General Description

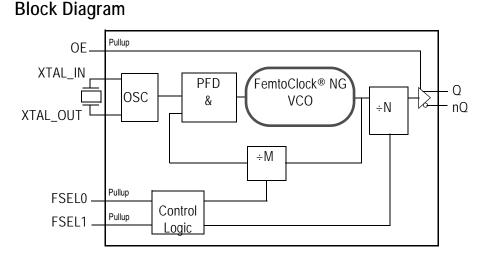
The 83PN187I is a programmable LVPECL synthesizer that is "forward" footprint compatible with standard 5mm x 7mm oscillators. The device uses IDT's fourth generation FemtoClock[®] NG technology for an optimum of high clock frequency and low phase noise performance. Forward footprint compatibility means that a board designed to accommodate the crystal oscillator interface and the optional control pins is also fully compatible with a canned oscillator footprint - the canned oscillator will drop onto the 10-VFQFN footprint for second sourcing purposes. This capability provides designers with programability and lead time advantages of silicon/crystal based solutions while maintaining compatibility with industry standard 5mm x 7mm oscillator footprints for ease of supply chain management. Oscillator-level performance is maintained with IDT's 4th Generation FemtoClock[®] NG PLL technology, which delivers sub 0.5ps rms phase jitter.

The 83PN187I defaults to 150MHz using a 25MHz crystal with 2 programming pins floating (pulled down/pulled up with internal pullup or pulldown resistors) but can also be set to 4 different frequency multiplier settings to support a wide variety of applications. The below table shows some of the more common application settings.

Features

- Fourth Generation FemtoClock[®] Next Generation (NG) technology
- Footprint compatible with 5mm x 7mm differential oscillators
- One differential LVPECL output pair
- Crystal oscillator interface can also be overdriven by a single-ended reference clock
- Output frequency range: 125MHz –187.5MHz
- Crystal/input frequency: 25MHz, 12pF parallel resonant crystal

Pin Assignment


- VCO range: 2GHz 2.5GHz
- Cycle-to-cycle jitter: 10ps (maximum), 3.3V±5%
- RMS phase jitter @ 156.25MHz, 12kHz 20MHz: 0.339ps (typical)
- Full 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

FSEL[1:0]	XTAL (MHz)	Output Frequency (MHz)	Application(s)
00	25	156.25	XAUI, 10GigE
01	25	187.5	8Gig Fibre Channel
10	25	125	Ethernet
11 (default)	25	150	SAS, Embedded Processor

Common Applications and Settings

OE 1 10 9 8 V_{CC} RESERVED 2 7 nQ V_{EE} 3 6 Q 4 5 100 TVLX 83PN187I 10-Lead VFQFN

10-Lead VFQFN 5mm x 7mm x 1mm package body K Package Top View

Table 1. Pin Descriptions

Number	Name	Туре		Description
1	OE	Input	Pullup	Output enable. LVCMOS/LVTTL interface levels.
2	RESERVED	Reserve		Reserved pin. Do not connect.
3	V _{EE}	Power		Negative supply pin.
4, 5	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface XTAL_IN is the input, XTAL_OUT is the output. This oscillator interface can also be driven by a single-ended reference clock.
6, 7	Q, nQ	Output		Differential output pair. LVPECL interface levels.
8	V _{CC}	Power		Power supply pin.
9	FSEL0	Input	Pullup	Output divider control inputs. Sets the output divider value to one of four values. See Table 3. LVCMOS/LVTTL interface levels.
10	FSEL1	Input	Pullup	Output divider control inputs. Sets the output divider value to one of four values. See Table 3. LVCMOS/LVTTL interface levels

NOTE: *Pullup* refers to internal input resistors. See Table 2, *Pin Characteristics,* for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ

Function Table

Table 3. Divider Function Table

FSEL[1:0]	M Value	N Value
0 0	÷100	÷16
0 1	÷90	÷12
1 0	÷80	÷16
1 1 (default)	÷84	÷14

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	3.63V
Inputs, V _I XTAL_IN Other Inputs	0V to 2V -0.5V to V _{CC} + 0.5V
Outputs, I _O Continuos Current Surge Current	50mA 100mA
Package Thermal Impedance, θ_{JA}	39.2°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Power Supply Voltage		3.135	3.3	3.465	V
I _{EE}	Power Supply Current				131	mA

Table 4B. Power Supply DC Characteristics, $V_{CC} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Power Supply Voltage		2.375	2.5	2.625	V
I _{EE}	Power Supply Current				124	mA

Table 4C. LVCMOS/LVTTL DC Characteristics, V_{CC} = $3.3V \pm 5\%$ or $2.5V \pm 5\%$, V_{EE} = 0V, T_A = -40°C to 85° C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	V _{IH} Input High Voltage		$V_{CC} = 3.465 V$	2		V _{CC} + 0.3	V
VIН			$V_{\rm CC} = 2.625 V$	1.7		V _{CC} + 0.3	V
V	Input Low Volto	20	V _{CC} = 3.465V	-0.3		0.8	V
V _{IL}	Input Low Volta	ye	V _{CC} = 2.625V	-0.3		0.7	V
IIH	Input High Current	OE, FSEL[1:0]	$V_{CC} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μA
IIL	Input Low Current	OE, FSEL[1:0]	$V_{CC} = 3.465V \text{ or } 2.625V, V_{IN} = 0V$	-150			μA

RENESAS

Table 4D. LVPECL DC Characteristics, V_{CC} = 3.3V ± 5% or 2.5V ± 5%, V_{EE} = 0V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} – 1.3		V _{CC} – 0.8	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CC} – 2.0		V _{CC} – 1.6	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs termination with 50 $\!\Omega$ to V_{CC} – 2V.

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamenta	ıl	
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

AC Electrical Characteristics

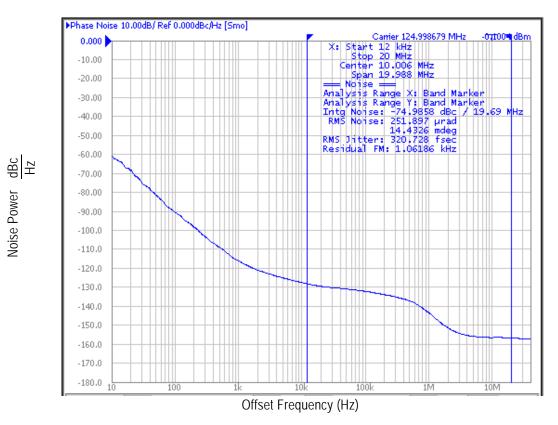
Table 6A. AC Characteristics,	$V_{cc} = 3.3V \pm 5\%, V_{EE}$	$= 0V, T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$
-------------------------------	---------------------------------	--

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency		1250		187.5	MHz
		156.25MHz, Integration Range: 12kHz – 20MHz		0.339	0.5	ps
fit/(7)	ک) RMS Phase Jitter (Random); NOTE 1	187.5MHz, Integration Range: 12kHz – 20MHz		0.321	0.5	ps
∕jit(Ø)		125MHz, Integration Range: 12kHz – 20MHz		0.309	0.5	ps
		150MHz, Integration Range: 12kHz – 20MHz		0.315	0.5	ps
<i>t</i> jit(cc)	Cycle-to-Cycle Jitter; NOTE 2				10	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	100		350	ps
odc	Output Duty Cycle		49		51	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

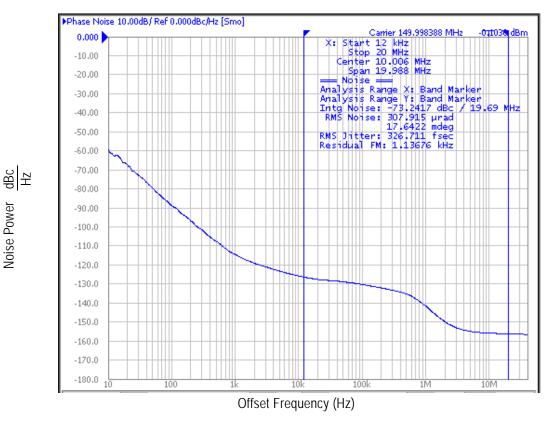
NOTE 1: Refer to the Phase Noise plots.

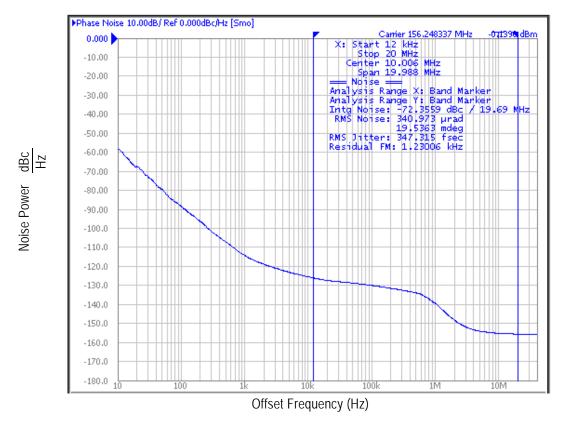
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.


Table 6B. AC Characteristics, V_{cc} = 2.5V \pm 5%, V_{EE} = 0V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency		125		187.5	MHz
		156.25MHz, Integration Range: 12kHz – 20MHz		0.347	0.5	ps
fit/(7)	t(Ø) RMS Phase Jitter (Random); NOTE 1	187.5MHz, Integration Range: 12kHz – 20MHz		0.326	0.5	ps
ųn(Θ)		125MHz, Integration Range: 12kHz – 20MHz		0.315	0.5	ps
		150MHz, Integration Range: 12kHz – 20MHz		0.317	0.5	ps
<i>t</i> jit(cc)	Cycle-to-Cycle Jitter; NOTE 2				20	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	100		350	ps
odc	Output Duty Cycle		49		51	%

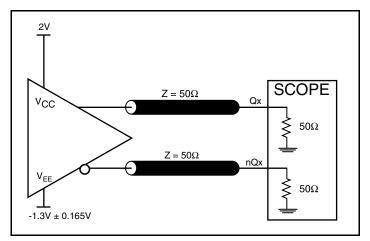
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.


NOTE 1: Refer to the Phase Noise plots.

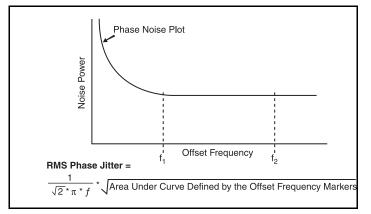

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

Typical Phase Noise at 125MHz (3.3V core, 3.3V output)

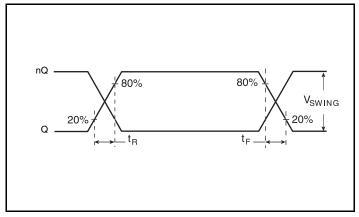

Typical Phase Noise at 150MHz (3.3V core, 3.3V output)

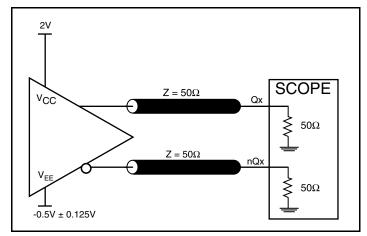

Typical Phase Noise at 156.25MHz (3.3V core, 3.3V output)

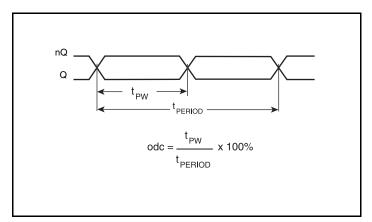
Typical Phase Noise at 187.5MHz (3.3V core, 3.3V output)

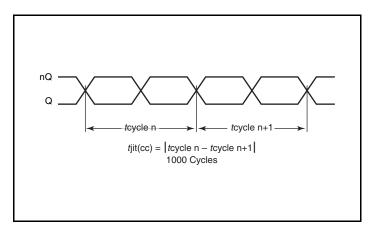


RENESAS


Parameter Measurement Information


3.3V LVPECL Output Load AC Test Circuit


RMS Phase Jitter


Output Rise/Fall Time

2.5V LVPECL Output Load AC Test Circuit

Output Duty Cycle/Pulse Width/Period

Cycle-to-Cycle Jitter

Application Information

Recommendations for Unused Input Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pullups; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 1*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific

and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

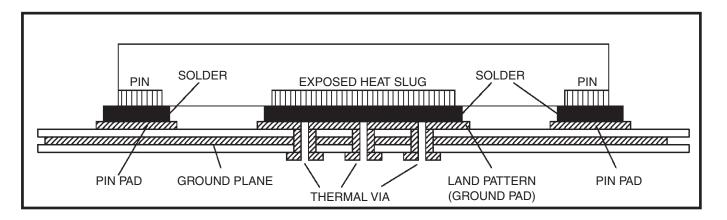


Figure 1. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

Crystal Input Interface

The 83PN187I has been characterized with 12pF parallel resonant crystals. The capacitor values shown in *Figure 2A* below were determined using a 25MHz, 12pF parallel resonant crystal and were

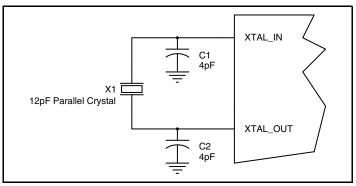


Figure 2A. Crystal Input Interface, using 12pF crystal

chosen to minimize the ppm error. Other parallel resonant crystal's values can be used. For example, a crystal with a $C_L = 18$ pF can be used, but would require the tuning capacitors to be adjusted.

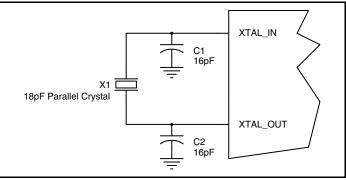


Figure 2B. Crystal Input Interface, using 18pF crystal

Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3A*. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched

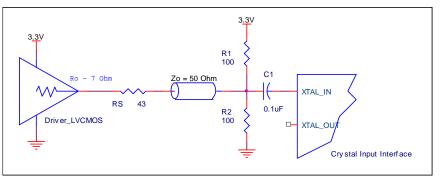


Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

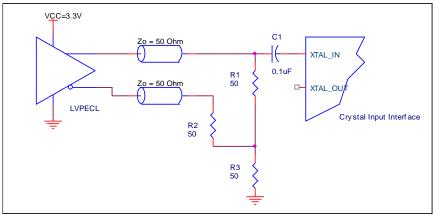


Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50 Ω applications, R1 and R2 can be 100 Ω . This can also be accomplished by removing R1 and making R2 50 Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as quidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

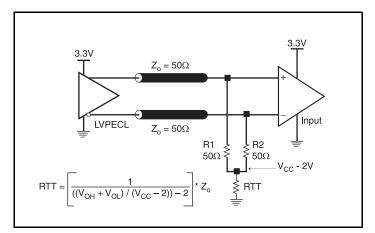


Figure 4A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

Figure 4B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 5A and Figure 5B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CC} - 2V$. For $V_{CC} = 2.5V$, the $V_{CC} - 2V$ is very close to ground

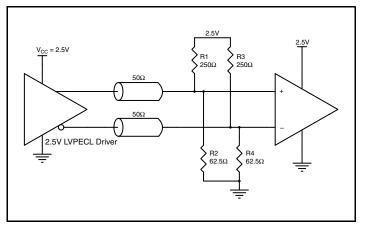


Figure 5A. 2.5V LVPECL Driver Termination Example

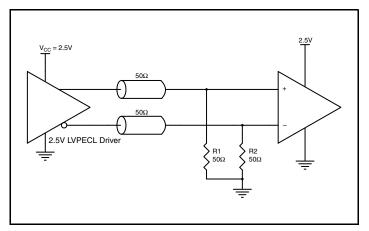


Figure 5C. 2.5V LVPECL Driver Termination Example

level. The R3 in Figure 5B can be eliminated and the termination is shown in *Figure 5C*.

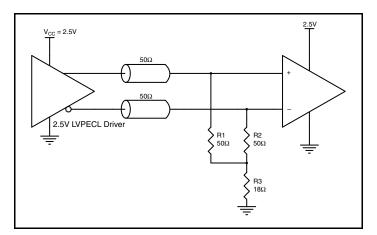


Figure 5B. 2.5V LVPECL Driver Termination Example

Power Considerations

This section provides information on power dissipation and junction temperature for the 83PN187I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 83PN187I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.465V * 131mA = 453.915mW
- Power (outputs)_{MAX} = 32mW/Loaded Output pair

Total Power_MAX (3.3V, with all outputs switching) = 453.915mW + 32mW = 485.915mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 39.2°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.486W * 39.2^{\circ}C/W = 104.1^{\circ}C$. This is well below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 10 Lead VFQFN, Forced Convection

θ_{JA} vs. Air Flow	
Meters per Second	0
Multi-Layer PCB, JEDEC Standard Test Boards	39.2°C/W

RENESAS

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

LVPECL output driver circuit and termination are shown in Figure 6.

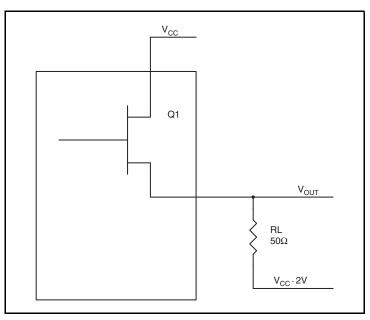


Figure 6. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50 Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.8V$ ($V_{CC_MAX} - V_{OH_MAX}$) = 0.8V
- For logic low, V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.6V (V_{CC_MAX} - V_{OL_MAX}) = 1.6V

Pd_H is power dissipation when the output drives high.

 $\ensuremath{\mathsf{Pd}_L}$ is the power dissipation when the output drives low.

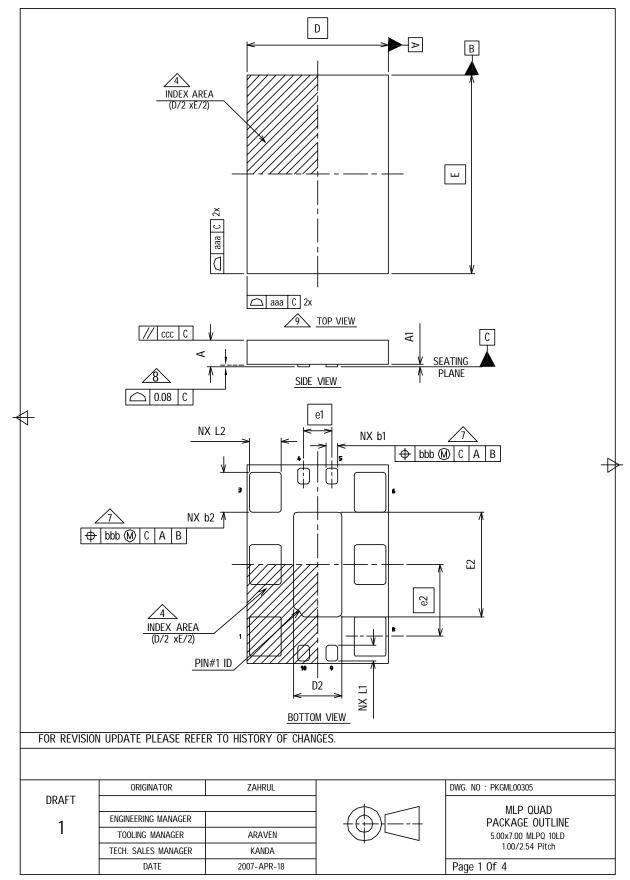
 $\begin{array}{l} {{\mathsf{Pd}}_{-}{\mathsf{H}}} = [({{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - 2{\mathsf{V}}))/{{\mathsf{R}}_{\mathsf{L}}}] * ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) = [(2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}))/{{\mathsf{R}}_{\mathsf{L}}}] * ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) = [(2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}))/{{\mathsf{R}}_{\mathsf{L}}}] * ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) = [(2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}))/{{\mathsf{R}}_{\mathsf{L}}}] * ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) = [(2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}))/{{\mathsf{R}}_{\mathsf{L}}}] * ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) = [(2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}})] = [(2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}})] = (2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{OH}}_{\mathsf{MAX}}}}) - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{MAX}}}})] = (2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{CC}}_{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{MAX}}}}))/{{\mathsf{R}}_{{\mathsf{MAX}}}})] = (2{\mathsf{V}} - ({{\mathsf{V}}_{{\mathsf{MAX}}}} - {{\mathsf{V}}_{{\mathsf{MAX}}}}))/{{\mathsf{R}}_{{\mathsf{MAX}}}}) = (2{\mathsf{V}} - ({{\mathsf{MAX}}}) - (2{\mathsf{V}}_{{\mathsf{MAX}}}))/{{\mathsf{MAX}}})) = (2{\mathsf{V}} - (2{\mathsf{V}} - (2{\mathsf{V}}))/{{\mathsf{MAX}}}))/{{\mathsf{MAX}}})$

 $\begin{array}{l} \mathsf{Pd}_{\mathsf{L}} = [(\mathsf{V}_{\mathsf{OL}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - 1.6\mathsf{V})/50\Omega] * 1.6\mathsf{V} = \mathbf{12.82mW} \end{array}$

Total Power Dissipation per output pair = $Pd_H + Pd_L = 32mW$

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 10 Lead VFQFN


θ _{JA} vs. Air Flow	
Meters per Second	0
Multi-Layer PCB, JEDEC Standard Test Boards	39.2°C/W

Transistor Count

The transistor count for 83PN187I is: 24,932

Package Outline Package Outline - K Suffix for 10-Lead VFQFN

Г

Package Outline, continued Package Outline - K Suffix for 10-Lead VFQFN

					n dimension			
			NCE OF FORM A	ND POSIT	ION			
aaa		0.15						
bbb		0.10						
222		0.10						
				СОММО	N DIMENSION			
	SYMBOL	. -	MIN		V :	Very thin NOM		MAX
	Α		0.80			0.90		1.00
	A1		0.00			0.02		0.05
	NOTES		1, 2			1, 2		1, 2
	NOTES		1, 2			1, 2		1, 2
				Summ	ary Table			
	Lead		Lead	24	Body	Very Ver	y Thin	
	(e1 & e2))	Count		Size	Variat	ion	Pin #1 ID
	00/2.54		10	Ę	5.00X7.00	VNJR	2-1	R0.30
RAFT	0	E PLEASE R RIGINATOR	EFER TO HISTOF		ANGES.			: PKGML00305 MLP QUAD
	O ENGINE	riginator Fring Manager	ZAH	RUL	ANGES.			MLP QUAD PACKAGE OUTLIN
AFT	0 ENGINER TOOL	RIGINATOR	ZAH	RUL	ANGES.			MLP QUAD

RENESAS

Package Outline, continued Package Outline - K Suffix for 10-Lead VFQFN

	NOTE	:				
	1. Dim	ensioning and toler	rancing conform to A	ASME Y14.5M-1994.		
	2. All	dimensions are in	millimeters, angles	are in degrees(°).		
	3. N	s the total number	of terminals.			
			erminal #1 identifier publication 95 SPP-0	r and terminal numberir 102.	ng convention	
	5. ND	and NE refer to t	he number of termin	nals on each D and E s	side respectively.	
	6. NJ	R refers to NON JE	DEC REGISTERED			
	an on	d 0.30mm from the	terminal tip. If the	I and is measured betw terminal has the optio mension b should not b	nal radius	
	<u>8.</u> Co	planarity applies to	the terminals and	all other bottom surfa	ace metallization.	
	<u>9.</u> Dra	awing shown are fo	or illustration only.			
◀	1					
						_
	FOR REVISION	I UPDATE PLEASE REFE	R TO HISTORY OF CHAN	IGES.		
	DRAFT	ORIGINATOR	ZAHRUL		DWG. NO : PKGML00305	
	1	Engineering Manager Tooling Manager	ARAVEN		MLP QUAD PACKAGE OUTLINE 5.00x7.00 MLPQ 10LD	
		TECH. SALES MANAGER	KANDA		1.00/2.54 Pitch	
L		DATE	2007-APR-18		PAGE: 3 of 4	

Package Outline, continued Package Outline - K Suffix for 10-Lead VFQFN

D BSC 500 Image: Constraint of the second s	Syn	riation how	VNJR-1								Note
E BSC 7.00 Image: Solution of the second se		~0/ \	5.00								
MN 0.35 Image: Constraint of the second sec											
b1 NOM 0.40 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII											
MAX 0.45 Image: Second	b1										
MIN 135 Max Max <td></td>											
b2 NOM 140 Image: state of the stat											
MAX 145 Image: Constraint of the second sec	b2										
D2 MIN 1.55 Image: Constraint of the second sec											
D2 NOM 1.70 Image: Second seco											
MAX 180 Image: Constraint of the state	D2										
E2 MIN 3.55 Image: Constraint of the state of th											
E2 NOM 3.70 Image: Constraint of the second sec											
MAX 3.80 Image: Constraint of the second se	E2								1		
MIN 0.45 Image: Constraint of the second se	-	-							1		
L1 NOM 0.55 Image: Constraint of the second sec											
MAX 0.65 Image: Constraint of the second se	L1							1	1		
MIN 1.00 Image: Constraint of the second se											
12 NOM 1.10 Image: constraint of the second s		_									
MAX 120 Image: Constraint of the state o	L2										
N 10 Image: Constraint of the second		-									
ND 2 Image: Constraint of the second											
NE 3 Image: Constraint of the state of t	N	ND									
NOTES - - - - PAD DESIGN - - - - - PAD DESIGN - - - - - ORIGINATOR ZAHRUL DWG. NO : PKGML00305 - - DRAFT - - - - -											
PAD DESIGN - CONTROL C											
FOR REVISION UPDATE PLEASE REFER TO HISTORY OF CHANGES. DRAFT ORIGINATOR ZAHRUL DRAFT	NO	TES	-								
DRAFT ORIGINATOR ZAHRUL DWG. NO : PKGML00305 MLP QUAD DWG. NO : PKGML00305											
	PAD I	DESIGN	-								
	DAD I	EVISION	- UPDATE P			CHANGES.			DWG. NO	: PKGML0030	15
	DAD I	EVISION	- UPDATE P			CHANGES.			DWG. NO		
TECH. SALES MANAGER KANDA 1.00/2.54 Pitch	DAD I	EVISION	UPDATE P ORIGIN ENGINEERING TOOLING	iator G Manager Manager	ZAHRUL	CHANGES.			DWG. NO	MLP	QUAD OUTLINE MLPQ 10LD

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking Package		Shipping Packaging	Temperature
83PN187DKILF	ICS3PN187DIL	"Lead-Free" 10 Lead VFQFN	Tray	-40°C to 85°C
83PN187DKILFT	ICS3PN187DIL	"Lead-Free" 10 Lead VFQFN	Tape & Reel	-40°C to 85°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A		3, 16-19	Supply Voltage, V _{CC.} Rating changed from 4.5V min. to 3.63V per Errata NEN-11-03. Updated 10-Lead VFQFN package information.	6/02/11
A	Т9	20	Ordering Information - removed quantity in tape and reel. Deleted LF note below table. Removed ICS from part numbers where needed. Updated header and footer.	3/4/16

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.