# **inter<sub>sil</sub>**

# DATASHEET

# ISL70218SEH, ISL70218SRH

Radiation Hardened Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers

FN7957 Rev.4.01 Jun 12, 2020

The <u>ISL70218SEH</u>, <u>ISL70218SRH</u> are dual, low-power precision amplifiers optimized for single-supply applications. These op amps feature a common-mode input voltage range extending to 0.5V below the V<sup>-</sup> rail, a rail-to-rail differential input voltage range, and rail-to-rail output voltage swing, which makes it ideal for single-supply applications where input operation at ground is important.

These op amps feature low-power, low-offset voltage and low-temperature drift, making it ideal for applications requiring both high DC accuracy and AC performance. They are designed to operate over a single supply range of 3V to 36V or a split supply voltage range of +1.8V/-1.2V to ±18V. The combination of precision and small footprint provides the user with outstanding value and flexibility relative to similar competitive parts.

Applications for these amplifiers include precision instrumentation, data acquisition and precision power supply controls.

ISL70218SEH, ISL70218SRH are available in a 10 lead hermetic ceramic flatpack and operate across the extended temperature range of -55°C to +125°C.

# **Applications**

- Precision instruments
- Active filter blocks
- Data acquisition
- · Power supply control

### **Features**

- DLA SMD# 5962-12222 (ISL70218SEH Only)
- Wide single and dual supply range  $\ldots\ldots$  3V to 42V, Abs. Max.
- Low input offset voltage......40µV, typical
- Rail-to-rall output ......<10mV
- Rail-to-rail input differential voltage range for comparator applications
- Operating temperature range.....-55°C to +125°C
- Below-ground (V<sup>-</sup>) input capability to -0.5V
- + Low noise voltage  $\dots 5.6 nV/\sqrt{Hz}$ , typical
- Offset voltage temperature drift .....0.3µV/°C, typical
- · No phase reversal
- Radiation acceptance testing ISL70218SRH
  - HDR (50-300rad(Si)/s) ..... 100krad(Si)
- Radiation acceptance testing ISL70218SEH
  - HDR (50-300rad(Si)/s) ..... 100krad(Si)
- SEE hardness (see SEE report for details)

  - SEL Immune (SOI Process)

# **Related Literature**

For a full list of related documents, visit our website:

• ISL70218SEH and ISL70218SRH device pages



FIGURE 2. INPUT OFFSET VOLTAGE vs INPUT COMMON-MODE VOLTAGE,  $V_S=\pm15\text{V}$ 



FIGURE 1. TYPICAL APPLICATION: SINGLE-SUPPLY, LOW-SIDE CURRENT SENSE AMPLIFIER 2<u>18SEH</u> and <u>ISL70</u>

# **Pin Configuration**



# **Pin Descriptions**

| PIN NUMBER | PIN NAME | EQUIVALENT CIRCUIT                       | DESCRIPTION                                           |
|------------|----------|------------------------------------------|-------------------------------------------------------|
| 1          | OUT_A    | Circuit 2                                | Amplifier A output                                    |
| 2          | -IN_A    | Circuit 1                                | Amplifier A inverting input                           |
| 3          | +IN_A    | Circuit 1                                | Amplifier A noninverting input                        |
| 4, 6       | NC       |                                          | No connect                                            |
| 5          | V-       | Circuit 1, 2, 3                          | Negative power supply                                 |
| 7          | +IN_B    | Circuit 1                                | Amplifier B noninverting input                        |
| 8          | -IN_B    | Circuit 1                                | Amplifier B inverting input                           |
| 9          | OUT_B    | Circuit 2                                | Amplifier B output                                    |
| 10         | V+       | Circuit 1, 2, 3                          | Positive power supply                                 |
|            |          | ···- ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ | V <sup>+</sup> CAPACITIVELY<br>TRIGGERED ESD<br>CLAMP |
| CIRCUIT 1  |          | CIRCUIT 2                                | CIRCUIT 3                                             |

### **Ordering Information**

| ORDERING<br>SMD NUMBER            | PART NUMBER<br>( <u>Note 1</u> )     | RADIATION HARDNESS<br>(Total Ionizing Dose) | TEMP RANGE<br>(°C) | PACKAGE<br>(RoHS Compliant) | PKG.<br>DWG. # |
|-----------------------------------|--------------------------------------|---------------------------------------------|--------------------|-----------------------------|----------------|
| 5962R1222201VXC ( <u>Note 2</u> ) | ISL70218SEHVF                        | HDR to 100krad(Si),                         | -55 to +125        | 10 Ld Flatpack              | K10.A          |
| 5962R1222201V9A ( <u>Note 2</u> ) | ISL70218SEHVX ( <u>Note 3</u> )      | LDR to 50krad(Si)                           | -55 to +125        | Die                         |                |
| NA                                | ISL70218SEHF/PROTO (Note 4)          | N/A                                         | -55 to +125        | 10 Ld Flatpack              | K10.A          |
| NA                                | ISL70218SEHX/SAMPLE (Notes 3, 4)     | N/A                                         | -55 to +125        | Die                         |                |
| NA                                | ISL70218SRHMF                        | HDR to 100krad(Si)                          | -55 to +125        | 10 Ld Flatpack              | K10.A          |
| NA                                | ISL70218SRHMX ( <u>Note 3</u> )      | _                                           | -55 to +125        | Die                         |                |
| NA                                | ISL70218SRHF/PROTO (Note 4)          | N/A                                         | -55 to +125        | 10 Ld Flatpack              | K10.A          |
| NA                                | ISL70218SRHX/SAMPLE (Notes 3, 4)     | N/A                                         | -55 to +125        | Die                         |                |
| NA                                | ISL70218SRHMEVAL1Z ( <u>Note 5</u> ) | Evaluation Board                            | 1                  | 1                           | 1              |

#### NOTES:

1. These Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.

2. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed in the "Ordering Information" table must be used when ordering.

3. Die product tested at T<sub>A</sub> = + 25 °C. The wafer probe test includes functional and parametric testing sufficient to make the die capable of meeting the electrical performance outlined in <u>"Electrical Specifications" on page 4</u>.

4. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across temperature specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE parts are capable of meeting the electrical limits and conditions specified in the DLA SMD. The /SAMPLE parts do not receive 100% screening across temperature to the DLA SMD electrical limits. These part types do not come with a Certificate of Conformance because they are not DLA qualified devices.

5. Evaluation board uses the /PROTO parts and /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity.

#### **Absolute Maximum Ratings**

| Maximum Supply Voltage 42V                                          |
|---------------------------------------------------------------------|
| Maximum Supply Voltage ( <u>Note 8</u> )                            |
| Maximum Differential Input Current                                  |
| Maximum Differential Input VoltageV - 0.5V to V <sup>+</sup> + 0.5V |
| Min/Max Input VoltageV 0.5V to V+ + 0.5V                            |
| Max/Min Input Current±20mA                                          |
| Output Short-Circuit Duration (1 output at a time) Indefinite       |
| ESD Tolerance                                                       |
| Human Body Model (Tested per MIL-PRF-883 3015.7) 2kV                |
| Machine Model (Tested per JESD22-A115-A)                            |
| Charged Device Model (Tested per CDM-22CIOID)                       |
| Dielectrically Isolated PR40 ProcessLatch-Up Free                   |

#### **Thermal Information**

| Thermal Resistance (Typical)                 | θ <sub>JA</sub> (°C/W) | θ <sub>JC</sub> (°C/W) |
|----------------------------------------------|------------------------|------------------------|
| 10 Ld Flatpack Package ( <u>Notes 6, 7</u> ) | 130                    | 20                     |
| Storage Temperature Range                    | 6                      | 5°C to +150°C          |

#### **Recommended Operating Conditions**

| Ambient Operating Temperature Range    | 55°C to +125°C                |
|----------------------------------------|-------------------------------|
| Maximum Operating Junction Temperature | +150°C                        |
| Supply Voltage 3                       | V (+1.8V/-1.2V) to 30V (±15V) |

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

#### NOTES:

6.  $\theta_{JA}$  is measured with the component mounted on a low effective thermal conductivity test board in free air. See <u>TB379</u> for details.

7. For  $\theta_{\text{JC}},$  the "case temp" location is the center of the package underside.

8. Tested in a heavy ion environment at LET = 86.4 MeV • cm<sup>2</sup>/mg at +125 °C (T<sub>c</sub>) for SEB. See <u>AN1677</u> for more information.

**Electrical Specifications**  $V_S \pm 15V$ ,  $V_{CM} = 0$ ,  $V_0 = 0V$ ,  $R_L = 0$  pen,  $T_A = +25$ °C, unless otherwise noted. Boldface limits apply across the operating temperature range, -55°C to +125°C.

| SYMBOL            | PARAMETER                                               | TEST CONDITIONS                                          | MIN<br>( <u>Note 9</u> ) | ТҮР  | MAX<br>( <u>Note 9</u> )                                                                   | UNIT  |
|-------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------|------|--------------------------------------------------------------------------------------------|-------|
| V <sub>OS</sub>   | Offset Voltage                                          |                                                          |                          | 40   | 230                                                                                        | μV    |
|                   |                                                         |                                                          |                          |      | 290                                                                                        | μV    |
| TCV <sub>OS</sub> | Offset Voltage Drift                                    |                                                          |                          | 0.3  | 1.4                                                                                        | µV∕°C |
| $\Delta V_{OS}$   | Input Offset Voltage Match                              |                                                          |                          | 44   | 280                                                                                        | μV    |
|                   | Channel-to-Channel                                      |                                                          |                          |      | 365       50       75       30       (V <sup>+</sup> ) - 1.8       (V <sup>+</sup> ) - 1.8 | μV    |
| I <sub>OS</sub>   | Input Offset Current                                    |                                                          | -50                      | 4    | 50                                                                                         | nA    |
|                   |                                                         |                                                          | -75                      |      | 75<br>)<br>(V <sup>+</sup> ) - 1.8<br>(V <sup>+</sup> ) - 1.8                              | nA    |
| I <sub>B</sub>    | Input Bias Current                                      |                                                          | -575                     | -230 | 0                                                                                          | nA    |
|                   |                                                         |                                                          | -800                     |      |                                                                                            | nA    |
| V <sub>CMIR</sub> | Common-Mode Input Voltage Range                         | Guaranteed by CMRR Test                                  | (V <sup>-</sup> ) - 0.5  |      | (V <sup>+</sup> ) - 1.8                                                                    | v     |
|                   |                                                         |                                                          | <b>V</b> -               |      | (V <sup>+</sup> ) - 1.8                                                                    | v     |
| CMRR              | Common-Mode Rejection Ratio                             | V <sub>CM</sub> = V <sup>-</sup> to V <sup>+</sup> -1.8V | 100                      | 118  |                                                                                            | dB    |
|                   |                                                         | V <sub>CM</sub> = V <sup>-</sup> to V <sup>+</sup> -1.8V | 97                       |      |                                                                                            | dB    |
| PSRR              | Power Supply Rejection Ratio                            | $V_{\rm S}$ = 3V to 40V,                                 | 105                      | 124  |                                                                                            | dB    |
|                   |                                                         | V <sub>CMIR</sub> = Valid Input Voltage                  | 100                      | 118  | dB                                                                                         |       |
| A <sub>VOL</sub>  | Open-Loop Gain                                          | $R_L = 10k\Omega$ to ground                              | 120                      | 130  |                                                                                            | dB    |
|                   |                                                         | V <sub>0</sub> = -13V to +13V                            | 115                      |      |                                                                                            | dB    |
| v <sub>он</sub>   | Output Voltage High, V <sup>+</sup> to V <sub>OUT</sub> | $R_{L} = 10k\Omega$                                      |                          |      | 110                                                                                        | mV    |
|                   |                                                         |                                                          |                          |      | 120                                                                                        | mV    |
| V <sub>OL</sub>   | Output Voltage Low, V <sub>OUT</sub> to V <sup>-</sup>  | $R_L = 10k\Omega$                                        |                          |      | 70                                                                                         | mV    |
|                   |                                                         |                                                          |                          |      | 80                                                                                         | mV    |
| ۱ <sub>S</sub>    | Supply Current/Amplifier                                |                                                          |                          | 0.85 | 1.10                                                                                       | mA    |
|                   |                                                         |                                                          |                          |      | 1.4                                                                                        | mA    |
| I <sub>S+</sub>   | Source Current Capability                               |                                                          | 10                       |      |                                                                                            | mA    |
|                   |                                                         |                                                          |                          |      |                                                                                            |       |



**Electrical Specifications**  $V_{S} \pm 15V$ ,  $V_{CM} = 0$ ,  $V_{0} = 0V$ ,  $R_{L} = 0$  pen,  $T_{A} = +25$  °C, unless otherwise noted. Boldface limits apply across the operating temperature range, -55 °C to +125 °C. (Continued)

| SYMBOL                                         | PARAMETER                                                   | TEST CONDITIONS                                                                      | MIN<br>( <u>Note 9</u> ) | ТҮР    | MAX<br>( <u>Note 9</u> ) | UNIT              |
|------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------|--------|--------------------------|-------------------|
| I <sub>S-</sub>                                | Sink Current Capability                                     |                                                                                      | 10                       |        |                          | mA                |
| V <sub>SUPPLY</sub>                            | Supply Voltage Range                                        | Guaranteed by PSRR                                                                   | 3                        |        | 40                       | v                 |
| AC SPECIFICATIONS                              | 5                                                           |                                                                                      |                          | I.     |                          |                   |
| GBW                                            | Gain Bandwidth Product                                      | A <sub>CL</sub> = 101, V <sub>OUT</sub> = 100mV <sub>P-P</sub> ; R <sub>L</sub> = 2k |                          | 4      |                          | MHz               |
| e <sub>np-p</sub>                              | Voltage Noise                                               | 0.1Hz to 10Hz, V <sub>S</sub> = ±18V                                                 |                          | 300    |                          | nV <sub>P-P</sub> |
| e <sub>n</sub>                                 | Voltage Noise Density                                       | $f = 10Hz, V_S = \pm 18V$                                                            |                          | 8.5    |                          | nV/√Hz            |
| e <sub>n</sub>                                 | Voltage Noise Density                                       | $f = 100Hz, V_S = \pm 18V$                                                           |                          | 5.8    |                          | nV/√Hz            |
| e <sub>n</sub>                                 | Voltage Noise Density                                       | f = 1kHz, V <sub>S</sub> = ±18V                                                      |                          | 5.6    |                          | nV/√Hz            |
| e <sub>n</sub>                                 | Voltage Noise Density                                       | $f = 10kHz, V_S = \pm 18V$                                                           |                          | 5.6    |                          | nV/√Hz            |
| in                                             | Current Noise Density                                       | f = 1kHz, V <sub>S</sub> = ±18V                                                      |                          | 355    |                          | fA/√Hz            |
| THD + N                                        | Total Harmonic Distortion + Noise                           | 1kHz, G = 1, V <sub>0</sub> = $3.5V_{RMS}$ , R <sub>L</sub> = 10kΩ                   |                          | 0.0003 |                          | %                 |
| TRANSIENT RESPO                                | NSE                                                         |                                                                                      | 1                        | I.     |                          |                   |
| SR                                             | Slew Rate                                                   | $A_V = 1$ , $R_L = 2k\Omega$ , $V_O = 10V_{P-P}$                                     | ±1.0                     | ±1.2   |                          | V/µs              |
|                                                |                                                             |                                                                                      | ±0.4                     |        |                          | V/µs              |
| t <sub>r</sub> , t <sub>f</sub> , Small Signal | Rise Time 10% to 90% of V <sub>OUT</sub>                    | $A_V = 1, V_{OUT} = 100mV_{P-P}, R_f = 0\Omega,$                                     |                          | 100    | 200                      | ns                |
|                                                |                                                             | $R_L = 2k\Omega$ to $V_{CM}$                                                         |                          |        | 400                      | ns                |
|                                                | Fall Time 90% to 10% of V <sub>OUT</sub>                    | $A_V = 1, V_{OUT} = 100 m V_{P-P}, R_f = 0\Omega,$                                   |                          | 100    | 230                      | ns                |
|                                                |                                                             | $R_L = 2k\Omega$ to $V_{CM}$                                                         |                          |        | 400                      | ns                |
| t <sub>s</sub>                                 | Settling Time to 0.01%<br>10V Step; 10% to V <sub>OUT</sub> |                                                                                      |                          | 8.5    |                          | μs                |
| 0S+                                            | Positive Overshoot                                          | $A_{V} = 1, V_{OUT} = 10V_{P-P}, R_{f} = 0\Omega$                                    |                          | 5      |                          | %                 |
|                                                |                                                             | $R_L = 2k\Omega$ to $V_{CM}$                                                         |                          |        | 35                       | %                 |
| OS-                                            | Negative Overshoot                                          | $A_V = 1, V_{OUT} = 10V_{P-P}, R_f = 0\Omega$                                        |                          | 5      |                          | %                 |
|                                                |                                                             | $R_L = 2k\Omega$ to $V_{CM}$                                                         |                          |        | 35                       | %                 |

**Electrical Specifications**  $V_S \pm 15V$ ,  $V_{CM} = 0$ ,  $V_0 = 0V$ ,  $R_L = 0$  pen,  $T_A = +25$ °C, unless otherwise noted. Boldface limits apply over a total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s; and over a total ionizing dose of 50krad(Si) (ISL70218SEH only) with exposure at a low dose rate of <10mrad(Si)/s.

| SYMBOL            | PARAMETER                                                         | TEST CONDITIONS | MIN<br>( <u>Note 9</u> ) | ТҮР  | MAX<br>( <u>Note 9</u> )   | UNIT  |
|-------------------|-------------------------------------------------------------------|-----------------|--------------------------|------|----------------------------|-------|
| V <sub>os</sub>   | Offset Voltage                                                    |                 |                          | 40   | 230                        | μV    |
|                   |                                                                   |                 |                          |      | 290                        | μV    |
| TCV <sub>OS</sub> | Offset Voltage Drift                                              |                 |                          | 0.3  | 1.4                        | μV∕°C |
| ΔV <sub>OS</sub>  | ΔV <sub>OS</sub> Input Offset Voltage Match<br>Channel-to-Channel |                 |                          | 44   | 280                        | μV    |
|                   |                                                                   |                 |                          | 365  | μV                         |       |
| I <sub>OS</sub>   | Input Offset Current                                              |                 | -50                      | 4    | 50                         | nA    |
|                   |                                                                   |                 | -75                      |      | 4 280<br>365<br>4 50<br>75 | nA    |
| I <sub>B</sub>    | Input Bias Current                                                |                 | -575                     | -230 |                            | nA    |
|                   |                                                                   |                 | -1500                    |      |                            | nA    |

**Electrical Specifications**  $V_S \pm 15V$ ,  $V_{CM} = 0$ ,  $V_0 = 0V$ ,  $R_L = Open$ ,  $T_A = +25$  °C, unless otherwise noted. Boldface limits apply over a total lonizing dose of 100krad(SI) with exposure at a high dose rate of 50 - 300krad(SI)/s; and over a total lonizing dose of 50krad(SI) (ISL70218SEH only) with exposure at a low dose rate of <10mrad(SI)/s. (Continued)

| SYMBOL                                         | PARAMETER                                                | TEST CONDITIONS                                                                                                                                                | MIN<br>( <u>Note 9</u> ) | ТҮР    | MAX<br>( <u>Note 9</u> ) | UNIT              |
|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|--------------------------|-------------------|
| V <sub>CMIR</sub>                              | Common-Mode Input Voltage Range                          | Guaranteed by CMRR Test                                                                                                                                        | (V⁻) - 0.5               |        | (V <sup>+</sup> ) -1.8   | v                 |
|                                                |                                                          |                                                                                                                                                                | V-                       |        | (V <sup>+</sup> ) - 1.8  | v                 |
| CMRR                                           | Common-Mode Rejection Ratio                              | $V_{CM} = V^{-} \text{ to } V^{+} - 1.8V$                                                                                                                      | 100                      | 118    |                          | dB                |
|                                                |                                                          | $V_{CM} = V^{-} \text{ to } V^{+} - 1.8V$                                                                                                                      | 97                       |        |                          | dB                |
| PSRR                                           | Power Supply Rejection Ratio                             | $V_{S} = 3V$ to 40V, $V_{CMIR} = Valid Input$                                                                                                                  | 105                      | 124    |                          | dB                |
|                                                |                                                          | Voltage                                                                                                                                                        | 100                      |        |                          | dB                |
| A <sub>VOL</sub>                               | Open-Loop Gain                                           | $R_L = 10k\Omega$ to ground $V_0 = -13V$ to +13V                                                                                                               | 120                      | 130    |                          | dB                |
|                                                |                                                          |                                                                                                                                                                | 115                      |        |                          | dB                |
| V <sub>он</sub>                                | Output Voltage High, $V^+$ to $V_{OUT}$                  | $R_{L} = 10k\Omega$                                                                                                                                            |                          |        | 110                      | mV                |
|                                                |                                                          |                                                                                                                                                                |                          |        | 120                      | mV                |
| V <sub>OL</sub>                                | Output Voltage Low, $V_{OUT}$ to V <sup>-</sup>          | $R_L = 10k\Omega$                                                                                                                                              |                          |        | 70                       | mV                |
|                                                |                                                          |                                                                                                                                                                |                          |        | 80                       | mV                |
| I <sub>S</sub>                                 | Supply Current/Amplifier                                 |                                                                                                                                                                |                          | 0.85   | 1.1                      | mA                |
|                                                |                                                          |                                                                                                                                                                |                          |        | 1.4                      | mA                |
| I <sub>S+</sub>                                | Source Current Capability                                |                                                                                                                                                                | 10                       |        |                          | mA                |
| I <sub>S-</sub>                                | Sink Current Capability                                  |                                                                                                                                                                | 10                       |        |                          | mA                |
| V <sub>SUPPLY</sub>                            | Supply Voltage Range                                     | Guaranteed by PSRR                                                                                                                                             | 3                        |        | 40                       | v                 |
| C SPECIFICATIONS                               | 6                                                        |                                                                                                                                                                |                          |        |                          |                   |
| GBW                                            | Gain Bandwidth Product                                   | $A_{CL} = 101, V_{OUT} = 100mV_{P-P}; R_{L} = 2k\Omega$                                                                                                        |                          | 4      |                          | MHz               |
| e <sub>np-p</sub>                              | Voltage Noise                                            | 0.1Hz to 10Hz, V <sub>S</sub> = ±18V                                                                                                                           |                          | 300    |                          | nV <sub>P-P</sub> |
| e <sub>n</sub>                                 | Voltage Noise Density                                    | $f = 10Hz, V_S = \pm 18V$                                                                                                                                      |                          | 8.5    |                          | nV/√H             |
| e <sub>n</sub>                                 | Voltage Noise Density                                    | f = 100Hz, V <sub>S</sub> = ±18V                                                                                                                               |                          | 5.8    |                          | nV/√H             |
| e <sub>n</sub>                                 | Voltage Noise Density                                    | $f = 1kHz, V_S = \pm 18V$                                                                                                                                      |                          | 5.6    |                          | nV/√H             |
| e <sub>n</sub>                                 | Voltage Noise Density                                    | f = 10kHz, V <sub>S</sub> = ±18V                                                                                                                               |                          | 5.6    |                          | nV/√H             |
| in                                             | Current Noise Density                                    | $f = 1kHz, V_S = \pm 18V$                                                                                                                                      |                          | 355    |                          | fA/√Hz            |
| THD + N                                        | Total Harmonic Distortion + Noise                        | 1kHz, G = 1, $V_0$ = 3.5 $V_{RMS}$ , $R_L$ = 10k $\Omega$                                                                                                      |                          | 0.0003 |                          | %                 |
| RANSIENT RESPON                                | NSE                                                      |                                                                                                                                                                |                          |        |                          |                   |
| SR                                             | Slew Rate                                                | $A_V = 1$ , $R_L = 2k\Omega$ , $V_O = 10V_{P-P}$                                                                                                               | ±1.0                     | ±1.2   |                          | V/µs              |
|                                                |                                                          |                                                                                                                                                                | ±0.4                     |        |                          | V/µs              |
| t <sub>r</sub> , t <sub>f</sub> , Small Signal | Rise Time 10% to 90% of V <sub>OUT</sub>                 | $A_{V} = 1, V_{OUT} = 100 m V_{P-P}, R_{f} = 0\Omega,$                                                                                                         |                          | 100    | 230                      | ns                |
|                                                |                                                          | $R_L = 2k\Omega$ to $V_{CM}$                                                                                                                                   |                          |        | 400                      | ns                |
|                                                | Fall Time 90% to 10% of V <sub>OUT</sub>                 | $A_V = 1, V_{OUT} = 100 \text{mV}_{P-P}, R_f = 0\Omega,$                                                                                                       |                          | 100    | 200                      | ns                |
|                                                |                                                          | $R_L = 2k\Omega$ to $V_{CM}$                                                                                                                                   |                          |        | 400                      | ns                |
| t <sub>s</sub>                                 | Settling Time to 0.01% 10V Step; 10% to V <sub>OUT</sub> | $\label{eq:average} \begin{split} A_V &= \textbf{1},  V_{OUT} = \textbf{1} 0 V_{P\!-\!P},  R_f = 0 \Omega \\ R_L &= 2 k \Omega \text{ to } V_{CM} \end{split}$ |                          | 8.5    |                          | μs                |
| 0S+                                            | Positive Overshoot                                       | $A_{V} = 1, V_{OUT} = 10V_{P-P}, R_{f} = 0\Omega$                                                                                                              |                          | 5      |                          | %                 |
|                                                |                                                          | $R_L = 2k\Omega$ to $V_{CM}$                                                                                                                                   |                          |        | 35                       | %                 |
| OS-                                            | Negative Overshoot                                       | $A_V = 1, V_{OUT} = 10V_{P-P}, R_f = 0\Omega$                                                                                                                  |                          | 5      |                          | %                 |
|                                                | -                                                        | $R_L = 2k\Omega \text{ to } V_{CM}$                                                                                                                            |                          |        | 35                       | %                 |



# **Electrical Specifications** $V_{S} \pm 5V$ , $V_{CM} = 0$ , $V_{0} = 0V$ , $T_{A} = +25$ °C, unless otherwise noted. Boldface limits apply over the operating temperature range, -55°C to +125°C.

| SYMBOL                                         | PARAMETER                                                  | TEST CONDITIONS                                                                                                                                               | MIN<br>( <u>Note 9</u> ) | TYP    | MAX<br>( <u>Note 9</u> ) | UNIT              |
|------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|--------------------------|-------------------|
| V <sub>os</sub>                                | Offset Voltage                                             |                                                                                                                                                               |                          | 40     |                          | μV                |
| $\Delta V_{OS}$                                | Input Offset Voltage Match Channel to<br>Channel           |                                                                                                                                                               |                          | 44     |                          | μV                |
| I <sub>OS</sub>                                | Input Offset Current                                       |                                                                                                                                                               |                          | 4      |                          | nA                |
| I <sub>B</sub>                                 | Input Bias Current                                         |                                                                                                                                                               |                          | -230   |                          | nA                |
| V <sub>CMIR</sub>                              | Common-Mode Input Voltage Range                            | Guaranteed by CMRR Test                                                                                                                                       | (V <sup>-</sup> ) - 0.5  |        | (V <sup>+</sup> ) - 1.8  | v                 |
|                                                |                                                            |                                                                                                                                                               | V-                       |        | (V <sup>+</sup> ) - 1.8  | v                 |
| CMRR                                           | Common-Mode Rejection Ratio                                | $V_{CM} = V^{-} - 0.5V \text{ to } V^{+} - 1.8$<br>$V_{CM} = V^{-} \text{ to } V^{+} - 1.8V$                                                                  |                          | 117    |                          | dB                |
| PSRR                                           | Power Supply Rejection Ratio                               | V <sub>S</sub> = 3V to 40V,<br>V <sub>CMIR</sub> = Valid Input Voltage                                                                                        |                          | 124    |                          | dB                |
| A <sub>VOL</sub>                               | Open-Loop Gain                                             | $R_L = 10k\Omega$ to ground<br>$V_0 = -3V$ to +3V                                                                                                             |                          | 130    |                          | dB                |
| V <sub>OH</sub>                                | Output Voltage High,                                       | $R_{L} = 10k\Omega$                                                                                                                                           |                          | 65     |                          | mV                |
|                                                | V <sup>+</sup> to V <sub>OUT</sub>                         |                                                                                                                                                               |                          | 70     |                          | mV                |
| V <sub>OL</sub>                                | Output Voltage Low,                                        | $R_{L} = 10k\Omega$                                                                                                                                           |                          | 38     |                          | mV                |
|                                                | V <sub>OUT</sub> to V <sup>-</sup>                         |                                                                                                                                                               |                          | 45     |                          | mV                |
| ا <sub>S</sub>                                 | Supply Current/Amplifier                                   |                                                                                                                                                               |                          | 0.85   |                          | mA                |
| I <sub>S+</sub>                                | Source Current Capability                                  |                                                                                                                                                               |                          | 8      |                          | mA                |
| I <sub>S-</sub>                                | Sink Current Capability                                    |                                                                                                                                                               |                          | 8      |                          | mA                |
| C SPECIFICATION                                | S                                                          |                                                                                                                                                               |                          | L      |                          |                   |
| GBW                                            | Gain Bandwidth Product                                     |                                                                                                                                                               |                          | 3.2    |                          | MHz               |
| e <sub>np-p</sub>                              | Voltage Noise                                              | 0.1Hz to 10Hz                                                                                                                                                 |                          | 320    |                          | nV <sub>P-F</sub> |
| e <sub>n</sub>                                 | Voltage Noise Density                                      | f = 10Hz                                                                                                                                                      |                          | 9      |                          | nV/√⊦             |
| e <sub>n</sub>                                 | Voltage Noise Density                                      | f = 100Hz                                                                                                                                                     |                          | 5.7    |                          | nV/√⊦             |
| e <sub>n</sub>                                 | Voltage Noise Density                                      | f = 1kHz                                                                                                                                                      |                          | 5.5    |                          | nV/√H             |
| e <sub>n</sub>                                 | Voltage Noise Density                                      | f = 10kHz                                                                                                                                                     |                          | 5.5    |                          | nV/√H             |
| in                                             | Current Noise Density                                      | f = 1kHz                                                                                                                                                      |                          | 380    |                          | fA/√H             |
| THD + N                                        | Total Harmonic Distortion + Noise                          | 1kHz, G = 1, V <sub>0</sub> = 1.25V <sub>RMS</sub> , R <sub>L</sub> = 10kΩ                                                                                    |                          | 0.0003 |                          | %                 |
| RANSIENT RESPO                                 | NSE                                                        |                                                                                                                                                               |                          |        |                          |                   |
| SR                                             | Slew Rate                                                  | $A_V = 1, R_L = 2k\Omega, V_0 = 4V_{P-P}$                                                                                                                     |                          | ±1     |                          | V/µs              |
| t <sub>r</sub> , t <sub>f</sub> , Small Signal | Rise Time 10% to 90% of V <sub>OUT</sub>                   |                                                                                                                                                               |                          | 100    |                          | ns                |
|                                                | Fall Time 90% to 10% of V <sub>OUT</sub>                   | $\label{eq:AV} \begin{split} A_V &= \textbf{1},  V_{OUT} = \textbf{1}00mV_{P,P}  ,  R_f = 0\Omega, \\ R_L &= 2k\Omega \; to \; V_{CM} \end{split}$            |                          | 100    |                          | ns                |
| t <sub>s</sub>                                 | Settling Time to 0.01%<br>4V Step; 10% to V <sub>OUT</sub> |                                                                                                                                                               |                          | 4      |                          | μs                |
| 0S+                                            | Positive Overshoot                                         | $\label{eq:AV} \begin{split} A_V &= \textbf{1},  V_{OUT} = \textbf{1} O V_{P\!\cdot\!P},  R_f = 0 \Omega \\ R_L &= 2 k \Omega \text{ to } V_{CM} \end{split}$ |                          | 5      |                          | %                 |
| OS-                                            | Negative Overshoot                                         | $A_V = 1$ , $V_{OUT} = 10V_{P-P}$ , $R_f = 0\Omega$<br>$R_L = 2k\Omega$ to $V_{CM}$                                                                           |                          | 5      |                          | %                 |

NOTE:

9. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.

**High Dose Rate Post Radiation Characteristics**  $v_S \pm 15V$ ,  $v_{CM} = 0V$ ,  $v_0 = 0V$ ,  $R_L = Open$ ,  $T_A = +25$ °C, unless otherwise noted. This data is typical test data post radiation exposure at a rate of 50 to 300rad(Si)/s. This data is intended to show typical parameter shifts due to high dose rate radiation. These are not limits nor are they guaranteed.

| SYMBOL           | PARAMETER                                                 | TEST CONDITIONS                                       | 50k RAD | 75k RAD | 100k RAD | UNIT |
|------------------|-----------------------------------------------------------|-------------------------------------------------------|---------|---------|----------|------|
| v <sub>os</sub>  | Offset Voltage                                            |                                                       | 35      | 35      | 35       | μV   |
| I <sub>OS</sub>  | Input Offset Current                                      |                                                       | 2       | 3       | 5        | nA   |
| Ι <sub>Β</sub>   | Input Bias Current                                        |                                                       | 200     | 400     | 575      | nA   |
| CMRR             | Common-Mode Rejection Ration                              | V <sub>CM</sub> = -13V to +13V                        | 129     | 128     | 127      | dB   |
| PSRR             | Power Supply Rejection Ratio                              | V <sub>S</sub> = ±2.25V to ±15V                       | 130     | 130     | 130      | dB   |
| A <sub>VOL</sub> | Open-Loop Gain                                            | $V_0 = -13V$ to $+13V$<br>$R_L = 10k\Omega$ to ground | 131.6   | 131.1   | 131.1    | dB   |
| V <sub>OH</sub>  | Output Voltage High<br>V <sup>+</sup> to V <sub>OUT</sub> | $R^L = 10k\Omega$ to ground                           | 71      | 74      | 76       | mV   |
| V <sub>OL</sub>  | Output Voltage Low<br>V <sub>OUT</sub> to V <sup>-</sup>  | $R_L = 10k\Omega$ to ground                           | 54      | 57      | 59       | mV   |
| I <sub>S</sub>   | Supply Current/Amplifier                                  |                                                       | 830     | 830     | 830      | μA   |
| RANSIENT RESP    | PONSE                                                     |                                                       |         | 1       | 1        | 4    |
| SR               | Slew Rate                                                 | $A_{V} = 10, R_{L} = 2k\Omega, V_{O} = 4V_{P-P}$      | 1.24    | 1.23    | 1.22     | V/µs |

**Low Dose Rate Post Radiation Characteristics**  $V_{s} \pm 15V$ ,  $V_{CM} = 0V$ ,  $R_{L} = 0$  pen,  $T_{A} = +25$ °C, unless otherwise

noted. This data is typical test data post radiation exposure at a rate of 10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation. These are not limits nor are they guaranteed.

| SYMBOL          | PARAMETER                | TEST CONDITIONS | 10k RAD | 20k RAD | 50k RAD | UNIT |
|-----------------|--------------------------|-----------------|---------|---------|---------|------|
| V <sub>os</sub> | Offset Voltage           |                 | 20      | 20      | 20      | μV   |
| I <sub>OS</sub> | Input Offset Current     |                 | 6       | 8       | 10      | nA   |
| I <sub>B</sub>  | Input Bias Current       |                 | 300     | 500     | 1200    | nA   |
| ۱ <sub>S</sub>  | Supply Current/Amplifier |                 | 650     | 625     | 615     | μA   |

### **Typical Performance Curves** $v_s = \pm 15V$ , $v_{CM} = 0V$ , $R_L = Open$ , $T_A = +25$ °C, unless otherwise specified.



FIGURE 3. V<sub>OS</sub> vs TEMPERATURE



FIGURE 4. INPUT OFFSET VOLTAGE vs INPUT COMMON-MODE VOLTAGE,  $V_S = \pm 15V$ 

-150



FIGURE 5. I<sub>BIAS</sub> vs V<sub>S</sub>







FIGURE 8. CMRR vs TEMPERATURE,  $V_s = \pm 5V$ 



FIGURE 7. CMRR vs TEMPERATURE,  $V_s = \pm 15V$ 

= +40V

### **Typical Performance Curves** $v_s = \pm 15V$ , $v_{CM} = 0V$ , $R_L = Open$ , $T_A = +25$ °C, unless otherwise specified. (Continued)







FIGURE 10. PSRR vs TEMPERATURE, V<sub>S</sub> = ±15V















FIGURE 14. FREQUENCY RESPONSE vs CLOSED LOOP GAIN

# **Typical Performance Curves** $v_s = \pm 15V$ , $v_{CM} = 0V$ , $R_L = Open$ , $T_A = +25°C$ , unless otherwise specified. (Continued)



FIGURE 15. GAIN vs FREQUENCY vs  $R_L$ ,  $V_S = \pm 15V$ 



FIGURE 16. GAIN vs FREQUENCY vs  $R_L$ ,  $V_S = \pm 5V$ 



FIGURE 17. GAIN vs FREQUENCY vs OUTPUT VOLTAGE







FIGURE 18. GAIN vs FREQUENCY vs SUPPLY VOLTAGE



FIGURE 20. OUTPUT OVERHEAD VOLTAGE vs TEMPERATURE,  $V_S = \pm 5V$ ,  $R_L = 10k$ 

15

14

13  $A_V = 2$ 

12

11

10

-10

-11

-12 ۲oL

-13

-14 -15

n

 $V_{\text{IN}}$ 

2

۷он

# **Typical Performance Curves** $v_s = \pm 15V$ , $v_{CM} = 0V$ , $R_L = Open$ , $T_A = +25°C$ , unless otherwise specified. (Continued)



FIGURE 21. OUTPUT OVERHEAD VOLTAGE HIGH vs LOAD CURRENT,  $V_S = \pm 5V \text{ AND } \pm 15V$ 



FIGURE 22. OUTPUT OVERHEAD VOLTAGE LOW vs LOAD CURRENT, VS  $= \pm 5V \text{ AND } \pm 15V$ 



FIGURE 23. OUTPUT VOLTAGE SWING vs LOAD CURRENT,  $V_S = \pm 15V$ 



FIGURE 25. SUPPLY CURRENT vs TEMPERATURE vs SUPPLY VOLTAGE



FIGURE 24. OUTPUT VOLTAGE SWING vs LOAD CURRENT,  $V_S = \pm 5V$ 



FIGURE 26. SUPPLY CURRENT vs SUPPLY VOLTAGE

# **Typical Performance Curves** $v_s = \pm 15V$ , $v_{CM} = 0V$ , $R_L = Open$ , $T_A = +25$ °C, unless otherwise specified. (Continued)







FIGURE 29. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz,  $V_S = \pm 18V$ 







FIGURE 28. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs FREQUENCY,  $V_S = \pm 5V$ 



FIGURE 30. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz,  $V_S = \pm 5V$ 





# **Typical Performance Curves** $v_s = \pm 15V$ , $v_{CM} = 0V$ , $R_L = Open$ , $T_A = \pm 25^{\circ}C$ , unless otherwise specified. (Continued)



FIGURE 33. THD+N vs OUTPUT VOLTAGE (VOUT) vs TEMPERATURE,  $A_V = 1, 10, R_L = 2k$ 



FIGURE 34. THD+N vs OUTPUT VOLTAGE (VOUT) vs TEMPERATURE,  $A_{V} = 1, 10, R_{L} = 10k$ 



FIGURE 35. LARGE SIGNAL 10V STEP RESPONSE,  $V_S = \pm 15V$ 



FIGURE 36. LARGE SIGNAL 4V STEP RESPONSE,  $V_S = \pm 5V$ 



FIGURE 38. NO PHASE REVERSAL





# **Typical Performance Curves** $v_s = \pm 15V$ , $v_{CM} = 0V$ , $R_L = Open$ , $T_A = \pm 25^{\circ}C$ , unless otherwise specified. (Continued)











FIGURE 42. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  $V_S = \pm 5V$ 



FIGURE 44. OUTPUT IMPEDANCE vs FREQUENCY,  $V_S = \pm 5V$ 



FIGURE 41. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  $V_{S}=\pm5V$ 



FIGURE 43. OUTPUT IMPEDANCE vs FREQUENCY,  $V_s = \pm 15V$ 

# **Typical Performance Curves** $v_s = \pm 15V$ , $v_{CM} = 0V$ , $R_L = Open$ , $T_A = +25°C$ , unless otherwise specified. (Continued)



FIGURE 45. OVERSHOOT vs CAPACITIVE LOAD,  $V_S = \pm 15V$ 



FIGURE 46. OVERSHOOT vs CAPACITIVE LOAD,  $V_S = \pm 5V$ 



FIGURE 47. I<sub>MAX</sub> OUTPUT VOLTAGE vs FREQUENCY



FIGURE 48. SHORT-CIRCUIT CURRENT vs TEMPERATURE,  $V_{S}=\pm15V$ 

# **Applications Information**

#### **Functional Description**

The ISL70218SEH, ISL70218SRH are dual, 3.2MHz, single or dual supply, rail-to-rail output amplifiers with a common-mode input voltage range extending to a range of 0.5V below the V<sup>-</sup> rail. The input stage is optimized for precision sensing of ground-referenced signals in single-supply applications. The input stage is able to handle large input differential voltages without phase inversion, making this amplifier suitable for high-voltage comparator applications. The bipolar design features high open loop gain and excellent DC input and output temperature stability. This op amp features very low quiescent current of 850µA, and low temperature drift. The devices are fabricated in a new precision 40V complementary bipolar DI process and is immune from latch-up for up to a 36V supply range.

#### **Operating Voltage Range**

The op amps are designed to operate over a single supply range of 3V to 36V or a split supply voltage range of  $\pm 1.8V/\pm 1.2V$  to  $\pm 18V$ . The device is fully characterized at 30V ( $\pm 15V$ ). Both DC and AC performance remain virtually unchanged over the complete operating voltage range. Parameter variation with operating voltage is shown in the <u>"Typical Performance Curves"</u> beginning on page 9.

The input common-mode voltage to the V<sup>+</sup> rail (V<sup>+</sup> - 1.8V across the full temperature range) may limit amplifier operation when operating from split V<sup>+</sup> and V<sup>-</sup> supplies. Figure 4 shows the common-mode input voltage range variation over temperature.

#### **Input Stage Performance**

The ISL70218SEH, ISL70218SRH PNP input stage has a common-mode input range extending up to 0.5V below ground at +25°C. Full amplifier performance is guaranteed for input voltage down to ground (V') across the -55°C to +125°C temperature range. For common-mode voltages down to -0.5V below ground (V-), the amplifiers are fully functional, but performance degrades slightly over the full temperature range. This feature provides excellent CMRR, AC performance, and DC accuracy when amplifying low-level, ground-referenced signals.

The input stage has a maximum input differential voltage equal to a diode drop greater than the supply voltage and does not contain the back-to-back input protection diodes found on many similar amplifiers. This feature enables the device to function as a precision comparator by maintaining very high input impedance for high-voltage differential input comparator voltages. The high differential input impedance also enables the device to operate reliably in large signal pulse applications, without the need for anti-parallel clamp diodes required on MOSFET and most bipolar input stage op amps. Thus, input signal distortion caused by nonlinear clamps under high slew rate conditions is avoided.

In applications in which one or both amplifier input terminals are at risk of exposure to voltages beyond the supply rails, current-limiting resistors may be needed at each input terminal (see Figure 49, R<sub>IN+</sub>, R<sub>IN-</sub>) to limit current through the power-supply ESD diodes to 20mA.



FIGURE 49. INPUT ESD DIODE CURRENT LIMITING

#### **Output Drive Capability**

The bipolar rail-to-rail output stage features low saturation levels that enable an output voltage swing to less than 15mV when the total output load (including feedback resistance) is held below  $50\mu A$  (Figures 21 and 22). With  $\pm 15V$  supplies, this can be achieved by using feedback resistor values >300k $\Omega$ .

The output stage is internally current limited. Output current limit over temperature is shown in Figures 23 and 24. The amplifiers can withstand a short-circuit to either rail as long as the power dissipation limits are not exceeded. This applies to only one amplifier at a time for the dual op amp. Continuous operation under these conditions may degrade long-term reliability.

The amplifiers perform well when driving capacitive loads (Figures 45 and 46). The unity gain, voltage follower (buffer) configuration provides the highest bandwidth but is also the most sensitive to ringing produced by load capacitance found in BNC cables. Unity gain overshoot is limited to 35% at capacitance values to 0.33nF. At gains of 10 and higher, the device is capable of driving more than 10nF without significant overshoot.

#### **Output Phase Reversal**

Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. The ISL70218SEH, ISL70218SRH are immune to output phase reversal out to 0.5V beyond the rail (V<sub>ABS MAX</sub>) limit (see Figure 38 on page 14).

#### **Single Channel Usage**

The ISL70218SEH, ISL70218SRH are dual op amps. If the application requires only one channel, the user must configure the unused channel to prevent it from oscillating. The unused channel oscillates if the input and output pins are floating. This results in higher-than-expected supply currents and possible noise injection into the channel being used. The proper way to prevent oscillation is to short the output to the inverting input, and ground the positive input (Figure 50).



FIGURE 50. PREVENTING OSCILLATIONS IN UNUSED CHANNELS

#### **Power Dissipation**

It is possible to exceed the +150 °C maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature ( $T_{JMAX}$ ) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1:

$$T_{JMAX} = T_{MAX} + \theta_{JA} x P D_{MAXTOTAL}$$
(EQ. 1)

Where

- P<sub>DMAXTOTAL</sub> is the sum of the maximum power dissipation of each amplifier in the package (PD<sub>MAX</sub>)
- T<sub>MAX</sub> = Maximum ambient temperature
- Θ<sub>JA</sub> = Thermal resistance of the package

PD<sub>MAX</sub> for each amplifier can be calculated using Equation 2:

$$PD_{MAX} = V_{S} \times I_{qMAX} + (V_{S} - V_{OUTMAX}) \times \frac{V_{OUTMAX}}{R_{L}}$$
(EQ. 2)

Where

- PD<sub>MAX</sub> = Maximum power dissipation of one amplifier
- V<sub>S</sub> = Total supply voltage
- I<sub>qMAX</sub> = Maximum quiescent supply current of one amplifier
- V<sub>OUTMAX</sub> = Maximum output voltage swing of the application
- R<sub>L</sub> = Load resistance

# intersil

# **Package Characteristics**

#### **Weight of Packaged Device**

0. 4029 grams (Typical)

#### **Lid Characteristics**

Finish: Gold Case Isolation to Any Lead: 20 x  $10^9\,\Omega$  (min)

# **Die Characteristics**

#### **Die Dimensions**

 $\begin{array}{l} 1565 \mu m \ x \ 2125 \mu m \ (62 \ mils \ x \ 84 \ mils) \\ Thickness: \ 355 \mu m \ \pm 25 \mu m \ (14 \ mils \ \pm 1 \ mil) \end{array}$ 

#### **Interface Materials**

#### GLASSIVATION

Type: Nitrox Thickness: 15kÅ

# **Metallization Mask Layout**

#### TOP METALLIZATION

Type: AlCu (99.5%/0.5%) Thickness: 30kÅ

#### **BACKSIDE FINISH**

Silicon

#### PROCESS

**Dielectrically Isolated Complementary Bipolar - PR40** 

#### **ASSEMBLY RELATED INFORMATION**

#### SUBSTRATE POTENTIAL

Floating

#### **ADDITIONAL INFORMATION**

#### WORST CASE CURRENT DENSITY

 $< 2 \text{ x } 10^5 \text{ A/cm}^2$ 



#### ISL70218SEH, ISL70218SRH

#### TABLE 1. DIE LAYOUT X-Y COORDINATES

| PAD NAME | PAD NUMBER | Χ<br>(μm) | Υ<br>(μm) | dX<br>(μm) | dY<br>(µm) | BOND WIRES<br>PER PAD |
|----------|------------|-----------|-----------|------------|------------|-----------------------|
| OUT_A    | 1          | 16.5      | 1670      | 70         | 70         | 1                     |
| -IN_A    | 6          | -3        | 1015      | 70         | 70         | 1                     |
| +IN_A    | 7          | -3        | 771       | 70         | 70         | 1                     |
| V-       | 8          | 0         | 0         | 70         | 70         | 1                     |
| +IN_B    | 13         | 1287      | 719.5     | 70         | 70         | 1                     |
| -IN_B    | 14         | 1287      | 963.5     | 70         | 70         | 1                     |
| OUT_B    | 15         | 1267.5    | 1115.5    | 70         | 70         | 1                     |
| V+       | 16         | 1284      | 1746.5    | 70         | 70         | 1                     |

NOTE:

10. Origin of coordinates is the centroid of pad 8.

# **Revision History**

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision.

| DATE              | REVISION | CHANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Jun 12, 2020      | 4.01     | Updated the Pad Numbers for last four pads in Table 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Feb 7, 2020 4.00  |          | Updated Features bullets for Radiation acceptance testing<br>Updated Related Literature section<br>Ordering Information table:<br>- Updated part number ISL70218SEHVX/SAMPLE to ISL70218SEHX/SAMPLE<br>- Added Radiation Hardness column<br>- Added Notes 3, 4, and 5 to Ordering Information table.<br>Updated Electrical Spec table for radiation Boldface note<br>From:<br>Boldface limits apply over a total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s;<br>and over a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.<br>To:<br>Boldface limits apply over a total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s;<br>and over a total ionizing dose of 50krad(Si) (ISL70218SEH only) with exposure at a low dose rate of <10mrad(Si)/s;<br>Figures 27 and 28, changed Input Noise Current unit of measurement from fA to pA.<br>Removed About Intersil section<br>Updated Disclaimer |  |  |  |  |
| May 19, 2016      | 3.00     | Added ISL70218SRH information to datasheet.<br>Removed Pb-Free Reflow Profile information from Thermal Information section as it is not applicable to hermetic<br>packages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| July 24, 2014     | 2.00     | packages.Updated Features on page 1, Radiation Tolerance bullet as follows:<br>from• Radiation Tolerance<br>- SEL/SEB LET <sub>TH</sub> ( $V_S = \pm 18V$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| August 24, 2012   | 1.00     | <ol> <li>Electrical Specification tables (pages 3-6), added specs on overshoot and rise/fall times.</li> <li>Page 3 - Added Abs Max in a non radiation environment<br/>Changed ESD HBM from 3kV to 2kV<br/>Changed ESD CDM from 2kV to 750V</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| February 16, 2012 | 0.00     | Initial Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

### **Package Outline Drawing**





NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternately, a tab (dimension k) may be used to identify pin one.
- 2. If a pin one identification mark is used in addition to a tab, the limits of dimension k do not apply.
- 3. This dimension allows for off-center lid, meniscus, and glass overrun.
- 4. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 5. N is the maximum number of terminal positions.
- 6. Measure dimension S1 at all four corners.
- 7. For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.
- Dimension Q shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension Q minimum shall be reduced by 0.0015 inch (0.038mm) maximum when solder dip lead finish is applied.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.

For the most recent package outline drawing, see K10.A.

#### K10.A MIL-STD-1835 CDFP3-F10 (F-4A, Configuration B) 10 Lead Ceramic Metal Seal Flatpack Package

|        | INCHES    |        | MILLIN   |      |       |
|--------|-----------|--------|----------|------|-------|
| SYMBOL | MIN       | MAX    | MIN      | MAX  | NOTES |
| A      | 0.045     | 0.115  | 1.14     | 2.92 | -     |
| b      | 0.015     | 0.022  | 0.38     | 0.56 | -     |
| b1     | 0.015     | 0.019  | 0.38     | 0.48 | -     |
| с      | 0.004     | 0.009  | 0.10     | 0.23 | -     |
| c1     | 0.004     | 0.006  | 0.10     | 0.15 | -     |
| D      | -         | 0.290  | -        | 7.37 | 3     |
| E      | 0.240     | 0.260  | 6.10     | 6.60 | -     |
| E1     | -         | 0.280  | -        | 7.11 | 3     |
| E2     | 0.125     | -      | 3.18     | -    | -     |
| E3     | 0.030     | -      | 0.76     | -    | 7     |
| е      | 0.050 BSC |        | 1.27 BSC |      | -     |
| k      | 0.008     | 0.015  | 0.20     | 0.38 | 2     |
| L      | 0.250     | 0.370  | 6.35     | 9.40 | -     |
| Q      | 0.026     | 0.045  | 0.66     | 1.14 | 8     |
| S1     | 0.005     | -      | 0.13     | -    | 6     |
| М      | -         | 0.0015 | -        | 0.04 | -     |
| N      | 10        |        | 10       |      | -     |

Rev. 0 3/07

#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/