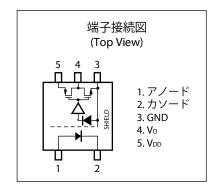


PS9151

高 CMR, 15 Mbps, CMOS 出力, 5 ピン SOP (SO-5) 高速フォトカプラ

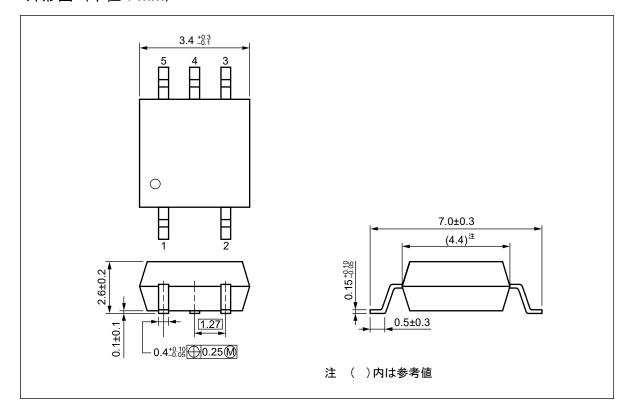
R08DS0108JJ0301 Rev.3.01 2018.05.30


概 要

PS9151 は、入力側に AIGaAs 発光ダイオードを使用し、 出力側に CMOS 出力 IC を用いた高速フォトカプラです。

高耐ノイズ(高 CMR)に加え、高速 CMOS 出力タイプですので、高速ロジック・インタフェース回路に最適です。

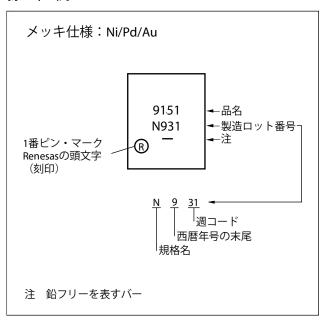
特 徴


- 応答速度が速い(15 Mbps)
- 高温動作対応 (-40~+100℃)
- 瞬時同相除去電圧が高い (CMH, CML = ±20 kV/µs TYP.)
- 入出力間絶縁耐圧が高い(BV = 3 750 Vr.m.s.)
- パルス幅ひずみが小さい(|tp+L-tpL+| = 3 ns TYP.)
- エンボス・テーピング対応品: PS9151-F3 : 2 500 個/リール
- 鉛フリー対応品
- 海外安全規格
 - UL 認定品: UL1577, Single protection
 - VDE 認定品: DIN EN 60747-5-5 (オプション対応いたします)

用 途

- FA ネットワーク
- 計測,制御機器

外形図(単位:mm)



質量: 0.08g (Typ.)

構造パラメータ

項目	PS9151
空間距離(MIN.)	4.2 mm
沿面距離(MIN.)	4.2 mm
絶縁物厚(MIN.)	0.2 mm

捺 印 例

オーダ情報

品名	オーダ名称	メッキ 仕様	包装形態	海外安全規格	申請品名注
PS9151	PS9151-AX	鉛フリー	20 個(テーピング品を 20 個単位 1 カット)	標準品	PS9151
PS9151-F3	PS9151-F3-AX	(Ni/Pd/Au)	エンボス・テーピング 2500個/リール	(UL 認定品)	
PS9151-V	PS9151-V-AX		20 個(テーピング品を 20 個単位 1 カット)	UL, DIN EN 60747-5-5	
PS9151-V-F3	PS9151-V-F3-AX		エンボス・テーピング 2 500 個/リール	認定品	

[【]注】 海外安全規格申請は申請品名で行ってください。

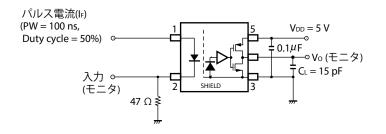
絶対最大定格(特に指定のないかぎり TA = 25°C)

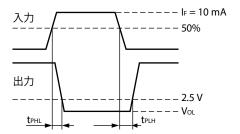
項目		略号	定格	単位	
発 光	順電流 ^{注1}	I _F	20	mA	
	逆電圧	V _R	5	V	
受 光	電源電圧	V_{DD}	0~5.5	V	
	出力電圧	Vo	-0.5∼V _{DD} +0.5	V	
	出力電流	I _O	2	mA	
絶縁耐圧 ⁱⁱ	£ 2	BV	3 750	Vr.m.s.	
動作周囲温度		T _A	-40 ~ +100	°C	
保存温度		T_{stg}	<i>–</i> 55 ∼ +125	°C	

[【]注】 1. T_A = 95°C 以上では, 0.8 mA/°C で減少する。

推奨動作条件 (TA = 25°C)

項目	略号	MIN.	TYP.	MAX.	単 位
入力電流	l _F	10		16	mA
電源電圧	V_{DD}	4.5	5.0	5.5	V

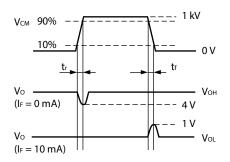

^{2.} T_A = 25°C, RH = 60%, AC 電圧を 1 分間印加 (入力側全電極端子一括と出力側全電極端子一括間)


電気的特性 (特に指定のないかぎり $T_A = -40$ ~+100°C, $V_{DD} = 4.5$ ~5.5 V)

	項目	略号	条件	MIN.	TYP. ^{注1}	MAX.	単 位
発 光	順電圧	V _F	I _F = 10 mA, T _A = 25°C	1.4	1.65	1.8	V
	逆電流	I _R	V _R = 3 V, T _A = 25°C			10	μA
	端子間容量	Ct	V = 0 V, f = 1 MHz, T _A = 25°C		30		pF
受 光	ハイ・レベル供給電流	I _{DDH}	I _F = 0 mA		2.5	5	mA
	ロウ・レベル供給電流	I_{DDL}	I _F = 10 mA		2	5	
	ハイ・レベル出力電圧	Vон	$I_0 = -20 \mu A, I_F = 0 \text{ mA}$	4.0	5.0		V
	ロウ・レベル出力電圧	V_{OL}	$I_0 = 20 \ \mu A, I_F = 10 \ mA$		0	0.1	
伝達特性	スレッシュホールド	I _{FHL}	Vo < 1 V		2.2	5	mA
	入力電流						
	入出力間絶縁抵抗	R _{I-O}	$V_{I-O} = 1 \text{ kV}_{DC}, \text{ RH} = 40 \sim 60\%,$	10 ¹¹			Ω
			T _A = 25°C				
	入出力間容量	C _{I-O}	V = 0 V, f = 1 MHz, T _A = 25°C		0.6		pF
	伝達遅延時間 (H→L) ^{注2}	t _{PHL}	$I_F = 10 \text{ mA}, V_{DD} = 5 \text{ V}, C_L = 15 \text{ pF},$		35	60	ns
	伝達遅延時間 (L→H) ^{注2}	t _{PLH}	CMOS Levels		35	60	
	パルス幅ひずみ	t _{PHL} —t _{PLH}			3	30	
	(PWD) ^{注 2}						
	伝達遅延スキュー	t _{PSK}				40	
	立ち上がり時間	t _r			4		
	立ち下がり時間	t _f			4		
	瞬時同相除去電圧	CMH	$V_{DD} = 5 \text{ V}, I_F = 0 \text{ mA},$	15	20		kV/ <i>μ</i> s
	(出力:H) ^{注 3}		$V_{CM} = 1 \text{ kV}, V_O > 4 \text{ V}, T_A = 25^{\circ}\text{C}$				
	瞬時同相除去電圧	CM _L	$V_{DD} = 5 \text{ V}, I_F = 10 \text{ mA},$	15	20		
	(出力:L) ^{注3}		$V_{CM} = 1 \text{ kV}, V_O < 1 \text{ V}, T_A = 25^{\circ}\text{C}$				

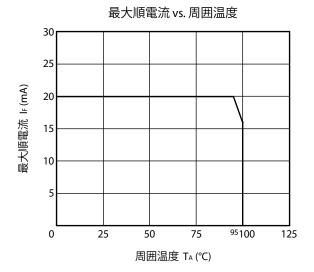
【注】 1. TYP.値は T_A = 25°C

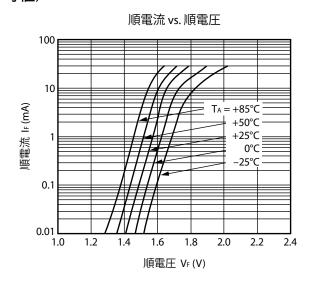
2. 伝達遅延時間測定回路

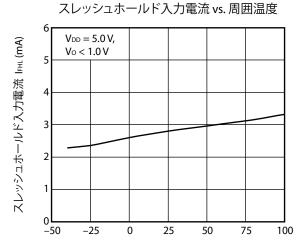


備考 CLはプローブと配線容量を含んだものです。

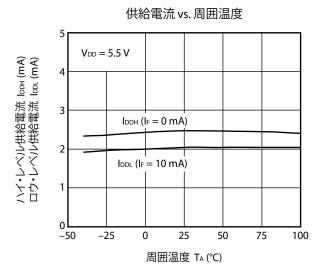
3. 瞬時同相除去電圧測定回路

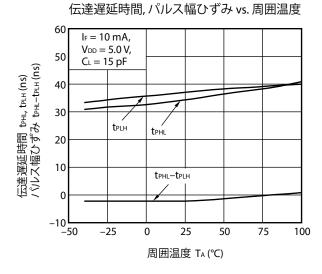


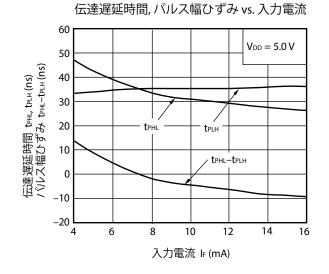

備考 CLはプローブと配線容量を含んだものです。


使用上の注意

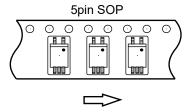
- 1. 本製品は高速化設計のため、静電気の影響を受けやすくなっております。取り扱いの際は人体アースなど静電気対策を行ってください。
- 2. V_{cc} -GND 間に 0.1 μ F 以上のバイパス・コンデンサを挿入してください。また、フォトカプラ-コンデンサ間のリード距離は 10 mm 以内としてください。
- 3. VDD = 約2 V以下でフォトカプラの Vo 出力に不定領域がありますため、電源 ON/OFF 時にフォトカプラ の後段に接続する IC 等への動作に影響があることが考えられます。このため、フォトカプラ Vo に接続する IC 等での対策(後段に接続された IC に内蔵されたイネーブル機能(出力ロック機能)やリセット IC の活用による後段での読込中止等)をお願いします。
- 4. 保管は高温多湿を避けてください。
- 5. ハロゲン系溶剤などを含有する固定材・コーティング剤は使用しないでください。

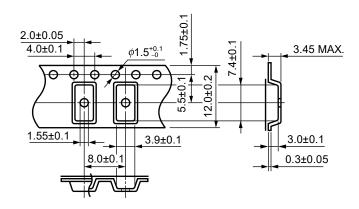

特性曲線(特に指定のないかぎり TA = 25°C, 参考値)



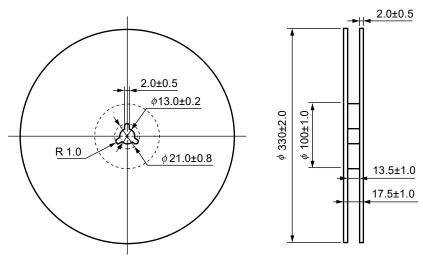


周囲温度 TA (℃)

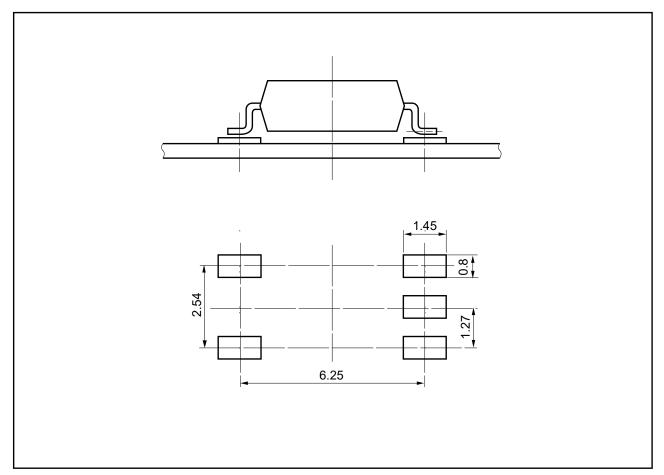



備考 グラフ中の値は参考値を示します。

テーピング仕様(単位:mm)



外形および寸法 (テープ)



外形および寸法 (リール)

包装数量: 2 500 個/リール

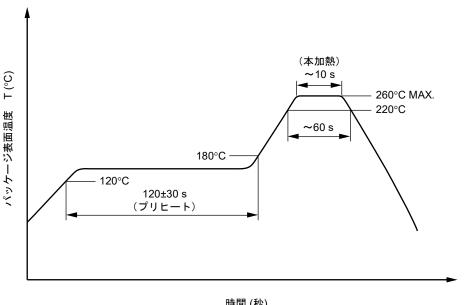
推奨マウント・パッド寸法 (単位:mm)

[5pin SOP]

取り扱い注意事項

1. 半田付け推奨条件

(1) 赤外線リフロによる実装時


・ピーク温度 260°C 以下(パッケージ表面温度)

・ピーク温度の時間 10 s 以内 ・220°C 以上の時間 60 s 以内 ・プリヒート温度 120~180°C の時間 $120 \pm 30 s$ ・リフロ回数 3回以内

・フラックス 塩素分の少ないロジン系フラックス

(塩素 0.2 Wt % 以下を推奨)

赤外線リフロ推奨温度プロファイル

時間 (秒)

(2) ウェーブ・ソルダリングによる実装時

温度 260°C以下(溶融半田温度)

• 時間 10 s 以内

• 予備加熱 120°C 以下(パッケージ表面温度)

1回(モールド部浸漬可)

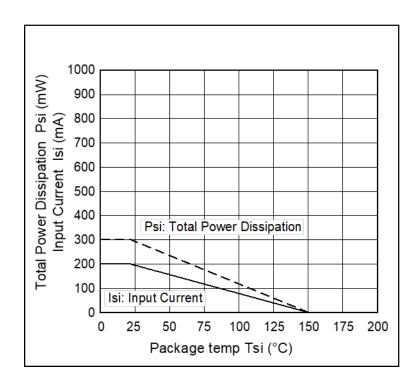
・フラックス 塩素分の少ないロジン系フラックス(塩素 0.2 Wt % 以下を推奨)

(3) 手付け

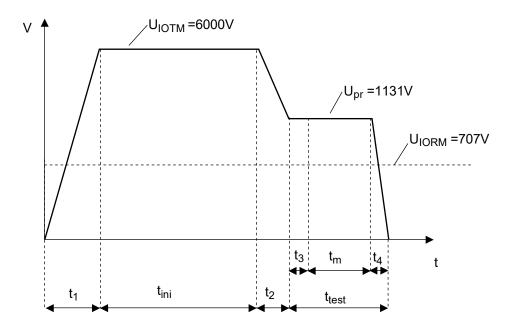
- 最高温度(リード部温度) 350 ℃ 以下
- 時間(デバイスの一辺あたり)3s以内
- 塩素分の少ないロジン系フラックス(塩素 0.2 Wt %以下を推奨) ・フラックス
 - (a) デバイスのリード根元より 1.5~2.0 mm 以上離してください。
 - (b) ケース温度は、100°C以上にならないよう注意してください。

(4) 注意事項

フラックス洗浄について フロン系、ハロゲン系(塩素系など)溶剤による洗浄は避けてください。

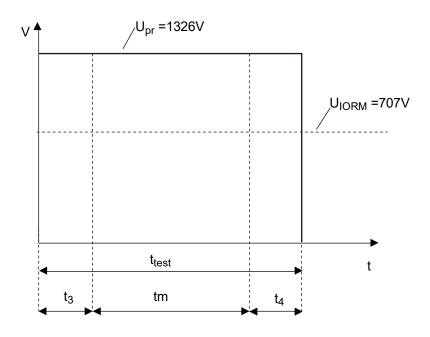

2. ノイズについての注意事項

フォトカプラの入力-出力間に立ち上がりの急峻な電圧が印加されると、定格内であっても出力側 CMOS IC がオン状態になることがありますので、ご確認のうえご使用願います。


VDE 認定仕様

項目	略号	定格	単 位
環境試験クラス (IEC 60068-1/DIN EN 60068-1)		40/100/21	
絶縁強度			
最大許容動作絶縁電圧	UIORM	707	V_{peak}
試験電圧 (部分放電試験,手順 a,型式試験とランダム試験)	U_pr	1 131	V_{peak}
$U_{pr} = 1.6 \times U_{IORM}$			
判定基準:部分放電 Pd < 5 pC			
試験電圧 (部分放電試験,手順 b,全数試験)	U_{pr}	1 326	V_{peak}
$U_{pr} = 1.875 \times U_{IORM}$			
判定基準:部分放電 P _d < 5 pC			
最大許容電圧 (過度的電圧)	U_TR	6 000	V_{peak}
汚染度 (DIN EN 60664-1 VDE0110 Part 1)		2	
絶縁材の耐トラッキング性	CTI	175	
(IEC 60112/DIN EN 60112 (VDE 0303 Part 11))			
材料グループ (DIN EN 60664-1 VDE0110 Part 1)		Ша	
許容保存温度	T _{stg}	<i>–</i> 55 ∼ +125	°C
許容動作温度	TA	-40∼+100	°C
絶縁抵抗最小値			
T _A = 25°C (V _{IO} = 500 V)	Ris MIN.	10 ¹²	Ω
T _A MAX. 最小 100°C (V _{IO} = 500 V)	Ris MIN.	10 ¹¹	Ω
安全最大定格 (故障時の最大許容値)			
温度ディレイティングカーブ参照			
ケース温度	Tsi	150	°C
電流 (入力電流 I _F , Psi = 0)	lsi	200	mA
電力 (出力ないし全損失電力)	Psi	300	mW
Tsi における絶縁抵抗 (V _{IO} = 500 V)	Ris MIN.	10 ⁹	Ω

安全最大定格-ケース温度



手順 a) 破壊試験、型式試験とランダム試験

 t_1,t_2 = 1 to 10 sec t_3,t_4 = 1 sec $t_{m(PARTIAL\ DISCHARGE)}$ = 10 sec t_{test} = 12 sec t_{ini} = 60 sec

手順 b) 非破壊試験、全数試験

 t_3, t_4 = 0.1 sec $t_{m(PARTIAL\ DISCHARGE)}$ = 1.0 sec t_{test} = 1.2 sec

注意

GaAs 製品

この製品には、ガリウムひ素(GaAs)を使用しています。

GaAs の粉末や蒸気は有害ですから、次の点にご注意ください。

- ・廃棄する際には、次のような廃棄処理をすることを推奨します。
 - 1. 「ひ素含有物等の産業廃棄物の収集、運搬、処理の資格」を持つ処理業者に委託する。
 - 2. 一般産業廃棄物および家庭用廃棄物とは区別し、「特別管理産業廃棄物」として、 最終処分まで管理する。
- ・焼却、破壊、切断、粉砕や化学的な分解を行わないでください。
- ・対象デバイスをなめたり、口に入れたりしないでください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品、本資料に記載された製品デ・タ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の 知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、

家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準: 輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、

金融端末基幹システム、各種安全制御装置等

当社製品は、データシート等により高信頼性、Harsh environment向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制御システム、航空機制御システム、ブラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 6. 当社製品をご使用の際は、最新の製品情報 (データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デパイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制するRoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社 は、一切その責任を負いません。
- 9. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 10. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 12. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.4.0-1 2017.11)

■営業お問合せ窓口

http://www.renesas.com

営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24 (豊洲フォレシア)

■技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口: https://www.renesas.com/contact/