RENESAS Low Voltage 2.5V/3.3V Differential ECL/ PECL/HSTL Fanout Buffer

NRND – Not Recommend for New Designs

Product Discontinuance Notice – Last Time Buy Expires on (12/23/2013)

The MC100ES6210 is a bipolar monolithic differential clock fanout buffer. Designed for most demanding clock distribution systems, the MC100ES6210 supports various applications that require to distribute precisely aligned differential clock signals. Using SiGe technology and a fully differential architecture, the device offers very low clock skew outputs and superior digital signal characteristics. Target applications for this clock driver is high performance clock distribution in computing, networking and telecommunication systems.

Features

- Dual 1:5 differential clock distribution
- 30 ps maximum device skew
- · Fully differential architecture from input to all outputs
- · SiGe technology supports near-zero output skew
- Supports DC to 3GHz operation of clock or data signals
- ECL/PECL compatible differential clock outputs
- · ECL/PECL compatible differential clock inputs
- Single 3.3V, –3.3V, 2.5V or –2.5V supply
- Standard 32 lead LQFP and VFQFN packages
- Industrial temperature range
- Pin and function compatible to the MC100EP210
- 32-lead Pb-free Package

Functional Description

The MC100ES6210 is designed for low skew clock distribution systems and supports clock frequencies up to 3GHz. The device consists of two independent 1:5 clock fanout buffers. The input signal of each fanout buffer is distributed to five identical, differential ECL/PECL outputs. Both CLKA and CLKB inputs can be driven by ECL/PECL compatible signals.

If V_{BB} is connected to the CLKA or CLKB input and bypassed to GND by a 10nF capacitor, the MC100ES6210 can be driven by single-ended ECL/PECL signals utilizing the V_{BB} bias voltage output.

In order to meet the tight skew specification of the device, both outputs of a differential output pair should be terminated, even if only one output is used. In the case where not all ten outputs are used, the output pairs on the same package side as the parts being used on that side should be terminated.

The MC100ES6210 can be operated from a single 3.3V or 2.5V supply. As most other ECL compatible devices, the MC100ES6210 supports positive (PECL) and negative (ECL) supplies. The is function and pin compatible to the MC100EP210.

LOW VOLTAGE DUAL 1:5 DIFFERENTIAL PECL/ECL/HSTL CLOCK FANOUT BUFFER

AC SUFFIX 32-LEAD LQFP PACKAGE Pb-FREE PACKAGE CASE 873A-03

K SUFFIX 32-LEAD VFQFN PACKAGE Pb-FREE PACKAGE

Device Package					
MC100ES6210AC	LQFP-32 (Pb-Free)				
MC100ES6210ACR2	LQFP-32 (Pb-Free)				
MC100ES6210KLF	VFQFN-32 (Pb-Free)				

DATA SHEET

RENESAS

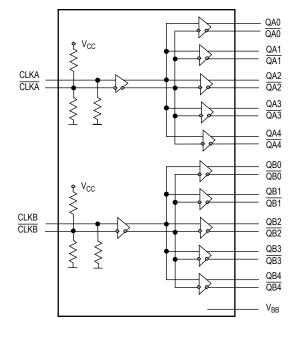


Figure 1. MC100ES6210 Logic Diagram

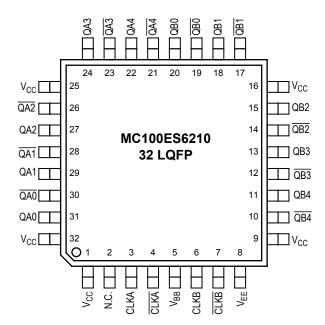


Figure 2. 32-Lead LQFP Package Pinout (Top View)

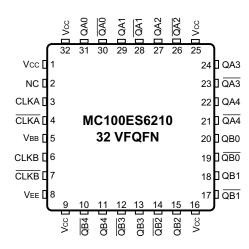


Figure 3. 32-Lead VFQFN Package Pinout (Top View) Figure 3. 32-Lead VFQFN Package Pinout (Top View)

Table 1. Pin Configuration

Pin	I/O	Туре	Function
CLKA, CLKA	Input	ECL/PECL	Differential reference clock signal input (fanout buffer A)
CLKB, CLKB	Input	ECL/PECL	Differential reference clock signal input (fanout buffer B)
QA[0-4], QA[0-4]	Output	ECL/PECL	Differential clock outputs (fanout buffer A)
QB[0-4], QB[0-4]	Output	ECL/PECL	Differential clock outputs (fanout buffer B)
V _{EE} ⁽¹⁾	Supply		Negative power supply
V _{CC}	Supply		Positive power supply. All V_{CC} pins must be connected to the positive power supply for correct DC and AC operation.
V _{BB}	Output	DC	Reference voltage output for single ended ECL or PECL operation

1. In ECL mode (negative power supply mode), V_{EE} is either –3.3V or –2.5V and V_{CC} is connected to GND (0 V). In PECL mode (positive power supply mode), V_{EE} is connected to GND (0V) and V_{CC} is either +3.3V or +2.5V. In both modes, the input and output levels are referenced to the most positive supply (V_{CC})

Table 2. Absolute Maximum Ratings⁽¹⁾

Symbol	Characteristics	Characteristics Min Max		Unit	Condition
V _{CC}	Supply Voltage	-0.3	3.6	V	
V _{IN}	DC Input Voltage	-0.3	V _{CC} + 0.3	V	
V _{OUT}	DC Output Voltage	-0.3	V _{CC} + 0.3	V	
I _{IN}	DC Input Current		±20	mA	
I _{OUT}	DC Output Current		±50	mA	
Τ _S	Storage temperature	-65	125	°C	

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

RENESAS

Table 3. General Specifications

Symbol	Characteristics	Min	Тур	Мах	Unit	Condition
V _{TT}	Output Termination Voltage		$V_{CC} - 2^{(1)}$		V	
MM	ESD Protection (Machine Model)	200			V	
HBM	ESD Protection (Human Body Model)	2000			V	
CDM	ESD Protection (Charged Device Model)				V	
LU	Latch-Up Immunity	200			mA	
C _{IN}	Input Capacitance		4.0		pF	Inputs
θ _{JA}	Thermal Resistance Junction to Ambient 32 LQFP JESD 51-3, single layer test board		83.1 73.3 68.9 63.8 57.4	86.0 75.4 70.9 65.3 59.6	°C/W °C/W °C/W °C/W °C/W	Natural convection 100 ft/min 200 ft/min 400 ft/min 800 ft/min
	JESD 51-6, 2S2P multilayer test board		59.0 54.4 52.5 50.4 47.8	60.6 55.7 53.8 51.5 48.8	°C/W °C/W °C/W °C/W °C/W	Natural convection 100 ft/min 200 ft/min 400 ft/min 800 ft/min
	Thermal Resistance Junction to Ambient 32 VFQFN		53.3 46.6 41.8		°C/W °C/W °C/W	0 meters per second 1 meters per second 2.5 meters per second
θ_{JC}	Thermal Resistance Junction to Case 32 LQFP		23.0	26.3	°C/W	MIL-SPEC 883E Method 1012.1
Τ _J	Operating Junction Temperature ⁽²⁾ (continuous operation) MTBF = 9.1 years			110	°C	

1. Output termination voltage V_{TT} = 0V for V_{CC} = 2.5V operation is supported but the power consumption of the device will increase.

2. Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected according to the application life time requirements (See application note AN1545 for more information). The device AC and DC parameters are specified up to 110°C junction temperature allowing the MC100ES6210 to be used in applications requiring industrial temperature range. It is recommended that users of the MC100ES6210 employ thermal modeling analysis to assist in applying the junction temperature specifications to their particular application.

Table 4. PECL DC Characteristics (V_{CC} = 2.5V \pm 5% or V_{CC} = 3.3V \pm 5%, V_{EE} = GND, T_J = 0°C to +110°C)

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
Clock Input	Pair CLKA, CLKA, CLKB, CLKB (PECL differe	ential signals)				
V _{PP}	Differential Input Voltage ⁽¹⁾	0.1		1.3	V	Differential operation
V _{CMR}	Differential Cross Point Voltage ⁽²⁾	1.0		V _{CC} - 0.3	V	Differential operation
I _{IN}	Input Current ⁽¹⁾			±100	μA	$V_{IN} = V_{IL}$ or $V_{IN} = V_{IH}$
PECL Clock	Outputs (QA0-4, QA0-4, QB0-4, QB0-4)					
V _{OH}	Output High Voltage	V _{CC} –1.2	V _{CC} -1.005	V _{CC} -0.7	V	I _{OH} = -30 mA ⁽³⁾
V _{OL}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	V _{CC} –1.9 V _{CC} –1.9	V _{CC} –1.705 V _{CC} –1.705	V _{CC} –1.5 V _{CC} –1.3	V	$I_{OL} = -5 \text{ mA}^{(3)}$
Supply Curr	ent and V _{BB}					
I _{EE}	Maximum Quiescent Supply Current without Output Termination Current		60	100	mA	V _{EE} pin
V _{BB}	Output Reference Voltage	V _{CC} –1.38	V _{CC} -1.26	V _{CC} –1.14	V	I _{BB} = 0.2 mA

1. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

2. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

3. Equivalent to a termination of 50 Ω to V_{TT}.

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
Clock Input I	Pair CLKA, CLKA, CLKB, CLKB (ECL differen	tial signals)			1	
V _{PP}	Differential Input Voltage ⁽¹⁾	0.1		1.3	V	Differential operation
V _{CMR}	Differential Cross Point Voltage ⁽²⁾	V _{EE} + 1.0		-0.3	V	Differential operation
I _{IN}	Input Current ⁽¹⁾			±100	μA	$V_{IN} = V_{IL}$ or $V_{IN} = V_{IH}$
ECL Clock C	Dutputs (QA0–4, QA0–4, QB0–4, QB0–4)					
V _{OH}	Output High Voltage	-1.2	-1.005	-0.7	V	I _{OH} = -30 mA ⁽³⁾
V _{OL}	Output Low Voltage $V_{CC} = 3.3V \pm 5\%$ $V_{CC} = 2.5V \pm 5\%$	-1.9 -1.9	-1.705 -1.705	-1.5 -1.3	V	$I_{OL} = -5 \text{ mA}^{(3)}$
Supply Curre	ent and V _{BB}		•			•
I _{EE}	Maximum Quiescent Supply Current without Output Termination Current		60	100	mA	V _{EE} pin
V_{BB}	Output Reference Voltage	-1.38	-1.26	-1.14	V	I _{BB} = 0.2 mA

Table 5. ECL DC Characteristics (V_{EE} = –2.5V \pm 5% or V_{EE} = –3.3V \pm 5%, V_{CC} = GND, T_J = 0°C to +110°C)

1. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

2. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

3. Equivalent to a termination of 50 Ω to V_TT.

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
Clock Input	Pair CLKA, CLKA, CLKB, CLKB (PECL or ECL diffe	erential signals)				
V _{PP}	Differential Input Voltage ⁽³⁾ (peak-to-peak)	0.3	0.3	1.3	V	
V _{CMR}	Differential Input Crosspoint Voltage ⁽⁴⁾ PECL ECL	1.2 V _{EE} + 1.2		V _{CC} - 0.3 -0.3V	V V	
ECL Clock	Outputs (Qx0–4, $\overline{Qx0-4}$)					
f _{CLK}	Input Frequency	0		3000	MHz	Differential
t _{PD}	Propagation Delay CLKA to QAx or CLKB to QBx	175	260	350	ps	Differential
V _{O(P-P)}	Differential Output Voltage (peak-to-peak) $f_O < 1.1GHz$ $f_O < 2.5GHz$ $f_O < 3.0GHz$	0.45 0.35 0.20	0.70 0.55 0.35		V V V	
t _{sk(O)}	Output-to-Output Skew (per bank)		13	30	ps	Differential
t _{sk(PP)}	Output-to-Output Skew (part-to-part)			175	ps	Differential
t _{JIT(CC)}	Output Cycle-to-Cycle Jitter			1	ps	
t _{jit}	Buffer Additive Phase Jitter, RMS3.3V±5%2.5V±5%			0.45 0.96	ps ps	
t _{SK(P)}	Output Pulse Skew ⁽⁵⁾			50	ps	
DC _Q	$\begin{array}{llllllllllllllllllllllllllllllllllll$	49.5 45.0	50 50	50.5 55.0	% %	DC _{REF} = 50% DC _{REF} = 50%
t _r , t _f	Output Rise/Fall Time	30		250	ps	20% to 80%

Table 6. AC Characteristics (ECL: $V_{EE} = -3.3V \pm 5\%$ or $V_{EE} = -2.5V \pm 5\%$, $V_{CC} = GND$) or(PECL: $V_{CC} = 3.3V \pm 5\%$ or $V_{CC} = 2.5V \pm 5\%$, $V_{EE} = GND$, $T_J = 0^{\circ}C$ to +110°C)^{(1) (2)}

1. AC characteristics are design targets and pending characterization.

2. AC characteristics apply for parallel output termination of 50 Ω to V_{TT}.

3. V_{PP} (AC) is the minimum differential ECL/PECL input voltage swing required to maintain AC characteristics including t_{PD} and device-to-device skew.

4. V_{CMR} (AC) is the crosspoint of the differential ECL/PECL input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} (AC) range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} (AC) or V_{PP} (AC) impacts the device propagation delay, device and part-to-part skew.

5. Output pulse skew is the absolute difference of the propagation delay times: $|t_{PLH} - t_{PHL}|$.

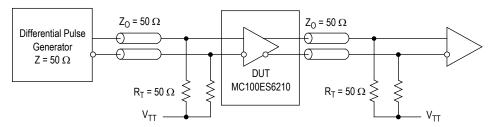
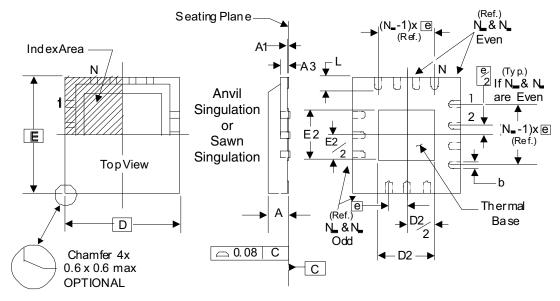
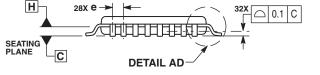



Figure 4. MC100ES6210 AC Test Reference

Package Outline and Package Dimensions

Package Outline - K Suffix for 32 Lead VFQFN


NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 7 below.

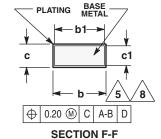
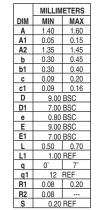

JEDEC Variation: VHHD-2/-4 All Dimensions in Millimeters								
Symbol	Minimum	Minimum Nominal Maximum						
N		32						
Α	0.80		1.00					
A1	0	0 0.05						
A3		0.25 Ref.						
b	0.18	0.25	0.30					
N _D & N _E		8						
D&E		5.00 Basic						
D2 & E2	3.0		3.3					
е		0.50 Basic						
L	0.30	0.40	0.50					

Table 7. Package Dimensions


Reference Document: JEDEC Publication 95, MO-220

4X □ 0.20 H A-B D <u>∕</u>6∖ D1 - D1/2 → PIN 1 INQEX 32 Π E1/2 A В ٦ Г ∕6∖E1 E/4 E DETAIL Ó ٦ Г E/2 8(] 17 7` D D/2 4 4X n □ 0.20 C A-B D

PACKAGE DIMENSIONS

DETAIL AD

(L1)

(S)

^{8X} (θ1°)

R R2

R R1

0.25

θ

GAUGE PLANE

CASE 873A-03 ISSUE B 32-LEAD LQFP PACKAGE

3 A, B, D e/2 F **DETAIL G**

NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASMEY14.5M, 1994. 3. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H. 4. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE C. 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM D DIMENSION BY MORE THAN 0.08-mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION. 0.07-mm. 6. DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD PROTRUSION. 0.07-mm. 6. DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD PROTRUSION. 0.07-mm. 6. DIMENSIONS DI AND E1 ARE MAXIMUM PLASTIC EDDY SIZE DIMENSIONS INCLUDING MOLD MISMATCH. AEXACT SHAPE OF EACH CORNER IS OPTIONAL. 8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1-mm AND 0.25-mm FROM THE LEAD TIP.

0.25-mm FROM THE LEAD TIP.

A2

¥

A1

Α

Revision History Sheet

Rev	Table	Page	Description of Change	Date
7		1	NRND – Not Recommend for New Designs	12/19/2012
6		1	Product Discontinuance Notice – Last Time Buy Expires on (12/23/2013)	2/5/2013

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.