intersil

DATASHEET

ISL72027ASEH

3.3V Radiation Tolerant CAN Transceivers with Listen Mode and Split Termination Output

FN8862 Rev.1.00 Jul 27, 2017

The Intersil <u>ISL72027ASEH</u> is a 3.3V, radiation tolerant CAN transceiver that is compatible with the ISO11898-2 standard for applications calling for Controller Area Network (CAN) serial communication in satellites and aerospace communications and telemetry data processing in harsh industrial environments.

This device can transmit and receive at bus speeds up to 5Mbps. It can drive a 40m cable at 1Mbps according to the ISO11898-2 specification. The device is designed to operate across a common-mode range of -7V to +12V, with a maximum of 120 nodes. It has three discrete selectable driver rise/fall time options, a Listen mode feature, and a split termination output.

The receiver (Rx) inputs feature a "full fail-safe" design, which ensures a logic high Rx output if the Rx inputs are floating, shorted, or terminated but undriven.

The ISL72027ASEH is available in an 8 Ld hermetic ceramic flatpack and die form that operate across the temperature range of -55°C to +125°C. The logic inputs are tolerant with 5V systems.

Other CAN transceivers available are the

<u>ISL72026ASEH</u> and <u>ISL72028ASEH</u>. For a list of differences between these devices, refer to <u>Table 1 on page 4</u>.

Applications

- · Satellites and aerospace communications
- · Telemetry data processing and high-end industrial

Related Literature

- For a full list of related documents, visit our website
 - ISL72027ASEH product page

Features

- Electrically screened to SMD <u>5962-15228</u>
- ESD protection on all pins: 4kV HBM
- Compatible with ISO11898-2
- Operating supply range: 3.0V to 3.6V
- Bus pin fault protection to ± 20 V
- Undervoltage lockout
- Cold spare: powered down devices/nodes do not affect active devices operating in parallel
- Three selectable driver rise and fall times:
 - Fast speed (RS = 0V) edges and propagation delays optimized for a data rate of 1Mbps
 - Medium speed (RS = $10k\Omega$) edges and propagation delays optimized for a data rate of 500kbps
 - Slow Speed (RS = $50k\Omega$) edges and propagation delays optimized for a data rate of 250kbps
- Glitch free bus I/O during power-up and power-down
- Full fail-safe (open, short, terminated/undriven) receiver
- Hi-Z input allows for 120 nodes on the bus
- High data rates: up to 5Mbps
- Quiescent supply current: 7mA (maximum)
- Listen mode supply current: 2mA (maximum)
- -7V to +12V common-mode input voltage range
- 5V tolerant logic inputs
- Thermal shutdown
- Acceptance tested to 75krad(Si) (LDR) wafer-by-wafer
- Radiation tolerance
 - SEL/B immune to LET_{TH}: 86.4MeV•cm²/mg
 - Low dose rate (0.01rad(Si)/s): 75krad(Si)

Figure 1. Typical Application

Figure 2. Fast Driver and Receiver Waveforms

intersil[®]

Contents

1.	Overview
1.1	Ordering Information
1.2	Pin Configuration
1.3	Pin Descriptions
1.4	Equivalent Input and Output Schematic Diagrams
2.	Specifications
2.1	Absolute Maximum Ratings
2.2	Thermal Information
2.3	Recommended Operating Conditions
2.4	Electrical Specifications
2.5	Test Circuits and Waveforms
3.	Typical Performance Curves. 14
4.	Functional Description
4.1	Overview
4.2	Slope Adjustment
4.3	Cable Length
4.4	Cold Spare
4.5	Listen Mode
4.6	Using 3.3V Devices in 5V Systems 21
4.7	Split Mode Termination
5.	Die Characteristics
5.1	Metallization Mask Layout
6.	Revision History
7.	Package Outline Drawing
8.	About Intersil

1. Overview

1.1 Ordering Information

Ordering/SMD Number <u>(Note 1)</u>	Part Number <u>(Note 2)</u>	Temp Range (°C)	Package (RoHS Compliant)	Pkg. Dwg. #
5962L1522808VXC	ISL72027ASEHVF	-55 to +125	8 Ld Ceramic Flatpack	K8.A
N/A	ISL72027ASEHF/PROTO, (Note 3)	-55 to +125	8 Ld Ceramic Flatpack	K8.A
5962L1522808V9A	ISL72027ASEHVX	-55 to +125	Die	
N/A	ISL72027ASEHX/SAMPLE, (Note 3)	-55 to +125	Die	
N/A	ISL72027ASEHEVAL1Z, (Note 4)	Evaluation Board		

Notes:

1. Specifications for Radiation Tolerant QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed in the Ordering Information must be used when ordering.

2. These Intersil Pb-free Hermetic packaged products employ 100% Au plate -e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.

3. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions over-temperature specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE die is capable of meeting the electrical limits and conditions specified in the DLA SMD at +25°C only. The /SAMPLE is a die and does not receive 100% screening over-temperature to the DLA SMD electrical limits. These part types do not come with a Certificate of Conformance because there is no radiation assurance testing and they are not DLA qualified devices.

4. Evaluation boards utilize the /PROTO parts and /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity.

Specification	ISL72026ASEH	ISL72027ASEH	ISL72028ASEH
Loopback Feature	Yes	No	No
VREF Output	No	Yes	Yes
Listen Mode	Yes	Yes	No
Shutdown Mode	No	No	Yes
VTHRLM	900mV (maximum)	900mV (maximum)	N/A
VTHFLM	325mV (minimum)	325mV (minimum)	N/A
VHYSLM	40mV (minimum)	40mV (minimum)	N/A
Supply Current, Listen Mode	2mA (maximum)	2mA (maximum)	N/A
Supply Current, Shutdown Mode	N/A	N/A	50µA (maximum)
VREF Leakage Current	N/A	±25µA (maximum)	±25µA (maximum)

Table 1. ISL7202xxSEH Product Family Feature Table

Note:N/A = Not Applicable

Table 2. Product Family Comparison for Optimal Data Rate and Total Dose Radiation Testing

Specification	ISL7202xSEH	ISL7202xASEH	ISL7202xBSEH	ISL7202xCSEH
Data Rate: RS = 0V	1Mbps	1Mbps	1Mbps	1Mbps
Data Rate: RS = 10kΩ	250kbps	500kbps	250kbps	500kbps
Data Rate: RS = 50kΩ	125kbps	250kbps	125kbps	250kbps
High Dose Rate (HDR) 100krad(Si) Testing	No	No	Yes	Yes
Low Dose Rate (LDR) 75krad(Si) Testing	Yes	Yes	Yes	Yes

1.2 Pin Configuration

Note: The package lid is tied to ground.

1.3 Pin Descriptions

Pin Number	Pin Name	Function
1	D	CAN driver digital input. A LOW bus state is Dominant and a HIGH bus state is Recessive. Internally tied HIGH.
2	GND	Ground connection.
3	VCC	System power supply input (3.0V to 3.6V). The typical voltage for the device is 3.3V.
4	R	CAN data receiver output. A LOW bus state is Dominant and a HIGH bus state is Recessive.
5	VREF	VCC/2 reference output for split mode termination.
6	CANL	CAN bus line for low level output.
7	CANH	CAN bus line for high level output.
8	RS	A resistor to GND from this pin controls the rise and fall time of the CAN output waveform. Drive RS HIGH to put the device in Listen mode.

1.4 Equivalent Input and Output Schematic Diagrams

1500 36V

GND Figure 9. VREF

LO / LPSD

30V

2. Specifications

2.1 Absolute Maximum Ratings

Parameter	Minimum	Maximum	Unit
VCC to GND with/without Ion Beam	-0.3	5.5	V
CANH, CANL, VREF Under Ion Beam		±20	V
CANH, CANL, VREF		±20	V
I/O Voltages D, R, RS	-0.5	7	V
Receiver Output Current	-10	10	mA
Output Short-Circuit Duration	Continuous		
ESD Rating	Value		
Human Body Model (Tested per MIL-STD-883 TM3015.7)	·		
CANH, CANL Bus Pins		4	kV
All Other Pins		4	kV
Charged Device Model (Tested per JS-002-2014)		750	V
Machine Model (Tested per JESD22-A115C)		200	V

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

2.2 Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C/W)	θ _{JC} (% \℃)
8 Ld FP Package (<u>Notes 5, 6</u>)	39	7

Notes:

 θ_{JA} is measured with the component mounted on a high-effective thermal conductivity test board (two buried 1oz copper planes) with "direct attach" features package base mounted to PCB thermal land with a 10 mil gap fill material having a thermal conductivity of 1W/m-K. Refer to <u>TB379</u>.

6. For $\theta_{\text{JC}},$ the "case temp" location is the center of the package underside.

Parameter	Minimum	Maximum	Unit
Maximum Junction Temperature		+150	°C
Storage Temperature Range	-65	+150	°C

2.3 Recommended Operating Conditions

Parameter	Minimum	Maximum	Unit
Temperature Range	-55	+125	°C
V _{CC} Supply Voltage	3	3.6	V
Voltage on CAN I/O	-7	12	V
V _{IH} D Logic Pin	2	5.5	V
V _{IL} D Logic Pin	0	0.8	V
I _{OH} Driver (CANH - CANL = 1.5V, V _{CC} = 3.3V)		-40	mA
I _{OH} Receiver (V _{OH} = 2.4V)		-4	mA
I_{OL} Driver (CANH - CANL = 1.5V, V_{CC} = 3.3V)		40	mA
I _{OL} Receiver (V _{OL} = 0.4V)		4	mA

2.4 Electrical Specifications

Test Conditions: $V_{CC} = 3V$ to 3.6V; typical values are at $T_A = +25^{\circ}C$ (Note 9); unless otherwise specified (Note 7). Boldface limits apply across the operating temperature range, -55°C to +125°C and over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s.

Parameter	Symbol	Test Condit	ions	Temp (°C)	Min <u>(Note 8)</u>	Typ <u>(Note 9)</u>	Max <u>(Note 8)</u>	Unit
Driver Electrical Characteri	stics							
Dominant Bus Output Voltage	V _{O(DOM)}	D = 0V, CANH, RS = 0V, <u>Figures 10</u> and <u>11</u>	$3V \le V_{CC} \le 3.6V$	Full	2.25	2.85	V _{cc}	V
		D = 0V, CANL, RS = 0V, Figures 10 and <u>11</u>		Full	0.10	0.65	1.25	V
Recessive Bus Output Voltage	V _{O(REC)}	D = 3V, CANH, RS = 0V, 60Ω and no load, Figures 10 and $\underline{11}$	3V ≤ V _{CC} ≤ 3.6V	Full	1.80	2.30	2.70	V
		D = 3V, CANL, RS = 0V, 60Ω and no load, <u>Figures 10</u> and <u>11</u>		Full	1.80	2.30	2.80	V
Dominant Output Differential Voltage	V _{OD(DOM)}	D = 0V, RS = 0V, $3V \le V_{CC} \le 3.6V$, Figures 10 and 11		Full	1.5	2.2	3.0	V
		D = 0V, RS = 0V, $3V \le V_{CO}$ Figures 11 and 12	_C ≤3.6V,	Full	1.2	2.1	3.0	V
Recessive Output Differential Voltage	V _{OD(REC)}	D = 3V, RS = 0V, $3V \le V_{CC} \le 3.6V$, Figures 10 and 11		Full	-120	0.2	12	mV
		D = 3V, RS = 0V, 3.0V ≤ V	$_{\rm CC} \le 3.6$ V, no load	Full	-500	-34	50	mV
Logic Input High Voltage (D)	V _{IH}	3V ≤ V _{CC} ≤ 3.6V, <u>(Note 10</u>)	Full	2.0	-	5.5	V
Logic Input Low Voltage (D)	V _{IL}	3V ≤ V _{CC} ≤ 3.6V, <u>(Note 10</u>) L	Full	0	-	0.8	V
High Level Input Current (D)	I _{IH}	$D = 2V, 3V \le V_{CC} \le 3.6V$		Full	-30	-3	30	μA
Low Level Input Current (D)	Ι _{ΙL}	D = 0.8V, $3V \le V_{CC} \le 3.6V$		Full	-30	-7	30	μA
RS Input Voltage for Listen Mode	V _{IN(RS)}	$3V \le V_{CC} \le 3.6V$		Full	0.75xV _{CC}	1.90	5.5	V

Test Conditions: V_{CC} = 3V to 3.6V; typical values are at T_A = +25°C (<u>Note 9</u>); unless otherwise specified (<u>Note 7</u>). Boldface limits apply across the operating temperature range, -55°C to +125°C and over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s. (Continued)

	Parameter	Symbol	Test Conditions	Temp (°C)	Min <u>(Note 8)</u>	Typ <u>(Note 9)</u>	Max <u>(Note 8)</u>	Unit
$ \frac{3\sqrt{5} \ V_{CC} \le 3.6V, \ Elgure 23}{V_{CANL} = -7V, CANH = OPEN, \\ 3V \le V_{CC} \le 3.6V, \ Elgure 23} Full -1.0 -0.4 \\ \frac{3V \le V_{CC} \le 3.6V, \ Elgure 23}{V_{CANL} = +12V, CANH = OPEN, \\ 3V \le V_{CC} \le 3.6V, \ Elgure 23} Full - 100 \\ \frac{100}{2} \ V_{CANL} = +12V, CANH = OPEN, \\ \frac{3V \le V_{CC} \le 3.6V, \ Elgure 23}{V_{CANL} = +12V, CANH = OPEN, \\ 3V \le V_{CC} \le 3.6V, \ Elgure 23} Full - 100 \\ \frac{100}{2} \ V_{CANL} = +12V, CANH = OPEN, \\ \frac{100}{2} \ V_{CANL} = +12V, CANH = OPEN, \\ \frac{100}{2} \ V_{CC} \le 3.6V, \ Elgure 23} Full - 100 \\ \frac{100}{2} \ V_{CANL} = +12V, CANH = OPEN, \\ \frac{100}{2} \ V_{CC} \le 3.6V, \ Cancel 100 \\ \frac{100}{2} \ V_{CC} = 100 \\ \frac{100}{2} \ V_{CC} \ V_{CC} = 100 \\ \frac{100}{2} \ V_{CC} \ V_{CC} = 100 \\ \frac{100}{2} \ V_{CC} = 100 \\ \frac{100}{2} \ V_{CC} \ V_{CC} = 100 \\ \frac{100}{2} \ V_{CC} \ V_{CC} \ V_{CC} = 100 \\ \frac{100}{2} \ V_{CC} \ V_{CC} \ V_{CC} \ V_{CC} = 100 \\ \frac{100}{2} \ V_{CC} \ V_$	put Short-Circuit Current	I _{OSC}	V_{CANH} = -7V, CANL = OPEN, 3V ≤ V_{CC} ≤ 3.6V, <u>Figure 23</u>	Full	-250	-100	-	mA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V_{CANH} = +12V, CANL = OPEN, 3V ≤ V_{CC} ≤ 3.6V, <u>Figure 23</u>	Full	-	0.4	1.0	mA
3V ≤ V_{CC} ≤ 3.6V, Figure 2.3 Image: constraint of the system of the s			$V_{CANL} = -7V$, CANH = OPEN, $3V \le V_{CC} \le 3.6V$, Figure 23	Full	-1.0	-0.4	-	mA
Temperature Image: Construct of the second se			V_{CANL} = +12V, CANH = OPEN, 3V ≤ V_{CC} ≤ 3.6V, Figure 23	Full	-	100	250	mA
HysteresisMathematical and an analysisMathematical and an analysisReceiver Electrical CharacteristicsInput Threshold Voltage (Rising) V_{THR} RS = 0V, 10k, 50k, (recessive to dominant), Figure 17 and Table 3Full-700Input Threshold Voltage (Falling) V_{THF} RS = 0V, 10k, 50k, (dominant to recessive), Figure 17 and Table 3Full500625Input Hysteresis V_{HYS} $(V_{THR} - V_{THF})$, RS = 0V, 10k, 50k, Figure 17 and Table 3Full4080Listen Mode Input Threshold Voltage (Rising) V_{THRLM} RS = V_{CC} . (recessive to dominant), Figure 17Full-650Listen Mode Input Threshold Voltage (Rising) V_{THFLM} RS = V_{CC} . (dominant to recessive), Figure 17Full325550Listen Mode Input Hysteresis V_{HYSLM} $V_{THR} - V_{THF}$, RS = V_{CC} . Figure 17Full40100Receiver Output High Voltage V_{OH} I_O = -4mAFull-0.2Receiver Output Low Voltage V_{OL} I_O = +4mAFull-0.2Input Current for CAN Bus I_O CANH or CANL at 12V, D = 3V, other bus pin at 0V, RS = 0VFull-170CANH or CANL at -7V, D = 3V, V_{CC} = 0V, other bus pin at 0V, RS = 0VCANH or CANL at -7V, D = 3V, V_{CC} = 0V, other bus pin at 0V, RS = 0VFull-170Input Capacitance (CANH or CANL at -7V, D = 3V, N_{CC} = 0V, other bus pin at 0V, RS = 0VCaNH or CANL at -7V, D = 3V, V_{CC} = 0V, other bus pin at 0V, RS = 0V<		T _{SHDN}	3V < V _{IN} < 3.6V	-	-	163	-	°C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T _{HYS}	3V < V _{IN} < 3.6V	-	-	12	-	°C
(Rising)Figure 17 and Table 3Figure 17Input Threshold Voltage (Falling) V_{THF} RS = 0V, 10k, 50k, (dominant to recessive), Figure 17 and Table 3Full500625Input Hysteresis V_{HYS} $(V_{THR} - V_{THF})$, RS = 0V, 10k, 50k, Figure 17 and Table 3Full4080Listen Mode Input Threshold Voltage (Rising) V_{THRLM} RS = V_{CC} , (recessive to dominant), Figure 17Full-650Listen Mode Input Threshold Voltage (Falling) V_{THFLM} RS = V_{CC} , (dominant to recessive), Figure 17Full325550Listen Mode Input Hysteresis V_{HYSLM} $(V_{THR} - V_{THF})$, RS = V_{CC} , Figure 17Full40100Receiver Output High Voltage V_{OH} $I_0 = -4mA$ Full2.4 $V_{CC} - 0.2$ Receiver Output Low Voltage V_{OL} $I_0 = +4mA$ Full-0.2Input Current for CAN Bus I_{CAN} $CANH$ or CANL at 12V, D = 3V, other bus pin at 0V, RS = 0VFull-470CANH or CANL at $-7V$, D = 3V, $V_{CC} = 0V$, other bus pin at 0V, RS = 0VFull170Input Capacitance (CANH or CANL at $-7V$, D = 3V, $V_{CC} = 0V$, other bus pin at 0V, RS = 0VFull100Input Capacitance (CANH or CANL at $-7V$, D = 3V, $V_{CC} = 0V$, other bus pin at 0V, RS = 0VFull100Input Capacitance (CANH or CANL at $-7V$, D = 3V, RS = 0V25-3535Differential InputC _{IND} Input to Input	eiver Electrical Characte	eristics	1	I				1
(Falling)Figure 17 and Table 3Full40Input Hysteresis V_{HYS} $(V_{THR} - V_{THF}), RS = 0V, 10k, 50k, Figure 17 and Table 3Full4080Listen Mode InputThreshold Voltage (Rising)V_{THRLM}RS = V_{CC}. (recessive to dominant),Figure 17Full-650Listen Mode InputThreshold Voltage (Falling)V_{THFLM}RS = V_{CC}. (dominant to recessive),Figure 17Full325550Listen Mode InputHysteresisV_{THFLM}RS = V_{CC}, figure 17Full40100Receiver Output HighVoltageV_{OH}(V_{THR} - V_{THF}), RS = V_{CC}, Figure 17Full40100Receiver Output LowVoltageV_{OH}I_0 = -4mAFull-0.2Input Current for CAN BusV_{OL}I_0 = +4mAFull-0.2Input Current for CAN BusI_{CAN}CANH or CANL at 12V, D = 3V, other bus pinat 0V, RS = 0VFull-170CANH or CANL at -7V, D = 3V, V_{CC} = 0V,other bus pin at 0V, RS = 0VFull350Input Capacitance(CANH or CANL at -7V, D = 3V, RS = 0VFull-170-Input Capacitance(CANH or CANL)CINInput to GND, D = 3V, RS = 0V25-35Differential InputCINDInput to Input, D = 3V, RS = 0V25-15$	-	V _{THR}		Full	-	700	900	mV
Image: Constraint of the system of the sy	0	V_{THF}		Full	500	625	-	mV
Threshold Voltage (Rising)Figure 17Image: Constraint of the system of the syste	it Hysteresis	V_{HYS}		Full	40	80	-	mV
$\begin{array}{ c c c c c } \hline \mbox{Threshold Voltage (Falling)} & \mbox{Figure 17} & \mbox{Figure 17} & \mbox{Full} & \mbox{V} & \mbox{V}_{HYSLM} & \mbox{V}_{HR} - V_{THF}, RS = V_{CC}, \mbox{Figure 17} & \mbox{Full} & \mbox{40} & \mbox{100} & \mbox$		V _{THRLM}		Full	-	650	900	mV
HysteresisInternational and the second		V _{THFLM}		Full	325	550	-	mV
VoltageVoltageIIIIReceiver Output Low Voltage V_{OL} $I_{O} = +4mA$ Full-0.2Input Current for CAN Bus I_{CAN} $CANH \text{ or CANL at 12V, D = 3V, other bus}pin at 0V, RS = 0VFull-470CANH or CANL at 12V, D = 3V, other buspin at 0V, RS = 0VFull-170CANH or CANL at 12V, D = 3V, VCC = 0V,other bus pin at 0V, RS = 0VFull-170CANH or CANL at 12V, D = 3V, VCC = 0V,other bus pin at 0V, RS = 0VFull-170CANH or CANL at -7V, D = 3V, other bus pinat 0V, RS = 0VFullInput Capacitance(CANH or CANL)CINInput to GND, D = 3V, RS = 0V25-35Differential InputCINDInput to Input, D = 3V, RS = 0V25-1515$	•	V _{HYSLM}	(V _{THR} - V _{THF}), RS = V _{CC} , <u>Figure 17</u>	Full	40	100	-	mV
VoltageImput Current for CAN BusI CAN CANH or CANL at 12V, D = 3V, other bus pin at 0V, RS = 0VFull-470Input Current for CAN Bus I_{CAN} CANH or CANL at 12V, D = 3V, V _{CC} = 0V, other bus pin at 0V, RS = 0VFull-170CANH or CANL at 12V, D = 3V, V _{CC} = 0V, other bus pin at 0V, RS = 0VFull-170CANH or CANL at -7V, D = 3V, other bus pin at 0V, RS = 0VFull350Input Capacitance (CANH or CANL)CINInput to GND, D = 3V, RS = 0VS-35Differential InputCINDInput to Input, D = 3V, RS = 0V25-15		V _{OH}	I _O = -4mA	Full	2.4	V _{CC} -0.2	-	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		V _{OL}	I _O = +4mA	Full	-	0.2	0.4	V
$\begin{array}{c c} \mbox{other bus pin at 0V, RS = 0V} & \mbox{other bus pin} & \mbox{other bus pin} & \mbox{full} & \mbox{-500} & \mbox{-350} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	It Current for CAN Bus	I _{CAN}		Full	-	470	600	μA
$\frac{\text{at 0V, RS = 0V}}{\text{CANH or CANL at -7V, D = 3V, V_{CC} = 0V,}} \begin{bmatrix} \text{Full} & -175 & -100 \\ \hline & \text{other bus pin at 0V, RS = 0V} \end{bmatrix}$ Input Capacitance $\begin{pmatrix} C_{\text{IN}} & \text{Input to GND, D = 3V, RS = 0V} \\ \hline & \text{CANH or CANL} \end{pmatrix} \begin{bmatrix} C_{\text{IN}} & \text{Input to Input, D = 3V, RS = 0V} \\ \hline & \text{CANH or CANL} \end{pmatrix} $				Full	-	170	275	μA
other bus pin at 0V, RS = 0V Input Capacitance (CANH or CANL) C _{IN} Differential Input C _{IND} Input to Input, D = 3V, RS = 0V 25 - 15				Full	-500	-350	-	μA
(CANH or CANL) Input to Input, D = 3V, RS = 0V 25 - 15				Full	-175	-100	-	μA
	-	C _{IN}	Input to GND, D = 3V, RS = 0V	25	-	35	-	pF
	•	C _{IND}	Input to Input, D = 3V, RS = 0V	25	-	15	-	pF
Input Resistance R _{IN} Input to GND, D = 3V, RS = 0V Full 20 40 (CANH or CANL)		R _{IN}	Input to GND, D = 3V, RS = 0V	Full	20	40	50	kΩ
Differential Input Resistance R _{IND} Input to Input, D = 3V, RS = 0V Full 40 80	erential Input Resistance	R _{IND}	Input to Input, D = 3V, RS = 0V	Full	40	80	100	kΩ

Test Conditions: V_{CC} = 3V to 3.6V; typical values are at T_A = +25°C (<u>Note 9</u>); unless otherwise specified (<u>Note 7</u>). Boldface limits apply across the operating temperature range, -55°C to +125°C and over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s. (Continued)

Parameter	Symbol	Test Conditions	Temp (°C)	Min <u>(Note 8)</u>	Typ <u>(Note 9)</u>	Max <u>(Note 8)</u>	Unit
Supply Current, Listen Mode	I _{CC(L)}	$RS = D = V_{CC}, 3V \le V_{CC} \le 3.6V$	Full	-	1	2	mA
Supply Current, Dominant	I _{CC(DOM)}	D = RS = 0V, no load, $3V \le V_{CC} \le 3.6V$	Full	-	5	7	mA
Supply Current, Recessive	I _{CC(REC)}	D = V _{CC} , RS = 0V, no load, $3V \le V_{CC} \le 3.6V$	Full	-	2.6	5.0	mA
Cold Sparing Bus Current		ł			4		4
CANH Leakage Current	I _{L(CANH)}	V_{CC} = 0.2V, CANH = -7V or 12V, CANL = float, D = V_{CC} , RS = 0V	Full	-25	-4	25	μA
CANL Leakage Current	I _{L(CANL)}	V_{CC} = 0.2V, CANL = -7V or 12V, CANH = float, D = V _{CC} , RS = 0V	Full	-25	-4	25	μA
V _{REF} Leakage Current	I _{L(VREF)}	V_{CC} = 0.2V, V_{REF} = -7V or 12V, D = V_{CC}	Full	-25	0.01	25	μΑ
Driver Switching Character	istics		1				
Propagation Delay LOW to HIGH	t _{PDLH1}	RS = 0V, <u>Figure 14</u>	Full	-	90	160	ns
Propagation Delay LOW to HIGH	t _{PDLH2}	RS = 10kΩ, <u>Figure 14</u>	Full	-	350	550	ns
Propagation Delay LOW to HIGH	t _{PDLH3}	RS = 50kΩ, <u>Figure 14</u>	Full	-	475	800	ns
Propagation Delay HIGH to LOW	t _{PDHL1}	RS = 0V, <u>Figure 14</u>	Full	-	115	180	ns
Propagation Delay HIGH to LOW	t _{PDHL2}	RS = 10kΩ, <u>Figure 14</u>	Full	-	410	600	ns
Propagation Delay HIGH to LOW	t _{PDHL3}	RS = 50kΩ, <u>Figure 14</u>	Full	-	550	900	ns
Output Skew	t _{SKEW1}	RS = 0V, (t _{PHL} - t _{PLH}), <u>Figure 14</u>	Full	-	20	65	ns
Output Skew	t _{SKEW2}	RS = 10kΩ, (t _{PHL} - t _{PLH}), <u>Figure 14</u>	Full	-	60	275	ns
Output Skew	t _{SKEW3}	RS = 50kΩ, ($ t_{PHL} - t_{PLH} $), Figure 14	Full	-	75	400	ns
Output Rise Time	t _{r1}	RS = 0V, (fast speed - 1Mbps) Figure 14	Full	15	30	85	ns
Output Fall Time	t _{f1}		Full	10	20	65	ns
Output Rise Time	t _{r2}	RS = $10k\Omega$, (medium speed - 5000kbps)	Full	125	250	550	ns
Output Fall Time	t _{f2}	Figure 14	Full	100	250	425	ns
Output Rise Time	t _{r3}	RS = $50k\Omega$, (slow speed - 250kbps)	Full	200	360	800	ns
Output Fall Time	t _{f3}	Figure 14	Full	175	390	600	ns
Total Loop Delay, Driver	t _(LOOP1)	RS = 0V, <u>Figure 19</u>	Full	-	140	225	ns
Input to Receiver Output, Recessive to Dominant		RS = 10kΩ, <u>Figure 19</u>	Full	-	380	600	ns
		RS = 50kΩ, <u>Figure 19</u>	Full	-	500	800	ns
Total Loop Delay, Driver	t _(LOOP2)	RS = 0V, <u>Figure 19</u>	Full	-	160	285	ns
Input to Receiver Output, Dominant to Recessive		RS = 10kΩ, <u>Figure 19</u>	Full	-	450	700	ns
		RS = 50kΩ, <u>Figure 19</u>	Full	-	575	950	ns
Listen to Valid Dominant Time	t _{L-DOM)}	Figure 21	Full	-	5	15	μs
Receiver Switching Charac	teristics		•		•		•

Test Conditions: $V_{CC} = 3V$ to 3.6V; typical values are at $T_A = +25^{\circ}C$ (Note 9); unless otherwise specified (Note 7). Boldface limits apply across the operating temperature range, -55°C to +125°C and over a total ionizing dose of 75krad(Si) at +25°C with exposure at a low dose rate of <10mrad(Si)/s. (Continued)

Parameter	Symbol	Test Conditions	Temp (°C)	Min <u>(Note 8)</u>	Typ <u>(Note 9)</u>	Max <u>(Note 8)</u>	Unit
Propagation Delay LOW to HIGH	t _{PLH}	Figure 17	Full	-	50	110	ns
Propagation Delay HIGH to LOW	t _{PHL}	Figure 17	Full	-	50	110	ns
Rx Skew	t _{SKEW1}	(t _{PHL} - t _{PLH}) , <u>Figure 17</u>	Full	-	2	35	ns
Rx Rise Time	t _r	Figure 17	Full	-	2	-	ns
Rx Fall Time	t _f	Figure 17	Full	-	2	-	ns
VREF/RS Pin Characteristics							
VREF Pin Voltage	V _{REF}	-5μΑ < Ι _{REF} < 5μΑ	Full	$0.45 \times V_{CC}$	1.60	0.55xV _{CC}	V
		-50μA < Ι _{REF} < 50μA	Full	0.4xV _{CC}	1.6	0.6xV _{CC}	V
RS Pin Input Current	I _{RS(H)}	RS = 0.75 x V _{CC}	Full	-10.0	-0.2	-	μA
	I _{RS(L)}	V _{RS} = 0V	Full	-450	-125	0	μA

Notes:

7. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

8. Parameters with MIN and/or MAX limits are 100% tested at -55°C, +25°C, and +125°C, unless otherwise specified.

9. Typical values are at 3.3V. Parameters with a single entry in the "TYP" column apply to 3.3V. Typical values shown are not guaranteed.

10. Parameter included in functional testing.

2.5 Test Circuits and Waveforms

Figure 10. Driver Test Circuit

Figure 11. Driver Bus Voltage Definitions

Figure 12. Driver Common-Mode Circuit

 V_{IN} = 125kHz, 0V TO V_{CC} , DUTY CYCLE 50%, t_r = $t_f \leq$ 6ns, Z_O = 50 Ω C_L INCLUDES FIXTURE AND INSTRUMENTATION CAPACITANCE

Figure 13. Driver Timing Test Circuit

Figure 15. Receiver Voltage Definitions

Figure 14. Driver Timing Measurement Points

 $V_{\rm IN}$ = 125kHz, DUTY CYCLE 50%, $t_{\rm f}$ = $t_{\rm f}$ = 6ns, $Z_{\rm O}$ = 50 Ω C_L INCLUDES TEST SETUP CAPACITANCE

Figure 16. Receiver Test Circuit

Figure 17. Receiver Test Measurement Points

INF	ТЛА	OUTPUT	MEASURED
VCANH	VCANL	R	VDIFF
-6.1V	-7V	L	900mV
12V	11.1V	L	900mV
-1V	-7V	L	6V
12V	6V	L	6V
-6.5V	-7V	Н	500mV
12V	11.5V	Н	500mV
-7V	-1V	Н	6V
6V	12V	Н	6V
Open	Open	Н	Х

2. Specifications

 V_{IN} = 125kHz, DUTY CYCLE 50%, $t_r = t_f \le 6ns$

Figure 18. Total Loop Delay Test Circuit

Figure 19. Total Loop Delay Measurement Points

Figure 20. Listen to Valid Dominant Time Circuit

Figure 21. Listen to Valid Dominant Time Measurement Points

Figure 22. Output Short-Circuit Current Circuit

Figure 23. Output Short-Circuit Current Waveforms

3. Typical Performance Curves

 V_{CC} = 3.3V, C_L = 15pF, T_A = +25°C; unless otherwise specified.

Figure 27. Bus Pin Leakage vs V_{CM} at V_{CC} = 0V

 V_{CC} = 3.3V, C_L = 15pF, T_A = +25°C; unless otherwise specified. (Continued)

Figure 29. Bus Pin Leakage vs \pm 35V V_{CM}

Figure 31. Transmitter Propagation Delay and Skew vs Temperature at Fast Speed

 V_{CC} = 3.3V, C_L = 15pF, T_A = +25°C; unless otherwise specified. (Continued)

800

700

 $\mathsf{RS}=50\Omega,\,\mathsf{R}_{\mathsf{DIFF}}=60\Omega$

Figure 32. Transmitter Propagation Delay and Skew vs Temperature at Medium Speed

Figure 33. Transmitter Propagation Delay and Skew vs Temperature at Slow Speed

Figure 34. Transmitter Rise and Fall Times vs Temperature at Fast Speed

Figure 35. Transmitter Rise and Fall Times vs Temperature at Medium Speed

 V_{CC} = 3.3V, C_L = 15pF, T_A = +25°C; unless otherwise specified. (Continued)

Figure 37. Driver Output Current vs Differential Output Voltage

Figure 38. Driver Output Current vs Short-Circuit Voltage vs Temperature

Figure 39. Driver Output Current vs Short-Circuit Voltage vs Temperature

Figure 40. Receiver Output Current vs Receiver Output Voltage at V_{CC} = 3V

Figure 41. Receiver Output Current vs Receiver Output Voltage at V_{CC} = 3.6V

Figure 42. Receiver Propagation Delay and Skew vs Temperature

Figure 43. Receiver Rise and Fall Times vs Temperature

V_{CC} = 3.3V, C_L = 15pF, T_A = +25°C; unless otherwise specified. (Continued)

Figure 46. Medium Driver and Receiver Waveforms

Figure 47. Slow Driver and Receiver Waveforms

4. Functional Description

4.1 Overview

The Intersil ISL72027ASEH is a 3.3V radiation tolerant CAN transceiver that is compatible with the ISO11898-2 standard for use in Controller Area Network (CAN) serial communication systems.

The device performs transmit and receive functions between the CAN controller and the CAN differential bus. It can transmit and receive at bus speeds of to 5Mbps. It is designed to operate across a common-mode range of -7V to +12V, with a maximum of 120 nodes. The device is capable of withstanding \pm 20V on the CANH and CANL bus pins outside of ion beam and \pm 16V under ion beam.

4.2 Slope Adjustment

The transceiver driver has three programmable rise/fall time options programmed by the resistor value connected from the RS pin to GND. A 0Ω resistor sets the part in Fast Speed mode. A resistor of $10k\Omega$ sets the part in Medium Speed mode. A resistor of $50k\Omega$ puts the part in Slow Speed mode. Putting a high logic level on the RS pin places the part in Listen mode. Refer to <u>"Listen Mode" on page 21</u> for more information.

4.2.1 Fast Speed Mode

Connecting the RS pin directly to GND (0Ω resistor) results in the fastest driver output switching times, limited only by the drive capability of the output state. In Fast Speed mode (RS = 0V), the rise/fall times, propagation delays, and total loop delays are optimized for a data rate of 1Mbps.

4.2.2 Medium Speed Mode

In Medium Speed mode (RS = $10k\Omega$), the rise/fall times, propagation delays, and total loop delays are optimized for a data rate of 500kbps. RS = $10k\Omega$ provides for a typical slew rate of $12V/\mu$ s. The slower edges in Medium Speed mode at 500kbps provide better EMI results than running at 500kbps in Fast Speed mode.

4.2.3 Slow Speed Mode

In Slow Speed mode (RS = $50k\Omega$), the rise/fall times, propagation delays, and total loop delays are optimized for a data rate of 250kbps. RS = $50k\Omega$ provides for a typical slew rate of $8V/\mu s$. The slower edges in Slow Speed mode at 250kbps provide better EMI results than running at 250kbps in Medium Speed mode.

4.3 Cable Length

The device can operate according to the ISO11898 specification with a 40m cable and stub length of 0.3m and 60 nodes at 1Mbps. These specifications are greater than the ISO requirement of 30 nodes. The cable type specified is a twisted pair (shielded or unshielded) with a characteristic impedance of 120Ω . Resistors equal to this impedance must be terminated at both ends of the cable. Keep stubs as short as possible to prevent reflections.

4.4 Cold Spare

To reduce the risk of a single-point failure, use redundant bus transceivers in parallel. Space systems call for high reliability in data communications that are resistant to single point failures. This is achieved by using a redundant bus transceiver in parallel. In this arrangement, both active and quiescent devices can be present simultaneously on the bus. The quiescent devices are powered down as cold spares and do not affect the communication of the other active nodes.

The powered down transceiver ($V_{CC} < 200 \text{mV}$) has a resistance between the VREF pin or the CANH pin or CANL pin to the V_{CC} supply rail of >480k Ω (maximum) with a typical resistance >2M Ω . The resistance between CANH and CANL of a powered-down transceiver is typically 80k Ω . The receiver output (R pin) of a powered-down transceiver ($V_{CC} < 200 \text{mV}$) is internally connected to ground. Therefore, the receiver outputs of an active transceiver and a cold spare transceiver cannot be connected together in the redundant application.

4.5 Listen Mode

When a high level is applied to the RS pin, the device enters a low power Listen mode. The driver of the transceiver is switched off to conserve power while the receiver remains active. In Listen mode, the transceiver draws 2mA (maximum) of current.

A low level on the RS pin brings the device back to normal operation.

4.6 Using 3.3V Devices in 5V Systems

The differential voltages and recessive common-mode outputs are the same for both the 3.3V and 5V devices. The dominant common-mode output voltage is slightly lower than that of the 5V counterparts. The receiver specifications for both devices are also the same. Although the electrical parameters appear compatible, perform necessary system testing to verify interchangeable operation.

4.7 Split Mode Termination

The VREF pin provides a $V_{CC}/2$ output voltage for Split mode termination. The VREF pin has the same ESD protection, short-circuit protection, and common-mode operating range as the bus pins.

The Split mode termination technique is shown in Figure 48.

Figure 48. Split Termination

Split mode termination is used to stabilize the bus voltage at $V_{CC}/2$ and prevent it from drifting to a high common-mode voltage during periods of inactivity. The technique improves the electromagnetic compatibility of a network. The Split mode termination is put at each end of the bus.

The C_L capacitor between the two 60 Ω resistors filters unwanted high frequency noise to ground. The resistors should have a tolerance of 1% or better and the two resistors should be carefully matched to provide the most effective EMI immunity. A typical value of C_L for a high speed CAN network is 4.7nF, which generates a 3dB point at 1.1Mbps. The capacitance value used is dependent on the signaling rate of the network.

Die Characteristics 5.

Table 4.	Die and	Assembly	Related	Information
----------	---------	----------	---------	-------------

Die Information		
Dimensions	2413µm x3322µm (95 milsx130.79 mils) Thickness: 305µm ±25µm (12 mils ±1 mil)	
Interface Materials	· · · ·	
Glassivation	Type: 12kÅ Silicon Nitride on 3kÅ Oxide	
Top Metallization	Type: 300Å TiN on 2.8µm AlCu In Bondpads, TiN has been removed.	
Backside Finish	Silicon	
Process	P6SOI	
Assembly Information	i	
Substrate Potential	Floating	
Additional Information	· · ·	
Worst Case Current Density	1.6x10 ⁵ A/cm ²	
Transistor Count	4055	
Weight of Packaged Device	0.31 grams	
Lid Characteristics	Finish: Gold Potential: Grounded, tied to package Pin 2	

5.1 Metallization Mask Layout

Pad Number	Pad Name	X (μm)	Υ (μm)	X	Y
1	DNC	90.0	90.0	901.4	1365.6
2	DNC	90.0	90.0	767.4	1365.6
3	DNC	90.0	90.0	-183.23	1365.6
4	DNC	90.0	90.0	-333.25	1365.6
5	DNC	90.0	90.0	-483.25	1365.6
6	DNC	90.0	90.0	-633.25	1365.6
7	DNC	90.0	90.0	-783.25	1365.6
8	DNC	90.0	90.0	-933.25	1365.6
9	D	110.0	110.0	-931.1	901.85
10	DNC	110.0	110.0	-931.1	563.25
11	GND	110.0	180.0	-931.1	342.25
12	GND_ESD	110.0	110.05	-931.1	119.42
13	VCC	110.0	180.0	-931.1	-115.05
14	VCC_VREF	110.0	180.05	-931.1	-371.08
15	R	110.0	180.0	-931.1	-1350.0
16	DNC	90.0	90.0	-711.1	-1394.95
17	DNC	90.0	90.0	-561.1	-1394.95
18	DNC	90.0	90.0	-411.1	-1394.95
19	DNC	90.0	90.0	-261.1	-1394.95
20	DNC	90.0	90.0	-111.1	-1394.95
21	DNC	90.0	90.0	38.9	-1394.95
22	DNC	110.0	110.0	756.9	-1307.3
23	VREF	110.0	180.0	775.3	-1072.3
24	CANL	110.0	180.0	772.1	2.15
25	CANH	110.0	180.05	772.1	343.33
26	RS	110.0	180.0	848.1	1140.6

Table 5. ISL72027ASEH Die Layout X-Y Coordinates

Note: Origin of coordinates is the center of the die. DNC - Do Not Connect

6. Revision History

Rev.	Date	Description
1.00	Jul 27, 2017	Updated Note 5. Updated the maximum limit for Propagation Delay High to Low, t_{PDHL2} from 650ns to 600ns. Updated the maximum limit for Total Loop Delay, Driver Input to Receiver Output, Dominant to Recessive - $t_{(LOOP2)}$ RS = 10kohms from 750ns to 700ns. Updated Slope Adjustment section on page 20.
0.00	Apr 13, 2017	Initial release

7. Package Outline Drawing

For the most recent package outline drawing, see <u>K8.A</u>.

K8.A

8 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE Rev 4, 12/14

8. Controlling dimension: INCH.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/