Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010

Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment, and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

HD151TS206SS

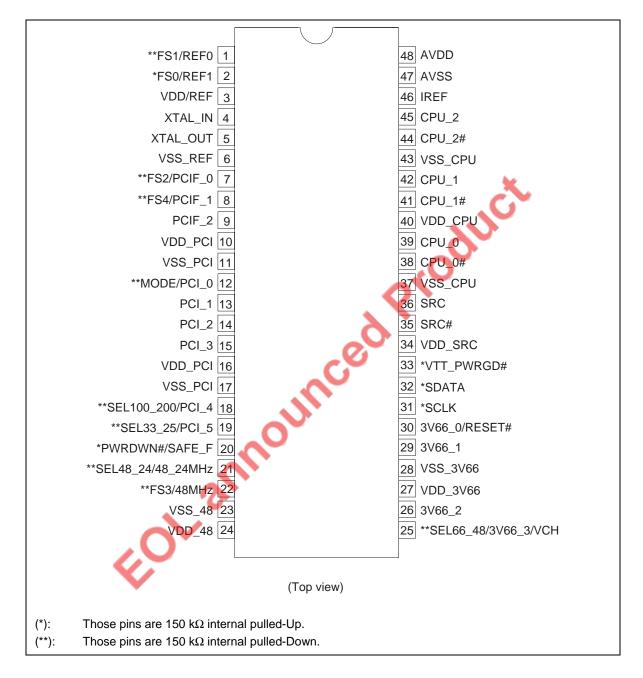
Mother Board Clock Generator for Intel P4+ Chipset (Springdale)

> REJ03D0005-0100Z Preliminary Rev.1.00 Apr.28.2003

Description

The HD151TS206SS is Intel CK409 type high-performance, low-skew, low-jitter, PC motherboard clock generator. It is specifically designed for Intel Pentium[®]4+ chipset.

Features

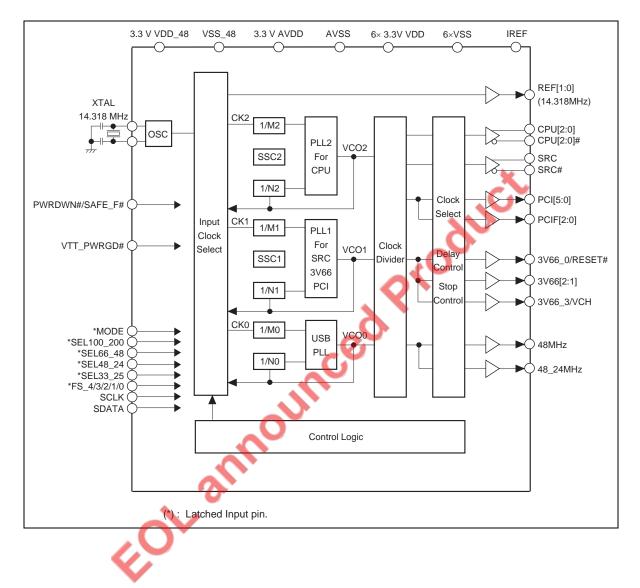

- 3 differential pairs of current mode control CPU clock
- 1 differential pairs of Serial Reference Clock (SRC)
- 6 PCI clocks and 3 PCIF clocks @3.3 V, 33.3 MHz typ
- 1 copy of 48 MHz for USB @3.3 V
- 1 copy of 48 MHz for DOT @3.3 V
- 4 copies of 3V66 clock @3.3 V,66.6 MHz
- 1 copy of VCH@3.3 V, 48 MHz
- Power save and clock stop function.
- I²CTM serial port programming
- Programmable Clock Control (Spread Spectrum Percentage, Clock Output Skew, Slew Rate)
- 48pin SSOP (300 mils)

Key Specifications

- Supply Voltages: $VDD = 3.3 V \pm 5\%$
- CPU clock cycle to cycle jitter = |125ps| (SSC Disabled)
- CPU clock group Skew = 100ps
- 3V66 clock group Skew = 250psmax
- PCI clock group Skew = 500psmax

tot announced product

Pin Arrangement


Pin Descriptions

Pin name	No.	Туре	Description
AVSS	47	Ground	Ground for PLL
VSS_CPU	43,37		Ground for outputs
VSS_3V66	28		
VSS_PCI	11,17		
VSS_REF	6		
VSS_48	23		
AVDD	48	Power	3.3 V Power Supply for PLL
VDD_CPU	40		3.3 V Power Supply for outputs
VDD_SRC	34		
VDD_3V66	27		
VDD_PCI	10,16		3.3 V Power Supply for outputs
VDD_REF	3		.0
VDD_48	24		
**FS1/REF0	1	INPUT/OUTPUT	Frequency select latch input pin. 3.3 V 14.318 MHz reference clock.
*FS0/REF1	2	INPUT/OUTPUT	Frequency select latch input pin. 3.3 V 14.318 MHz reference clock.
XTAL_IN	4	INPUT 🌈	14.318 MHz XTAL input.
XTAL_OUT	5	OUTPUT	14.318 MHz XTAL output. Don't connect when an external clock is applied at XTAL_IN.
**FS2/PCIF_0	7,	INPUT/OUTPUT	Frequency select latch input pin. Free running PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66.
**FS4/PCIF_1	8	ONPUT/OUTPUT	Frequency select latch input pin. Free running PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66.
PCIF_2	9	OUTPUT	Free running PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66.
**MODE/PCI_0	12	INPUT/OUTPUT	Function select latch input pin for pin 30, 1 = Reset#, 0 = clock output. / PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66.
PCI[1:5]	13,14,1 18,19	5, OUTPUT	PCI clock 3.3 V output. 33 MHz clocks divided down from 3V66.

Pin Descriptions (cont.)

Pin name	No.	Туре	Description
**SEL100_200/PCI_4	18	INPUT/OUTPUT	Latched select input for SRC output. 1 = 200 MHz, 0 = 100 MHz /PCI clock 3.3 V output. 33 MHz clock divided down from 3V66.
**SEL33_25/PCI_5	19	INPUT/OUTPUT	Latched select input for PCI5 output. 1 = 25 MHz, 0 = 33 MHz /PCI clock 3.3 V output. 33 MHz clock divided down from 3V66.
*PWRDWN# /SAFE_FREQ	20	INPUT	Power down pin. All circuits will be powered down. Asynchronous active low input pin used to power down the device into low power state. The internal clocks are disabled and VCO and the crystal are stopped. When Byte15 bit5 = 1 Safe frequency input select. Real time input for frequency jump. Driving this input 'LOW' will cause output to jump to predefined IIC frequency location.
**SEL48_24/48_24MHz	21	INPUT/OUTPUT	Latched select input for 48_24 MHz output 1 = 24 MHz, 0 = 48 MHz / 48_24 MHz clock 3.3 V output.
**FS3/48MHz	22	INPUT/OUTPUT	Frequency select latch input pin. 3.3 V Fixed 48 MHz DOT clock output.
**SEL66_48 /3V66_3/VCH	25	INPUT/OUTPUT	Latched select input for 3V66/VCH output 1 = 48 MHz, 0 = 66.66 MHz. / 3V66 or VCH clock output.
3V66_2,3V66_1	26,29	OUTPUT	3.3 V 66.66 MHz clock output.
3V66_0/RESET#	30	Ουτρυτ	3.3 V 66.66 MHz clock output / Real time system reset signal for frequency gear ratio change or watchdog timer timeout. This signal is active low and selected by Mode latch input.
*SCLK	31	INPUT	Clock input for I ² C logic.
*SDATA	32	INPUT/OUTPUT	Data input and output for I ² C logic.
*VTT_PWRGD#	33	INPUT	Qualifying input that latches Frequency latch inputs. When this input is at a logic low, Frequency latched.
SRC#	35	OUTPUT	"Complementary" clock of Differential Serial Reference Clock.
SRC	36	OUTPUT	"True" clock of Differential Serial Reference Clock.
CPU[0:2]	39,42, 45	OUTPUT	"True" clocks of differential pair CPU clock.
CPU#[0:2]	38,41, 44	OUTPUT	"Complementary" clocks of differential pair CPU clock.
		INPUT	A precision resistor is attached to this pin which is

Block Diagram

Byte0 Control Register

Bit	Description	Contents	Туре	Default	Note
7	Reserved		R	0	
6	Reserved		R	0	
5	Reserved		R	0	
4	Reserved		R	0	
3	Reserved		R	1	
2	Reserved		R	1	
1	Reserved		R	×	
0	Reserved		R	Х	
Byte1 Bit	Control Register Description	Contents	Туре	Default	Note
7	Reserved		RW	0	
6	SRC Output enable	0 = Disabled (tristate) 1 = Enabled	RW	1	
5	Reserved	C.O	RW	1	
4	Reserved		RW	1	
3	Reserved		RW	1	
2	CPU2 Output enable	0 = Disabled (tristate) 1 = Enabled	RW	1	
1	CPU1 Output enable	0 = Disabled (tristate) 1 = Enabled	RW	1	
0	CPU0 Output enable	0 = Disabled (tristate) 1 = Enabled	RW	1	
Byte2	Control Register				
Bit	Description	Contents	Туре	Default	Note
7	SRC_Pwrdwn drive mode	0 = Driven in power down, 1 = Tristate	RW	0	See
6	Reserved		RW	0	Table 2
5	CPU2_Pwrdwn drive mode	0 = Driven in power down, 1 = Tristate	RW	0	See
4	CPU1_Pwrdwn drive mode	0 = Driven in power down, 1 = Tristate	RW	0	Table
3	CPU0_Pwrdwn drive mode	0 = Driven in power down, 1 = Tristate	RW	0	_
2	Reserved		RW	0	_
1	Reserved		RW	0	_
0	Reserved		RW	0	

I²C Controlled Register Bit Map (cont.) Table1 CPU Clock Power Management Truth Table

Signal	I Pin PWRDWN#	PWRDWN# Tristate Bit Byte2[5:3]		Note	
CPU[2	2:0] 1	Х	Running		
CPU[2	2:0] 0	0	Driven @ Iref x2	See Note1	
CPU[2	2:0] 0	1	Tristate		
Note:	1. Iref = VDD/(3Rr) = 3.3/(3x4 Iref x6 = 13.9 mA (Voh @2		= 4.6 mA (Voh @Z: 0.23	V @50 Ω)	
Table2	2 SRC Clock Power Manageme	nt Truth Table		X	
Signal	I Pin PWRDWN#	PWRDWN# Tristate Bit Byte2[7]	1	Note	
SRC	1	Х	Running		
SRC	0	0	Driven @ Iref x2	See Note1	
SRC	0	1	Tristate		
Byte3 Bit	Control Register Description	Contents	Ту	/pe Default	t Note
7	Reserved		R\	N 1	
6	Reserved		R\	N 1	
5	PCI_5 Output enable	0 = Disabled, 1 = Ena	bled R\	N 1	
4	PCI_4 Output enable	0 = Disabled, 1 = Ena	Ibled R\	N 1	
3	PCI_3 Output enable	0 = Disabled, 1 = Ena	Ibled R\	N 1	
2	PCI_2 Output enable	0 = Disabled, 1 = Ena	bled R\	N 1	
1	PCI_1 Output enable	0 = Disabled, 1 = Ena	bled R\	N 1	
0	PCI_0 Output enable	0 = Disabled, 1 = Ena	bled R\	N 1	
Byte 4	Control Register				
Bit	Description	Contents	Ту	/pe Default	t Note
7	Reserved		R\	N 0	
6	48_24MHz Output Enable	0 = Disabled, 1 = Ena	bled R\	N 1	
5	Reserved		R\	N 0	
4	Reserved		R\	N 0	
-					

4	Reserved			0
3	Reserved		RW	0
2	PCIF_2 Output enable	0 = Disabled, 1 = Enabled	RW	1
1	PCIF_1 Output enable	0 = Disabled, 1 = Enabled	RW	1
0	PCIF_0 Output enable	0 = Disabled, 1 = Enabled	RW	1

Byte5 Control Register

Bit	Description	Contents	Туре	Default	Note
7	48MHz Output Enable	0 = Disabled, 1 = Enabled	RW	1	
6	Reserved		RW	1	
5	VCH Select 66MHz / 48MHz	0 = 3V66 mode 1 = VCH (48MHz) mode	RW	0	
4	Reserved		RW	1	
3	3V66_3/VCH Output Enable	0 = Disabled, 1 = Enabled	RW	1	
2	3V66_2 Output Enable	0 = Disabled, 1 = Enabled	RW	1	
1	3V66_1 Output Enable	0 = Disabled, 1 = Enabled	RW	1	
0	3V66_0 Output Enable	0 = Disabled, 1 = Enabled	RW	1	
			~		

Byte6 Control Register

0	3V66_0 Output Enable	0 = Disabled, T = Enabled		I	
Byte6	Control Register		00.		
Bit	Description	Contents	Туре	Default	Note
7	Test Clock Mode	0 = Disabled, 1 = Enabled	RW	0	
6	Reserved	0.	RW	0	
5	Reserved	6	RW	0	
4	SRC Frequency Select	0 = 100 MHz, 1 = 200 MHz	RW	0	
3	Reserved		RW	0	
2	Spread Spectrum Mode	0 = Spread OFF 1 = Spread ON	RW	0	See B9[7:6]
1	REF1 Output Enable	0 = Disabled, 1 = Enabled	RW	1	
0	REF0 Output Enable	0 = Disabled, 1 = Enabled	RW	1	

Byte7 Vendor Identification Register

Bit	Description	Contents	Туре	Default	Note
7	Revision Code Bit3	Vendor Specific	R	0	
6	Revision Code Bit2	Vendor Specific	R	0	
5	Revision Code Bit1	Vendor Specific	R	0	
4	Revision Code Bit0	Vendor Specific	R	1	
3	Vendor ID Bit3	Vendor Specific	R	1	
2	Vendor ID Bit2	Vendor Specific	R	1	
1	Vendor ID Bit1	Vendor Specific	R	1	
0	Vendor ID Bit0	Vendor Specific	R	1	

Byte8 Read Back Byte Count Register

Bit	Description	Contents	Туре	Default	Note
7	Read back byte count Bit7	Writing to this register will configure	RW	0	
6	Read back byte count Bit6	 byte Count and how many bytes will be read back. 	RW	0	
5	Read back byte count Bit5	Default is 1Ehex = 30 bytes.	RW	0	
4	Read back byte count Bit4	_	RW	1	
3	Read back byte count Bit3	_	RW	1	
2	Read back byte count Bit2	_	RW	1	
1	Read back byte count Bit1	_	RW	<u>1</u>	
0	Read back byte count Bit0	_	RW	0	
•	Control Register		.	Defect	Nete
Bit	Description	Contents	Туре	Default	Note
7	SSC2 Enable Bit	B6[2] = 0 or B9[7] = 1 ; SSC2 = OFF B6[2] = 1 & B9[7] = 0 ; SSC2 = ON	RW	0	
6	SSC1 Enable Bit	B6[2] = 0 or B9[6] = 1 : SSC1 = OFF B6[2] = 1 & B9[6] = 0 : SSC1 = ON	RW	0	
5	Clock Frequency Control Bit4	Latched input FS_4 at Power ON	RW	Х	See Table3
4	Clock Frequency Control Bit3	Latched input FS_3 at Power ON	RW	Х	-
3	Clock Frequency Control Bit2	Latched input FS_2 at Power ON	RW	Х	-
2	Clock Frequency Control Bit1	Latched input FS_1 at Power ON	RW	Х	-
1	Clock Frequency Control Bit0	Latched input FS_0 at Power ON	RW	Х	-
0	Frequency Select Mode Bit	0 = Freq. is selected by latched input FS(4:0) 1 = Freq. is selected by I ² C B9[5:1]	RW	0	

Table3 Clock Frequency Function Table

No.	FS_4	FS_3	FS_2	FS_1	FS_0	CPU	SRC	3V66	PCI
	B9[5]	B9[4]	B9[3]	B9[2]	B9[1]	[MHz]	[MHz]	[MHz]	[MHz]
0	0	0	0	0	0	100.02	100.02	66.68	33.34
1	0	0	0	0	1	200.03	100.02	66.68	33.34
2	0	0	0	1	0	133.36	100.02	66.68	33.34
3	0	0	0	1	1	166.69	100.02	66.68	33.34
4	0	0	1	0	0	200.03	100.02	66.68	33.34
5	0	0	1	0	1	400.07	100.02	66.68	33.34
6	0	0	1	1	0	266.71	100.02	66.68	33.34
7	0	0	1	1	1	333.39	100.02	66.68	33.34
8	0	1	0	0	0	138.69	100.02	66.68	33.34
9	0	1	0	0	1	142.25	100.02	66.68	33.34
10	0	1	0	1	0	145.80	100.02	66.68	33.34
11	0	1	0	1	1 🕻	149.36	100.02	66.68	33.34
12	0	1	1	0	0 🕜	152.91	100.02	66.68	33.34
13	0	1	1	0	1	156.47	100.02	66.68	33.34
14	0	1	1	1 🔨	0	160.03	100.02	66.68	33.34
15	0	1	1	1	1	163.58	100.02	66.68	33.34
16	1	0	0	0	0	167.14	100.02	66.68	33.34
17	1	0	0	0	1	170.70	100.02	66.68	33.34
18	1	0	0	1	0	174.25	100.02	66.68	33.34
19	1	0	0	1	1	177.81	100.02	66.68	33.34
20	1	0	1	0	0	181.36	100.02	66.68	33.34
21	1	0	1	0	1	184.92	100.02	66.68	33.34
22	1	0	1	1	0	186.70	100.02	66.68	33.34
23	1	0	1	1	1	189.36	100.02	66.68	33.34
24	1	1	0	0	0	192.03	100.02	66.68	33.34
25	1	1	0	0	1	194.70	100.02	66.68	33.34
26	1	1	0	1	0	197.37	100.02	66.68	33.34
27	1	1	0	1	1	200.03	100.02	66.68	33.34
28	1	1	1	0	0	202.70	100.02	66.68	33.34
29	1	1	1	0	1	205.37	100.02	66.68	33.34
30	1	1	1	1	0	208.03	100.02	66.68	33.34
31	1	1	1	1	1	210.70	100.02	66.68	33.34

Byte10 Control Register

Bit	Description	Contents	Туре	Default	Note
7	SSC Spread Select Bit[2:0]	Bit[2:0] =	RW	0	
6	_	$000 = -0.500\%, 100 = \pm 0.250\%$ $001 = -0.750\%, 101 = \pm 0.375\%$	RW	0	
5	_	$010 = -1.000\%$, $110 = \pm 0.500\%$ $011 = -1.500\%$, $111 = \pm 0.750\%$	RW	0	
4	Backup of latch Input FS_4 at Power ON	When SAFE_F# is Enable (B15[5]=1) PWRDWN#/SAFE_F# pin to "Low",	R	X	
3	Backup of latch Input FS_3 at Power ON	 and if B23[1]=0, frequency selection is changed to these setting and PWRDWN#/SAFE_F# pin to "High", 	R	X	
2	Backup of latch Input FS_2 at Power ON	frequency selection is changed back to the last mode.	R	Х	
1	Backup of latch Input FS_1 at Power ON		R	Х	
0	Backup of latch Input FS_0 at Power ON	<u> </u>	R	Х	
Byte1	1 Control Register Description	Contents	Туре	Default	Note
7	Reserved		RW	0	
6	Reserved	<u>_</u>	RW	0	
5	PWRDWN# Enable Control Bit	0 = Enable, 1 = Disable	RW	0	
4	Backup of B9[5] written by I ² C	When SAFE_F# is Enable (B15[5]=1) PWRDWN#/SAFE_F# pin to "Low",	R	Х	
3	Backup of B9[4] written by I ² C	and if B23[1]=1, frequency selection is changed to these setting and PWRDWN#/SAFE_F# pin to "High", frequency selection is changed back to the last mode.	R	Х	
2	Backup of B9[3] written by I ² C		R	Х	
1	Backup of B9[2] written by I ² C	-	R	Х	
0	Backup of B9[1] written by I ² C	-	R	Х	

Byte12 Control Register

Bit	Description	Contents	Туре	Default	Note
7	Reserved		RW	0	
6	Reserved		RW	0	
5	Reserved		RW	0	
4	Reserved		RW	0	
3	Reserved		RW	0	
2	PLL1 Output (VCO1) Frequency Control Bit (M1/N1 Divider Control Bit) PLL1 : for SRC/3V66/PCI_PLL	0 = Normal mode PLL1 M1[6:0] and N1[9:0] are changed on Table 5 selection decided by FS4/3/2/A/B or B9[5:1] 1 = Over or Down clocking mode PLL1 M1[6:0] and N1[9:0] are changed by B12[1:0] , B13[7:0] and B14[6:0]. B12[1:0] ,B13[7:0] and B14[6:0] are able to be changed at B12[2] = 1.	RW	0	See Note1
1	PLL1 N1 Divider Control Bit9	N1[9]	RW	0	-
0	PLL1 N1 Divider Control Bit8	N1[8]	RW	0	-

Note: 1. B12[1:0] ,B13[7:0] and B14[6:0] must be written together (at writing B14) in every case.

Byte13 Control Register

•	e				
Bit	Description	Contents	Туре	Default	Note
7	PLL1 N1 Divider Control Bit7	N1[7]	R/W	0	See
6	PLL1 N1 Divider Control Bit6	N1[6]	R/W	1	Note1
5	PLL1 N1 Divider Control Bit5	N1[5]	R/W	0	_
4	PLL1 N1 Divider Control Bit4	N1[4]	R/W	0	_
3	PLL1 N1 Divider Control Bit3	N1[3]	R/W	1	_
2	PLL1 N1 Divider Control Bit2	N1[2]	R/W	0	_
1	PLL1 N1 Divider Control Bit1	N1[1]	R/W	1	_
0	PLL1 N1 Divider Control Bit0	N1[0]	R/W	1	_

Note: 1. B12[1:0] ,B13[7:0] and B14[6:0] must be written together (at writing B14) in every case.

Byte14 Control Register

Bit	Description	Contents	Туре	Default	Note
7	Reserved		R/W	0	See
6	PLL1 M1 Divider Control Bit6	M1[6]	R/W	0	Note1
5	PLL1 M1 Divider Control Bit5	M1[5]	R/W	0	-
4	PLL1 M1 Divider Control Bit4	M1[4]	R/W	1	-
3	PLL1 M1 Divider Control Bit3	M1[3]	R/W	0	-
2	PLL1 M1 Divider Control Bit2	M1[2]	R/W	0	-
1	PLL1 M1 Divider Control Bit1	M1[1]	R/W	1	-
0	PLL1 M1 Divider Control Bit0	M1[0]	R/W	0	-

Note: 1. B12[1:0] ,B13[7:0] and B14[6:0] must be written together (at writing B14) in every case.

Byte15 Control Register

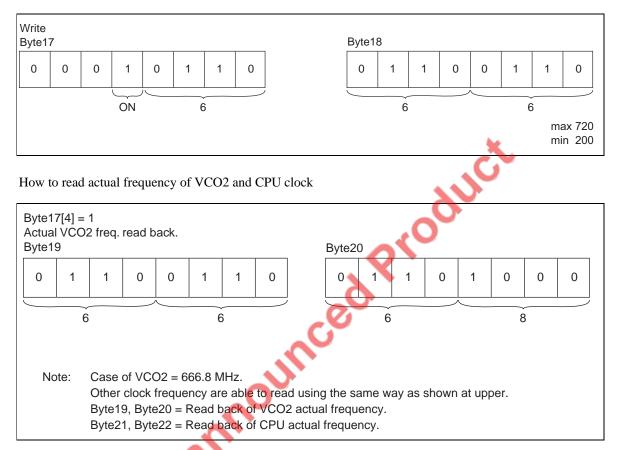
Bit	Description	Contents	Туре	Default	Note
7	PCI_5 Output Frequency Select Bit	0 = 33.3 MHz , 1 = 25 MHz	R/W	0	
6	48_24MHz Output Frequency Select Bit	0 = 48 MHz , 1 = 24 MHz	R/W	0	
5	SAFE_F# Input mode select Bit	0 = PWRDWN# input mode 1 = SAFE_F# input mode Default is PWRDWN# input. SAFE_F# is active "Low" input. When SAFE_F# is "Low", frequency mode is changed to the predefined frequency mode. Predefined frequency mode is selected by B23[1].	R/W	0	
4	Clock Divider Control Bit	0 = Normal mode Clock dividers are changed by Table 5 selection decided B9[5:1] 1 = Over or Down clocking mode Clock dividers are changed by B15[3:0] and B16[7:0]. B15[3:0] and B16[7:0] are able to be changed at B15[4] = 1.	R/W	0	
3	CPU Divider Control Bit3	0001 = 1/1, 0101 = 1/5, 1001 = 1/9	R/W	Х	
2	CPU Divider Control Bit2	$^{-}$ 0010 = 1/2, 0110 = 1/6, 1010 = 1/10 - 0011 = 1/3, 0111 = 1/7, 1011 = 1/11	R/W	Х	
1	CPU Divider Control Bit1	0100 = 1/3, $0111 = 1/7$, $1011 = 1/110100 = 1/4$, $1000 = 1/8$	R/W	Х	
	CPU Divider Control Bit0		R/W	Х	

Byte16 Control Register

Bit	Description	Contents	Туре	Default	Note
7	3V66 / PCI / PCIF Divider Control Bit3	3V66 divider ratio = 0010 = 1/2, 0110 = 1/6, 1010 = 1/10	R/W	Х	
6	3V66 / PCI / PCIF Divider Control Bit2	- 0011 = 1/3, 0111 = 1/4, 1011 = 1/11 0100 = 1/4, 1000 = 1/8, 1100 = 1/12 0101 = 1/5, 1001 = 1/9	R/W	Х	
5	3V66 / PCI / PCIF Divider Control Bit1	0101 = 1/5, 1001 = 1/9 PCI / PCIF divider ratio = 3V66 x 1/2	R/W	Х	
4	3V66 / PCI / PCIF Divider Control Bit0	-	R/W	Х	
3	SRC Divider Control Bit3	0001 = 1/1, 0101 = 1/5, 1001 = 1/9	R/W	Х	
2	SRC Divider Control Bit2	- 0010 = 1/2, 0110 = 1/6, 1010 = 1/10 - 0011 = 1/3, 0111 = 1/7, 1011 = 1/11	R/W	Х	
1	SRC Divider Control Bit1	$0100 = 1/4, \ 1000 = 1/8$	R/W	Х	
0	SRC Divider Control Bit0	_	R/W	Х	

Byte17 Control Register

Bit	Description	Contents	Туре	Default	Note
7	Reserved	1	R/W	0	
6	Reserved	1	R/W	0	
5	Reserved	1	R/W	0	
4	PLL2 Output (VCO2) Frequency Control Bit (M2 / N2 Divider Control Bit) PLL2 : for CPU	0 = Normal mode VCO2 frequency is changed on Table 5 selection decided by FS4/3/2/1/0 or B9[5:1]. 1 = Over or Down clocking mode VCO2 frequency is changed by B17[3:0] and B18[7:0] with decimal. B17[3:0] and B18[7:0] are able to be changed at B17[4] = 1.	R/W	0	See Note1
3	VCO2 Frequency Control Bit11	These bits are 100MHz digit of VCO2 frequency.	R/W	0	_
2	VCO2 Frequency Control Bit10	⁻ 0000 = 0, 0001 = 1 1001 = 9	R/W	1	_
1	VCO2 Frequency Control Bit9	6	R/W	0	-
0	VCO2 Frequency Control Bit8		R/W	0	-


Note: 1. B17[3:0] and B18[7:0] must be written together (at writing B18) in every case.

Byte18 Control Register

Bit	Description	Contents	Туре	Default	Note
7	VCO2 Frequency Control Bit7	These bits are 10MHz digit of VCO2 frequency.	R/W	0	See Note1
6	VCO2 Frequency Control Bit6	0000 = 0, 0001 = 1 1001 = 9	R/W	0	-
5	VCO2 Frequency Control Bit5		R/W	0	_
4	VCO2 Frequency Control Bit4		R/W	0	-
3	VCO2 Frequency Control Bit3	These bits are 1MHz digit of VCO2 frequency.	R/W	0	-
2	VCO2 Frequency Control Bit2	0000 = 0, 0001 = 1 1001 = 9	R/W	0	-
1	VCO2 Frequency Control Bit1		R/W	0	-
0	VCO2 Frequency Control Bit0		R/W	0	-

Note: 1. B17[3:0] and B18[7:0] must be written together (at writing B18) in every case.

How to set VCO2 frequency to 666 MHz.

Byte19 Control Register

Bit	Description	Contents	Туре	Default	Note
7	VCO2 Frequency Read Bit15	Calculation result of VCO2 frequency. 100 MHz digit	R	0	
6	VCO2 Frequency Read Bit14	⁻ 0000 = 0, 0001 = 1 1001 = 9	R	0	-
5	VCO2 Frequency Read Bit13	-	R	0	-
4	VCO2 Frequency Read Bit12	-	R	0	-
3	VCO2 Frequency Read Bit11	Calculation result of VCO2 frequency. 10 MHz digit	R	0	-
2	VCO2 Frequency Read Bit10	⁻ 0000 = 0, 0001 = 1 1001 = 9	R	0	-
1	VCO2 Frequency Read Bit9	-	R	0	-
0	VCO2 Frequency Read Bit8	-	R	0	='

Byte20 Control Register

Bit	Description	Contents	Туре	Default	Note
7	VCO2 Frequency Read Bit7	Calculation result of VCO2 frequency.	R	0	
6	VCO2 Frequency Read Bit6	[−] 1 MHz digit - 0000 = 0, 0001 = 1 1001 = 9	R	0	-
5	VCO2 Frequency Read Bit5		R	0	-
4	VCO2 Frequency Read Bit4	-	R	0	-
3	VCO2 Frequency Read Bit3	Calculation result of VCO2 frequency.	R	0	-
2	VCO2 Frequency Read Bit2	0.1 MHz digit 0000 = 0, 0001 = 1 1001 = 9	R 💧	0	-
1	VCO2 Frequency Read Bit1		R	0	-
0	VCO2 Frequency Read Bit0	-	R	0	-

Byte 21 Control Register

Byte 2	1 Control Register		•		
Bit	Description	Contents	Туре	Default	Note
7	CPU Frequency Read Bit15	Calculation result of CPU frequency.	R	0	
6	CPU Frequency Read Bit14	- 100 MHz digit - 0000 = 0, 0001 = 1 1001 = 9	R	0	-
5	CPU Frequency Read Bit13		R	0	-
4	CPU Frequency Read Bit12		R	0	-
3	CPU Frequency Read Bit11	Calculation result of CPU frequency.	R	0	-
2	CPU Frequency Read Bit10	[−] 10MHz digit - 0000 = 0, 0001 = 1 1001 = 9	R	0	-
1	CPU Frequency Read Bit9	0,0001 - 1 1001 - 3	R	0	-
0	CPU Frequency Read Bit8		R	0	-
	<u>v</u>				

Byte22 Control Register

Bit	Description	Contents	Туре	Default	Note
7	CPU Frequency Read Bit7	Calculation result of CPU frequency.	R	0	
6	CPU Frequency Read Bit6	[–] 1 MHz digit – 0000 = 0, 0001 = 1 1001 = 9	R	0	-
5	CPU Frequency Read Bit5	$0000 = 0,0001 = 1 \dots 1001 = 9$	R	0	-
4	CPU Frequency Read Bit4	_	R	0	-
3	CPU Frequency Read Bit3	Calculation result of CPU frequency.	R	0	-
2	CPU Frequency Read Bit2	[−] 0.1 MHz digit _ 0000 = 0, 0001 = 1 1001 = 9	R	0	-
1	CPU Frequency Read Bit1		R	0	-
0	CPU Frequency Read Bit0	_	R	0	-

Byte23 Control Register

Bit	Description	Contents	Туре	Default	Note
7	Watchdog Enable Control Bit	0 = Disable, Pin22 = 3V66_0 output 1 = Enable, Pin22 = RESET# output	R/W	0	
6	RESET# Reverse Control Bit	0 = Normal , 1 = Reverse	R/W	0	
5	Watchdog Timer Count Bit3	These 4 bits corresponds to how many	R/W	1	
4	Watchdog Timer Count Bit2	/atchdog timer will wait from becoming — Alarm mode" (B23[0] = 1) to outputting _	R/W	0	
3	Watchdog Timer Count Bit1	RESET# pin to "Low".	R/W 🍆	0	
2	Watchdog Timer Count Bit0	Default is 586ms x8 = 4.7s at Power ON	R/W	0	
1	Backup Frequency Select Bit	0 = B10[4:0], 1 = B11[4:0] When SAFE_F# is "Low", frequency mode is changed to the predefined frequency mode decided by B10[4:0] or B11[4:0].	R/W	0	
0	Watchdog Status Bit	0 = Normal mode, 1 = Alarm mode	R/W	0	
Byte24	4 Control Register	ceo			

Bit	Description	Contents	Туре	Default	Note
7	Reserved		R/W	0	
6	Reserved	.0	R/W	0	
5	Reserved		R/W	0	
4	Reserved	<u> </u>	R/W	0	
3	Reserved	<u>~</u>	R/W	0	
2	Reserved		R/W	0	
1	Reserved		R/W	0	
0	Reserved		R/W	0	

Byte25 Control Register

Bit	Description	Contents	Туре	Default	Note
7	CPU Clock Skew1 Control Bit3	Delay Ahead 1000 = +0.00ns, 0111 = -0.25ns	R/W	1	See Note1
6	CPU Clock Skew1 Control Bit2	 1001 = +0.25ns, 0110 = -0.50ns 1010 = +0.50ns, 0101 = -0.75ns 1011 = +0.75ns, 0100 = -1.00ns 	R/W	0	-
5	CPU Clock Skew1 Control Bit1	1100 = +1.00ns, $0011 = -1.25$ ns 1101 = +1.25ns, $0010 = -1.50$ ns	R/W	0	-
4	CPU Clock Skew1 Control Bit0	1110 = +1.50ns, 0001 = -1.75ns 1111 = +1.75ns, 0000 = -2.00ns	R/W	0	-
3	CPU Clock Skew2 Control Bit3	Delay Ahead 1000 = +0.0ns, 0111 = -0.1ns	R/W	1	See Note1
2	CPU Clock Skew2 Control Bit2	 1001 = +0.1ns, 0110 = -0.2ns 1010 = +0.2ns, 0101 = -0.3ns 1011 = +0.3ns, 0100 = -0.4ns 	R/W	0	-
1	CPU Clock Skew2 Control Bit1	1100 = +0.4ns, $0011 = -0.5$ ns 1101 = +0.5ns, $0010 = -0.6$ ns	R/W	0	-
0	CPU Clock Skew2 Control Bit0	_ 1110 = +0.6ns, 0001 = −0.7ns 1111 = +0.7ns, 0000 = −0.8ns	R/W	0	-

Note: 1. Total CPU Clock Skew is Skew1+Skew2.

Byte26 Control Register

Note:	1. Total CPU Clock Skew is S	kew1+Skew2.			
Byte26	6 Control Register	J.			
Bit	Description	Contents	Туре	Default	Note
7	PCIF / PCI Clock Skew2 Control Bit3	Skew2 is "Late" Skew that is Delay Time from "Normal" Skew1.	R/W	0	See Note1
6	PCIF / PCI Clock Skew2 Control Bit2	0000 = +0.0ns, 1000 = +4.0ns 0001 = +0.5ns, 1001 = +4.5ns 0010 = +1.0ns, 1010 = +5.0ns	R/W	0	
5	PCIF / PCI Clock Skew2 Control Bit1	0011 = +1.5ns, $1011 = +5.5$ ns 0100 = +2.0ns, $1100 = +6.0$ ns	R/W	0	
4	PCIF / PCI Clock Skew2 Control Bit0	0101 = +2.5ns, 1101 = +6.5ns 0110 = +3.0ns, 1110 = +7.0ns 0111 = +3.5ns, 1111 = +7.5ns	R/W	0	
3	PCIF / PCI Clock Skew1 Control Bit3	Skew1 is "Normal" Skew. Delay Ahead	R/W	1	See Note1
2	PCIF / PCI Clock Skew1 Control Bit2	1000 = +0.0ns, 0111 = -0.5ns 1001 = +0.5ns, 0110 = -1.0ns 1010 = +1.0ns, 0101 = -1.5ns	R/W	0	_
1	PCIF / PCI Clock Skew1 Control Bit1	1010 = +1.5ns, $0100 = -2.0$ ns 1100 = +2.0ns, $0011 = -2.5$ ns	R/W	0	-
0	PCIF / PCI Clock Skew1 Control Bit0	1101 = +2.5ns, 0010 = -3.0ns 1110 = +3.0ns, 0001 = -3.5ns 1111 = +3.5ns, 0000 = -4.0ns	R/W	0	-

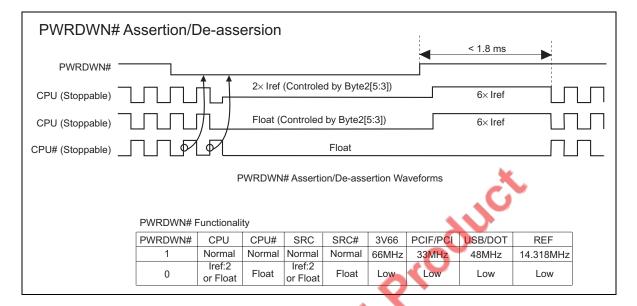
Note: 1. PCIF / PCI Clock Skew is Skew1 (= Normal) or Skew1+Skew2 (= Late).

Byte27 Control Register

Bit	Description	Contents	Туре	Default	Note
7	Reserved		R/W	0	
6	PCIF_2 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	See
5	PCIF_1 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	Note1
4	PCIF_0 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	-
3	3V66 Clock Skew Control	Delay Ahead	R/W	1	
	Bit3	1000 = +0.0ns, 0111 = -0.5ns			
2	3V66 Clock Skew Control	1001 = +0.5ns, 0110 = -1.0ns	R/W	0	
	Bit2	1010 = +1.0ns, 0101 = -1.5ns			
1	3V66 Clock Skew Control	1011 = +1.5ns, 0100 = -2.0ns	R/W 👆	0	
	Bit1	1100 = +2.0ns, 0011 = -2.5ns			
0	3V66 Clock Skew Control	1101 = +2.5ns, 0010 = -3.0ns	R/W	0	
	Bit0	1110 = +3.0ns, 0001 = -3.5ns			
		1111 = +3.5ns, 0000 = -4.0ns			

Note: 1. Normal = Skew1(B26[3:0]), Late = Skew1(B26[3:0]) + Skew2 (B26[7:4]).

Byte 28 Control Register


Bit	Description	Contents	Туре	Default	Note
7	Reserved	0 = Normal, 1 = Late	R/W	0	
6	PCI_6 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	See
5	PCI_5 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	Note1
4	PCI_4 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	-
3	PCI_3 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	-
2	PCI_2 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	-
1	PCI_1 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	-
0	PCI_0 Skew Select Bit	0 = Normal, 1 = Late	R/W	0	-

Note: 1. Normal = Skew1(B26[3:0]), Late = Skew1(B26[3:0]) + Skew2 (B26[7:4]).

Byte29 Control Register

Bit	Description	Contents	Туре	Default	Note
7	VCH Slew Rate Control Bit1	00 = Normal, 10 = "++"	R/W	1	
6	VCH Slew Rate Control Bit0	01 = " + " , 11 = " _ "	R/W	0	
5	PCI Slew Rate Control Bit1	00 = Normal, 10 = "++"	R/W	1	
4	PCI Slew Rate Control Bit0	- 01 = " + " , 11 = " - "	R/W	0	
3	PCIF Slew Rate Control Bit1	00 = Normal, 10 = "++"	R/W	1	
2	PCIF Slew Rate Control Bit0	01 = "+" , 11 = "-"	R/W	0	
1	3V66 Slew Rate Control Bit1	00 = Normal, 10 = "++"	R/W	1	
0	3V66 Slew Rate Control Bit0	01 = "+" , 11 = "-"	R/W	0	

Clock Stop Timing Diagram

Renasas clock generator I²C Serial Interface Operation

1. Write mode

- 1.1 Controller (host) sends a start bit.
- 1.2 Controller (host) sends the write address D2 (h).
- 1.3 Renasas clock generator will acknowledge (Renasas clock gen. sends "Low").
- 1.4 Controller (host) sends a begin byte M.
- 1.5 Renasas clock generator will acknowledge (Renasas clock gen. sends "Low").
- 1.6 Controller (host) sends a byte count N.
- 1.7 Renasas clock generator will acknowledge (Renasas clock gen. sends "Low").
- 1.8 Controller (host) sends data from byte M to byte M+N-1.
- 1.9 Renasas clock generator will acknowledge each byte one at a time.
- 1.10 Controller (host) sends a stop bit.

										t 8 bits
S	Start b		ive ress D2	R/W 2(h)	Ack	Begin Byte = M	Ack	Byte Count = N	Acł	Byte M
1	bit	8 bits	1 bit					8 bits	1 bit	1 bit
	Ack	Byte M+1	Ack					Byte M+N–1	Ack	Stop bit

Renasas clock generator I²C Serial Interface Operation (cont.)

2. Read mode

- 2.1 Controller (host) sends a start bit.
- 2.2 Controller (host) sends the write address D2 (h).
- 2.3 Renasas clock generator will acknowledge (Renasas clock gen. sends "Low").
- 2.4 Controller (host) sends a begin byte M.
- 2.5 Renasas clock generator will acknowledge (Renasas clock gen. sends "Low").
- 2.6 Controller (host) sends a restart bit.
- 2.7 Controller (host) sends the read address D3 (h).
- 2.8 Renasas clock generator will acknowledge (Renasas clock gen. sends "Low").
- 2.9 Renasas clock generator will send the byte count N.
- 2.10 Controller (host) will acknowledge.
- 2.11 Renasas clock generator will send data from byte M to byte M+N-1.
- 2.12 When Renasas clock generator sends the last byte, controller (host) will not acknowledge.
- 2.13 Controller (host) sends a stop bit.

	1 bit	7 bit	S	1 bit	1 bit	8 bits	0	bit	1 bit	7 bits	1 bit	_	
	Start bit	Slav addre	ve ess D2	R/W 2(h)	Ack	Begin Byte =	= M A	kck	Restart bit	Slave address _{D3}	R/W (h)		
1 bi	t 8	bits	1 bit	8 bits	1 b	it 8 bits	1 bit			8 bits		1 bit	1 bit
Acl	K Begin C	ount = N	Ack	Byte N	/ Ac	k Byte M+1	Ack	 		··Byte M+N-	-1 No	ot Ack	Stop bit
			(2									

Notes: 1. Renasas clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for the verification.

- 2. The data transfer rate supported by this clock generator is 100k bits/sec or less (standard mode).
- 3. The input is operating at 3.3 V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I²C interface, the protocol is set to use only block-write from the controller.
- 6. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The data is loaded until a stop sequence is issued.
- 7. At power-on, all registers are set to a default condition, as shown.

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{DD}	-0.5 to 4.6	V	
Input voltage	VI	-0.5 to 4.6	V	
Output voltage *1	Vo	–0.5 to VDD +0.5	V	
Input clamp current	I _{IK}	-50	mA	V ₁ < 0
Output clamp current	l _{ок}	-50	mA	V ₀ < 0
Continuous output current	lo	±50	mA	$V_0 = 0$ to VDD
Maximum power dissipation at Ta = 55°C (in still air)		0.7	W	Č,
Storage temperature	Tstg	-65 to +150	°C	

Notes: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

Recommended Operating Conditions

Supply voltage VDD 3.135 3.3 3.465 V Supply voltage VDDA 3.135 3.3 3.465 V DC input signal voltage -0.3 - VDD+0.3 V High level input voltage V _{IH} 2.0 - VDD+0.3 V Low level input voltage V _{IL} -0.3 - 0.8 V Operating temperature Ta 0 - 70 °C	Item	Symbol	Min	Туре	Max	Unit	Conditions
DC input signal voltage -0.3 $-$ VDD+ 0.3 VHigh level input voltage V_{IH} 2.0 $-$ VDD+ 0.3 VLow level input voltage V_{IL} -0.3 $ 0.8$ V	Supply voltage	VDD	3.135	3.3	3.465	V	
High level input voltageVIH2.0VDD+0.3VLow level input voltageVIL-0.30.8V	Supply voltage	VDDA	3.135	3.3	3.465	V	
Low level input voltage V_{IL} -0.3 - 0.8 V	DC input signal voltage	2	-0.3	_	VDD+0.3	V	
	High level input voltage	V IH	2.0	_	VDD+0.3	V	
Operating temperature Ta 0 — 70 °C	Low level input voltage	VIL	-0.3	_	0.8	V	
	Operating temperature	Та	0	_	70	°C	

DC Electrical Characteristics / Serial Input Port

Ta = 0° C to 70° C, VDD = 3.3 V

Item	Symbol	Min	Typ * ¹	Max	Unit	Test Conditions
Input Low Voltage	V _{IL}		_	0.8	V	
Input High Voltage	VIH	2.0		_	V	
Input Current	lı	-50	—	+50	μA	V _I = 0 V or 3.465 V, VDD = 3.465 V
Input capacitance	Cı		10		pF	SDATA & SCLK

Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended product operating conditions.

AC Electrical Characteristics / Serial Input port

					\mathbf{O}		
Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
SCLK Frequency	F _{SCLK}	_	—	100	kHz	Normal Mode	
Start Hold Time	t _{STHD}	4.0	_	JO T	μs		
SCLK Low Time	t _{LOW}	4.7	-	9	μs		
SCLK High Time	t _{HIGH}	4.0		-	μs		
Data Setup Time	t _{DSU}	250	Ð.		ns		
Data Hold Time	t _{DHD}	300) —		ns		
Stop Setup Time	t _{stsu}	4.0	_		μs		
BUS Free Time between Stop & Start Condition	t _{SPF}	4.7	_	_	μs		

Ta = 0° C to 70° C, VDD = 3.3 V

0~

DC Electrical Characteristics CPU/CPU# Clock

Ta = 0°C to 70°C, VDD = 3.3 V, Iref = 475 Ω

Item	Symbol	Min	Typ * ¹	Max	Unit	Test Conditions
Output voltage	Vo	_	_	1.20	V	Rp = 49.9 Ω,VDD = 3.3 V
Output Current	lo	_	l(nom) *	2	mA	VDD = 3.3 V
Output resistance		3000		_	Ω	V _O = 1.2 V

Notes: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions

I(nom) is output current(Ioh) shown in below.
 Ioh = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA,
 Ioh x6 = 13.89 mA (Voh @Z: 0.695 V @50 Ω),
 Ioh x2 = 4.63 mA (Voh @Z: 0.232 V @50 Ω)

AC Electrical Characteristics CPU/CPU# Clock (CPU at 0.7V Timing)

Ta = 0°C to 70°C, VDD = 3.3 V, $C_L = 2 \text{ pF}$, Rs = 33.2 Ω , Rp = 49.9 Ω

Item	Symbol	Min	Тур	Мах	Unit	Test Conditions	Notes
Cycle to cycle jitter	t _{ccs}	_	125	2	ps		Note1
CPU Group Skew (CPU clock out to CPU clock out)	t _{skS}	_	100		ps		
Rise time	tr	175)	700	ps	Vo=0.175V to 0.525V	200MHz
Fall time	t _f	175		700	ps	Vo=0.175V to 0.525V	200MHz
Clock Duty Cycle	2	45	50	55	%		200MHz
CPU clock period(100)	0	_	9.99	_	ns		
CPU clock period(133)		_	7.49	_	ns		
CPU clock period(166)		_	5.99	_	ns		
CPU clock period(200)		_	4.99	_	ns		
Cross point(0.7V) voltage	Vcross	0.25		0.55	V		200MHz

Note: 1. Difference of cycle time between two adjoining cycles.

DC Electrical Characteristics SRC/SRC# Clock

Ta = 0°C to 70°C, VDD = 3.3 V, Iref = 475 Ω

Item	Symbol	Min	Typ * ¹	Max	Unit	Test Conditions
Output voltage	Vo	_	_	1.20	V	Rp = 49.9 Ω, VDD = 3.3 V
Output Current	lo		l(nom)* ²		mA	VDD = 3.3 V
Output resistance		3000			ohm	V ₀ = 1.2 V

Notes: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions

2. I(nom) is output current(Ioh) shown in below. Ioh = VDD/(3Rr) = 3.3/(3x475) = 2.32 mA, Ioh x6 = 13.89 mA (Voh @Z: 0.695 V @50 Ω), Ioh x2 = 4.63 mA (Voh @Z: 0.232 V @50 Ω)

AC Electrical Characteristics SRC/SRC# Clock (SRC at 0.7V Timing)

Ta = 0°C to 70°C, VDD = 3.3 V, $C_L = 2 \text{ pF}$, Rs = 33.2 Ω , Rp = 49.9 Ω

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
Cycle to cycle jitter	t _{CCS}	_	125	0.	ps		Note1
Rise time	tr	175	~~~	700	ps	V _O = 0.175 V to 0.525 V	100 MHz
Fall time	t _f	175	31	700	ps	V _O = 0.175 V to 0.525 V	100 MHz
Clock Duty Cycle		45	50	55	%		100 MHz
SRC clock period(100)		<u> </u>	9.99	_	ns		
SRC clock period(200)		-	4.99		ns		
Cross point(0.7V) voltage	Vcross	0.25	_	0.55	V		100 MHz

Note: 1. Difference of cycle time between two adjoining cycles.

DC Electrical Characteristics / 3V66 Buffer (CK409 Type5 Buffer)

Ta = 0° C to 70° C, VDD = 3.3 V

Item	Symbol	Min	Typ *1	Max	Unit	Test Conditions
Output Voltage	V _{OH}	3.1	_	_	V	$I_{OH} = -1 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
	Vol		_	50	mV	I_{OL} = 1 mA, VDD = 3.3 V
Output Current	I _{OH}	_	_	-33	mA	V _{OH} = 1.0 V
	I _{OL}	30		_	mA	V _{OL} = 1.95 V

Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions.

AC Electrical Characteristics / 3V66 Buffer

AC Electrical Chara Ta = 0° C to 70° C, VDD =	s / 3V66	oduct					
Item	Symbol	Min	Тур	Max	Unit	Test Conditions	s Notes
Cycle to cycle jitter	t _{CCS}	_	250	-	ps	Fig.1	Note1
3V66 Buffer (3V66 (4:0)) Group Skew	t _{skS}		0	250	ps	Rising edge @1.5V to 1.5V Fig.2	
Slew rate	t _{SL}	1.0	30	4.0	V/ns		0.4V to 2.4V
Clock Period		- 0	14.9979	_	ns		
Clock Duty Cycle		45	50	55	%		
3V66 (4:0) leads 33MHz PCI	~	1.5		3.5	ns		

Note: 1. Difference of cycle time between two adjoining cycles.

DC Electrical Characteristics / PCI & PCIF Clock (CK409 Type5 Buffer)

$Ta = 0^{\circ}C$ to $70^{\circ}C$, VDD = 3.3 V

Item	Symbol	Min	Typ *1	Max	Unit	Test Conditions
Output Voltage	V _{OH}	3.1	_	_	V	$I_{OH} = -1 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
	Vol	—	_	50	mV	I_{OL} = 1 mA, VDD = 3.3 V
Output Current	I _{OH}	_	_	-33	mA	V _{OH} = 1.0 V
	I _{OL}	30	_	_	mA	V _{OL} = 1.95 V

Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. oduci

AC Electrical Characteristics / PCI & PCIF Clock

Ta = 0°C to 70°C, VDD = 3.3 V, C_L = 30 pF

Item	Symbol	Min	Тур	Max 🧹	Unit	Test Conditions	s Notes
Cycle to cycle jitter	tccs	_	250	-	ps	Fig.1	Note1
PCI Group Skew	tskS		0	500	ps	Rising edge @1.5V to 1.5V Fig.2	
Clock Period		_	29.996	_	ns		
Slew rate	t _{SL}	1.0	.	4.0	V/ns	0.4 V to 2.4 V	
Clock Duty Cycle		45	50	55	%		

Note: 1. Difference of cycle time between two adjoining cycles.

FOLSU

DC Electrical Characteristics / 48_24MHz & VCH 48MHz Clock (CK409 Type3A Buffer)

 $Ta = 0^{\circ}C$ to $70^{\circ}C$, VDD = 3.3 V

Item	Symbol	Min	Typ *1	Max	Unit	Test Conditions
Output Voltage	V _{OH}	3.1	_	_	V	$I_{OH} = -1 \text{ mA}, \text{VDD} = 3.3 \text{ V}$
	V _{OL}		_	50	mV	I_{OL} = 1 mA, VDD = 3.3 V
Output Current	I _{OH}	_	_	-29	mA	V _{OH} = 1.0 V
	I _{OL}	29	_	_	mA	V _{OL} = 1.95 V

Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions.

AC Electrical Characteristics / 48_24MHz & VCH 48MHz Clock

Ta = 0°C to 70°C, VDD = 3.3 V, C_L = 20 pF

Item	Symbol	Min	Тур	Max	Unit	Test Conditions Notes	
Cycle to cycle jitter	tccs	_	350	20	ps	Fig.1	Note1
Clock Period			20.831	Q	ns		
Slew rate	t _{SL}	1.0		2.0	V/ns		0.4V to 2.4V
Clock Duty Cycle		45	50	55	%		

Note: 1. Difference of cycle time between two adjoining cycles.

FOLSUN

DC Electrical Characteristics / 48MHz Clock (CK409 Type3B Buffer)

 $Ta = 0^{\circ}C$ to $70^{\circ}C$, VDD = 3.3 V

Item	Symbol	Min	Typ * ¹	Max	Unit	Test Conditions
Output Voltage	V _{OH}	3.1	_	_	V	$I_{OH} = -1 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
	Vol	—		50	mV	I_{OL} = 1 mA, VDD = 3.3 V
Output Current	I _{OH}	_	_	-29	mA	V _{OH} = 1.0 V
	I _{OL}	29	_	_	mA	V _{OL} = 1.95 V

Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. oduci

AC Electrical Characteristics / 48MHz Clock

 $Ta = 0^{\circ}C$ to 70°C, VDD = 3.3 V, $C_{L} = 10 \text{ pF}$

Item	Symbol	Min	Тур	Max ┥	Unit	Test Conditions Notes				
Cycle to cycle jitter	tccs	_	350	-	ps	Fig.1	Note1			
Clock Period		—	20.831	20	ns					
Slew rate	t _{SL}	2.0	-	4.0	V/ns		0.4V to 2.4V			
Clock Duty Cycle		45	50	55	%					

Note: 1. Difference of cycle time between two adjoining cycles. FOrsun

DC Electrical Characteristics / REF Clock (CK409 Type5 Buffer)

 $Ta = 0^{\circ}C$ to $70^{\circ}C$, VDD = 3.3 V

Item	Symbol	Min	Typ * ¹	Max	Unit	Test Conditions
Output Voltage	V _{OH}	3.1	_	_	V	$I_{OH} = -1 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
	Vol	_		50	mV	I_{OL} = 1 mA, VDD = 3.3 V
Output Current	I _{OH}	_	_	-33	mA	V _{OH} = 1.0 V
	I _{OL}	30	_	_	mA	V _{OL} = 1.95 V

Note: 1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. oduci

AC Electrical Characteristics / REF Clock

 $Ta = 0^{\circ}C$ to 70°C, VDD = 3.3 V, $C_{L} = 30 \text{ pF}$

Item Cycle to cycle jitter							
	Symbol	Min —	Тур	Max ┥	Unit	Test Conditions Notes	
	tccs		1000	-	ps	Fig.1	Note1
Clock Period		_	69.841	20	ns		
Slew rate	t _{SL}	1.0	-	4.0	V/ns		0.4V to 2.4V
Clock Duty Cycle		45	50	55	%		

Note: 1. Difference of cycle time between two adjoining cycles. FOrsund

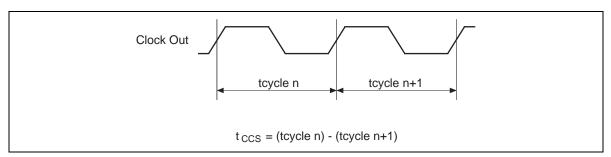


Fig.1 Cycle to Cycle Jitter (3.3V Single Ended Clock Output)

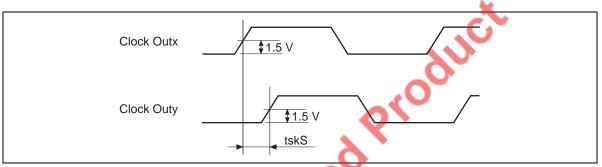


Fig.2 Output Clock Skew (3.3V Single Ended Clock Output)

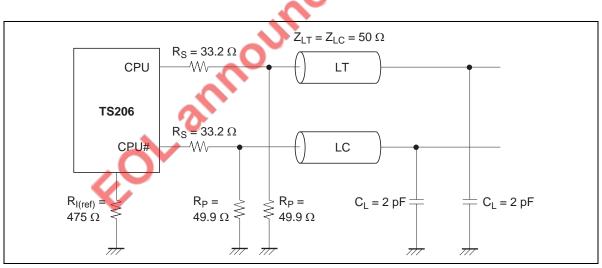
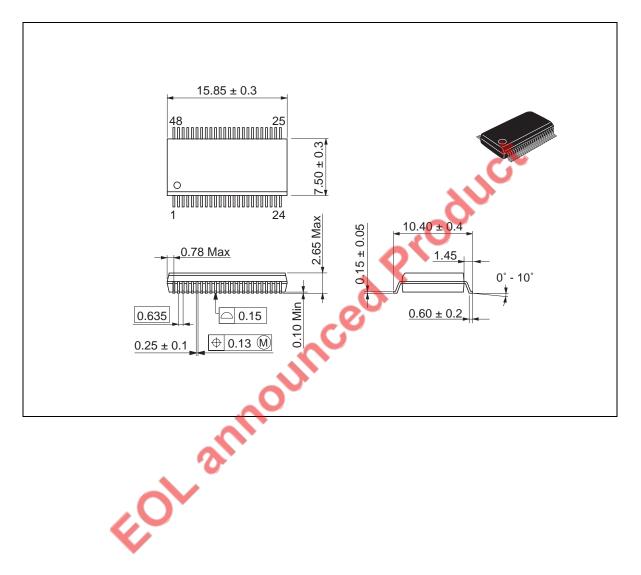



Fig.3 Load Circuit for CPU/CPU#

Package Dimensions

Unit: mm

edproduct RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

Neep sadicy inits: in your or used segures:
1. Renease Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
 Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein
- herein
- The information described here may contain technical inaccuracies or typographical errors. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com)
- (http://www.renesas.com).
 (http:/ (http://www.renesas.com).

http://www.renesas.com

Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0

