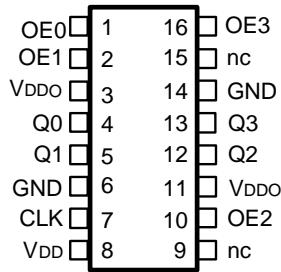

General Description

The ICS8304-02 is a low skew, high performance, 1-to-4 Fanout Buffer with individual output enables. The ICS8304-02 is characterized at full 3.3V and 2.5V for input (V_{DD}), and mixed 3.3V and 2.5V for output operating supply modes (V_{DDO}). Guaranteed output and part-to-part skew characteristics make the ICS8304-02 ideal for those clock distribution applications demanding well defined performance and repeatability.


Features

- Four LVC MOS / LVTTL outputs, 15Ω output impedance
- LVC MOS / LVTTL clock input
- Maximum output frequency: 250MHz
- Output skew: 30ps (typical)
- Part-to-part skew: 400ps (maximum)
- Small 16 lead TSSOP package saves board space
- Power supply modes:
Core/Output
3.3V/3.3V
3.3V/2.5V
2.5V/2.5V
- Individual output enable control
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) packaging
- **For functional replacement part use 8305**

Block Diagram

Pin Assignment

ICS8304-02
16-Lead TSSOP
4.4mm x 5.0mm x 0.92mm package body
G Package
Top View

Pin Descriptions and Pin Characteristics

Table 1. Pin Descriptions

Number	Name	Type		Description
1, 2, 10, 16	OE0, OE1, OE2, OE3	Input	Pullup	Output enable pins. Active HIGH. If pin is LOW, output is high impedance. LVCMOS/LVTTL interface levels. See Table 3.
3, 11	V _{DDO}	Power		Output supply pins.
4, 5, 12, 13	Q0, Q1, Q2, Q3	Output		Single-ended clock outputs. 15Ω output impedance. LVCMOS/LVTTL interface levels.
6, 14	GND	Power		Power supply ground.
7	CLK	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
8	V _{DD}	Power		Power supply pin.
9, 15	nc	Unused		No connect.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
C _{PD}	Power Dissipation Capacitance (per output)	V _{DD} , V _{DDO} = 3.465V or 2.625V		5		pF
		V _{DD} = 3.465V, V _{DDO} = 2.625V		3		pF
R _{OUT}	Output Impedance	V _{DDO} = 3.465V		15		Ω
		V _{DDO} = 2.625V		17		Ω

Function Table

Table 3. OEx Function Table

Inputs	Outputs
OE3, OE2, OE1, OE0	Q3, Q2, Q1, Q0
0	Hi-Z
1	Active (default)

NOTE: Asynchronous output enables.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Outputs, V_O	-0.5V to $V_{DDO} + 0.5V$
Package Thermal Impedance, θ_{JA}	100.3°C/W (0 mps)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
			2.375	2.5	2.625	V
I_{DD}	Power Supply Current			16	20	mA
I_{DDO}	Output Supply Current			6	10	mA

Table 4B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		2.375	2.5	2.625	V
V_{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I_{DD}	Power Supply Current			14	17	mA
I_{DDO}	Output Supply Current			5	10	mA

Table 4C. LVC MOS/LVTTL DC Characteristics, $T_A = 0^\circ\text{C}$ to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		$V_{DD} = 3.465\text{V}$	2		$V_{DD} + 0.3$	V
			$V_{DD} = 2.625\text{V}$	1.7		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage		$V_{DD} = 3.465\text{V}$	-0.3		0.8	V
			$V_{DD} = 2.625\text{V}$	-0.3		0.7	V
I_{IH}	Input High Current	CLK	$V_{DD} = V_{IN} = 3.465\text{V}$ or 2.625V			150	μA
		OE3, OE2, OE1, OE0	$V_{DD} = V_{IN} = 3.465\text{V}$ or 2.625V			5	μA
I_{IL}	Input Low Current	CLK	$V_{DD} = 3.465\text{V}$ or 2.625V , $V_{IN} = 0\text{V}$	-5			μA
		OE3, OE2, OE1, OE0	$V_{DD} = 3.465\text{V}$ or 2.625V , $V_{IN} = 0\text{V}$	-150			μA
V_{OH}	Output High Voltage		$V_{DDO} = 3.3\text{V} \pm 5\%$; $I_{OH} = -12\text{mA}$	2.6			V
			$V_{DDO} = 2.5\text{V} \pm 5\%$; $I_{OH} = -12\text{mA}$	1.8			V
V_{OL}	Output Low Voltage		$V_{DDO} = 3.3\text{V} \pm 5\%$; $I_{OL} = 12\text{mA}$			0.5	V
			$V_{DDO} = 2.5\text{V} \pm 5\%$; $I_{OL} = 12\text{mA}$			0.5	V
I_{OZL}	Output Hi-Z Current Low			-5			μA
I_{OZH}	Output Hi-Z Current High					5	μA

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3\text{V} \pm 5\%$, $T_A = 0^\circ\text{C}$ to 70°C

Parameter	Symbol	Test Conditions		Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency					250	MHz
t_{PLH}	Propagation Delay, Low to High; NOTE 1	CLK		2.0	2.5	4.0	ns
$t_{SK(o)}$	Output Skew; NOTE 2, 5		Measured on the Rising Edge		30	60	ps
$t_{SK(pp)}$	Part-to-Part Skew; NOTE 3, 5					400	ps
t_R / t_F	Output Rise/Fall Time		20% to 80%	400	600	1000	ps
odc	Output Duty Cycle		Output Frequency < 150MHz	45	50	55	%
			Output Frequency $\geq 150\text{MHz}$	40	47	60	%
t_{EN}	Output Enable Time; NOTE 4				3	5	ns
t_{DIS}	Output Disable Time; NOTE 4				4	6	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDO}/2$.

NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

Table 5B. AC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^\circ\text{C}$ to 70°C

Parameter	Symbol	Test Conditions		Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency					250	MHz
t_{PLH}	Propagation Delay, Low to High; NOTE 1	CLK		2.0	2.7	4.0	ns
$t_{SK(o)}$	Output Skew; NOTE 2, 5		Measured on the Rising Edge		30	60	ps
$t_{SK(pp)}$	Part-to-Part Skew; NOTE 3, 5					425	ps
t_R / t_F	Output Rise/Fall Time		20% to 80%	400	750	1200	ps
odc	Output Duty Cycle	Output Frequency < 150MHz		45	50	55	%
		Output Frequency \geq 150MHz		40	47	60	%
t_{EN}	Output Enable Time; NOTE 4				3	5	ns
t_{DIS}	Output Disable Time; NOTE 4				4	6	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDO}/2$.

NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

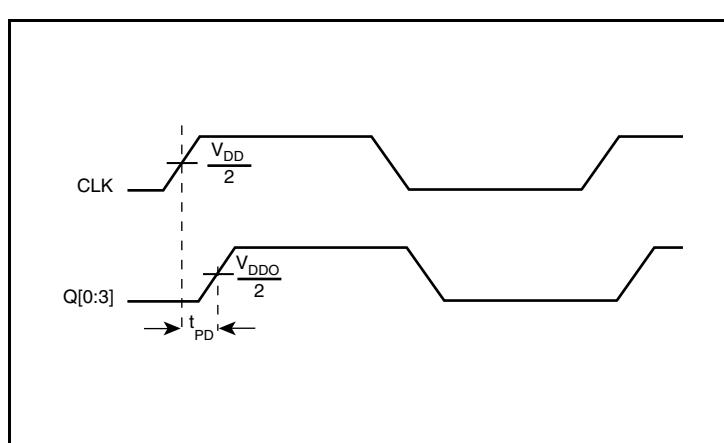
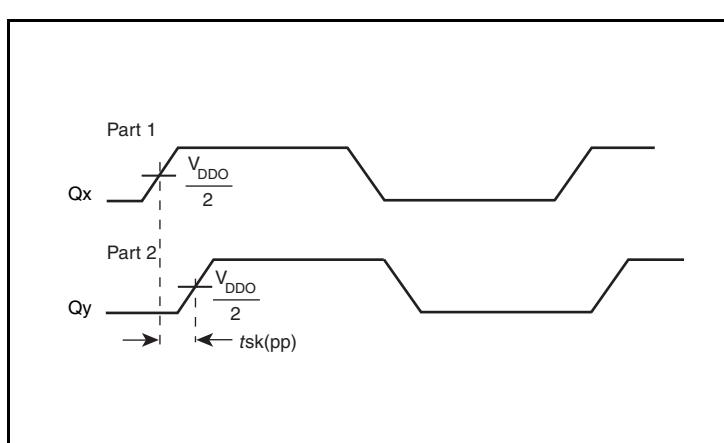
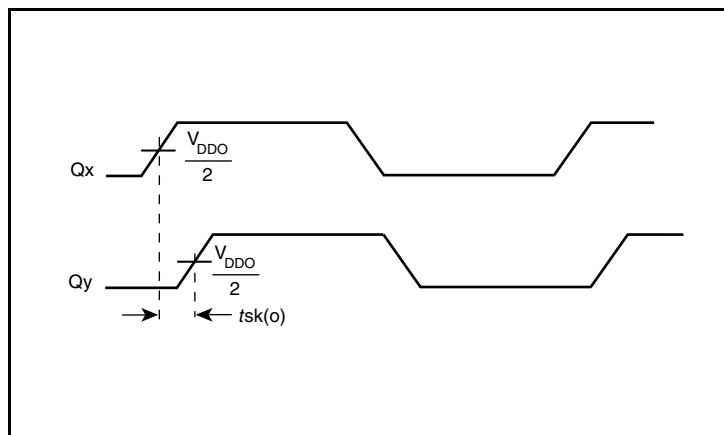
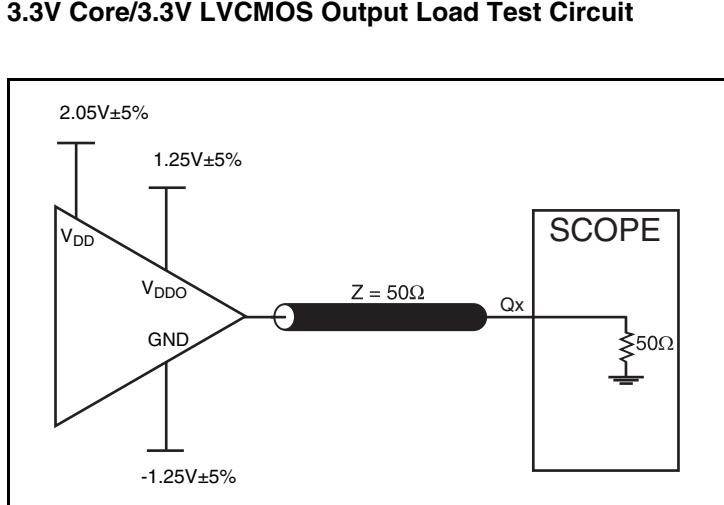
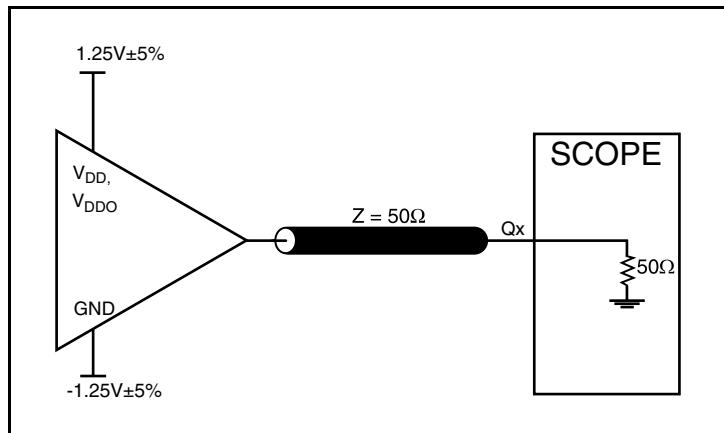
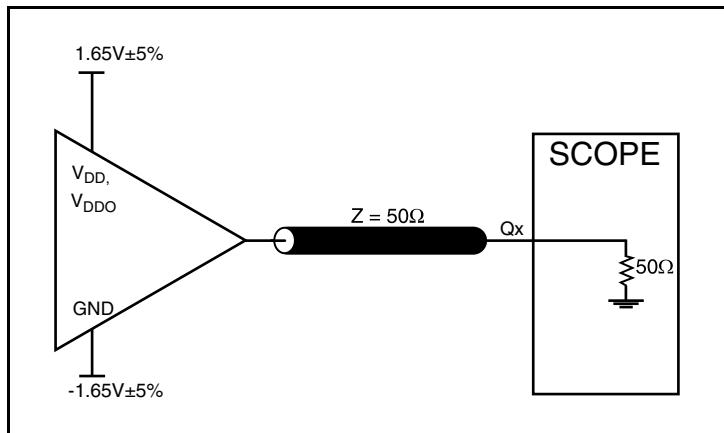
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

Table 5C. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^\circ\text{C}$ to 70°C

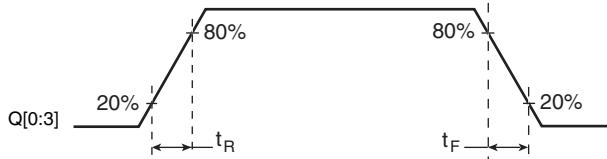
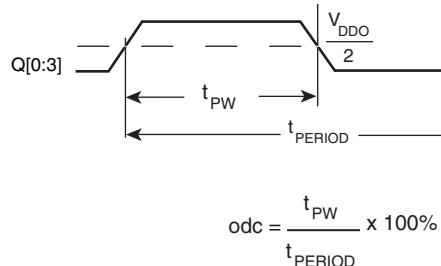
Parameter	Symbol	Test Conditions		Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency					250	MHz
t_{PLH}	Propagation Delay, Low to High; NOTE 1	CLK		2.0	2.8	4.0	ns
$t_{SK(o)}$	Output Skew; NOTE 2, 5		Measured on the Rising Edge		30	60	ps
$t_{SK(pp)}$	Part-to-Part Skew; NOTE 3, 5					425	ps
t_R / t_F	Output Rise/Fall Time		20% to 80%	400	750	1200	ps
odc	Output Duty Cycle	Output Frequency < 150MHz		45	50	55	%
		Output Frequency \geq 150MHz		40	47	60	%
t_{EN}	Output Enable Time; NOTE 4				3	5	ns
t_{DIS}	Output Disable Time; NOTE 4				4	6	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.







NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO}/2$.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDO}/2$.



NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

Parameter Measurement Information

Parameter Measurement Information, continued

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

LVC MOS Control Pins

All control pins have internal pullup resistors; additional resistance is not required but can be added for additional protection. A $1\text{k}\Omega$ resistor can be used.

Outputs:

LVC MOS Outputs

All unused LVC MOS outputs can be left floating. There should be no trace attached.

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8304-02. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8304-02 is the sum of the core power plus the power dissipated due to loading. The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

- Power (core)_{MAX} = $V_{DD_MAX} * (I_{DD} + I_{DD0}) = 3.465V * (20mA + 17mA) = 128.21\text{mW}$
- Output Impedance R_{OUT} Current due to Loading 50Ω to $V_{DD}/2$

$$\text{Output Current } I_{OUT} = V_{DD_MAX} / [2 * (50\Omega + R_{OUT})] = 3.465V / [2 * (50\Omega + 15\Omega)] = 26.7\text{mA}$$
- Power Dissipation on the R_{OUT} per LVCMOS output

$$\text{Power } (R_{OUT}) = R_{OUT} * (I_{OUT})^2 = 15\Omega * (26.7\text{mA})^2 = 10.7\text{mW per output}$$
- Total Power (R_{OUT}) = $10.7\text{mW} * 4 = 42.8\text{mW}$

Dynamic Power Dissipation at 250MHz

$$\text{Power (250MHz)} = C_{PD} * \text{Frequency} * (V_{DD})^2 = 5\text{pF} * 250\text{MHz} * (3.465V)^2 = 15\text{mW per output}$$

$$\text{Total Power (250MHz)} = 15\text{mW} * 4 = 60\text{mW}$$

Total Power Dissipation

- **Total Power**

$$\begin{aligned} &= \text{Power (core)}_{MAX} + \text{Power } (R_{OUT}) + \text{Power (250MHz)} \\ &= 128.21\text{mW} + 42.8\text{mW} + 60\text{mW} \\ &= 231.01\text{mW} \end{aligned}$$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C . Limiting the internal transistor junction temperature, T_j , to 125°C ensures that the bond wire and bond pad temperature remains below 125°C .

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 100.3°C/W per Table 6 below.

Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

$$70^\circ\text{C} + 0.231W * 100.3^\circ\text{C/W} = 93.17^\circ\text{C}. \text{ This is below the limit of } 125^\circ\text{C}.$$

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 16 Lead TSSOP, Forced Convection

θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	100.3°C/W	96.0°C/W	93.9°C/W

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 16 Lead TSSOP

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	100.3°C/W	96.0°C/W	93.9°C/W

Transistor Count

The transistor count for ICS8304-02: 2690

Package Outline and Package Dimensions

Package Outline - G Suffix for 16 Lead TSSOP

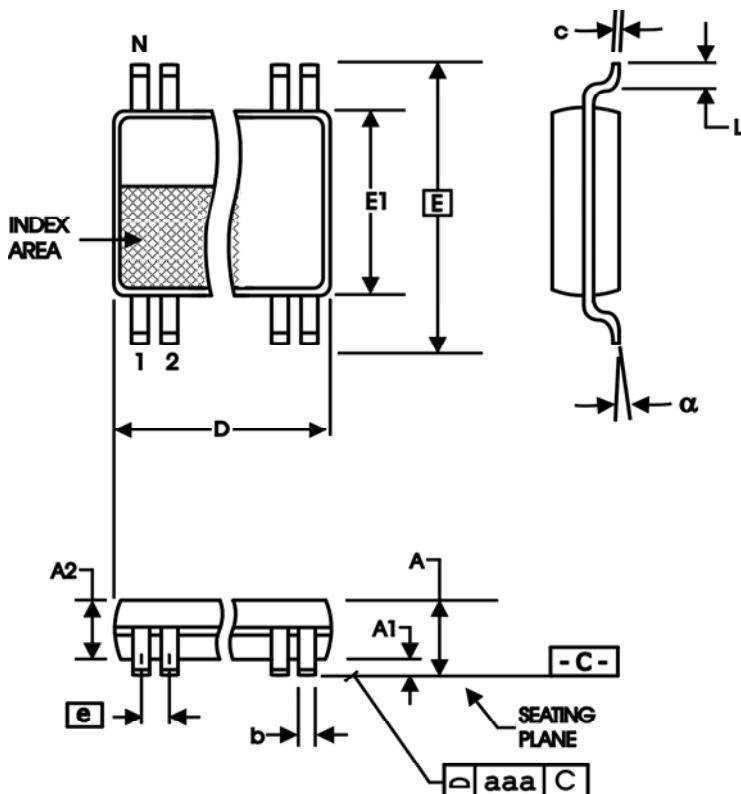


Table 8. Package Dimensions for 16 Lead TSSOP

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	16	
A		1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	4.90	5.10
E	6.40 Basic	
E1	4.30	4.50
e	0.65 Basic	
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8304AG-02LF	8304A02L	“Lead-Free” 16 Lead TSSOP	Tube	0°C to 70°C
8304AG-02LFT	8304A02L	“Lead-Free” 16 Lead TSSOP	Tape & Reel	0°C to 70°C

Revision History

]

Revision Date	Description of Change
May 6, 2016	<ul style="list-style-type: none">▪ Product Discontinuation Notice - Last time buy expires May 6, 2017.▪ PDN CQ-16-01

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.