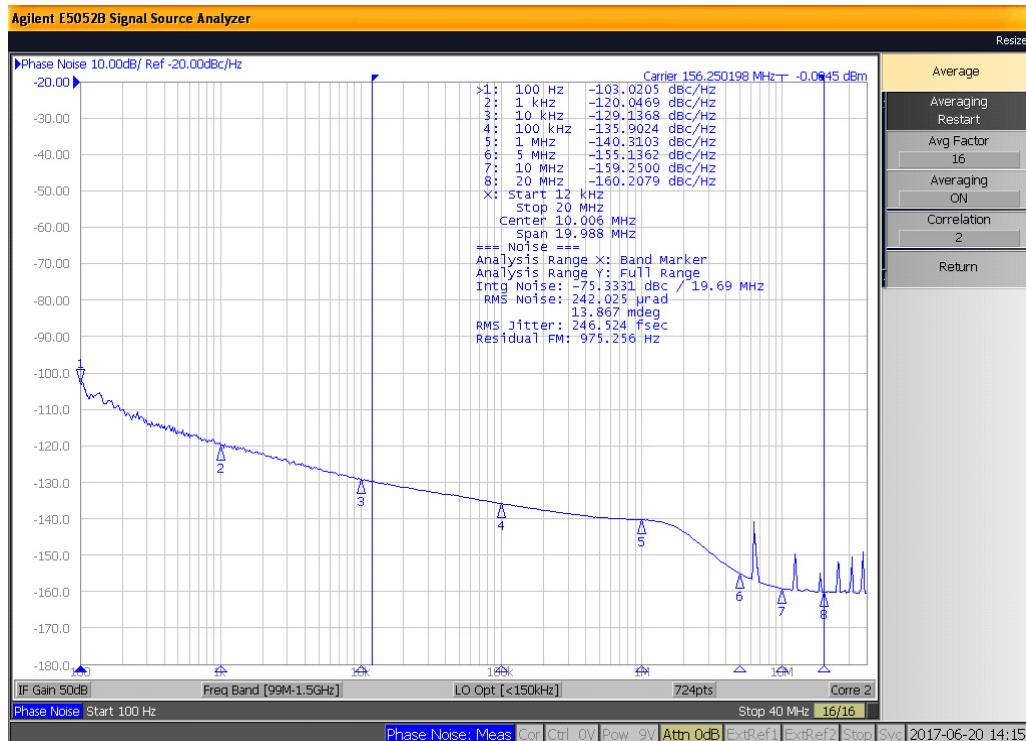



Figure 4. 9FGV1005C Phase Noise Plot, 3.3V, 25°C

Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 9FGV1001C / 9FGV1005C at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 4. Absolute Maximum Ratings

Parameter	Rating
Supply Voltage, V_{DDA} , V_{DDD} , V_{DDO}	3.9V
Storage Temperature, T_{STG}	-65°C to 150°C
ESD Human Body Model	2000V
Junction Temperature	125°C
Inputs	
XIN/CLKIN	0V to 1.2V voltage swing
Other Inputs	-0.5V to V_{DDD}
Outputs	
Outputs, V_{DDO} (LVC MOS)	-0.5V to $V_{DDO} + 0.5V$
Outputs, IO (SDA)	10mA

Recommended Operating Conditions

Table 5. Recommended Operating Conditions^[a]

Symbol	Parameter	Minimum	Typical	Maximum	Unit
V_{DDOx}	Power supply voltage for supporting 1.8V outputs.	1.71	1.8	1.89	V
	Power supply voltage for supporting 2.5V outputs.	2.375	2.5	2.625	V
	Power supply voltage for supporting 3.3V outputs.	3.135	3.3	3.465	V
V_{DDD}	Power supply voltage for core logic functions.	1.71	–	3.465	V
V_{DDA}	Analog power supply voltage. Use filtered analog power supply if available.	1.71	–	3.465	V
T_A	Operating temperature, ambient.	-40	–	85	°C
C_L	Maximum load capacitance (3.3V LVC MOS only).	–	–	15	pF
t_{PU}	Power-up time for all V_{DDs} to reach minimum specified voltage (power ramps must be monotonic).	0.05	–	5	ms

[a] All electrical characteristics are specified over these conditions unless noted.

Electrical Characteristics

Table 6. Common Electrical Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
f_{IN}	Input Frequency	Crystal input frequency ^[a] .	8	–	50	MHz
		CLKIN input frequency ^[b] .	1	–	240	MHz
f_{OUT}	Output Frequency	Differential clock output (LVDS/LP-HCSL).	1	–	325	MHz
		Single-ended clock output (LVC MOS).	1	–	200	MHz
f_{VCO}	VCO Frequency	VCO operating frequency range.	2400	2500	2600	MHz
f_{BW}	Loop Bandwidth	Input frequency = 25MHz.	0.06	–	0.9	MHz
V_{IH}	Input High Voltage	SEL[1:0].	$0.7 \times V_{DDD}$	–	$V_{DDD} + 0.3$	V
V_{IL}	Input Low Voltage	SEL[1:0].	GND - 0.3	–	0.8	V
V_{IH}	Input High Voltage	REF/SEL_I2C#.	$0.65 \times V_{DDREF}$	–	$V_{DDREF} + 0.3$	V
V_{IL}	Input Low Voltage	REF/SEL_I2C#.	-0.3	–	0.4	V
V_{IH}	Input High Voltage	XIN/CLKIN.	0.8	–	1.2	V
V_{IL}	Input Low Voltage	XIN/CLKIN.	-0.3	–	0.4	V
T_R/T_F	Input Rise/Fall Time	OEA, OEB (when present).	–	–	10	ns
		SEL1/SDA, SEL0/SCL.	–	–	300	
C_{IN}	Input Capacitance	SEL[1:0].	–	3	7	pF
R_{UP}	Internal Pull-up Resistor		200	237	300	kΩ
R_{DOWN}	Internal Pull-down Resistor		200	237	300	kΩ
C_L	Programmable Capacitance at XIN and XO (XIN in parallel with XO)	XIN/CLKIN, XO.	0		8	pF
t_2	Input Duty Cycle	CLKIN, measured at $V_{DDREF}/2$.	40	50	60	%
t_3	Output Duty Cycle	LVCMOS, $f_{OUT} > 156.25\text{MHz}$.	40	50	60	%
		LVCMOS, $f_{OUT} \leq 156.25\text{MHz}$.	45	50	55	%
		LVDS, LP-HCSL outputs.	45	50.2	55	%
t_6	Clock Jitter (9FGV1001) ^[c]	Cycle-to-cycle jitter (Peak-to-Peak), See Test Frequencies for Jitter Measurements for configurations.	–	28	–	ps
		Reference clock RMS phase jitter (12kHz to 20MHz integration range). See Test Frequencies for Jitter Measurements for configurations.	–	338	–	fs rms
		OUTx RMS phase jitter(12kHz to 20MHz integration range) differential output. See Test Frequencies for Jitter Measurements for configurations.	–	261	–	fs rms

Table 6. Common Electrical Characteristics (Cont.)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
t6	Clock Jitter (9FGV1005) ^[c]	Cycle-to-cycle jitter (Peak-to-Peak). See Test Frequencies for Jitter Measurements for configurations.	–	30	–	ps
		Reference clock RMS phase jitter (12kHz to 5MHz integration range). See Test Frequencies for Jitter Measurements for configurations.	–	357	–	fs rms
		OUTx RMS phase jitter(12kHz to 20MHz integration range) differential output. See Test Frequencies for Jitter Measurements for configurations.	–	284	–	fs rms
t7	Output Skew	All outputs using the same driver format and V _{DDO} voltage. (9FGV1001).	–	105	135	ps
		All outputs using the same driver format and V _{DDO} voltage. (9FGV1005).	–	37	50	
t8a	Lock Time ^[d] ^[e]	PLL outputs valid from V _{DD} s \geq 1.5V.	–	5	10	ms
t8b		REF outputs valid from V _{DD} s \geq 1.5V.	–	5	11	

[a] Practical lower frequency is determined by loop filter settings.

[b] Input doubler off. Maximum input frequency with input doubler on is 160MHz.

[c] Actual jitter is configuration dependent. These values are representative of what the device can achieve.

[d] Includes loading the configuration bits from OTP to registers when the configuration number is changed.

[e] Actual PLL output valid time depends on the loop configuration.

Table 7. Test Frequencies for Jitter Measurements

XIN/CLKIN	OUT0	OUT1	OUT2	OUT3	Unit
50	156.25 ^[a] ^[b]			MHZ	
	100 ^[a] ^[c] ^[d]			MHZ	

[a] Outputs configured as LP-HCSL or LVDS with REF output off unless noted.

[b] This configuration used for 12kHz-20MHz OUT phase jitter measurement. REF off, SSC off.

[c] This configuration used for 12kHz-20MHz REF phase jitter measurement, SSC Off.

[d] This configuration used for PCIe RefClk phase jitter measurements.

Table 8. PCIe Refclk Phase Jitter^[a] [b] [c]

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Specification Limits	Unit
$t_{jphPCleG1-CC}$	PCIe Phase Jitter (Common Clocked Architecture)	PCIe Gen1 (2.5 GT/s)	–	2.35	4.84	86	ps (p-p)
$t_{jphPCleG2-CC}$		PCIe Gen2 Hi Band (5.0 GT/s)	–	0.13	0.22	3	ps (RMS)
$t_{jphPCleG3-CC}$		PCIe Gen2 Lo Band (5.0 GT/s)	–	0.05	0.08	3.1	ps (RMS)
$t_{jphPCleG4-CC}$		PCIe Gen3 (8.0 GT/s) [d]	–	0.07	0.12	1	ps (RMS)
$t_{jphPCleG5-CC}$		PCIe Gen4 (16.0 GT/s) [d] [e]	–	0.07	0.12	0.5	ps (RMS)
$t_{jphPCleG5-CC}$		PCIe Gen5 (32.0 GT/s) [d] [f]	–	0.03	0.05	0.15	ps (RMS)
$t_{jphPCleG1-IR}$	PCIe Phase Jitter (IR Architecture) [g]	PCIe Gen1 (2.5 GT/s)	–	0.24	0.34	N/A	ps (RMS)
$t_{jphPCleG2-IR}$		PCIe Gen2 (5.0 GT/s)	–	0.18	0.28	N/A	ps (RMS)
$t_{jphPCleG3-IR}$		PCIe Gen3 (8.0 GT/s)	–	0.05	0.08	N/A	ps (RMS)
$t_{jphPCleG4-IR}$		PCIe Gen4 (16.0 GT/s)	–	0.05	0.08	N/A	ps (RMS)
$t_{jphPCleG5-IR}$		PCIe Gen5 (32.0 GT/s)	–	0.04	0.07	N/A	ps (RMS)

[a] See [Test Loads](#) for details.

[b] The REFCLK jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the [Test Loads](#) section of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all measurements.

[c] Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83.

[d] SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content.

[e] Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.

[f] Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.

[g] The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate IR jitter values, however, it does not provide specification limits, hence the "N/A" in the Limit column. IR values are informative only. In general, a clock operating in an IR system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by $\sqrt{2}$. And additional consideration is the value for which to divide by $\sqrt{2}$. The conservative approach is to divide the CC ref clock jitter limits, and the case can be made for dividing the CC channel simulation values by $\sqrt{2}$, if the ref clock is close to the clock input. An example for Gen4 is as follows: A rule-of-thumb IR limit would be either $0.5\text{ps RMS}/\sqrt{2} = 0.35\text{ps RMS}$, or $0.7\text{ps RMS}/\sqrt{2} = 0.5\text{ps RMS}$, depending on the distance between the clock generator and the Tx or Rx clock input.

Table 9. Low-Power (LP) HCSL Differential Output Electrical Characteristics^[a]

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
$T_{R/F}$	Slew Rate	Scope averaging on. [b] [c]	1.25	2.5	4	V/ns
$\Delta T_{R/F}$	Slew Rate Matching	[d] [e]	–	9	20	%
V_{CROSS}	Crossing Voltage (abs)	Scope averaging off. [d] [e] [f]	250	424	550	mV

Table 9. Low-Power (LP) HCSL Differential Output Electrical Characteristics^[a] (Cont.)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
ΔV_{CROSS}	Crossing Voltage (var)	Scope averaging off. ^[d] ^[e] ^[g]	—	16	140	mV
T_{PERIOD_AVG}	Average Clock Period Accuracy	Outputs set to 100MHz for PCIe applications. SSC off. ^[b] ^[h] ^[i] ^[j]	-100	0	+100	
V_{MAX}	Absolute Maximum Voltage	Includes 300mV of overshoot (V_{ovs}). ^[d] ^[k] ^[l]	660	808	1150	mV
V_{MIN}	Absolute Minimum Voltage	Includes -300mV of undershoot (V_{uds}). ^[d] ^[l] ^[m]	-300	-54	150	mV

[a] System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. See [Test Loads](#) for details.

[b] Measured from differential waveform.

[c] Measured from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

[d] Measured from single-ended waveform.

[e] Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ± 75 mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge rate of REFCLK+ should be compared to the fall edge rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.

[f] Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.

[g] Defined as the total variation of all crossing voltages of rising REFCLK+ and falling REFCLK-. This is the maximum allowed variance in V_{CROSS} for any particular system.

[h] Refer to Section 8.6 of the PCI Express Base Specification, Revision 5.0 for information regarding PPM considerations.

[i] PCIe Gen1 through Gen4 specify ± 300 ppm frequency tolerances. PCIe Gen5 specifies ± 100 ppm frequency tolerances and the 9FGV100x devices already meet this.

[j] "ppm" refers to parts per million and is a DC absolute period accuracy specification. 1ppm is 1/1,000,000th of 100.00000MHz exactly or 100Hz. For 100ppm, then we have an error budget of $100\text{Hz}/\text{ppm} \times 100\text{ppm} = 10\text{kHz}$. The period is to be measured with a frequency counter with measurement window set to 100ms or greater. The ± 100 ppm applies to systems that do not employ Spread Spectrum clocking, or that use common clock source. For systems employing Spread Spectrum Clocking, there is an additional 2,500ppm nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2,600ppm for Common Clock architectures. Separate Reference Clock architectures may have a lower allowed spread percentage.

[k] Defined as the maximum instantaneous voltage including overshoot.

[l] At default amplitude settings.

[m] Defined as the minimum instantaneous voltage including undershoot.

Table 10. 9FGV1001C Current Consumption^[a]

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I_{DDREF}	VDDREF Supply Current	50MHz REFCLK.	–	4	6	
I_{DDCORE}	Core Supply Current ^[b]	2500MHz VCO, 50MHz REFCLK.	–	23	29	
I_{DDOx}	Output Buffer Supply Current V_{DDO2} (includes output divider)	LVDS, 325MHz.	–	19	24	mA
		LP-HCSL, 100MHz.	–	16	20	
		LVCMOS, 50MHz ^[c] .	–	15	19	
		LVCMOS, 200MHz ^[c] .	–	24	37	
	Output Buffer Supply Current (V_{DDO0} , V_{DDO1} , V_{DDO3} – per output)	LVDS, 325MHz.	–	7	10	
		LP-HCSL, 100MHz.	–	6	8	
		LVCMOS, 50MHz ^[c] .	–	4	7	
		LVCMOS, 200MHz ^[c] .	–	13	24	
I_{DDPD}	Total Power Down Current ^[b]	Programmable outputs, HCSL mode, B37[0] = 0.	–	9	12	
		Programmable outputs in LVDS mode, B37[0] = 0.	–	24	30	
		Programmable outputs in LVCMOS1 mode, B37[0] = 0.	–	4	7	

[a] See [Test Loads](#) for details.

[b] $I_{DDCORE} = I_{DDA} + I_{DDIG}$.

[c] Single CMOS driver active for each output pair.

Table 11. 9FGV1005C Current Consumption [a]

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I_{DDREF}	VDDREF Supply Current	50MHz REFCLK.	–	5	8	
I_{DDCORE}	Core Supply Current [b]	2500MHz VCO, 50MHz REFCLK.	–	24	30	
I_{DDOX}	Output Buffer Supply Current V_{DDO1} (includes output divider)	LVDS, 325MHz.	–	22	27	mA
		LP-HCSL, 100MHz.	–	17	23	
		LVCMOS, 50MHz [c].	–	15	19	
		LVCMOS, 200MHz [c].	–	25	39	
	Output Buffer Supply Current – V_{DDO0}	LVDS, 325MHz.	–	8	11	
		LP-HCSL.	–	6	9	
		LVCMOS, 50MHz [c].	–	4	7	
		LVCMOS, 200MHz [c].	–	13	25	
I_{DDPD}	Total Power Down Current [b]	Programmable outputs in HCSL mode, B37[0] = 0.	–	7	10	
		Programmable outputs in LVDS mode, B37[0] = 0.	–	16	20	
		Programmable outputs in LVCMOS1 mode, B37[0] = 0.	–	5	7	

[a] See [Test Loads](#) for details.

[b] $I_{DDCORE} = I_{DDA} + I_{DDD} + I_{DDAO}$.

[c] Single CMOS driver active for each output pair.

Table 12. LVCMOS Output Electrical Characteristics [a]

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
S_R	Slew Rate	3.3V $\pm 5\%$, 20% to 80% of V_{DDO} (output load = 4.7pF).	2.6	3.7	4.7	V/ns
		2.5V $\pm 5\%$, 20% to 80% of V_{DDO} (output load = 4.7pF).	1.5	2.4	4.7	
		1.8V $\pm 5\%$, 20% to 80% of V_{DDO} (output load = 4.7pF).	1.0	1.7	3.2	
V_{OH}	Output High Voltage	$I_{OH} = -15\text{mA}$ at 3.3V.	0.8 x V_{DDO}	–	V_{DDO}	V
		$I_{OH} = -12\text{mA}$ at 2.5V.				
		$I_{OH} = -8\text{mA}$ at 1.8V.				
V_{OL}	Output Low Voltage	$I_{OL} = 15\text{mA}$ at 3.3V.	–	0.22	0.4	V
		$I_{OL} = 12\text{mA}$ at 2.5V.	–			
		$I_{OL} = 8\text{mA}$ at 1.8V.	–			
I_{OZDD}	Output Leakage Current	Outputs, tri-stated, $V_{DDO}, V_{DDREF} = 3.465\text{V}$.	–	0	5	μA
R_{OUT}	CMOS Output Driver Impedance	$T_A = 25^\circ\text{C}$.	–	17	–	Ω

[a] See [Test Loads](#) for details.

Table 13. LVDS Output Electrical Characteristics^[a]

Symbol	Parameter	Minimum	Typical	Maximum	Unit
$V_{OT}(+)$	Differential Output Voltage for the TRUE Binary State	247	328	454	mV
$V_{OT}(-)$	Differential Output Voltage for the FALSE Binary State	-454	-332	-247	mV
ΔV_{OT}	Change in V_{OT} between Complementary Output States	-	-	50	mV
V_{OS}	Output Common Mode Voltage (Offset Voltage) at 3.3V +5% and 2.5V +5%	1.125	1.19	1.55	V
V_{OS}	Output Common Mode Voltage (Offset Voltage) at 1.8V +5%	0.8	0.86	0.95	V
ΔV_{OS}	Change in V_{OS} between Complementary Output States	-	0	50	mV
I_{OS}	Outputs Short Circuit Current, V_{OUT+} or V_{OUT-} = 0V or V_{DD}	-	6	12	mA
I_{OSD}	Differential Outputs Short Circuit Current, V_{OUT+} = V_{OUT-}	-	3	12	mA
T_R	Rise Times Tested at 20%–80%	-	257	375	ps
T_F	Fall Times Tested at 80%–20%	-	287	375	ps

[a] See [Test Loads](#) for details.

I²C Bus Characteristics

Table 14. I²C Bus DC Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V_{IH}	Input High Level	-	$0.7 \times V_{DD}$	-	-	V
V_{IL}	Input Low Level	-	-	-	$0.3 \times V_{DD}$	V
V_{HYS}	Hysteresis of Inputs	-	$0.05 \times V_{DD}$	-	-	V
I_{IN}	Input Leakage Current	-	-1	-	30	μA
V_{OL}	Output Low Voltage	$I_{OL} = 3mA$.	-	-	0.4	V

Table 15. I²C Bus AC Characteristics^[a]

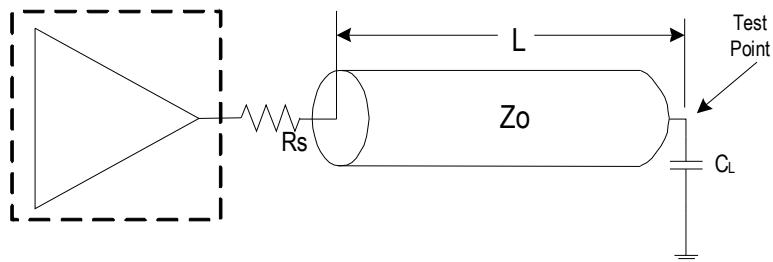

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
F_{SCLK}	Serial Clock Frequency (SCL)	-	10	-	400	kHz
t_{BUF}	Bus Free Time between STOP and START	-	1.3	-		μs
$t_{SU:START}$	Setup Time, START	-	0.6	-		μs
$t_{HD:START}$	Hold Time, START	-	0.6	-		μs
$t_{SU:DATA}$	Setup Time, Data Input (SDA)	-	0.1	-		μs
$t_{HD:DATA}$	Hold Time, Data Input (SDA)	-	0	-		μs
t_{OVD}	Output Data Valid from Clock	-	-	-	0.9	μs
C_B	Capacitive Load for Each Bus Line	-	-	-	400	pF
t_R	Rise Time, Data and Clock (SDA, SCL)	-	$20 + 0.1 \times C_B$	-	300	ns
t_F	Fall Time, Data and Clock (SDA, SCL)	-	$20 + 0.1 \times C_B$	-	300	ns

Table 15. I²C Bus AC Characteristics^[a] (Cont.)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
t_{HIGH}	HIGH Time, Clock (SCL)	—	0.6	—	—	μs
t_{LOW}	LOW Time, Clock (SCL)	—	1.3	—	—	μs
$t_{SU:STOP}$	Setup Time, STOP	—	0.6	—	—	μs

[a] A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the $V_{IH(MIN)}$ of the SCL signal) to bridge the undefined region of the falling edge of SCL.

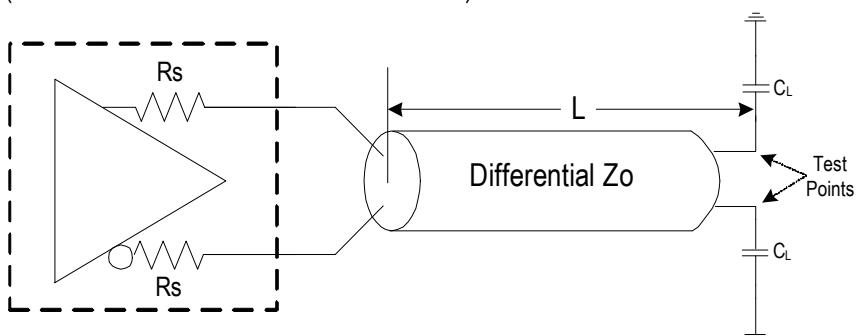

Test Loads

Figure 5. LVCMS AC/DC Test Load

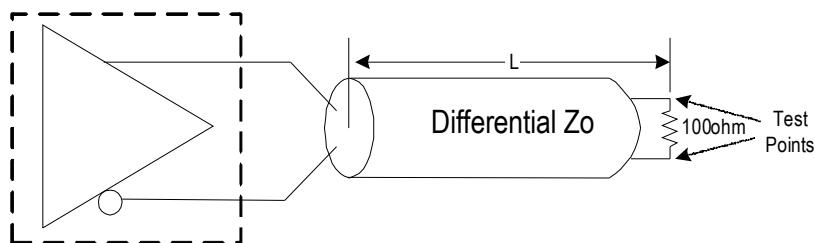
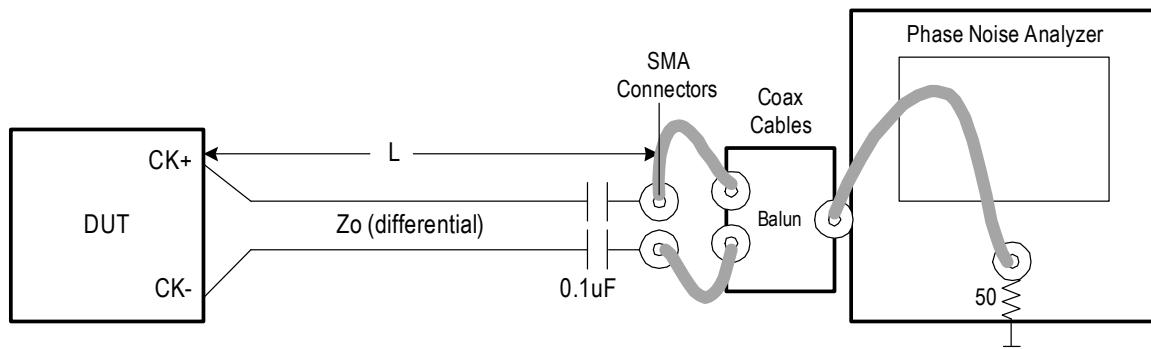

Rs	Zo	L	C _L
33Ω	50Ω	5 inches	4.7pF

Figure 6. LP-HCSL AC/DC Test Load


(Standard PCIe source-terminated test load)

Rs	Zo	L	C _L
Internal	100Ω	5 inches	2pF
Internal	85Ω	5 inches	2pF

Figure 7. LVDS AC/DC Test Load

Rs	Zo	L	C _L
N/A	100Ω	5 inches	N/A

Figure 8. Test Setup for PCIe Measurement Using a Phase Noise Analyzer

Rs	Zo	L	C _L
Internal	100Ω	5 inches	N/A

Crystal Characteristics

Table 16. Recommended Crystal Characteristics

Parameter	Value	Unit
Frequency	8–50	MHz
Resonance Mode	Fundamental	–
Frequency Tolerance at 25°C	±20	ppm maximum
Frequency Stability, REF at 25°C Over Operating Temperature Range	±20	ppm maximum
Temperature Range (commercial)	0–70	°C
Temperature Range (industrial)	-40 to 85	°C
Equivalent Series Resistance (ESR)	50	Ω maximum
Shunt Capacitance (C_0)	7	pF maximum
Load Capacitance (C_L)	8	pF maximum
Drive Level	0.1	mW maximum
Aging Per Year	±5	ppm maximum

Power Sequencing Recommendations

There is no specific power sequencing requirements, and all supply pins can be grouped onto one power rail. Output supplies VDDREF and VDDO0 must be connected. If OUT0 is used, both pins 9 and 10 must be connected. For more details on output supply registers, see [Table 17](#) and the [9FGV100x Register Descriptions and Programming Guide](#).

Table 17. Power Supply, Output Clock and Corresponding Register Values

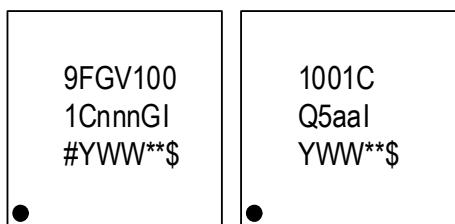
Power Supply	Output Clock	Register
VDDO0	OUT0	0x0B[7]
VDDO1	OUT1	0x08[7]
VDDO2	OUT2	0x05[7]
VDDO3	OUT3	0x02[7]

Unused or floating pins are then removed from power sequencing considerations. The power-up times for all VDDs to reach the minimum specified voltage is a minimum of 0.05ms, as seen in [Table 5](#).

Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see [Ordering Information](#) for POD links). The package information is the most current data available and is subject to change without revision of this document.

Thermal Characteristics


Table 18. Thermal Resistance ^[a]

Parameter	Symbol	Conditions	Package	Typical Values	Unit
Thermal Resistance (devices with external crystal)	θ_{JC}	Junction to case.	NBG24	52	°C/W
	θ_{Jb}	Junction to base.		2.3	
	θ_{JA0}	Junction to air, still air.		44	
	θ_{JA1}	Junction to air, 1 m/s air flow.		37	
	θ_{JA3}	Junction to air, 3 m/s air flow.		33	
	θ_{JA5}	Junction to air, 5 m/s air flow.		32	
	θ_{JC}	Junction to case.	LTG16	66	
	θ_{Jb}	Junction to base.		5.1	
	θ_{JA0}	Junction to air, still air.		63	
	θ_{JA1}	Junction to air, 1 m/s air flow.		56	
	θ_{JA3}	Junction to air, 3 m/s air flow.		51	
Thermal Resistance Q-series (devices with internal crystal)	θ_{JA5}	Junction to air, 5 m/s air flow.		49	
	θ_{JC}	Junction to case.	LTG24	57.3	
	θ_{Jb}	Junction to base.		24.3	
	θ_{JA0}	Junction to air, still air.		79.8	
	θ_{JA1}	Junction to air, 1 m/s air flow.		73.9	
	θ_{JA3}	Junction to air, 3 m/s air flow.		69.9	
	θ_{JA5}	Junction to air, 5 m/s air flow.		67.3	
	θ_{JC}	Junction to case.	LTG16	82.1	
	θ_{Jb}	Junction to base.		42.3	
	θ_{JA0}	Junction to air, still air.		93.6	
	θ_{JA1}	Junction to air, 1 m/s air flow.		87.1	
	θ_{JA3}	Junction to air, 3 m/s air flow.		83.3	

[a] EPAD soldered to board.

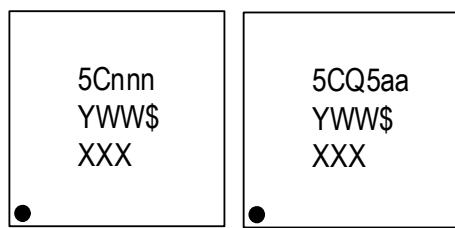

Marking Diagrams

Figure 9. 9FGV1001C Marking Diagrams

- Lines 1 and 2: truncated part number:
 - “nnn” denotes the decimal digits indicating a specific configuration.
 - “aa” denotes the alphanumeric digits indicating a specific Q5 configuration.
- Line 3:
 - “#” denotes the stepping number.
 - “YWW” denotes the last digits of the year and week the part was assembled.
 - “**” denotes the lot sequence; “\$” denotes the mark code.

Figure 10. 9FGV1005C Marking Diagrams

- Line 1: truncated part number
 - “nnn” denotes the decimal digits indicating a specific configuration.
 - “aa” denotes the alphanumeric digits indicating a specific Q5 configuration.
- Line 2: “YWW” denotes the last digits of the year and week the part was assembled; “\$” denotes mark code.
- Line 3: “XXX” denotes the last three characters of the lot number.

Standard Configurations

Table 19. 9FGV1001C / 9FGV1005C Standard Configurations

Supply Voltage—all pins (V)	Output Impedance (ohms)	Number of PCIe Clock Outputs	XTAL Frequency (MHz)	Orderable Part Number (Bulk)	Orderable Part Number (Tape and Reel)
3.3	100	4	25 – external	9FGV1001C001NBGI	9FGV1001C001NBGI8
			50 – internal	9FGV1001CQ505LTGI	9FGV1001CQ505LTGI8
		2	25 – external	9FGV1005C001LTGI	9FGV1005C001LTGI8
			50 – internal	9FGV1005CQ505LTGI	9FGV1005CQ505LTGI8
1.8	100	4	25 – external	9FGV1001C002NBGI	9FGV1001C002NBGI8
			50 – internal	9FGV1001CQ506LTGI	9FGV1001CQ506LTGI8
		2	25 – external	9FGV1005C002LTGI	9FGV1005C002LTGI8
			50 – internal	9FGV1005CQ506LTGI	9FGV1005CQ506LTGI8

Table 20. Common Features of 9FGV1001C / 9FGV1005C Standard Configurations

These common features are collaborative with [Table 19](#).

Configuration	Output Frequency (MHz)	Output Type	Ref Outputs
0	50	LP-HCSL	OFF
1	100		
2	125		
3	156.25		

Table 21. 9FGV1001C / 9FGV1005C Standard Configurations (with 39.0625MHz crystal frequency)

Supply Voltage—all pins (V)	Output Impedance (ohms)	Number of PCIe Clock Outputs	XTAL Frequency (MHz)	Orderable Part Number (Bulk)	Orderable Part Number (Tape and Reel)
3.3	100	4	39.0625 – external	9FGV1001C011NBGI	9FGV1001C011NBGI8
		2	39.0625 – external	9FGV1005C011LTGI	9FGV1005C011LTGI8
1.8	100	4	39.0625 – external	9FGV1001C012NBGI	9FGV1001C012NBGI8
		2	39.0625 – external	9FGV1005C012LTGI	9FGV1005C012LTGI8

Table 22. Common Features of 9FGV1001C / 9FGV1005C Standard Configurations (with 39.0625MHz crystal frequency)

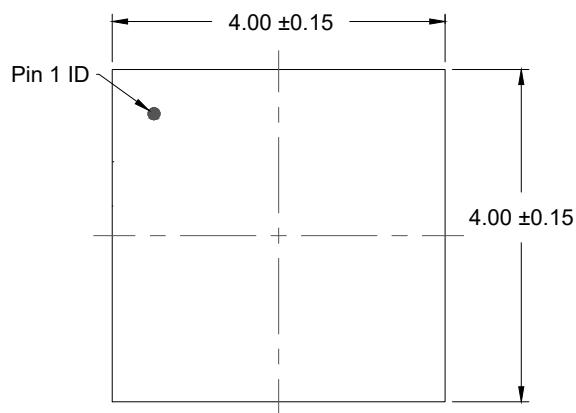
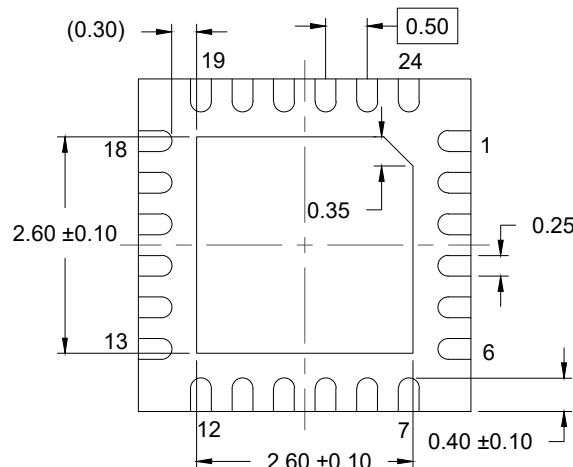
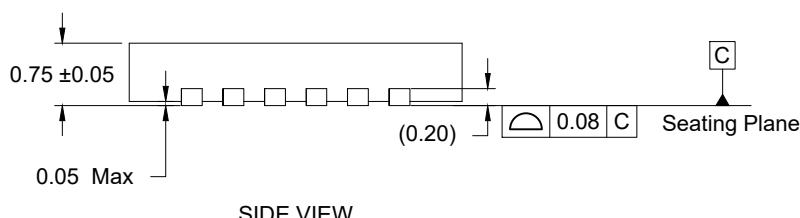
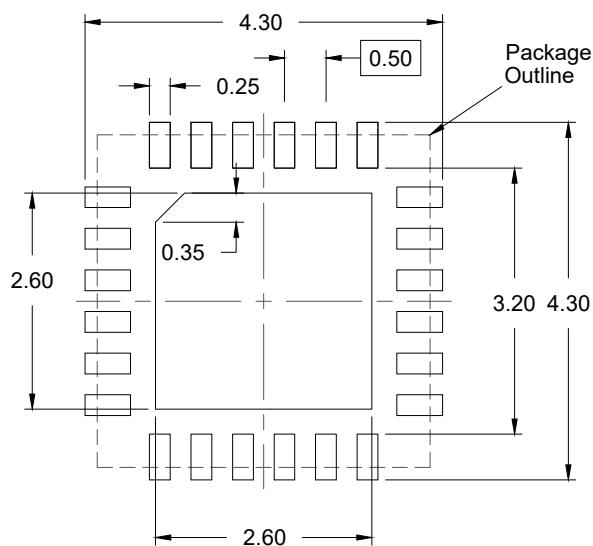
These common features are collaborative with [Table 21](#).

Configuration	Output Frequency (MHz)	Output Type	Ref Outputs
0	156.25	LP-HCSL	OFF
1	161.1328125		
2	312.5		
3	322.265625		

Ordering Information

Orderable Part Number	Package	Carrier Type	Temperature	Crystal
9FGV1001CnnnNBGI	4 × 4 mm, 0.5mm pitch 24-VFQFPN	Tray	-40 to +85°C	External
9FGV1001CnnnNBGI8		Tape and Reel		
9FGV1001CQ5aaLTGI	4 × 4 mm, 0.5mm pitch 24-LGA	Tray	-40 to +85°C	50MHz Internal
9FGV1001CQ5aaLTGI8		Tape and Reel		
9FGV1005CnnnLTGI	3 × 3 mm, 0.5mm pitch 16-LGA	Tray	-40 to +85°C	External
9FGV1005CnnnLTGI8		Tape and Reel		
9FGV1005CQ5aaLTGI		Tray		50MHz Internal
9FGV1005CQ5aaLTGI8		Tape and Reel		

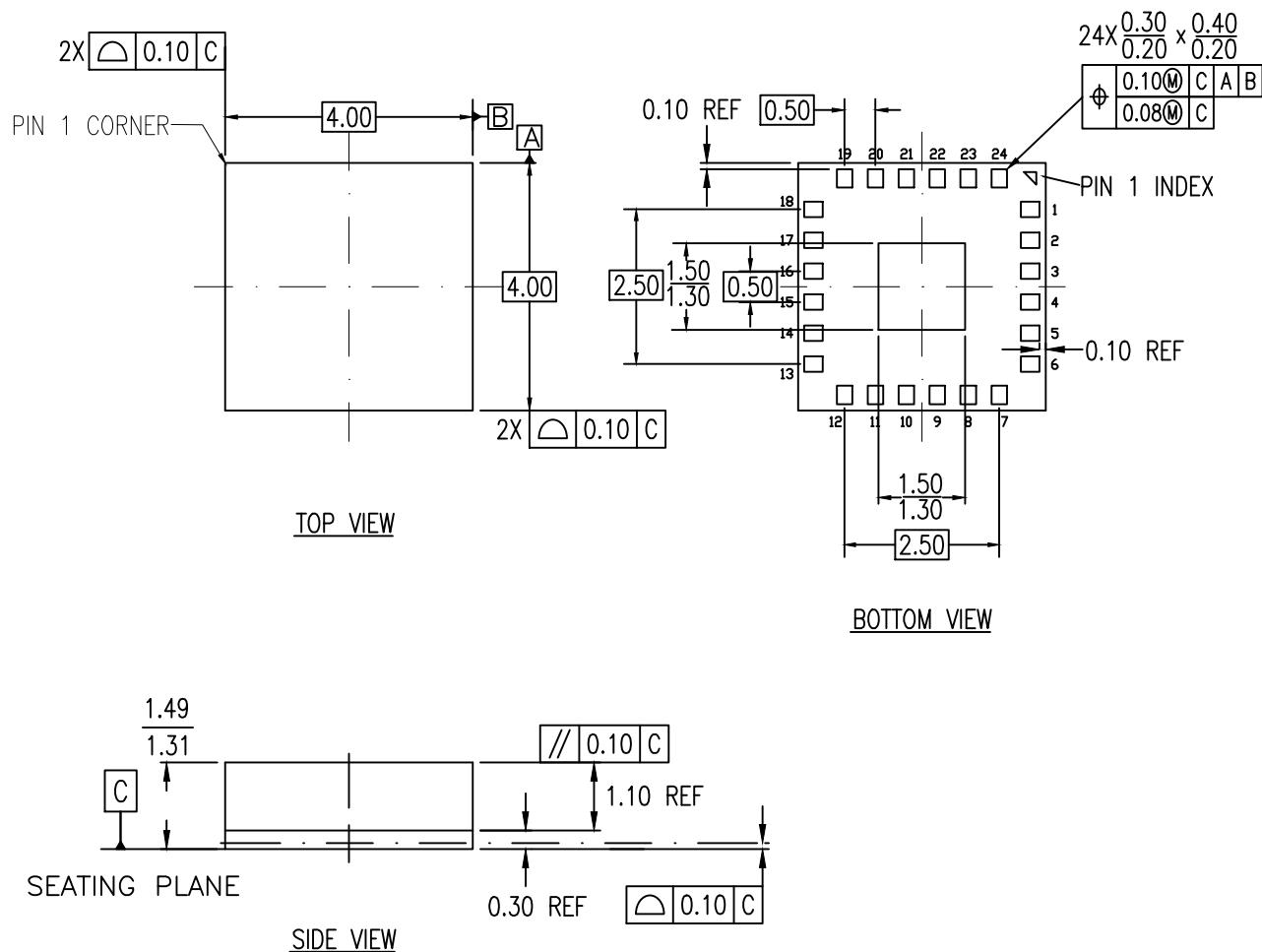
“G” indicates RoHS 6.6 compliance.





“nnn” are decimal digits indicating a specific configuration.

“aa” are alphanumeric digits indicating a specific configuration.

“Q5” indicates internal 50MHz crystal.

Revision History


Revision Date	Description of Change
November 7, 2025	Added Power Sequencing Recommendations section.
March 29, 2023	Updated footnote "d" in Table 6 .
October 29, 2020	Updated pin descriptions for VDDAp and VDDDP.
September 28, 2020	Added Standard Configurations section and tables.
September 18, 2020	Corrected typo in Features section from 3 x 3 mm 16-LGA (9FGV1006) to 3 x 3 mm 16-LGA (9FGV1005).
August 18, 2020	Updated 9FGV1005CQ marking diagram.
August 14, 2020	Updated Slew Rate 1.8V minimum value from 0.8 to 1.0V/ns.
August 13, 2020	Updated Carrier Type in Ordering Information table from "Cut-Tape" to "Tray".
July 21, 2020	<ul style="list-style-type: none">▪ Merge 9FGV1001 and 9FGV1005 into single data sheet.▪ Update to device Rev C, SEL0 and SEL1 lines now have internal pull-down resistors.▪ Add PCIe Gen5 performance specifications.▪ Updated electrical tables to latest format.

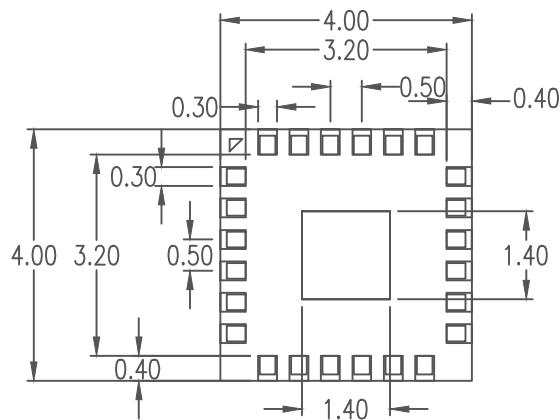
TOP VIEW

BOTTOM VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN

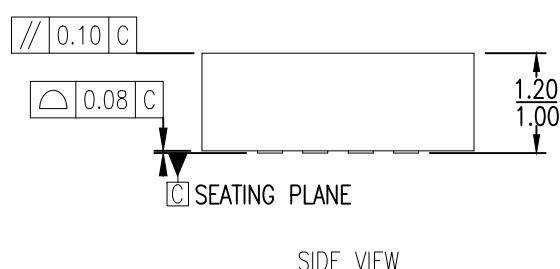
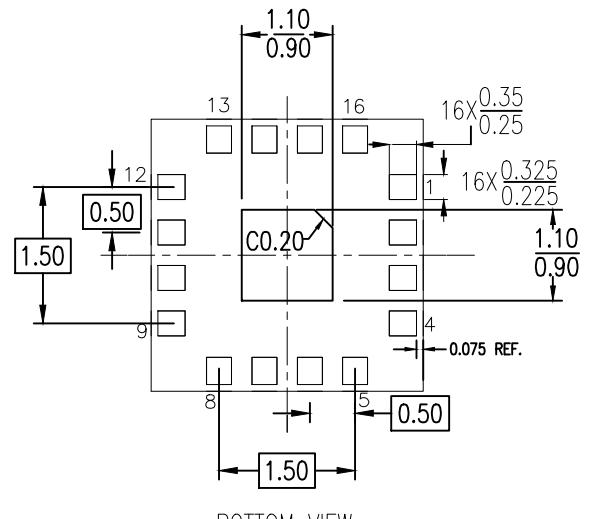
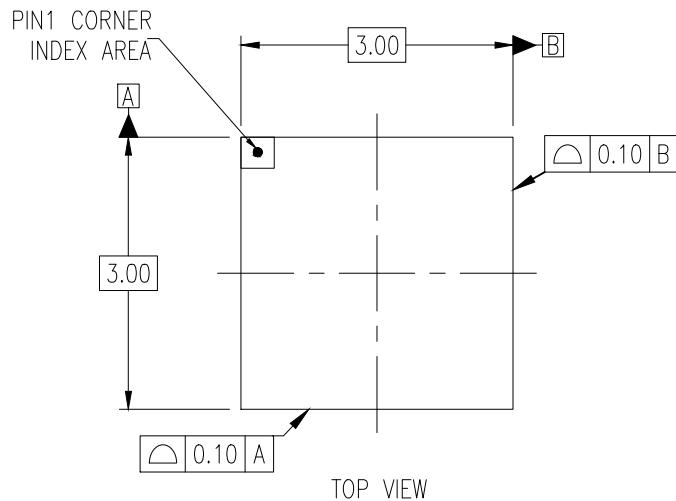
(PCB Top View, NSMD Design)


NOTES:

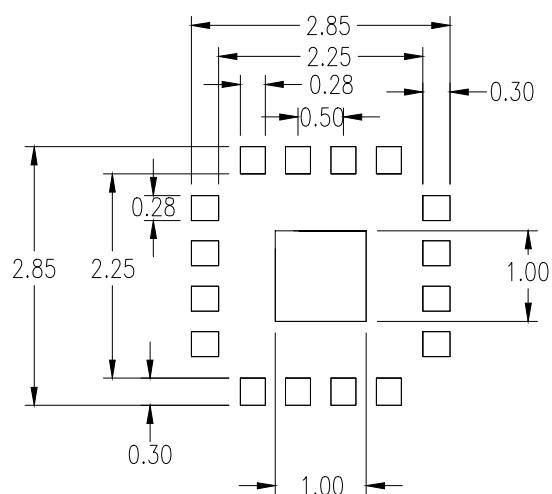
1. JEDEC compatible.
2. All dimensions are in mm and angles are in degrees.
3. Use ± 0.05 mm for the non-toleranced dimensions.
4. Numbers in () are for references only.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.

RECOMMENDED LAND PATTERN DIMENSION


NOTES:

1. ALL DIMENSION ARE IN mm. ANGLES IN DEGREES.
2. TOP DOWN VIEW, AS VIEWED ON PCB.
3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

Package Revision History		
Date Created	Rev No.	Description
Sept 15, 2017	Rev 00	Initial Release

NOTES:

1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982.
2. ALL DIMENSIONS ARE IN MILLIMETERS.

RECOMMENDED LAND PATTERN DIMENSION**NOTES:**

1. ALL DIMENSION ARE IN mm. ANGLES IN DEGREES.
2. TOP DOWN VIEW. AS VIEWED ON PCB.
3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.