inter_{sil}

DATASHEET

ISL78840ASxH, ISL78841ASxH, ISL78843ASxH, ISL78845ASxH, ISL738840ASEH, ISL738841ASEH, ISL738843ASEH, ISL738845ASEH

Radiation Hardened, High Performance Industry Standard Single-Ended Current Mode PWM Controller

The ISL78840ASEH, ISL78841ASEH, ISL78843ASEH, ISL78845ASEH, ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH, ISL738840ASEH, ISL738841ASEH, ISL738843ASEH, ISL738845ASEH are high performance, radiation hardened drop-in replacements for the popular 28C4x and 18C4x PWM controllers suitable for a wide range of power conversion applications including boost, flyback, and isolated output configurations. Fast signal propagation and output switching characteristics make these ideal products for existing and new designs.

Features include up to 13.2V operation, low operating current, $90\mu A$ typical start-up current, adjustable operating frequency to 1MHz and high peak current drive capability with 50ns rise and fall times.

Applications

- · Current mode switching power supplies
- Isolated buck and flyback regulators
- Boost regulators
- Direction and speed control in motors
- Control of high current FET drivers

Features

- Electrically screened to DLA SMD #5962-07249
- QML qualified per MIL-PRF-38535 requirements
- 1A MOSFET gate driver
- 90µA typical start-up current, 125µA maximum
- · 35ns propagation delay current sense to output
- · Fast transient response with peak current-mode control
- 9V to 13.2V operation
- Adjustable switching frequency to 1MHz
- 50ns rise and fall times with 1nF output load
- Trimmed timing capacitor discharge current for accurate dead time/maximum duty cycle control
- 1.5MHz bandwidth error amplifier
- Tight tolerance voltage reference over line, load, and temperature
- ±3% current limit threshold
- Pb-free available (RoHS compliant)
- Radiation acceptance testing ISL7884xASEH
 - HDR (50-300rad(Si)/s): 100krad(Si)
 - LDR (0.01rad(Si)/s): 50krad(Si)
- Radiation acceptance testing ISL7884xASRH
 HDR (50-300rad(Si)/s): 100krad(Si)
- Radiation acceptance testing ISL73884xASEH
- LDR (0.01rad(Si)/s): 50krad(Si)

TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS

PART NUMBER	RISING UVLO (V)	MAXIMUM DUTY CYCLE (%)
ISL78840ASxH	7.0	100
ISL78841ASxH	7.0	50
ISL78843ASxH	8.4	100
ISL78845ASxH	8.4	50
ISL738840ASEH	7.0	100
ISL738841ASEH	7.0	50
ISL738843ASEH	8.4	100
ISL738845ASEH	8.4	50

intersil

Ordering Information

ORDERING NUMBER (Note 1)	PART NUMBER (Note 2)	RADIATION HARDNESS (Total Ionizing Dose)	PACKAGE DESCRIPTION (RoHS Compliant)	PKG. DWG. #	TEMP. RANGE
5962R0724905VPC	ISL78840ASEHVD	HDR to 100krad(Si),	8 Ld SBDIP	D8.3	-55 to +125°C
5962R0724906VPC	ISL78841ASEHVD	LDR to 50krad(Si)			
5962R0724907VPC	ISL78843ASEHVD				
5962R0724908VPC	ISL78845ASEHVD				
5962R0724905VXC	ISL78840ASEHVF		8 Ld Flatpack	K8.A	
5962R0724906VXC	ISL78841ASEHVF				
5962R0724907VXC	ISL78843ASEHVF				
5962R0724908VXC	ISL78845ASEHVF				
5962R0724905V9A	ISL78840ASEHVX (<u>Note 3</u>)		Die	N/A	
5962R0724906V9A	ISL78841ASEHVX (<u>Note 3</u>)				
5962R0724907V9A	ISL78843ASEHVX (<u>Note 3</u>)				
5962R0724908V9A	ISL78845ASEHVX (<u>Note 3</u>)				
5962R0724901V9A	ISL78840ASRHVX (Note 3)	HDR to 100krad(Si)			
N/A	ISL78840ASRHX/SAMPLE (Notes 3, 4)	N/A			
N/A	ISL78840ASRHF/PROTO (Note 4)	N/A	8 Ld Flatpack	K8.A	
5962R0724901QXC	ISL78840ASRHQF	HDR to 100krad(Si)			
5962R0724901VXC	ISL78840ASRHVF				
N/A	ISL78840ASRHD/PROTO (Note 4)	N/A	8 Ld SBDIP	D8.3	
5962R0724901QPC	ISL78840ASRHQD	HDR to 100krad(Si)			
5962R0724901VPC	ISL78840ASRHVD				
5962R0724902V9A	ISL78841ASRHVX (<u>Note 3</u>)		Die	N/A	
N/A	ISL78841ASRHX/SAMPLE (<u>Notes 3, 4</u>)	N/A			
N/A	ISL78841ASRHF/PROTO (Note 4)	N/A	8 Ld Flatpack	K8.A	
5962R0724902QXC	ISL78841ASRHQF	HDR to 100krad(Si)			
5962R0724902VXC	ISL78841ASRHVF				
N/A	ISL78841ASRHD/PROTO (Note 4)	N/A	8 Ld SBDIP	D8.3	
5962R0724902QPC	ISL78841ASRHQD	HDR to 100krad(Si)			
5962R0724902VPC	ISL78841ASRHVD				
5962R0724903V9A	ISL78843ASRHVX (Note 3)		Die	N/A	
N/A	ISL78843ASRHX/SAMPLE (<u>Notes 3, 4</u>)	N/A			
N/A	ISL78843ASRHF/PROTO (Note 4)	N/A	8 Ld Flatpack	K8.A	
5962R0724903QXC	ISL78843ASRHQF	HDR to 100krad(Si)			
5962R0724903VXC	ISL78843ASRHVF				
N/A	ISL78843ASRHD/PROTO (Note 4)	N/A	8 Ld SBDIP	D8.3	
5962R0724903QPC	ISL78843ASRHQD	HDR to 100krad(Si)			
5962R0724903VPC	ISL78843ASRHVD				
5962R0724904V9A	ISL78845ASRHVX (<u>Note 3</u>)		Die	N/A	
N/A	ISL78845ASRHX/SAMPLE (Notes 3, 4)	N/A			

Ordering Information (Continued)

ORDERING NUMBER (<u>Note 1</u>)	PART NUMBER (<u>Note 2</u>)	RADIATION HARDNESS (Total Ionizing Dose)	PACKAGE DESCRIPTION (RoHS Compliant)	PKG. DWG. #	TEMP. RANGE
N/A	ISL78845ASRHF/PROTO (Note 4)	N/A	8 Ld Flatpack	K8.A	-55 to +125°C
5962R0724904QXC	ISL78845ASRHQF	HDR to 100krad(Si)			
5962R0724904VXC	ISL78845ASRHVF	_			
N/A	ISL78845ASRHD/PROTO (Note 4)	N/A	8 Ld SBDIP	D8.3	
5962R0724904QPC	ISL78845ASRHQD	HDR to 100krad(Si)			
5962R0724904VPC	ISL78845ASRHVD				
5962L0724909VXC	ISL738840ASEHVF	LDR to 50krad(Si)	8 Ld Flatpack	K8.A	
5962L0724909VPC	ISL738840ASEHVD		8 Ld SBDIP	D8.3	
5962L0724909V9A	ISL738840ASEHVX (Note 3)		Die	N/A	
N/A	ISL738840ASEHF/PROTO (Note 4)	N/A	8 Ld Flatpack	K8.A	
N/A	ISL738840ASEHD/PROTO (Note 4)	N/A	8 Ld SBDIP	D8.3	
N/A	ISL738840ASEHX/SMPL (Notes 3, 4)	N/A	Die	N/A	
5962L0724910VXC	ISL738841ASEHVF	LDR to 50krad(Si)	Si) 8 Ld Flatpack		
5962L0724910VPC	ISL738841ASEHVD	_	8 Ld SBDIP	D8.3	
5962L0724910V9A	ISL738841ASEHVX (Note 3)	_	Die	N/A	
N/A	ISL738841ASEHF/PROTO (Note 4)	N/A	8 Ld Flatpack	K8.A	
N/A	ISL738841ASEHD/PROTO (Note 4)	N/A	8 Ld SBDIP	D8.3	
N/A	ISL738841ASEHX/SMPL (<u>Notes 3</u> , <u>4</u>)	N/A	Die	N/A	
5962L0724911VXC	ISL738843ASEHVF	LDR to 50krad(Si)	8 Ld Flatpack	K8.A	
5962L0724911VPC	ISL738843ASEHVD	_	8 Ld SBDIP	D8.3	
5962L0724911V9A	ISL738843ASEHVX (<u>Note 3</u>)	_	Die	N/A	
N/A	ISL738843ASEHF/PROTO (Note 4)	N/A	8 Ld Flatpack	K8.A	
N/A	ISL738843ASEHD/PROTO (Note 4)	N/A	8 Ld SBDIP	D8.3	
N/A	ISL738843ASEHX/SMPL (<u>Notes 3, 4</u>)	N/A	Die	N/A	
5962L0724912VXC	ISL738845ASEHVF	LDR to 50krad(Si)	8 Ld Flatpack	K8.A	
5962L0724912VPC	ISL738845ASEHVD		8 Ld SBDIP	D8.3	
5962L0724912V9A	ISL738845ASEHVX (<u>Note 3</u>)		Die	N/A	
N/A	ISL738845ASEHF/PROTO (Note 4)	N/A	8 Ld Flatpack	K8.A	
N/A	ISL738845ASEHD/PROTO (Note 4)	N/A	8 Ld SBDIP	D8.3	
N/A	ISL738845ASEHX/SMPL (<u>Notes 3, 4</u>)	N/A	Die	N/A	

NOTES:

1. These Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.

2. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed must be used when ordering.

3. Die product tested at T_A = + 25°C. The wafer probe test includes functional and parametric testing sufficient to make the die capable of meeting the electrical performance outlined in <u>"Electrical Specifications" on page 9</u>.

4. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across temperature specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE parts are capable of meeting the electrical limits and conditions specified in the DLA SMD. The /SAMPLE parts do not receive 100% screening across temperature to the DLA SMD electrical limits. These part types do not come with a Certificate of Conformance because they are not DLA qualified devices.

Pin Configurations

ISL78840ASEH, ISL78841ASEH, ISL78843ASEH, ISL78845ASEH, ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH, ISL738840ASEH, ISL738841ASEH, ISL738843ASEH, ISL738845ASEH

Pin Descriptions

PIN NAME	PIN NUMBER	ESD CIRCUIT		DESCRIPTION	
RTCT	4	1	connecting a resistor, RT, between V _{REF} a The oscillator produces a sawtooth wavefo	ational frequency and maximum duty cycle are set by nd this pin and a timing capacitor, CT, from this pin to GND. orm with a programmable frequency range up to 2.0MHz. The e RTCT oscillator frequency, f, and the maximum duty cycle, <u>ns 1</u> through <u>4</u> :	
			$t_{C} \approx 0.56 \times RT \times CT$	(EQ. 1)	
			$t_D \approx 30 \times 10^{-9} + \frac{1.8 \times CT}{0.008 - \frac{3.125}{RT}}$	(EQ. 2)	
			$f = 1/(t_C + t_D)$	(EQ. 3)	
			$D = t_C \cdot f$	(EQ. 4)	
			used as a guideline in selecting the capac frequency for the ISL7884xASxH and ISL7 ISL78841ASxH/ISL738841ASEH and ISL	er frequencies due to propagation delays. <u>Figure 7</u> may be itor and resistor values required for a given oscillator 73884xASEH . The switching frequency for the 78845ASxH/ISL738845ASEH will be half the RTCT oscillator tool on the product page to estimate the switching frequency	
COMP	1	1	COMP is the output of the error amplifier a frequency compensation network is connected as a second	and the input of the PWM comparator. The control loop ected between the COMP and FB pins.	
FB	2	1	The output voltage feedback is connected to the inverting input of the error amplifier through this pir The noninverting input of the error amplifier is internally tied to a reference voltage.		
CS	3	1	The current sense input to the PWM comparator. The range of the input signal is nominally 0V to 1.0V and has an internal offset of 100mV.		
GND	5	-	GND is the power and small signal referen	nce ground for all functions.	
OUT	6	3		evice. It is a high current output capable of driving the gate of DA. This GATE output is actively held low when VDD is below	
V _{DD}	7	2	OUT. Total I_{DD} current is the sum of the op	e. The total supply current will depend on the load applied to berating current and the average output current. Knowing the ate charge, Qg, the average output current can be calculated	
			$I_{OUT} = Qg \times f$	(EQ. 5)	
			To optimize noise immunity, bypass V _{DD} to pins as possible.	o GND with a ceramic capacitor as close to the $\ensuremath{V_{DD}}$ and GND	

PIN NAME	PIN NUMBER	ESD CIRCUIT	DESCRI	PTION
V _{REF}	8	1	The 5.00V reference voltage output. +1.0/-1.5% tole The recommended bypass to GND cap is in the range used.	
Г	PAC	KAGE PIN		
				本 12V (BODY DIODE)
	12V		☆ 36∨	□оυт
				↓ 12V (BODY DIODE)
	CIRCUIT 1		CIRCUIT 2	CIRCUIT 3

Pin Descriptions (Continued)

Functional Block Diagram

FN7952 Rev.4.02 Feb 13, 2025

RETURN

Typical Application - 48V Input Dual Output Flyback

FN7952 Rev.4.02 Feb 13, 2025

intersil

Page 7 of 18

ISL78840ASxH, ISL78841ASxH, ISL78843ASxH, ISL78845ASxH, ISL738840ASEH, ISL738841ASEH, ISL738843ASEH, ISL738845ASEH

FN7952 Rev.4.02 Feb 13, 2025

intersil

Absolute Maximum Ratings

Supply Voltage V _{DD} Without Beam (GND -0.3V) to +30.0V
Supply Voltage V _{DD} Under Beam (GND -0.3V) to +14.7V
OUT (GND -0.3V) to V _{DD} + 0.3V
Signal Pins(GND -0.3V) to 6.0V
Peak GATE Current1A
ESD Rating
Human Body Model (Tested per JESD22-A114E) 2kV
Machine Model (Tested per JESD22-A115-A) 200V
Latch-Up (Tested per JESD-78B; Class 2, Level A) 100mA

Recommended Operating Conditions

Temperature Range	55°C to +125°C
Supply Voltage (Typical <u>Note 7</u>)	9V to 13.2V

Thermal Information

Thermal Resistance (Typical)	θ JA (°C/W)	θ _{JC} (°C∕W)
8 Ld Flatpack Package (<u>Notes 5, 6</u>)	140	15
8 Ld SBDIP Package (<u>Notes 5, 6</u>)	98	15
Maximum Junction Temperature		+150°C
Storage Temperature Range	6	5°C to +150°C

Radiation Information

Maximum Total Dose	
Dose Rate = 50 - 100radSi/s	100krads (Si)
Dose Rate = 0.01rad(Si)/s	
SEB (No Burnout) (<u>Note 8</u>)	
SEL (No latch-up) (<u>Note 8</u>)	43Mev/mg/cm ²
SET (Regulated V _{OUT} within ±3%) (<u>Note 8</u>)	40Mev/mg/cm ²

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 5. θ_{JA} is measured with the component mounted on a low-effective thermal conductivity test board in free air. See <u>TB379</u> for details.
- 6. For θ_{JC} the case temperature location is the center of the ceramic on the package underside.
- 7. All voltages are with respect to GND.
- 8. SEE tests performed with V_{REF} bypass capacitor of 0.22µF and f_{SW} = 200kHz. SEB/L tests done on a standalone open loop configuration. SET tests done in a closed loop configuration. For LET ≤ 43MeV/mg cm². The SEL observed requiring a power cycle to recover operation occurred at ≤ 43MeV/mg cm² < LET ≤ 80MeV/mg cm². For more information see: <u>ISL7884xASRH SEE Test Report</u>.

Electrical Specifications Recommended operating conditions unless otherwise noted. See the Block Diagram on <u>page 6</u> and Typical Application on <u>page 7</u>. V_{DD} = 13.2V, R_T = 10k Ω , C_T = 3.3nF, T_A = -55 to +125°C. Typical values are at T_A = +25°C. **Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL7884xASRH and ISL7884xASEH only); or over a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s (ISL7884xASEH only).**

PARAMETER	TEST CONDITIONS	MIN (<u>Note 11</u>)	ТҮР	MAX (<u>Note 11</u>)	UNIT
UNDERVOLTAGE LOCKOUT					
START Threshold	ISL78840A, ISL738840A, ISL78841A, ISL738841A	6.5	7.0	7.5	v
	ISL78843A, ISL738843A, ISL78845A, ISL738845A	8.0	8.4	9.0	v
STOP Threshold	ISL78840A, ISL738840A, ISL78841A, ISL738841A	6.1	6.6	6.9	v
	ISL78843A, ISL738843A, ISL78845A, ISL738845A	7.3	7.6	8.0	v
Hysteresis	ISL78840A, ISL738840A, ISL78841A, ISL738841A	-	0.4	-	v
	ISL78843A, ISL738843A, ISL78845A, ISL738845A	-	0.8	-	v
Start-Up Current, IDD	V _{DD} < START Threshold	-	90	125	μA
	V _{DD} < START Threshold, 100krad	-	300	500	μA
Operating Current, I _{DD}	(<u>Note 9</u>)	-	2.9	4.0	mA
Operating Supply Current, ID	Includes 1nF GATE loading	-	4.75	5.50	mA
REFERENCE VOLTAGE		- I		1	
Overall Accuracy	Over line (V _{DD} = 9V to 13.2V), load of 1mA and 10mA, temperature	4.925	5.000	5.050	v
Long Term Stability	T _A = +125 °C, 1000 hours (<u>Note 10</u>)	-	5	-	mV
Current Limit, Sourcing		-20	-	-	mA
Current Limit, Sinking		5	-	-	mA
CURRENT SENSE		I	1	1	1
Input Bias Current	V _{CS} = 1V	-1.0	-	1.0	μA

Electrical Specifications Recommended operating conditions unless otherwise noted. See the Block Diagram on <u>page 6</u> and Typical Application on <u>page 7</u>. $V_{DD} = 13.2V$, $R_T = 10k\Omega$, $C_T = 3.3nF$, $T_A = -55$ to +125 °C. Typical values are at $T_A = +25$ °C. Boldface limits apply across the operating temperature range, -55 °C to +125 °C; over a total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL7884xASRH and ISL7884xASEH only); or over a total ionizing dose of 50krad(Si) with exposure at a low dose rate of <10mrad(Si)/s (ISL7884xASEH only). (Continued)

PARAMETER	TEST CONDITIONS	MIN (<u>Note 11</u>)	ТҮР	MAX (<u>Note 11</u>)	UNIT
Input Signal, Maximum		0.97	1.00	1.03	v
Gain, $A_{CS} = \Delta V_{COMP} / \Delta V_{CS}$	0 < V _{CS} < 910mV, V _{FB} = 0V	2.75	2.82	3.15	V/V
CS to OUT Delay		-	35	55	ns
ERROR AMPLIFIER		L	1	1	
Open Loop Voltage Gain	(<u>Note 10</u>)	-	90	-	dB
Unity Gain Bandwidth	(<u>Note 10</u>)	-	1.5	-	MH
Reference Voltage, V _{REF}	V _{FB} = V _{COMP}	2.475	2.500	2.530	v
FB Input Bias Current, FBI _{IB}	V _{FB} = OV	-1.0	-0.2	1.0	μA
COMP Sink Current	V _{COMP} = 1.5V, V _{FB} = 2.7V	1.0	-	-	mA
COMP Source Current	V _{COMP} = 1.5V, V _{FB} = 2.3V	-0.4	-	-	mA
COMP V _{OH}	V _{FB} = 2.3V	4.80	-	V _{REF}	v
COMP V _{OL}	V _{FB} = 2.7V	0.4	-	1.0	v
PSRR	Frequency = 120Hz, V _{DD} = 9V to 13.2V (<u>Note 10</u>)	-	80	-	dB
OSCILLATOR					1
Frequency Accuracy	Initial, T _A = +25 °C	48	51	53	kHz
Frequency Variation with V _{DD}	T_A = +25°C, (f _{13.2V} - f _{9V})/f _{12V}	-	0.2	1.0	%
Temperature Stability	(<u>Note 10</u>)	-	5	-	%
Amplitude, Peak-to-Peak	Static Test	-	1.75	-	v
RTCT Discharge Voltage (Valley Voltage)	Static Test	-	1.0	-	v
Discharge Current	RTCT = 2.0V	6.5	7.8	8.5	mA
OUTPUT				I	1
Gate VOH	V _{DD} to OUT, I _{OUT} = -100mA	-	1.0	2.0	v
Gate VOL	OUT to GND, I _{OUT} = 100mA	-	1.0	2.0	v
Peak Output Current	C _{OUT} = 1nF (<u>Note 10</u>)	-	1.0	-	Α
Rise Time	C _{OUT} = 1nF	-	35	60	ns
Fall Time	C _{OUT} = 1nF	-	20	40	ns
OUTPUT OFF State Leakage	V _{DD} = 5V	-	-	50	μA
PWM		L		I	1
Maximum Duty Cycle (ISL78840A, ISL738840A, ISL78843A, ISL738843A)	COMP = V _{REF}	94.0	96.0	-	%
Maximum Duty Cycle (ISL78841A, ISL738841A, ISL78845A, ISL738845A)	COMP = V _{REF}	47.0	48.0	-	%
Minimum Duty Cycle	COMP = GND	-	-	0	%

NOTES:

9. This is the V_{DD} current consumed when the device is active but not switching. Does not include gate drive current.

10. Limits established by characterization and are not production tested.

11. Parameters with MIN and/or MAX limits are 100% tested at +25 °C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

10

100pF

100

55%

50%

1

Functional Description

Features

The current mode PWM for the ISL7884xASxH and ISL73884xASEH devices makes an ideal choice for low-cost flyback and forward topology applications. With their greatly improved performance over industry standard parts, they are the obvious choice for new designs or existing designs, which require updating.

Oscillator

The ISL7884xASxH and ISL73884xASEH devices have a sawtooth oscillator with a programmable frequency range to 2MHz, which can be programmed with a resistor from V_{REF} and a capacitor to GND on the RTCT pin (see Figure 7 for the resistor and capacitance required for a given frequency).

The ISL78840/738840 and ISL78843/738843 PWM frequency and PWM duty cycle matches the oscillator frequency in Figure 7 and the oscillator duty cycle in Figure 8. The ISL78841/738841 and ISL78845/738845 PWM frequency is half the oscillator frequency in Figure 7 and half the oscillator duty cycle in Figure 8.

Soft-Start Operation

Soft-start must be implemented externally. One method, illustrated below, clamps the voltage on COMP.

The COMP pin is clamped to the voltage on capacitor C_1 plus a base-emitter junction by transistor Q_1 . C_1 is charged from V_{REF} through resistor R_1 and the base current of Q_1 . At power-up C_1 is fully discharged, COMP is at ~0.7V, and the duty cycle is zero. As C_1 charges, the voltage on COMP increases and the duty cycle increases in proportion to the voltage on C_1 . When COMP reaches the steady state operating point, the control loop takes over and soft-start is complete. C_1 continues to charge up to V_{REF} and no longer affects COMP. During power-down, diode D_1 quickly discharges C_1 so that the soft-start circuit is properly initialized prior to the next power-on sequence.

Gate Drive

The ISL7884xASxH and ISL73884xASEH devices are capable of sourcing and sinking 1A peak current. To limit the peak current through the IC, an optional external resistor may be placed between the totem-pole output of the IC (OUT pin) and the gate of

the MOSFET. This small series resistor also damps any oscillations caused by the resonant tank of the parasitic inductances in the traces of the board and the FETs input capacitance. TID environment of >50krads requires the use of a bleeder resistor of 10k from the OUT pin to GND.

Slope Compensation

For applications where the maximum duty cycle is less than 50%, slope compensation may be used to improve noise immunity, particularly at lighter loads. The amount of slope compensation required for noise immunity is determined empirically, but is generally about 10% of the full scale current feedback signal. For applications where the duty cycle is greater than 50%, slope compensation is required to prevent instability.

Slope compensation may be accomplished by summing an external ramp with the current feedback signal or by subtracting the external ramp from the voltage feedback error signal. Adding the external ramp to the current feedback signal is the more popular method.

From the small signal current-mode model $[\underline{1}]$ it can be shown that the naturally-sampled modulator gain, Fm, without slope compensation is calculated in Equation 6:

$$Fm = \frac{1}{S_n t_{SW}}$$
(EQ. 6)

where S_n is the slope of the sawtooth signal and t_{SW} is the duration of the half-cycle. When an external ramp is added, the modulator gain becomes Equation 7:

$$Fm = \frac{1}{(S_n + S_e)tsw} = \frac{1}{m_c S_n t_{SW}}$$
 (EQ. 7)

where Se is slope of the external ramp and becomes Equation 8:

$$m_{c} = 1 + \frac{S_{e}}{S_{n}}$$
(EQ. 8)

The criteria for determining the correct amount of external ramp can be determined by appropriately setting the damping factor of the double-pole located at the switching frequency. The double-pole will be critically damped if the Q-factor is set to 1, over-damped for Q < 1 and under-damped for Q > 1. An under-damped condition may result in current loop instability.

$$Q = \frac{1}{\pi(m_c(1-D) - 0.5)}$$
 (EQ. 9)

where D is the percent of on-time during a switching cycle. Setting Q = 1 and solving for S_e yields <u>Equation 10</u>:

$$S_e = S_n\left(\left(\frac{1}{\pi} + 0.5\right)\frac{1}{1-D} - 1\right)$$
 (EQ. 10)

Because S_n and S_e are the on-time slopes of the current ramp and the external ramp, respectively, they can be multiplied by t_{ON} to obtain the voltage change that occurs during t_{ON} .

$$V_{e} = V_{n} \left(\left(\frac{1}{\pi} + 0.5 \right) \frac{1}{1 - D} - 1 \right)$$
 (EQ. 11)

where V_n is the change in the current feedback signal (ΔI) during the on-time and V_e is the voltage that must be added by the external ramp.

For a flyback converter, V_n can be solved in terms of input voltage, current transducer components and primary inductance, yielding <u>Equation 12</u>:

$$V_{e} = \frac{D \cdot t_{SW} \cdot V_{IN} \cdot R_{CS}}{L_{p}} \left(\left(\frac{1}{\pi} + 0.5 \right) \frac{1}{1 - D} - 1 \right)$$
 (EQ. 12)

where R_{CS} is the current sense resistor, t_{SW} is the switching period, L_p is the primary inductance, V_{IN} is the minimum input voltage and D is the maximum duty cycle.

The current sense signal at the end of the ON time for CCM operation is Equation 13:

$$V_{CS} = \frac{N_{S} \cdot R_{CS}}{N_{P}} \left(I_{O} + \frac{(1-D) \cdot V_{O} \cdot t_{sW}}{2L_{s}} \right) \qquad (EQ. 13)$$

where V_{CS} is the voltage across the current sense resistor, L_{s} is the secondary winding inductance and I_{0} is the output current at current limit. Equation 13 assumes the voltage drop across the output rectifier is negligible.

Because the peak current limit threshold is 1.00V, the total current feedback signal plus the external ramp voltage must sum to this value when the output load is at the current limit threshold as shown in Equation 14:

$$V_e + V_{CS} = 1V \tag{EQ. 14}$$

Substituting Equations 12 and 13 into Equation 14 and solving for R_{CS} yields Equation 15:

$$R_{CS} = \frac{1}{\frac{D \cdot T_{sw} \cdot V_{IN}}{L_p} \cdot \left(\frac{\frac{1}{\pi} + 0.5}{1 - D} - 1\right) + \frac{N_s}{N_p} \cdot \left(I_0 + \frac{(1 - D) \cdot V_0 \cdot t_{sw}}{2L_s}\right)}$$
(E0.15)

Adding slope compensation is accomplished in the ISL7884xASxH and ISL73884xASEH devices using an external buffer transistor and the RTCT signal. A typical application sums the buffered RTCT signal with the current sense feedback and applies the result to the CS pin as shown in Figure 10.

FIGURE 10. SLOPE COMPENSATION

Assuming the designer has selected values for the RC filter (R_6 and C_4) placed on the CS pin, the value of R_9 required to add the appropriate external ramp can be found by superposition.

$$V_{e} = \frac{2.05D \cdot R_{6}}{R_{6} + R_{9}} \qquad V \qquad (EQ. 16)$$

The factor of 2.05 in <u>Equation 16</u> arises from the peak amplitude of the sawtooth waveform on RTCT minus a base-emitter junction drop. That voltage multiplied by the maximum duty cycle is the voltage source for the slope compensation. Rearranging to solve for R_9 yields <u>Equation 17</u>:

$$R_9 = \frac{(2.05D - V_e) \cdot R_6}{V_e} \qquad \Omega$$
(EQ. 17)

The value of R_{CS} determined in <u>Equation 15</u> must be rescaled so that the current sense signal presented at the CS pin is that predicted by <u>Equation 13</u>. The divider created by R₆ and R₉ makes this necessary.

$$R'_{CS} = \frac{R_6 + R_9}{R_9} \cdot R_{CS}$$
 (EQ. 18)

Example:

- 101/

$$v_{IN} - 12v$$

$$V_{0} = 48V$$

$$L_{s} = 800\mu H$$
Ns/Np = 10
$$Lp = 8.0\mu H$$

$$I_{0} = 200mA$$
Switching Frequency, f_{SW} = 200kHz
Duty Cycle, D = 28.6%
R_{6} = 499\Omega
Solve for the current sense resistor, R_{CS}, using Equation 15.
R_{CS} = 295mΩ

Determine the amount of voltage, V_e , that must be added to the current feedback signal using <u>Equation 12</u>.

V_e = 92.4mV

Using $\underline{\text{Equation 17}},$ solve for the summing resistor, $\text{R}_9,$ from CT to CS.

 $R_9 = 2.67 k\Omega$

Determine the new value of R_{CS} (R'_{CS}) using Equation 18.

$R'_{CS} = 350 m\Omega$

Additional slope compensation may be considered for design margin. The previous discussion determines the minimum external ramp that is required. The buffer transistor used to create the external ramp from RTCT should have a sufficiently high gain (>200) so as to minimize the required base current. Whatever base current is required reduces the charging current into RTCT and will reduce the oscillator frequency.

Fault Conditions

A Fault condition occurs if V_{REF} falls below 4.65V. When a Fault is detected, OUT is disabled. When V_{REF} exceeds 4.80V, the Fault condition clears and OUT is enabled.

Package Characteristics

Weight of Packaged Device

8 Ld Mini DIP: 0.7004 Grams 8 Ld Flatpack: 0.3605 Grams

Die Characteristics

Die Dimensions

2030µm x 2030µm (80 mils x 80 mils) Thickness: 482µm ±25.4µm (19.0 mils ±1 mil)

Interface Materials

GLASSIVATION

Type: Silicon Oxide and Silicon Nitride Thickness: 0.3µm ±0.03µm to 1.2µm ±0.12µm

TOP METALLIZATION

Type: AlCu (99.5%/0.5%) Thickness: $2.7 \mu m \pm 0.4 \mu m$

SUBSTRATE

References

No. 2, April 1991.

Silicon

BACKSIDE FINISH

Silicon

PROCESS 0.6µM BiCMOS Junction Isolated

Ground Plane Requirements

Careful layout is essential for satisfactory operation of the device.

A good ground plane must be employed. A unique section of the ground plane must be designated for high di/dt currents

[1] Ridley, R., "A New Continuous-Time Model for Current Mode

Control", IEEE Transactions on Power Electronics, Vol. 6,

associated with the output stage. V_{DD} should be bypassed

directly to GND with good high frequency capacitors.

ASSEMBLY RELATED INFORMATION

Substrate Potential Unbiased

ADDITIONAL INFORMATION

Worst Case Current Density $< 2 \times 10^5 \text{ A/cm}^2$

Transistor Count

Die Map

intersil[®]

Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
Feb 13, 2025	4.02	Updated Equations 1 and 2. Added spreadsheet reference to pin 4 description. Updated Figure 7. Added Figure 8.
May 5, 2022	4.01	Removed related literature. Updated Ordering information table correcting errors in the packaging columns.
Feb 25, 2020	4.00	Changed part number ISL7384xASEH to ISL73884xASEH. Added additional ISL73884xASEH parts to Ordering Information table.
Dec 20, 2019	3.00	Added ISL7384xASEH information throughout document. Added Note 3, updated Note 4, and removed Note 7. Updated disclaimer.
Feb 23, 2018	2.00	Updated Related Literature. Updated Ordering Information table. Added Note 4. Removed About Intersil section. Updated disclaimer.
Apr 8, 2016	1.00	Added part numbers "ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH" throughout the datasheet. Added Related Literature section on page 1. Moved Table 1 from page 1 to page 1. Moved and updated the "Pin Descriptions" on page 4. Updated the "Radiation Information" on page 9: Updated SEL (No latch-up) from "80Mev/mg/cm2" to "43Mev/mg/cm ² ". Moved Note 8 (old Note 9) from page 9 to the end of the Abs max table.
May 4, 2012	0.00	Initial Release.

ISL78840ASxH, ISL78841ASxH, ISL78843ASxH, ISL78845ASxH, ISL738840ASEH, ISL738841ASEH, ISL738843ASEH, ISL738845ASEH

Package Outline Drawings

For the most recent package outline drawing, see K8.A.

K8.A

8 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE Rev 4, 12/14

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternately, a tab may be used to identify pin one.

2 If a pin one identification mark is used in addition to or instead of a tab, the limits of the tab dimension do not apply.

The maximum limits of lead dimensions (section A-A) shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.

/4. Measure dimension at all four corners.

5. For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.

- Dimension shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension minimum shall be reduced by 0.0015 inch (0.038mm) maximum when solder dip lead finish is applied.
- 7. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 8. Controlling dimension: INCH.

For the most recent package outline drawing, see D8.3.

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:

- 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- 2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- 4. Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- 7. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	-
E	0.220	0.310	5.59	7.87	-
е	0.100 BSC		2.54 BSC		-
eA	0.300 BSC		7.62 BSC		-
eA/2	0.150 BSC		3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90 ⁰	105 ⁰	90 ⁰	105 ⁰	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2
Ν	8		8		8

D8.3 MIL-STD-1835 CDIP2-T8 (D-4, CONFIGURATION C) 8 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

Rev. 0 4/94

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.