RENESAS

RL78/G1F

RENESAS MCU

Datasheet

R01DS0246EJ0130 Rev.1.30 Apr 26, 2024

True Low Power Platform (as low as 66 µA/MHz, and 0.57 µA for RTC + LVD), 1.6 V to 5.5 V operation, 32/64 Kbyte Flash, Max.32 MHz CPU operation, Enhanced analog functions, for General Purpose Applications

1. OUTLINE

1.1 Features

- Ultra-low power consumption technology
- V_{DD} = single power supply voltage of 1.6 to 5.5 V which
- can operate a 1.8 V device at a low voltage
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed ($0.03125 \ \mu$ s: @ 32 MHz operation with high-speed on-chip oscillator) to ultra-low speed ($30.5 \ \mu$ s: @ 32.768 kHz operation with subsystem clock)
- Multiply/divide/multiply & accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register \times 8) \times 4 banks
- On-chip RAM: 5.5 KB

Code flash memory

- Code flash memory: 32/64 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 4 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: V_{DD} = 1.8 to 5.5 V

High-speed on-chip oscillator

- Select from 64 MHz, 48 MHz, 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: $\pm 1.0\%$ (V_{DD} = 1.8 to 5.5 V, T_A = -20 to +85°C)

Operating ambient temperature

- $T_A = -40$ to +85°C (A: Consumer applications)
- $T_A = -40$ to +105°C (G: Industrial applications)
- Power management and reset function
- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources.
- · Chain transfer function

Event link controller (ELC)

• Event signals of 22 types can be linked to the specified peripheral function.

Serial interfaces

- Simplified SPI (CSI^{Note 1}): 3 to 6 channels
- UART/UART (LIN-bus supported): 3 channels
- I²C/simplified I²C: 3 to 6 channels

IrDA: 1 channel

- Timer
- 16-bit timer: 9 channels
 (Timer Array Unit (TAU): 4 channel
- (Timer Array Unit (TAU): 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels (with PWMOPA), Timer RG: 1 channel, Timer RX: 1 channel)
- 12-bit interval timer: 1 channel
- Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

A/D converter

- 8/10-bit resolution A/D converter (V_{DD} = 1.6 to 5.5 V)
- Analog input: 8 to 17 channels
- Internal reference voltage (1.45 V) and temperature sensor

D/A converter

- 8-bit resolution D/A converter (V_{DD} = 1.6 to 5.5 V)
- Analog output: 1 or 2 channels
- Output voltage: 0 V to VDD
- Real-time output function

Comparator

- 2 channels (pin selector is provided for 1 channel)
- Incorporates a function for the output of a timer window in combination with the timer array unit.
- The external reference voltage or internal reference voltage can be selected as the reference voltage.

Programmable gain amplifier (PGA)

1 channel

I/O port

- I/O port: 20 to 58 (N-ch open drain I/O [withstand voltage of 6 V]: 2 to 4, N-ch open drain I/O [VDD withstand voltage/EVDD withstand voltage]: 10 to 16)
- Can be set to N-ch open drain, TTL input buffer, and onchip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit
- **Note 1.** Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
- Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

\bigcirc ROM, RAM capacities

Flash ROM Data flash	RAM			RL78/G1F			
	Data liash		24 pins	32 pins			64 pins
64 KB	4 KB	5.5 KB Note	R5F11B7E	R5F11BBE	R5F11BCE	R5F11BGE	R5F11BLE
32 KB	4 KB	5.5 KB Note	R5F11B7C	R5F11BBC	R5F11BCC	R5F11BGC	R5F11BLC

NoteThis is about 4.5 KB when performing self-programming and rewriting the data flash memory (For details, see CHAPTER
3 CPU ARCHITECTURE in the RL78/G1F User's Manual).

1.2 Ordering Information

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1F

Pin count	.	Fields of	Ordering Part Numb	er		
	Package	Application Note	Product name	Packaging specification	RENESAS Code	
24 pins	24-pin plastic HWQFN	A	R5F11B7CANA, R5F11B7EANA	#U0, #W0	PWQN0024KE-A	
	(4 × 4 mm, 0.5 mm pitch)			#00, #20, #40, #60	PWQN0024KF-A PWQN0024KH-A	
		G	R5F11B7CGNA, R5F11B7EGNA	#U0, #W0	PWQN0024KE-A	
				#00, #20, #40, #60	PWQN0024KF-A PWQN0024KH-A	
32 pins	32-pin plastic HWQFN	A	R5F11BBCANA, R5F11BBEANA	#00, #20, #40,	PWQN0032KE-A	
	(5 × 5 mm, 0.5 mm pitch)	G	R5F11BBCGNA, R5F11BBEGNA	#60	PWQN0032KG-A	
	32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)	A	R5F11BBCAFP, R5F11BBEAFP	#10, #50, #70	PLQP0032GB-A PLQP0032GE-A	
				#30	PLQP0032GB-A	
		G	R5F11BBCGFP, R5F11BBEGFP	#10, #50, #70	PLQP0032GB-A PLQP0032GE-A	
				#30	PLQP0032GB-A	
36 pins	36-pin plastic WFLGA	A	R5F11BCCALA, R5F11BCEALA	#U0, #W0	PWLG0036KA-A	
	(4 × 4 mm, 0.5 mm pitch)	G	R5F11BCCGLA, R5F11BCEGLA			
48 pins	48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)	A	R5F11BGCAFB, R5F11BGEAFB	#10, #50, #70	PLQP0048KB-B PLQP0048KL-A	
				#30	PLQP0048KB-B	
		G	R5F11BGCGFB, R5F11BGEGFB	#10, #50, #70	PLQP0048KB-B PLQP0048KL-A	
				#30	PLQP0048KB-B	
64 pins	64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)	A	R5F11BLCAFB, R5F11BLEAFB	#10, #50, #70	PLQP0064KB-C PLQP0064KL-A	
				#30	PLQP0064KB-C	
		G	R5F11BLCGFB, R5F11BLEGFB	#10, #50, #70	PLQP0064KB-C PLQP0064KL-A	
				#30	PLQP0064KB-C	

Table 1 - 1 List of Ordering Part Numbers

Note

For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1F.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 24-pin products

• 24-pin plastic HWQFN (4 × 4 mm, 0.5-mm pitch)

- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

1.3.2 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5-mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

- **Remark 1.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).
- Remark 2. It is recommended to connect an exposed die pad to Vss.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

1.3.3 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5-mm pitch)

	А	В	С	D	E	F	
6	EVDD0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P61/SDAA0	P60/SCLA0	Vss	REGC	RESET	P124/XT2/ EXCLKS	5
4	P31/TI03/TO03/ INTP4/PCLBUZ0/ SSI00/(TRJIO0)/ VCOUT1	P14/ANI24/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)/IrRxD	P20/ANI0/ AVREFP/IVCMP12/ INTP11	P21/ANI1/ AVREFM/IVCMP13	P01/ANI16/TO00/ RxD1/TRGCLKB/ TRJIO0/INTP10/ IVCMP11	P123/XT1	4
3	P50/INTP1/SI00/ RxD0/TOOLRxD/ SDA00/TRGIOA/ (TRJO0)/ (TRDIOC1)	P70/INTP6/ (VCOUT0)/ (VCOUT1)	P15/PCLBUZ1/ SCK20/SCL20/ TRDIOB0/ (SDAA0)	P23/ANI3/ANO1/ PGAGND	P00/ANI17/TI00/ TxD1/TRGCLKA/ (TRJO0)/INTP8/ IVCMP10	P120/ANI19/ VCOUT0	3
2	P30/INTP3/ RTC1HZ/SCK00/ SCL00/TRJO0/ (TRDIOB1)	P16/TI01/TO01/ INTP5/TRDIOC0/ (RxD0)/ (TRDIOA1)	P12/ANI22/SO11/ TRDIOB1	P11/ANI21/SI11/ SDA11/TRDIOC1	P24/ANI4	P22/ANI2/ANO0/ PGAI/IVCMP0	2
1	P51/INTP2/SO00/ TxD0/TOOLTxD/ TRGIOB/ (TRDIOD1)	P17/TI02/TO02/ TRDIOA0/ TRDCLK0/(TxD0)/ (TRDIOD0)	P13/ANI23/TxD2/ SO20/TRDIOA1/ IrTxD	P10/ANI20/ SCK11/SCL11/ TRDIOD1/(TxD2)	P147/ANI18/ IVREF0	P25/ANI5	1
	A	В	С	D	E	F	•

Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.

Remark 1. For pin identification, see 1.4 Pin Identification.

- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).
- **Remark 3.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins.

RENESAS

1.3.4 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5-mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

1.3.5 64-pin products

• 64-pin plastic LFQFP (10 × 10 mm, 0.5-mm pitch)

Caution 1. Make EVsso pin the same potential as Vss pin.

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.

Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.

Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 3 (PIOR0 to PIOR3).

1.4 Pin Identification

ANI0 to ANI7:	Analog input	PGAI:	PGA input
ANI16 to ANI24:	Analog input	PGAGND:	PGA input
ANO0, ANO1:	Analog output	RTC1HZ:	Real-time clock correction
AVREFM:	Analog reference voltage		clock (1 Hz) output
	minus	RxD0 to RxD2:	Receive data
AVREFP:	Analog reference voltage	SCK00, SCK01, SCK10:	Serial clock input/output
	plus	SCK11, SCK20, SCK21:	Serial clock input/output
EVDD0:	Power supply for port	SCLA0:	Serial clock input/output
EVsso:	Ground for port	SCL00, SCL01, SCL10, SCL11:	
EXCLK:	External clock input	SCL20,SCL21:	Serial clock output
	(main system clock)	SDAA0:	Serial data input/output
EXCLKS:	External clock input	SDA00, SDA01, SDA10:	Serial data input/output
	(subsystem clock)	SDA11, SDA20, SDA21:	Serial data input/output
INTP0 to INTP11:	External interrupt input	SI00, SI01, SI10, SI11.	Serial data input
IrRxD:	Receive Data for IrDA	SI20, SI21:	Serial data input
IrTxD:	Transmit Data for IrDA	SO00, SO01, SO10:	Serial data output
IVCMP0:	Comparator 0 input	SO11, SO20, SO21:	Serial data output
IVCMP10 to IVCMP13:	Comparator 1 input /	SSI00:	Serial interface chip select input
	reference input	TI00 to TI03:	Timer input
IVREF0:	Comparator 0 reference	TO00 to TO03:	Timer output
	input	TRJO0:	Timer output
KR0 to KR7:	Key return	TOOL0:	Data input/output for tool
P00 to P06:	Port 0	TOOLRxD, TOOLTxD:	Data input/output for external device
P10 to P17:	Port 1	TRDCLK, TRGCLKA:	Timer external input clock
P20 to P27:	Port 2	TRGCLKB:	Timer external Input clock
P30, P31:	Port 3	TRDIOA0, TRDIOB0:	Timer input/output
P40 to P43:	Port 4	TRDIOC0, TRDIOD0:	Timer input/output
P50 to P55:	Port 5	TRDIOA1, TRDIOB1:	Timer input/output
P60 to P63:	Port 6	TRDIOC1, TRDIOD1:	Timer input/output
P70 to P77:	Port 7	TRGIOA, TRGIOB, TRJIO0:	Timer input/output
P120 to P124:	Port 12	TxD0 to TxD2:	Transmit data
P130, P137	Port 13	VCOUT0, VCOUT1:	Comparator output
P140, P141, P146,	Port 14	VDD:	Power supply
P147:		Vss:	Ground
PCLBUZ0, PCLBUZ1:	Programmable clock output/	X1, X2:	Crystal oscillator (main system clock)
	buzzer output	XT1, XT2:	Crystal oscillator (subsystem clock)
REGC:	Regulator capacitance		
RESET:	Reset		

1.5 Block Diagram

Remark Block diagram of 64-pin products is shown as an example. For difference of the block diagram other than 64-pin products, refer to **1.6 Outline of Functions**.

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

		i	ł	ł	ł	(1/		
		24-pin	32-pin	36-pin	48-pin	64-pin		
	Item	R5F11B7x (x = C, E)	R5F11BBx (x = C, E)	R5F11BCx (x = C, E)	R5F11BGx (x = C, E)	R5F11BLx (x = C, E)		
Code flash mer	mory (KB)	32, 64	32, 64	32, 64	32, 64	32, 64		
Data flash men	nory (KB)	4	4	4	4	4		
RAM (KB)		5.5 Note	5.5 Note	5.5 Note	5.5 Note	5.5 Note		
Address space		1 MB						
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 2.7 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 1.8 V)						
	High-speed on-chip oscillator clock (fi⊢)	HS (high-speed main LS (low-speed main	n) mode: 1 to 16 MH	Iz (V _{DD} = 2.7 to 5.5 V) Iz (V _{DD} = 2.4 to 5.5 V) (V _{DD} = 1.8 to 5.5 V), (V _{DD} = 1.6 to 5.5 V)),			
Subsystem clo	ck	-	_	XT1 (crystal) oscillat (EXCLKS) 32.768 k	tion, external subsyst Hz	em clock input		
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD	= 1.6 to 5.5 V					
General-purpos	se register	8 bits \times 32 registers	(8 bits × 8 registers >	4 banks)				
Minimum instru	ction execution time	0.03125 μs (High-sp	eed on-chip oscillato	r clock: fін = 32 MHz	operation)			
		0.05 μs (High-speed	l system clock: fмx =	20 MHz operation)				
			_	30.5 µs (Subsystem	clock: fsue = 32.768	kHz operation)		
		 Multiplication (8 bi Multiplication and 	Accumulation (16 bits	6 bits), Division (16 b				
I/O port	Total	20	28	31	44	58		
	CMOS I/O	17 (N-ch O.D. output [VDD withstand voltage]: 10)	25 (N-ch O.D. output [VDD withstand voltage]: 12)	24 (N-ch O.D. output [V _{DD} withstand voltage]: 10)	34 (N-ch O.D. output [VDD withstand voltage]: 12)	48 (N-ch O.D. outpu [Vpd withstand voltage]: 12)		
	CMOS input	3	3	5	5	5		
	CMOS output	—	—	_	1	1		
	N-ch open-drain I/O (6 V tolerance)	-	_	2	4	4		
Timer	16-bit timer	9 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels (with PWMOPA), Timer RX: 1 channel, Timer RG: 1 channel)						
	Watchdog timer	1 channel						
	Real-time clock (RTC)	1 channel						
	12-bit interval timer	1 channel						
	Timer output	Timer outputs: 13 channels PWM outputs: 8 channels	Timer outputs: 16 channels PWM outputs: 9 channels					
	RTC output	-	- -	1				

Note

This is about 4.5 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G1F User's Manual).

		24-pin	32-pin	36-pin	48-pin	64-pin		
It	em	R5F11B7x (x = C, E)	R5F11BBx (x = C, E)	R5F11BCx (x = C, E)	R5F11BGx (x = C, E)	R5F11BLx (x = C, E)		
Clock output/buzzer	output	2	2	2	2	R5F11BGx R5F11BLx (x = C, E) (x = C, E) 2 2 z 2 7 channels 17 channels 7 channel 17 channels 1 channel 12 c: 1 char channel 12 c: 2 channel 12 c: 2 channel 12 c: 2 channel 12 c: 2 channel 1 channel 1 channel/simplified l ² C: 2 2 channel 1 channel 1 channels 1 channel 1 channels 1 channel		
			z, 9.76 kHz, 1.25 MH k: fmain = 20 MHz оре	z, 2.5 MHz, 5 MHz, 1 eration)	0 MHz	I		
8/10-bit resolution A/	D converter	8 channels	13 channels	15 channels	17 channels	17 channels		
8-bit D/A converter		1 channel		2 cha	innels	1		
Comparator				2 channels				
Programmable gain	amplifier (PGA)			1 channel		simplified I ² C: 1 char /simplified I ² C: 2 /simplified I ² C: 2 /simplified I ² C: 2 22 10 25 13		
Serial interface		[24-pin, 32-pin, 36-p	in products]					
		 Simplified SPI (CS Simplified SPI (CS [48-pin products] 	I): 1 channel/UART: I): 1 channel/UART:	ا channel/simplified ا ا channel/simplified ا	² C: 1 channel ² C: 1 channel			
		channels Simplified SPI (CS) 	i): 1 channel/UART: 1	1 channel/simplified l	² C: 1 channel	ipinieu r 0.2		
		 Simplified SPI (CS channels Simplified SPI (CS 	I): 2 channels/UART:	(UART supporting LI 1 channel/simplified 1 channel/simplified	I ² C: 2 channels	nplified I ² C: 2		
	I ² C bus	1 channel	1 channel	1 channel	1 channel	1 channel		
Data transfer control	ler (DTC)	30 sources	32 sources	31 sources	32 sources	33 sources		
Event link controller	Event input	21	21	21	22	22		
(ELC)	Event trigger output	9	10	10	10	10		
Vectored interrupt	Internal	25	25	25	25	25		
sources	External	9	11	10	12	13		
Key interrupt		_	_		6	8		
Reset		 Internal reset by R Internal reset by ill 	atchdog timer ower-on-reset oltage detector egal instruction exect AM parity error egal-memory access					
Power-on-reset circu		Power-on-reset: Power-down-reset	1.51 ±0.04 V (TA = 1.51 ±0.06 V (TA = 1.50 ±0.04 V (TA = 1.50 ±0.06 V (TA =	= -40 to +105°C) = -40 to +85°C)				
Voltage detector		 Falling edge: 1.63 [T_A = -40 to +105°C Rising edge: 2.61 	±0.03 V to 4.00 ±0.08 ±0.03 V to 3.98 ±0.00 (G: Industrial applica ±0.1 V to 4.06 ±0.16 ±0.1 V to 3.98 ±0.15	3 V (14 stages) itions)] V (8 stages)				
On-chip debug functi	on	Provided						
Power supply voltage	e	VDD = 1.6 to 5.5 V (7 VDD = 2.4 to 5.5 V (7	,					
		TA = -40 to +85°C (A: Consumer applications), TA = -40 to +105°C (Industrial applications),						

The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F11BxxAxx

- G: Industrial applications when $T_A = -40$ to $+105^{\circ}$ C products is used in the range of $T_A = -40$ to $+85^{\circ}$ C R5F11BxxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVss0 pin, replace EVDD0 with VDD, or replace EVss0 with Vss.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G1F User's Manual.

(1/2)

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 ^{Note 1}	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	and -0.3 to V _{DD} +0.3 ^{Note 2}	
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	P20 to P27, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	Vo2	P20 to P27	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI24	-0.3 to EVDD0 +0.3	
			and -0.3 to AVREF(+) +0.3 $^{Notes\ 2,\ 3}$	V
	Vai2	ANI0 to ANI7	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

Absolute Maximum Ratings

(2/2)

	aingo				(2/
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	-40	mA
		Total of all	P00 to P04, P40 to P43,P120, P130, P140, P141	-70	mA
		pins -170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40-P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	40	mA
		Total of all	P00 to P04, P40 to P47, P120, P130, P140, P141	70	mA
		pins 170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	100	mA
	IOL2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient tem-	Та	In normal c	operation mode	-40 to +85	°C
perature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

(TA = -40 to +85°C, 1.6 V \leq EV_{DD0} = VDD \leq 5.5 V, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	1.0		16.0	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	1.0		8.0	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq EV_{DD0} = VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Cor	nditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency	fін	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{DD}$	V	1		32	MHz
Notes 1, 2		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}_{\text{DD}}$	V	1		16	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}_{\text{DD}}$	V	1		8	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$		1		4	MHz
High-speed on-chip oscillator clock frequency		TA = -20 to +85°C	$1.8~V \le V \text{DD} \le 5.5~V$	-1		1	%
accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5		5	%
		TA = -40 to -20°C	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}$	-1.5		1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G1F User's Manual.

2.3 DC Characteristics

2.3.1 Pin characteristics

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147				-10.0 Note 2	mA
		Total of P00 to P04, P40 to P43,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-55.0	mA
		P120, P130, P140, P141	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-5.0	mA
		1	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			-2.5	mA
		Total of P05, P06, P10 to P17,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-80.0	mA
		P30, P31, P50 to P53,	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-19.0	mA
		P70 to P77, P146, P147 (When duty ≤ 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-10.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			-5.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27				-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Note 4. The applied current for the products for industrial application (R5F11BxxGxx) is -100 mA.
- Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 do not output high level in N-ch opendrain mode.

Items		\leq VDD \leq 5.5 V, VSS = EVSS0 = 0 Conditions	,	MIN.	TYP.	MAX.	(2/5) Unit
Output current, low ^{Note 1}	Symbol IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77,P120, P130, P140, P141, P146, P147 Per pin for P60 to P63		MIN.		MAX. 20.0 Note 2 15.0 Note 2	mA mA
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141 (When duty ≤ 70% Note 3) Total of P05, P06, P10 to P17, P30, P31, P50 to P55, P60 to P63, P70 to P77, P146, P147 (When duty ≤ 70% Note 3)	$\begin{array}{l} 4.0 \ V \leq EVDD0 \leq 5.5 \ V \\ 2.7 \ V \leq EVDD0 < 4.0 \ V \\ 1.8 \ V \leq EVDD0 < 2.7 \ V \\ 1.6 \ V \leq EVDD0 < 1.8 \ V \\ 4.0 \ V \leq EVDD0 \leq 5.5 \ V \\ 2.7 \ V \leq EVDD0 \leq 4.0 \ V \\ 1.8 \ V \leq EVDD0 < 4.0 \ V \\ 1.8 \ V \leq EVDD0 < 1.8 \ V \\ 1.6 \ V \leq EVDD0 < 1.8 \ V \\ \end{array}$			70.0 15.0 9.0 4.5 80.0 35.0 20.0 10.0	mA mA mA mA mA mA mA
	IOL2	Total of all pins (When duty ≤ 70% ^{Note 3}) Per pin for P20 to P27				150.0 0.4 Note 2	mA mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6~V \leq V \text{dd} \leq 5.5~V$			5.0	mA

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Items	Symbol	Conditions	6	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0.8 EVDD0		EVddo	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer 1.6 V ≤ EVpd0 < 3.3 V	1.5		EVDD0	V
	VIH3	P20 to P27 (when P20 is used as	a port pin)	0.7 Vdd		Vdd	V
	VIH4	P60 to P63		0.7 EVDD0		6.0	V
	Vih5	P121 to P123, P137, EXCLK, EX P20 is used as INTP11 pin)	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, Normal input buffer P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147 P147		0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V ≤ EVpd0 < 3.3 V	0		0.32	V
	VIL3	P20 to P27 (when P20 is used as	a port pin)	0		0.3 Vdd	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	Vil5	P121 to P124, P137, EXCLK, EX P20 is used as INTP11 pin)	0		0.2 Vdd	V	

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(3/5)

Caution The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 is EVDD0, even in the N-ch open-drain mode.

Items	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55,	4.0 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -10.0 mA	EVDD0 - 1.5			V
		P70 to P77, P120, P130, P140, P141, P146, P147	4.0 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -3.0 mA	EVDD0 - 0.7			V
			2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
			1.8 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5			V
			1.6 V ≤ EVDD0 < 1.8 V, Іон1 = -1.0 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27	1.6 V ≤ Vdd ≤ 5.5 V, Ioh2 = -100 μA	Vdd - 0.5			V
Output voltage, low	VOL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 20.0 mA			1.3	V
		P70 to P77, P120, P130, P140, P141, P146, P147	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL1} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL1} = 0.3 \text{ mA}$			0.4	V
	Vol2	P20 to P27	$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V},$ $I_{OL2} = 400 \mu\text{A}$			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 5.0 mA			0.4	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 3.0 \text{ mA}$			0.4	V
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 1.0 mA			0.4	V

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 do not output high level in N-ch opendrain mode.

•		$EVDD0 \leq VDD \leq 5.5 V, VSS = EVS$						(5/5
Items	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Input leakage cur- rent, high	ILIH1	P00 to P06, P10 to P17, P30, VI = EVDD0 P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147 P147				1	μA	
	ILIH2 P20 to P27, P137, RESET VI = VDD					1	μA	
	Іцнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator con- nection			10	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	VI = EVsso				-1	μA
	ILIL2	P20 to P27, P137, RESET	VI = Vss			-1	μA	
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator con- nection			-10	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	VI = EVsso	In input port	10	20	100	kΩ

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(5/5)

2.3.2 Supply current characteristics

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Un
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fiн = 32 MHz ^{Note 3}	operation	VDD = 3.0 V		2.4		
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1		
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.2	8.7	m
			mode Note 5	fiн = 32 MHz ^{Note 3}	operation	VDD = 3.0 V		5.2	8.7	
		fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.1			
		fiн = 32 MHz ^{Note 3}	operation	VDD = 3.0 V		4.8	8.1			
			fносо = 48 MHz,	Normal	VDD = 5.0 V		4.1	6.9	1	
				fiн = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.1	6.9	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.3	
				fiн = 24 MHz ^{Note 3}	operation	VDD = 3.0 V		3.8	6.3	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.6	
				fiн = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.6	1
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.3	2.1	m
			mode Note 5	fiH = 8 MHz Note 3	operation	VDD = 2.0 V		1.3	2.1	
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.3	1.9	n
		mode Note 5	fiн = 4 MHz Note 3	operation	VDD = 2.0 V		1.3	1.9		
	HS (high-speed main)	fmx = 20 MHz Note 2,	Normal	Square wave input		3.3	5.3	r		
		mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.5	5.5		
				f _{MX} = 20 MHz Note 2, V _{DD} = 3.0 VNormal operation	Square wave input		3.3	5.3		
					operation	Resonator connection		3.5	5.5	-
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		2	3.1	
						Resonator connection		2.1	3.2	
				fmx = 10 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal	Square wave input		2	3.1	
					operation	Resonator connection		2.1	3.2	
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.2	1.9	n
			mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2	
				f _{MX} = 8 MHz Note 2.	Normal	Square wave input		1.2	1.9	1
				VDD = 2.0 V	operation	Resonator connection		1.2	2	1
			Subsystem clock	fsue = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.7	6.1	μ
			operation	$T_{A} = -40^{\circ}C$	operation	Resonator connection		4.7	6.1	ſ,
			fsuв = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.7	6.1		
			$T_A = +25^{\circ}C$	operation	Resonator connection		4.7	6.1	-	
				fsus = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	
				$f_{SUB} = 32.768 \text{ kHz}$ Note 4 TA = +50°C	operation	Resonator connection		4.8	6.7	
				fsuв = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.8	7.5	
				fsub = 32.768 kHz Note 4 TA = +70°C		Resonator connection		4.8	7.5	-
				fsuв = 32.768 kHz ^{Note 4}	Normal	Square wave input		5.4	8.9	1
				$T_A = +85^{\circ}C$	operation	Resonator connection		5.4	8.9	-

ſ	ΓΑ = -40 to +85°C.	$1.6 V \leq EVDD0$	\leq VDD \leq 5.5 V.	Vss = EVsso = 0 V)
•	,			

(1/2)

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main), LS (low-speed main) modes, and LV (low-voltage main) mode. • The currents in the "TYP." column do not include the operating currents of the peripheral modules. • The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten. In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC. When high-speed on-chip oscillator and subsystem clock are stopped. Note 2. Note 3. When high-speed system clock and subsystem clock are stopped. Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}\text{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz

 $\label{eq:low-speed} \begin{array}{ll} 2.4 \ V \leq V \mbox{DD} \leq 5.5 \ V \ensuremath{@}1 \ \mbox{MHz to 16 \ MHz} \\ \mbox{LS (low-speed main) mode:} & 1.8 \ V \leq V \mbox{DD} \leq 5.5 \ \mbox{V} \ensuremath{@}1 \ \mbox{MHz to 8 \ MHz} \\ \mbox{LV (low-voltage main) mode:} & 1.6 \ \mbox{V} \leq V \mbox{DD} \leq 5.5 \ \mbox{V} \ensuremath{@}1 \ \mbox{MHz to 4 \ MHz} \\ \end{array}$

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)

Remark 3. file: High-speed on-chip oscillator clock frequency (32 MHz max.)

Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.8	3.09	mA	
Note 1	Note 2		mode Note 6	fiн = 32 MHz Note 4	VDD = 3.0 V		0.8	3.09	1	
				fносо = 32 MHz,	VDD = 5.0 V		0.54	2.4	1	
				fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.54	2.4	1	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	2.4	1	
				fiн = 24 MHz ^{Note 4}	VDD = 3.0 V		0.62	2.4	1	
				fносо = 24 MHz,	VDD = 5.0 V		0.44	1.83	1	
	fhoco = 16 MHz			fiH = 24 MHz Note 4	VDD = 3.0 V		0.44	1.83		
		fносо = 16 MHz,	VDD = 5.0 V		0.4	1.38				
			fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.4	1.38			
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		260	790	μA	
			mode Note 6	fiн = 8 MHz Note 4	VDD = 2.0 V		260	790	1	
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		420	830	μA	
			mode Note 6	fiH = 4 MHz Note 4	VDD = 2.0 V		420	830		
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.55	mA	
			mode Note 6	VDD = 5.0 V	Resonator connection		0.49	1.74		
				fmx = 20 MHz Note 3,	Square wave input		0.28	1.55		
			VDD = 3.0 V	Resonator connection		0.49	1.74			
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.86		
	$\frac{V_{DD} = 5.0 \text{ V}}{f_{MX} = 10 \text{ MHz Note 3},}$	Resonator connection		0.3	0.93					
		fmx = 10 MHz Note 3,	Square wave input		0.19	0.86				
				VDD = 3.0 V	Resonator connection		0.3	0.93		
			LS (low-speed main) mode ^{Note 6}	fmx = 8 MHz Note 3,	Square wave input		95	640	μA	
				V _{DD} = 3.0 V	Resonator connection		145	680		
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	640		
				VDD = 2.0 V	Resonator connection		145	680		
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μA	
			operation	TA = -40°C	Resonator connection		0.44	0.76		
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.3	0.57		
				TA = 25°C	Resonator connection		0.49	0.76		
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.36	1.17		
				TA = 50°C	Resonator connection		0.59	1.36		
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.49	1.97		
				TA = 70°C	Resonator connection		0.72	2.16	1	
			fsub = 32.768 kHz ^{Note 5} ,	Square wave input		0.97	3.37			
				TA = 85°C	Resonator connection		1.16	3.56		
	IDD3	STOP mode	TA = -40°C				0.18	0.51	μA	
		Note 7	TA = +25°C				0.24	0.51	1	
			TA = +50°C				0.29	1.1]	
			T _A = +70°C					0.41	1.9	
			TA = +85°C				0.9	3.3		

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(2/2)

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main), LS (low-speed main) modes, and LV (low-voltage main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).

Note 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

- HS (high-speed main) mode: $\ 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V} @1 \ \text{MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
- LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 4 MHz
- Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.2		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fi∟ = 15 kHz			0.22		μA
A/D converter operating cur- rent	I _{ADC} Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75		μA
Temperature sensor operat- ing current	ITMPS Note 1				75		μA
D/A converter operating cur- rent	IDAC Notes 1, 11	Per D/A converter channel				1.5	mA
PGA operating current		Operation			480	700	μΑ
Comparator operating cur- rent	ICMP Notes 1, 12	Operation (per comparator chan- nel, constant current for compara-	When the internal reference voltage is not in use		50	100	μA
		tor included)	When the internal reference voltage is in use		60	110	μA
LVD operating current	I _{LVD} Notes 1, 7				0.08		μΑ
Self-programming operat- ing current	IFSP Notes 1, 9				2.5	12.2	mA
BGO operating current	IBGO Notes 1, 8				2.5	12.2	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.5	0.6	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.2	1.44	
		Simplified SPI (CSI)/UART operation			0.7	0.84	
		DTC operation			3.1		

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **Note 7.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- **Note 9.** Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 26.3.3 SNOOZE mode in the RL78/G1F User's Manual.

- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- **Remark 4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

2.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe-		clock (fmain)	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
cution time)		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.25		1	μs
		Subsystem clo	ock (fsuв) operation	$1.8~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μs
		program- ming mode	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
			mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
			LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock frequency	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{DD}$ <	2.4 V		1.0		8.0	MHz
		$1.6 \text{ V} \leq \text{V}_{\text{DD}}$ <	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock	texh, texl	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width,		$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width		$1.8 \text{ V} \leq \text{V}_{DD}$ <	2.4 V		60			ns
		$1.6 \text{ V} \leq \text{V}_{DD} <$	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI03 input high-level width, low- level width	ttiH, tti∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	100			ns
				$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	500			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level	t⊤ji∟			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns
width				1.6 V ≤ EVDD0 < 1.8 V	200			ns

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD $1.8 V \le EVDD0 < 2.7 V$: MIN. 125 ns $1.6 V \le EVDD0 < 1.8 V$: MIN. 250 ns

Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdiн, tтdil	TRDIOA0, TRDIOA1, TRDIOE OC0, TRDIOC1, TRDIOD0, T		3/fclк			ns
Timer RD forced cutoff signal	T TDSIL	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclk + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB	1	2.5/fclк			ns
TO00 to TO03,	fтo	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TRJIO0, TRJO0,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1,			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.6~V \le EV_{DD0} \le 5.5~V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1			μs
Key interrupt input low-level	tĸĸ	KR0 to KR7	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	250			ns
width			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	trsl		1	10			μs

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(2/2)

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)

Supply voltage VDD [V]

TCY vs VDD (LS (low-speed main) mode)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

R01DS0246EJ0130 Rev.1.30 Apr 26, 2024

TRDIOD0, TRDIOD1, TRGIOA, TRGIOB

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		-speed main) Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$2.4~V \le EV \text{DD0} \le 5.5~V$		fMCK/6 Note 2		fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		5.3		1.3		0.6	Mbps
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		fMCK/6 Note 2		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		5.3		1.3		0.6	Mbps
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		5.3		1.3		0.6	Mbps
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		_		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		_		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

 $\label{eq:Note 2.} \mbox{ The following conditions are required for low voltage interface when EVDD0 < VDD. }$

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 2.6 Mbps

1.8 V ≤ EVDD0 < 2.4 V: MAX. 1.3 Mbps

 $1.6 V \le EVDD0 < 1.8 V: MAX. 0.6 Mbps$

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode:	32 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

RL78/G1F

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	C	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tkcy1 $\ge 2/f_{CLK}$ 4.0 V $\le EV_{DD0} \le 5.5$ V		62.5		250		500		ns
			$2.7~V \leq EV_{DD0} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level	tкнı,	$4.0 \ V \leq EV_{DD0}$	$0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			tксү1/2 - 50		tксү1/2 - 50		ns
width	$t_{\text{KL1}} = 2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		≤ 5.5 V	tксү1/2 - 1 0		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0 \; V \leq EV_{\text{DD0}}$	≤ 5.5 V	23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1	2.7 V ≤ EVDD0	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note	4		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),

g: PIM and POM numbers (g = 1)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(3) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	(Conditions	HS (high-s main) mo	•	LS (low-speed mode	d main)	LV (low-vol main) mo	0	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tkcy1 ≥ 4/fclk	$2.7~\text{V} \leq \text{Evdd0} \leq 5.5~\text{V}$	125		500		1000		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	250		500		1000		ns
			$1.8~V \leq EV_{DD0} \leq 5.5~V$	500		500		1000		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1000		1000		1000		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1000		1000		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
width	tĸ∟1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	\leq 5.5 V	tксү1/2 - 1 00		tксү1/2 - 100		tксү1/2 - 100		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		—		tксү1/2 - 100		tксү1/2 - 100		ns
SIp setup time	tsıĸı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		44		110		110		ns
(to SCKp↑) ^{Note 1}		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		44		110		110		ns
		$2.4 \text{ V} \leq \text{EVdd} \leq 5.5 \text{ V}$		75		110		110		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	\leq 5.5 V	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	\leq 5.5 V	—		220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	\leq 5.5 V	19		19		19		ns
(from SCKp↑) ^{Note 2}		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	\leq 5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp output _{Note 3}	tkso1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$ C = 30 pF Note			25		25		25	ns
		$1.6 V \le EV_{DD0}$ C = 30 pF Note			—		25		25	ns

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3, 5, 7)

Remark 2. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(4) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cond	ditions	HS (high-spee mode	d main)	LS (low-speed mode	d main)	LV (low-voltag mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V$	20 MHz < fмск	8/fмск		_		—		ns
time ^{Note 5}			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		—		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	tкн2,	$4.0~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксү2/2 - 7		tксү2/ 2 - 7		tксү2/2 - 7		ns
low-level width	tĸ∟2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tkcy2/2 - 8		tkcy2/2 - 8		tксү2/2 - 8		ns
	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 66		tkcy2/2 - 66		tксү2/2 - 66		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		tkcy2/2 - 66		tkcy2/2 - 66		ns
SIp setup time	tsik2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) _{Note} 1		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7~V \le EV_{DD0} \le 5.5~V$		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		1/fмск + 40		1/fмск + 40		ns
SIp hold time	tksi2	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6~V \le EV_{DD0} \le 5.5~V$		_		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		—		2/fмск + 220		2/fмск + 220	ns

($T_{A} = -40$ to +85°C.	1.6 V < FVDD0	< Vnn < 5.5 V	, Vss = EVsso = 0 V)
	1 - 40 10 - 00 0,			, v 33 – L v 330 – U v j

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3, 5, 7)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(4) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol		Conditions	HS (high-speed mode	d main)	LS (low-speed mode	main)	LV (low-voltage mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	_		400		400		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	_		1/fмск + 400		1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	_		1/fмск + 400		1/fмск + 400		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		400		400		ns

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(2/2)

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

Simplified SPI (CSI) mode connection diagram (during communication at same potential)

Simplified SPI (CSI) mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Parameter	Symbol	Conditions		speed main) ode		peed main) ode	-	oltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:linear} \begin{split} 1.8 \mbox{ V} &\leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_b &= 100 \mbox{ pF}, \mbox{ R}_b = 5 k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		-		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	_		1850		1850		ns
Hold time when SCLr = "H"	thigh	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:loss} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	_		1850		1850		ns

(5) During communication at same potential (simplified I²C mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	HS (high-speed r mode	main)	LS (low-speed n mode	nain)	LV (low-voltage r mode	nain)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{ Rb} = 3 \text{ k}\Omega \end{array}$	1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fmck + 145 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fMCK + 230 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fmck + 290 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	—		1/fмск + 290 Note 2		1/fmck + 290 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\label{eq:constraint} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	—		0	405	0	405	ns

(5) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EVDD0 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = 0 \text{ V})$

(2/2)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remark 1.** $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 3, 5, 7),
- h: POM number (h = 0, 1, 3, 5, 7)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C	$\textbf{1.8 V} \leq \textbf{EVDD0} \leq \textbf{VDD} \leq \textbf{5.5}$	V, Vss = $EVsso = 0 V$)
--------------------	--	--------------------------

Parameter	Symbol		Conditions		HS (high-speed main) mode		-speed main) mode	•	voltage main) mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		5.3		1.3		0.6	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		5.3		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. Use it with $EV_{DD0} \ge V_b$.

Note 3.The following conditions are required for low voltage interface when EVDD0 < VDD. $2.4 V \le EVDD0 < 2.7 V$: MAX. 2.6 Mbps $1.8 V \le EVDD0 < 2.4 V$: MAX. 1.3 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode:	32 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb [V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 5, 7)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

Parameter	Symbol		Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$		Note 3		Note 3		Note 3	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \\ V_b = 2.3 \mbox{ V} \end{array}$		1.2 ^{Note 4}		1.2 Note 4		1.2 Note 4	Mbps
			$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq E \mbox{ V}_{\mbox{DD0}} < 3.3 \mbox{ V}, \\ 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{b}} \leq 2.0 \mbox{ V} \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(2/2)

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
[bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 1** above to calculate the maximum transfer rate under conditions of the customer.

1

Note 3. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

- Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met.
 - Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

Note 5. Use it with $EVDD0 \ge Vb$.

Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

1

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 \text{ [\%]}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 7.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. $R_b[\Omega]$: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 5, 7)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

RL78/G1F

(7) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	•	
SCKp cycle time	tксү1	tксү1 ≥ 2/fc∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\label{eq:VDD0} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \\ 2.7 \; V \leq V_{b} \leq Z \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiк1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tĸsı1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp out- put ^{Note 1}	tĸso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,		130		130		130	ns

(TA = -40 to +85°C.	$\mathbf{2.7 V} \leq \mathbf{EVDD0} \leq \mathbf{VDD} \leq \mathbf{VDD}$	5.5 V, Vss = EVsso = 0 V)
(,	

(Notes, Caution, and Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

(TA = -40 to +85°C, 2.7 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)	
--	--

(2/2)

Parameter	Symbol	Conditions		peed main) ode		peed main) ode	•	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp↓) ^{Note 2}	tsıĸı	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	23		110		110		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	33		110		110		ns
Slp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	10		10		10		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; p\text{F}, \; R_b = 1.4 \; k\Omega \end{array}$		10		10		10	ns
		$\begin{array}{l} 2.7 \ V \leq {\sf EV}_{{\sf DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ p{\sf F}, \ R_b = 2.7 \ k\Omega \end{array}$		10		10		10	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)

Remark 3. fMcK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Remark 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(1/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode		LV (low-voltage main) mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	•		
SCKp cycle time	t КСҮ1	tксү1 ≥ 4/fclк		300		1150		1150		ns	
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns	
			$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note}, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $	1150		1150		1150		ns	
SCKp high-level tкн1 width	tкнı	$4.0 V \le EV_{DD0}$ 2.7 V $\le V_b \le 4$ C _b = 30 pF, Rb	.0 V,	tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns	
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$.7 V,	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} \\ 1.6 \ V \leq V_b \leq 2 \\ C_b = 30 \ pF, \ R_b \end{array}$	0 V ^{Note} ,	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns	
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \\ 2.7 \ V \leq V_{b} \leq 4 \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$.0 V,	tксү1/2 - 12		tксү1/2 - 50		tkcy1/2 - 50		ns	
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2. \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$.7 V,	tксү1/2 - 18		tксү1/2 - 50		tkcy1/2 - 50		ns	
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} \\ 1.6 \ V \leq V_b \leq 2. \\ C_b = 30 \ pF, \ R_b \end{array}$	0 V ^{Note} ,	tксү1/2 - 50		tксү1/2 - 50		tkcy1/2 - 50		ns	

(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

Note Use it with $EVDD0 \ge Vb$.

(Remarks are listed two pages after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		speed main) ode	•	peed main) ode		ltage main) ode	Unit
SIp setup time to SCKp↑) ^{Note 1} SIp hold time from SCKp↑) ^{Note 1}			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıκı	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	81		479		479		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	177		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		100		100		100	ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		195		195		195	ns
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $		483		483		483	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(2/3)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

 $\label{eq:Note 2.} \qquad \text{Use it with } EV_{DD0} \geq V_b.$

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		speed main) ode		peed main) ode	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıĸı		44		110		110		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 1}	tksi1		19		19		19		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		19		ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\ Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	19		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 1}	tkso1			25		25		25	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		25		25		25	ns
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $		25		25		25	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(3/3)

Note 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

 $\label{eq:Note 2.} \qquad \text{Use it with } \mathsf{EV}_\mathsf{DD0} \geq \mathsf{V}_\mathsf{b}.$

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Remark 4. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remark 1.** p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 2. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cor	nditions	HS (hig main)	h-speed mode		/-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	_
SCKp cycle time	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V,$	24 MHz < fмск	14/fмск		-		—		ns
Note 1		$2.7~V \leq V_b \leq 4.0~V$	20 MHz < fmck \leq 24 MHz	12/fмск		—		—		ns
			$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	10/fмск		—		—		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \leq EV_{\text{DD0}} < 4.0 \text{ V},$	24 MHz < fмск	20/fмск		—		—		ns
		$2.3~V \leq V_b \leq 2.7~V$	20 MHz < fmck \leq 24 MHz	16/fмск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	14/fмск		—		—		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	12/fмск		—		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	24 MHz < fмск	48/fмск		—		—		ns
		1.6 V ≤ Vb ≤ 2.0 V Note 2	20 MHz < fmck \leq 24 MHz	36/fмск		—		—		ns
		Note 2	16 MHz < fмск ≤ 20 MHz	32/fмск		_		—		ns
			8 MHz < fмск ≤ 16 MHz	26/fмск		_		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tкн2, tкL2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	tксү2/2 - 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, T$	$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V} \text{ Note } 2$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}, 2$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3.3 \text{ V}, $	$1.6~V \leq V_b \leq 2.0~V$ Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) _{Note 4}	tĸsı2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tĸso2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$ C _b = 30 pF, R _b = 1.4 kΩ			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
output ^{Note 5}		$\begin{array}{c} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ Cb = 30 pF, Rv = 5.5 kG	1.6 V \leq V _b \leq 2.0 V Note 2, 2		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(Notes, Cautions, and Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VoD tolerance (for the 48-, 32-, 24-pin products)/EVoD tolerance (for the 64-, 36-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10))
- Remark 4. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remark 1.** p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 2. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l²C mode) (TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol	Conditions		speed main) node	-	speed main) node	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
				400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note 2}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split} $		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	t∟ow		475		1550		1550		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	475		1550		1550		ns
			1150		1550		1550		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{split} 1.8 \ V &\leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tнıgн		245		610		610		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	600		610		610		ns
		$\label{eq:VD0} \begin{split} & 1.8 \; V \leq E V_{D00} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V \; \text{Note 2}, \\ & C_b = 100 \; \text{pF}, \; \text{Rb} = 5.5 \; \text{k}\Omega \end{split}$	610		610		610		ns

(2/2)

Parameter	Symbol	Conditions	HS (high-speed r mode	nain)	LS (low-speed n mode	nain)	LV (low-voltage r mode	main)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fмск + 190 ^{Note 3}		1/fмск + 190 Note 3		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\label{eq:Vbd} \begin{array}{l} 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 ^{Note 3}		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:Vb} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:VDD} \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V^{\;Note\; 2}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l²C mode) (TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Use it with $EV_{DD0} \ge V_b$.

Note 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20), g: PIM, POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10)

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 $\,\leq$ VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol	C	conditions	HS (high-s mo	,	LS (low-sp mo	beed main) bde	•	ltage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	,
SCLA0 clock	fscL	Standard mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	100	0	100	0	100	kHz
frequency		fclk ≥ 1 MHz	$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.7~V \le EV_{DD0} \le 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_		100	0	100	kHz
Setup time of	tsu: sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
restart condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
			$1.6~V \leq EV_{DD0} \leq 5.5~V$		—			4.7		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.0		4.0		μs
Hold time when	tLOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	<u> </u>			4.7		μs
Hold time when	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4.0		4.0		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.0		4.0		μs

 $(\ensuremath{\textit{Notes}}, \ensuremath{\textit{Caution}}, \ensuremath{\text{and}} \ensuremath{\textit{Remark}}$ are listed on the next page.)

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

	(2/2)
(low-voltage main)	Unit
mode	

Parameter	Symbol Conditions	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode												
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.												
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns											
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns											
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	250		250		250		ns											
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	-	_	250		250		ns											
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs											
Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs											
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs											
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	0	3.45	0	3.45	μs											
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs											
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs											
													$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	-	_	4.0		4.0		μs											
Bus-free time	tBUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs											
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs											
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	4.7		4.7		4.7		μs											
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.7		4.7		μs											

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol	Symbol Conditions			h-speed mode		v-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fclk ≥ 3.5 MHz	$1.8~V \le EV_{DD0} \le 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: sta	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	tLow	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	e when SCLA0 = "H" tнідн		$2.7~V \leq EV_{DD0} \leq 5.5~V$			0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3	1	1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

(3) I²C fast mode plus

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol				h-speed mode		v-speed mode	`	-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ fclk $\ge 10 \text{ MHz}$		0	1000	_		—		kHz
Setup time of restart condi- tion	tsu: sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			-				μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			—		_		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq 5$.5 V	0.5		_		_		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq 5$.5 V	0.26		—		-	_	μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5$.5 V	50		—		-	_	ns
Data hold time (transmission) Note 2	thd: dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.45	-	_	-	_	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			-	_	-	_	μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5$	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			<u> </u>		-	_	μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at
that time in each mode are as follows.
Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

Remark n = 0, 1

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI7	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI24	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI7, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \le V_{DD} \le 5.5~V$	57		95	μs
		10-bit resolution Target pin: Internal reference voltage,	$3.6~V \le V_{DD} \le 5.5~V$	2.375		39	μs
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
	(HS (high-speed main) mode)	and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	EFS 10-bit resolution		$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AV _{REFP} = V _{DD} Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI7		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			/ _{BGR} Note	5	V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed m	ain) mode)	VTMPS25 Note 5			V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as foll	ows.
	Overall error:	Add ± 1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	Values when the conversion time is set to 57 μs	(min.) and 95 μs (max.).

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI24

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V, Reference voltage
(+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condi	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		$EV_{DD0} \leq AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI24	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
Zero-scale error Notes 1, 2		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		$EV_{DD0} \leq AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI24		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 When AVREFP < EVDD0 ≤ VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.20%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI17, ANI16 to ANI24, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI7, ANI16 to ANI24	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \le V_{DD} \le 5.5~V$	57		95	μs
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		(HS (high-speed main) mode)	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V~Note~3$			±0.85	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 3}}$			±0.85	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±4.0	LSB
			$1.6 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$ Note 3			±6.5	LSB
Differential linearity error	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±2.0	LSB
Note 1			$1.6 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$ Note 3			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI7		0		Vdd	V
		ANI16 to ANI24 Internal reference voltage $(2.4 V \le V_{DD} \le 5.5 V, HS (high-speed main) mode)$				EV _{DD0}	V
					/ _{BGR} Note	4	V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) r	VTMPS25 Note 4			V	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

Note 4. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI7, ANI16 to ANI24

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD}, \text{Vss} = \text{EVss0} = 0 \text{ V}, \text{Reference voltage (+)} = \text{VBGR}^{\text{Note 3}}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V}^{\text{Note 4}}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tCONV	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain		•	0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

RL78/G1F

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = 0 V, HS (high-speed main) mode)

2.6.3 D/A converter characteristics

(TA = -40 to +85°C, 1.6 V \leq EVsso \leq Vdd \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$1.8~V \le V \text{DD} \le 5.5~V$			±2.5	LSB
		Rload = 8 M Ω	$1.8~V \le V \text{DD} \le 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V_{DD} \leq 5.5~V$			3	μs
			$1.6 \text{ V} \leq \text{V}\text{DD} < 2.7 \text{ V}$			6	μs

2.6.4 Comparator

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOCMP				±5	±40	mV
Input voltage range	VICMP			0		Vdd	V
Internal reference	ΔV_{IREF}	CmRVM register value : 7	FH to 80H (m = 0, 1)			±2	LSB
voltage deviation		Other than above	her than above			±1	LSB
Response Time	tcr, tcr	Input amplitude±100mV	Input amplitude±100mV		70	150	ns
Operation stabilization	tсмр	CMPn = 0→1	V _{DD} = 3.3 to 5.5 V			1	μs
time ^{Note 1}			V _{DD} = 2.7 to 3.3 V			3	μs
Reference voltage stabilization wait time	tvr	CVRE: 0→1 ^{Note 2}				20	μs
Operation current	ICMPDD	Separately, it is defined as	the operation current of perip	heral function	ons.		

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. Time taken until the comparator satisfies the DC/AC characteristics after the comparator operation enable signal is switched (CMPnEN = $0 \rightarrow 1$).

Note 2. Enable comparator output (CnOE bit = 1; n = 0 to 1) after enabling operation of the internal reference voltage generator (by setting the CVREm bit to 1; m = 0 to 1) and waiting for the operation stabilization time to elapse.

2.6.5 PGA

(TA = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA					±10	mV
Input voltage range	Vipga			0		0.9 × V₀₀/Gain	V
Output voltage range	VIOHPGA			$0.93 \times V_{\text{DD}}$			V
	VIOLPGA					$0.07\times V_{\text{DD}}$	V
Gain error		x4, x8			±1	%	
		x16				±1.5	%
		x32			±2	%	
Slew rate	SRrpga	Rising When Vin= 0.1V _{DD} /gain to 0.9V _{DD} /gain. 10 to 90% of output voltage amplitude	$4.0 V \le V_{DD} \le 5.5 V$ (Other than x32)	3.5			V/µs
			$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} (x32)$	3.0			
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{V}$	0.5			
SI	SRfpga	Falling When Vin= 0.1V₀₀/gain to 0.9V₀₀/gain.	$4.0 V \le V_{DD} \le 5.5 V$ (Other than x32)	3.5			
		90 to 10% of output	$4.0 V \le V_{DD} \le 5.5 V (x32)$	3.0			
		voltage amplitude	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{V}$	0.5			
Reference voltage	t PGA	x4, x8	1			5	μs
stabilization wait time- Note 1		x16, x32	x16, x32			10	μs
Operation current	IPGADD	Separately, it is defined a	as the operation current of pe	ripheral function	ons.	•	

Note 1. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

2.6.6 POR circuit characteristics

(Т	Δ =	-40	to	+85	°C.	Vss	= 0	V)
	~ -		ιu	.00	ς,	.00	- 0	• • •

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.47	1.51	1.55	V
	VPDR	Voltage threshold on VDD falling Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW		300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in **2.4 AC Characteristics**.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.7 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVD0	Rising edge	3.98	4.06	4.14	V
detection			Falling edge	3.90	3.98	4.06	V
threshold		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		VLVD3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		VLVD5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
	VLVD7	Rising edge	2.56	2.61	2.66	V	
		Falling edge	2.50	2.55	2.60	V	
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		VLVD9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
		VLVD12	Rising edge	1.74	1.77	1.81	V
		Falling edge	1.70	1.73	1.77	V	
	VLVD13	Rising edge	1.64	1.67	1.70	V	
			Falling edge	1.60	1.63	1.66	V
Minimum pul	lse width	t∟w		300			μs
Detection de	lay time					300	μs

(2) Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol		Cor	ditions	MIN.	TYP.	MAX.	Unit
Voltage detection	VLVDA0	VPOC2,	VPOC1, VPOC0 = 0, 0, 0, f	alling reset voltage	1.60	1.63	1.66	V
threshold	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, f	alling reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
VLVDC0			Falling interrupt voltage	3.00	3.06	3.12	V	
	VPOC2,	0C2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage			2.45	2.50	V	
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1, f	alling reset voltage	2.70	2.75	2.81	V
	VLVDD1	1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V	
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	Vlvdd3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.8 Power supply voltage rising slope characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

(TA = -40 to	+85°C,	Vss =	0V))
--------------	--------	-------	------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Notes 1, 2		5.5	V

Note 1. The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

Note 2. Enter STOP mode before the supply voltage falls below the recommended operating voltage.

2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$1.8~V \le V_{DD} \le 5.5~V$	1		32	MHz	
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 year	TA = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	TA = 85°C	100,000			
		Retained for 20 years	TA = 85°C	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

tsu:How long from when the TOOL0 pin is placed at the low level until a pin reset ends

th: How long to keep the TOOL0 pin at the low level from when the external resets end

(excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F11BxxGxx

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, or EVss0 pin, replace EVDD0 with VDD, or replace EVss0 with Vss.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G1F User's Manual.
- Caution 4. Please contact Renesas Electronics sales office for derating of operation under T_A = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- **Remark** When the products "G: Industrial applications" is used in the range of $T_A = -40$ to $+85^{\circ}C$, see 2. **ELECTRICAL SPECIFICATIONS (T_A = -40 to +85^{\circ}C)**.

Operation of products rated "G: Industrial applications ($T_A = -40$ to + 105°C)" at ambient operating temperatures above 85°C differs from that of products rated "A: Consumer applications" in the ways listed below.

Parameter	A: Consumer applications	G: Industrial applications
Operating ambient temperature	TA = -40 to +85°C	TA = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V \leq V _{DD} \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 4 MHz	HS (high-speed main) mode only: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V DD \leq 5.5 \ V: \\ \pm 1.0\% \ @ \ TA = -20 \ to \ +85^{\circ}C \\ \pm 1.5\% \ @ \ TA = -40 \ to \ -20^{\circ}C \\ 2.4 \ V \leq V DD < 1.8 \ V: \\ \pm 5.0\% \ @ \ TA = -20 \ to \ +85^{\circ}C \\ \pm 5.5\% \ @ \ TA = -40 \ to \ -20^{\circ}C \end{array}$	$2.4 V \le VDD \le 5.5 V$: $\pm 2.0\% @ Ta = +85 to +105°C$ $\pm 1.0\% @ Ta = -20 to +85°C$ $\pm 1.5\% @ Ta = -40 to -20°C$
Serial array unit	UART Simplified SPI (CSI): fcLk/2 (16 Mbps supported), fcLk/4 Simplified I ² C communication	UART Simplified SPI (CSI): fcLk/4 Simplified I ² C communication
lica	Standard mode Fast mode Fast mode plus	Standard mode Fast mode
Voltage detector	 Rising: 1.67 V to 4.06 V (14 stages) Falling: 1.63 V to 3.98 V (14 stages) 	Rising: 2.61 V to 4.06 V (8 stages) Falling: 2.55 V to 3.98 V (8 stages)

Remark The electrical characteristics of products rated "G: Industrial applications (TA = -40 to + 105°C)" at ambient operating temperatures above 85°C differ from those of products "A: Consumer applications". For details, refer to **3.1** to **3.10**.

(1/2)

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 ^{Note 1}	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	and -0.3 to V _{DD} +0.3 ^{Note 2}	
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	P20 to P27, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	Vo2	P20 to P27	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI24	-0.3 to EVDD0 +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI7	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

Absolute Maximum Ratings

(2/2)

	ungo				(2/
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147	-40	mA
		Total of all	P00 to P04, P40 to P43,P120, P130, P140, P141	-70	mA
		pins -170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40-P43, P50 to P55, P60 to P63, P70 to P77, P120, P130, P140, P141, P146, P147	40	mA
		Total of all	P00 to P04, P40 to P47, P120, P130, P140, P141	70	mA
	pins 170 m/	pins 170 mA	P05, P06, P10 to P17, P30, P31, P50 to P55, P70 to P77, P146, P147	100	mA
	IOL2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient tem-	Та	In normal c	operation mode	-40 to +105	°C
perature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 characteristics

(TA = -40 to +105°C, 2.4 V \leq EV_DD0 = VDD \leq 5.5 V, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	1.0		16.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

(TA = -40 to +105°C, 2.4 V \leq EV_{DD0} = V_{DD} \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency	fін	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		32	MHz
Notes 1, 2		$2.4 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$	1		16	MHz
High-speed on-chip oscillator clock frequency		T _A = +85 to +105°C	-2		2	%
accuracy		T _A = -20 to +85°C	-1		1	%
		T _A = -40 to -20°C	-1.5		1.5	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G1F User's Manual.

3.3 DC Characteristics

3.3.1 Pin characteristics

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit		
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P55, P70 to P77, P120, P130, P140, P141, P146, P147				-3.0 Note 2	mA		
		Total of P00 to P04, P40 to P43,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-30.0	mA		
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA		
				(When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-5.0	mA
		Total of P05, P06, P10 to P17,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA		
		P30, P31, P50 to P53, P70 to P77, P146, P147	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-19.0	mA		
		(When duty $\leq 70\%$ Note ³)	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-10.0	mA		
		Total of all pins (When duty ≤ 70% ^{Note 3})				-60.0	mA		
	Іон2	Per pin for P20 to P27				-0.1 Note 2	mA		
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-1.5	mA		

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IOH × 0.7)/(n × 0.01)

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 do not output high level in N-ch opendrain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions			TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77,P120, P130, P140, P141, P146, P147 Per pin for P60 to P63				8.5 Note 2	mA mA
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141	$\frac{4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}}{2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}}$			Note 2 40.0 15.0	mA mA
		(When duty ≤ 70% ^{Note 3}) Total of P05, P06, P10 to P17, P30, P31, P50 to P55, P60 to P63, P70 to P77, P146, P147	$2.4 V \le EVDD0 < 1.8 V$ $4.0 V \le EVDD0 \le 5.5 V$ $2.7 V \le EVDD0 < 4.0 V$			9.0 40.0 35.0	mA mA mA
		$(When duty \le 70\% Note 3)$ $Total of all pins$ $(When duty \le 70\% Note 3)$	2.4 V ≤ EV _{DD0} < 1.8 V			20.0 80.0	mA mA
	IOL2	Per pin for P20 to P27				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$			5.0	mA

Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso and Note 1. Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
			TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	2.0		EVDD0	V
			TTL input buffer 2.4 V ≤ EVpd0 < 3.3 V	1.5		EVDD0	V
	Vінз	P20 to P27 (when P20 is used as	a port pin)	0.7 Vdd		Vdd	V
	VIH4	P60 to P63		0.7 EVDD0		6.0	V
	Vih5	P121 to P123, P137, EXCLK, EX P20 is used as INTP11 pin)	CLKS, RESET (when	0.8 Vdd		Vdd	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V ≤ EVpd0 < 3.3 V	0		0.32	V
	VIL3	P20 to P27 (when P20 is used as	a port pin)	0		0.3 Vdd	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	Vil5	P121 to P124, P137, EXCLK, EX P20 is used as INTP11 pin)	0		0.2 Vdd	V	

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(3/5)

Caution The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 is EVDD0, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55,	$\begin{array}{l} 4.0 \text{ V} \leq \text{EV} \text{DD0} \leq 5.5 \text{ V}, \\ \text{IOH1} = -3.0 \text{ mA} \end{array}$	EVDD0 - 0.7			V
		P70 to P77, P120, P130, P140, P141, P146, P147	2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
			2.4 V ≤ EVDD0 < 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27	2.4 V ≤ VDD ≤ 5.5 V, IOH2 = -100 μA	Vdd - 0.5			V
Output voltage, low Vol	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL1} = 8.5 \text{ mA}$			0.7	V
		P70 to P77, P120, P130, P140, P141, P146, P147	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL1} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	Vol2	P20 to P27	$\begin{array}{l} 2.4 \ \text{V} \leq \text{V} \text{DD} \leq 5.5 \ \text{V}, \\ \text{IOL2} = 400 \ \mu\text{A} \end{array}$			0.4	V
Vol3	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 5.0 mA			0.4	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43, P50 to P55, P71, P74 do not output high level in N-ch opendrain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

TA40 to + 105	C , Z . 4 V S	\ge EVDD0 \le VDD \le 5.5 V, VSS = EV	(330 - 0 v)					(5/5
Items	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Input leakage cur- rent, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	VI = EVDD0				1	μA
	ILIH2	P20 to P27, P137, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator con- nection			10	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	VI = EVsso				-1	μA
	ILIL2	P20 to P27, P137, RESET	VI = Vss				1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator con- nection			-10	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P43, P50 to P55, P70 to P77, P120, P140, P141, P146, P147	VI = EVsso	, In input port	10	20	100	kΩ

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

Parameter	Symbol	lodn		Conditions			MIN.	TYP.	MAX.	Unit				
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.4		mA				
current Note 1		ing mode	mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.4		1				
			fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1							
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1		1				
			HS (high-speed main) mode ^{Note 5}	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.2	9.3	mA				
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.2	9.3					
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.7	1				
				fiн = 32 MHz ^{Note 3}	operation	VDD = 3.0 V		4.8	8.7	1				
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.1	7.3	1				
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.1	7.3	1				
				fін = 24 MHz ^{Note 3} о	Normal	VDD = 5.0 V		3.8	6.7	1				
					operation	VDD = 3.0 V		3.8	6.7	1				
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.9	1				
				fiн = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.9	1				
			HS (high-speed main)		Normal operation	Square wave input		3.3	5.7	mA				
			mode Note 5			Resonator connection		3.5	5.8					
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal	Square wave input		3.3	5.7					
					operation	Resonator connection		3.5	5.8					
				f _{MX} = 10 MHz ^{Note 2} , Normal S	Square wave input		2.0	3.4						
					VDD = 5.0 V	operation	Resonator connection		2.1	3.5	1			
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.0	3.4	1				
					VDD = 3.0 V	VDD = 3.0 V operation Resonator conne	Resonator connection		2.1	3.5	1			
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μA				
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1	1				
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	1				
				TA = +25°C	operation	Resonator connection		4.7	6.1	1				
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	1				
				TA = +50°C	operation	Resonator connection		4.8	6.7	1				
									fsue = 32.768 kHz Note 4 Normal	Square wave input		4.8	7.5	1
				TA = +70°C	operation	Resonator connection		4.8	7.5	1				
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9	1				
				TA = +85°C	operation	Resonator connection		5.4	8.9]				
				fs∪в = 32.768 kHz ^{Note 4} Normal	Square wave input		7.2	21.0	1					
				TA = +105°C	operation	Resonator connection		7.3	21.1	1				

$(T_A = -40 \text{ to } \pm 105^{\circ}\text{C} + 2.4 \text{ V} < \text{EV}_{DD0} < \text{V}_{DD0} < 5.5 \text{ V} + \text{Veg} = \text{EV}_{gg0} = 0.4 \text{ V}$	١
$TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = 0 \text{ V}$)

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).

Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 16 MHz

- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

TA = -40 to	. 100 6	,	$VDD0 \leq VDD \leq 5.5 V,$						(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current	Idd2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	4.36	mA
Note 1	Note 2		mode Note 6	fiH = 32 MHz Note 4	V _{DD} = 3.0 V		0.80	4.36	
				fносо = 32 MHz,	VDD = 5.0 V		0.54	3.67	
				fiH = 32 MHz Note 4	V _{DD} = 3.0 V		0.54	3.67	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	3.42	
				fiн = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.62	3.42	
				fносо = 24 MHz,	VDD = 5.0 V		0.44	2.85	
				fiH = 24 MHz Note 4	V _{DD} = 3.0 V		0.44	2.85	
				fносо = 16 MHz,	VDD = 5.0 V		0.40	2.08	
				fiн = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.40	2.08	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	mA
			mode Note 6	VDD = 5.0 V	Resonator connection		0.49	2.57	
				$f_{MX} = 20 \text{ MHz} \text{ Note } 3$,	Square wave input		0.28	2.45	-
				VDD = 3.0 V	Resonator connection		0.49	2.57	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.28	
				VDD = 5.0 V	Resonator connection		0.30	1.36	
				$f_{MX} = 10 \text{ MHz} \text{ Note 3},$	Square wave input		0.19	1.28]
				VDD = 3.0 V	Resonator connection		0.30	1.36	
			Subsystem clock	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.25	0.57	μA
			operation	T _A = -40°C fs∪B = 32.768 kHz ^{Note 5} ,	Resonator connection		0.44	0.76	
					Square wave input		0.30	0.57	-
				TA = +25°C	Resonator connection		0.49	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.36	1.17	
				T _A = +50°C	Resonator connection		0.59	1.36	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.49	1.97	
				T _A = +70°C	Resonator connection		0.72	2.16	
				fsue = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
				T _A = +85°C	Resonator connection		1.16	3.56	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		3.20	17.10	
				T _A = +105°C	Resonator connection		3.40	17.50	
	Idd3	STOP mode	TA = -40°C				0.18	0.51	μA
		Note 7	TA = +25°C				0.24	0.51	
			TA = +50°C				0.29	1.10	-
			TA = +70°C				0.41	1.90	
			TA = +85°C				0.90	3.30]
			T _A = +105°C				3.10	17.00	1

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)

(2/2)

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main) mode.
 The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
 In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules the operating currents of the peripheral modules.
 - In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.
- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- **Note 6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

$$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 16 \text{ MHz}$$

- **Note 7.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.2		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	I _{IT} Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating cur- rent	I _{ADC} Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75		μA
Temperature sensor operat- ing current	ITMPS Note 1				75		μA
D/A converter operating cur- rent	IDAC Notes 1, 11	Per D/A converter channel				1.5	mA
PGA operating current		Operation			480	700	μA
Comparator operating cur- rent	ICMP Notes 1, 12	Operation (per comparator chan- nel, constant current for compara-	When the internal reference voltage is not in use		50	100	μA
		tor included)	When the internal reference voltage is in use		60	110	μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operat- ing current	I _{FSP} Notes 1, 9				2.50	12.2	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.2	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	
		Simplified SPI (CSI)/UART operation	n		0.70	1.54	
		DTC operation			3.10	1	

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V	, Vss = EVsso = 0 V)
---	----------------------

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- **Note 9.** Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 26.3.3 SNOOZE mode in the RL78/G1F User's Manual.

- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min- imum instruction exe- cution time)	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
			clock (fmain) operation	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1
		Subsystem clo	ock (fsub) operation	$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		program- ming mode	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V \text{DD} \leq$	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width,	texL	$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width	texhs, texls				13.7			μs
TI00 to TI03 input high-level width, low- level width	ttiн, tti∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$	100			ns
				$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq \text{EV} \text{DD0} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Note The following conditions are required for low voltage interface when EVDD0 < VDD

 $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MIN. 125 ns

Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

$(1A = -40 \ 10 + 105 \ 0, 2.4 \ V$		\leq VDD \leq 5.5 V, VSS = EVSSU) = 0 V)	-	-		(2/2)
Items	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
Timer RD input high-level width, low-level width	ttdih, ttdi∟	TRDIOA0, TRDIOA1, TRDIOE OC0, TRDIOC1, TRDIOD0, T		3/fclк			ns
Timer RD forced cutoff signal	TDSIL	P130/INTP0	Р130/INTP0 2MHz < fc∟к ≤ 32 MHz				μs
input low-level width			fclk ≤ 2 MHz	1/fclк + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB		2.5/fclk			ns
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TRJIO0, TRJO0,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
frequency			2.7 V ≤ EVDD0 < 4.0 V			8	MHz
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
Interrupt input high-level	tinth,	INTP0	$2.4~V \leq V_{DD} \leq 5.5~V$	1			μs
width, low-level width	tintl	INTP1 to INTP11	$2.4~V \leq EV_{DD0} \leq 5.5~V$	1			μs
Key interrupt input low-level width	tĸĸ	KR0 to KR7	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl			10			μs

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(2/2)

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

Supply voltage VDD [V]

AC Timing Test Points

External System Clock Timing

TI/TO Timing

TRDIOD0, TRDIOD1, TRGIOA, TRGIOB

Interrupt Request Input Timing

3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol	Conditions HS (high-speed main) Mode								
			MIN.	MAX.						
Transfer rate	Transfer rate $2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			fMCK/12 Note 2	bps					
Note 1		Theoretical value of the maximum transfer rate fMCK = fcLK ^{Note 3}		2.6	Mbps					
Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.										

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.Note 2.The following conditions are required for low voltage interface when EVDD0 < VDD.
 $2.4 V \le EVDD0 < 2.7 V$: MAX.1.3 MbpsNote 3.The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V) 16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions HS (high-speed main) mode		,		HS (high-speed main) mode	
				MIN.	MAX.			
SCKp cycle time	tксү1	tκcγ1 ≥ 2/fcLκ	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		ns		
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	500		ns		
SCKp high-/low-level width	tкнı,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5$	V	tксү1/2 - 24		ns		
	tĸ∟1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 36		ns		
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү1/2 - 76				
SIp setup time (to SCKp↑) Note 1	tsiкı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		66		ns		
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		66		ns		
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		113				
SIp hold time (from SCKp↑) Note 2	tksi1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		38		ns		
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF Note 4			50	ns		

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3, 5, 7)
- Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

RL78/G1F

(3) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-spee	HS (high-speed main) mode	
				MIN.	MAX.	
SCKp cycle time Note 5	tксү2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	20 MHz < fмск	16/fмск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	16 MHz < fмск	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		12/fмск and 1000		ns
SCKp high-/	tкн2,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 14		ns
low-level width	tĸl2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	tксү2/2 - 16		ns ns ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 36		ns
SIp setup time (to SCKp↑) Note 1	tsık2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 40		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output _{Note 3}	tkso2	C = 30 pF Note 4	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		2/fмск + 66	ns
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 113	ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **Note 4.** C is the load capacitance of the SOp output lines.
- Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21), m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3, 5, 7) **Remark 2.** fMck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(3) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-speed ma	HS (high-speed main) mode	
				MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	240		ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	400		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 240		ns
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 240		ns
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	240		ns
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		ns

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = 0 \text{ V})(2/2)$

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

Simplified SPI (CSI) mode connection diagram (during communication at same potential)

Simplified SPI (CSI) mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

(4) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) mode	
			MIN.	MAX.	1
SCLr clock frequency	fscL	$\label{eq:loss} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 50 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 2.7 \Omega \end{array}$		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_b = 100 \ p\text{F}, \ R_b = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \Omega \end{array}$	1200		ns
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \Omega \end{array}$	1200		ns
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq E V_{DD0} \leq 5.5 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	1/fмск + 220 Note 2		ns
		$\label{eq:loss} \begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	1/fмск + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \Omega \end{array}$	0	770	ns
		$\label{eq:linear} \begin{array}{l} 2.4 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$	0	1420	ns

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remark 1.** $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21), g: PIM number (g = 0, 1, 3, 5, 7),
- h: POM number (h = 0, 1, 3, 5, 7)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

$T_{A} = -40 \text{ to } +105^{\circ}\text{C}$	24V <fv< th=""><th>< Vnn < 5 5 V</th><th>, Vss = EVsso = 0 V)</th><th></th></fv<>	< Vnn < 5 5 V	, Vss = EVsso = 0 V)	
1A = -40 10 + 100 0	$, \mathbf{Z} = \mathbf{V} \ge \mathbf{L} \mathbf{V} \mathbf{D} \mathbf{D} \mathbf{U}$, • 33 - = • 330 - • • • /	

(1/2)

Parameter	Symbol		Conditions HS (high-speed main) mode		peed main) mode	Unit	
					MIN.	MAX.	
Transfer rate		reception		$V \leq EV_{DD0} \leq 5.5 \text{ V},$ $V \leq V_b \leq 4.0 \text{ V}$		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		2.6	Mbps
				$\label{eq:V} \begin{split} V &\leq EV_{DD0} < 4.0 \text{ V}, \\ V &\leq V_b \leq 2.7 \text{ V} \end{split}$		fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		2.6	Mbps	
				$\label{eq:V} \begin{split} V &\leq EV_{DD0} < 3.3 \text{ V}, \\ V &\leq V_b \leq 2.0 \text{ V} \end{split}$		fмск/12 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		1.3	Mbps

 Note 1.
 Transfer rate in the SNOOZE mode is 4800 bps only.

 However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4~V \leq EV_{DD0} < 2.7~V:MAX.~2.6~Mbps$

 $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.4 \text{ V}: \text{MAX. } 1.3 \text{ Mbps}$

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb [V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 5, 7)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

TA = -40 to +105°C, 2		< 5 5 V Vee =	EVeen = 0 V
1A40 10 + 105 C, 2	4 V ≤ ⊑VDDU ≤ VDD	· ≤ 5.5 v, v 55 -	$\mathbf{E}\mathbf{V}$ 550 - U V)

(2/2)

Parameter	Symbol	Conditions HS (high-speed main) mode		Conditions HS (high-speed		Conditions HS (high-speed main) mode		Conditions HS (high-speed main)		Conditions HS (high-speed ma		Unit
				MIN.	MAX.							
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1	bps						
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.6 Note 2	Mbps						
			$\begin{array}{l} 2.7 \ V \leq E V_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps						
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 4	Mbps						
			$\label{eq:V_eq} \begin{array}{l} 2.4 \ V \leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Note 5	bps						
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 6	Mbps						

Note 1. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \ [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

ud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

Maximum transfer

Ва

RENESAS

Note 5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

1

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 6.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. $R_b[\Omega]$: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1, 5, 7)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

(6) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	C	onditions	HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time	tксү1	tkcy1 ≥ 4/fclk		600		ns
			$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1000		ns
			$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	2300		ns
SCKp high-level width	tкн1	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		tkcy1/2 - 150		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \end{array}$,	tксү1/2 - 340		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 - 916		ns
SCKp low-level width	tĸL1		,	tксү1/2 - 24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \end{array}$		tксү1/2 - 100		ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note}	tsiк1		162		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	354		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) ^{Note}	tksıı		38		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note}	tkso1			200	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		390	ns
		$\label{eq:2.4} \begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		966	ns

(TA = -40 to +105°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(2/3)

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(**Remarks** are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol Conditions HS (high-speed main) mode		Unit		
			MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note}	tsiк1		88		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	220		ns
SIp hold time (from SCKp↓) ^{Note}	tksı1		38		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note}	tkso1			50	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		50	ns
		$\label{eq:2.4} \begin{split} 2.4 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		50	ns

(TA = -40 to +105°C, 1.8 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

(3/3)

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(**Remarks** are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)

Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Remark 4. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

- **Remark 1.** p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 2. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10)

RENESAS

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-spe	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V,$	24 MHz < fмск	28/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	24/fмск		ns
			MIN. MAX. 24 MHz < fmck	ns		
		txcy2 4.0 V ≤ EVDD0 ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V 24 MHz < fMCK	16/fмск		ns	
			fмск ≤ 4 MHz	12/fмск		ns
		,	24 MHz < fмск	40/fмск		ns
			$20 \text{ MHz} < f_{\text{MCK}} \leq 24 \text{ MHz}$	32/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	28/fмск		ns
			8 MHz < fmck \leq 16 MHz	24/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
			24 MHz < fмск	96/fмск		ns
			$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	72/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	64/fмск		ns
			8 MHz < fmck \leq 16 MHz	52/fмск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tkh2, tkl2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}$		tkcy2/2 - 24		ns
width		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}$		tkcy2/2 - 36		ns
		$2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V$		tксү2/2 - 100		ns
SIp setup time	tsik2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.10 \text{ V}$	$3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 40		ns
(to SCKp↑) Note 2		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.$	$6 \text{ V} \leq V_b \leq 2.0 \text{ V}$	1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} \mbox{4.0 V} \le \mbox{EV}_{\mbox{DD0}} \le 5.5 \mbox{ V}, \mbox{2.} \\ \mbox{C}_{\mbox{b}} = 30 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 1.4 \mbox{ k}\Omega \end{array}$	$7 \text{ V} \leq V_b \leq 4.0 \text{ V},$		2/fмск + 240	ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} < 4.0 \ \text{V}, \ 2. \\ \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	$3 \text{ V} \leq V_b \leq 2.7 \text{ V},$		2/fмск + 428	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1. \\ C_b = 30 \ pF, \ R_v = 5.5 \ k\Omega \end{array}$	$6~V \leq V_b \leq 2.0~V,$		2/fмск + 1146	ns

$(T_A = 40 \text{ to } \pm 105^{\circ})$			= EVeen = 0.V
$(1A = -40 \ 10 = 105)$	$\mathbf{C}, 2.4 \mathbf{V} \leq \mathbf{EV} \mathbf{DD} 0 \leq \mathbf{V}$	/DD ≤ 5.5 V, VSS ·	$- \Box V S S U - U V$

(Notes and Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 48, 32, 24-pin products)/EVDD tolerance (for the 64, 36-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10))
- Remark 4. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. Also, communication at different potential cannot be performed during clock synchronous serial communication with the

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remark 1.** p: CSI number (p = 00, 01, 10, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 5, 7)
- Remark 2. CSI01 of 48-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(1/2)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
		$\label{eq:Vb} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$		100 Note 1	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 Note 1	kHz
		$\label{eq:Vb} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
		$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	4600		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tнigн	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	620		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	500		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	2700		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	2400		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1830		ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}$	$\sqrt{10} = 0.00$

(2/2)

Parameter	Symbol	Conditions	HS (high-speed m	nain) mode	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 340 Note 2		ns
			1/fмск + 760 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 760 Note 2		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/f _{MCK} + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 48-, 32-, 24-pin products)/EVDD tolerance (for the 64-, 36-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20), g: PIM, POM number (g = 0, 1, 3, 5, 7)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10)

3.5.2 Serial interface IICA

($(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = 0 \text{ V})$	١
		,

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode			Unit
			Standa	rd mode	Fast	mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fcLĸ ≥ 3.5 MHz	-	-	0	400	kHz
		Standard mode: fcLk ≥ 1 MHz	0	100	—	—	kHz
Setup time of restart condition	tsu: sta		4.7		0.6		μs
Hold time Note 1	thd: STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $Standard mode: \quad C_b = 400 \ pF, \ R_b = 2.7 \ k\Omega \\ Fast mode: \quad C_b = 320 \ pF, \ R_b = 1.1 \ k\Omega \\$

IICA serial transfer timing

Remark n = 0, 1

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI7	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI24	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI7, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output volt-	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		age (HS (high-speed main) mode)	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI7		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 4		
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			V _{TMPS25} Note 4		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

 Note 3.
 When AVREFP < VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI24

		• • •		-			
Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±5.0	LSB
Conversion time	tCONV	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI24		0		AVREFP and EVDD0	V

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \\ \text{Vss} = \text{EVss0} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVREFP}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V})$

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Zero-scale error/Full-scale error:Add $\pm 0.05\%$ FSR to the MAX. vaIntegral linearity error/ Differential linearity error:Add ± 0.5 LSB to the MAX. valueNote 4.When AVREFP < EVDD0 \leq VDD, the MAX. values are as follows.	are as follows.	
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VbD. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP = VbD.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI7, ANI16 to ANI24, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: internal reference voltage, and temperature sensor output voltage	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		(HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI7		0		Vdd	V
		ANI16 to ANI24		0		EV _{DD0}	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 3		
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) r	mode)	VTMPS25 Note 3			V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI7, ANI16 to ANI24

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{EVDD0} \le \text{VDD}, \text{Vss} = \text{EVss0} = 0 \text{ V}, \text{Reference voltage (+)} = \text{VBGR}^{\text{Note 3}}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V}^{\text{Note 4}}, \text{HS (high-speed main) mode})$

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
Resolution	RES			bit			
Conversion time	tCONV	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain			0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = 0 V, HS (high-speed main) mode)

3.6.3 D/A converter characteristics

(TA = -40 to +105°C, 2.4 V \leq EVsso \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
		Rload = 8 M Ω	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V_{DD} \leq 5.5~V$			3	μs
			$2.4~V \leq V_{DD} < 2.7~V$			6	μs

3.6.4 Comparator

Parameter	Symbol	Con	nditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOCMP				±5	±40	mV
Input voltage range	VICMP		0		Vdd	V	
Internal reference	ΔV_{IREF}	CmRVM register value : 7	FH to 80H (m = 0, 1)			±2	LSB
voltage deviation		Other than above				±1	LSB
Response Time	tcr, tcr	Input amplitude±100mV	Input amplitude±100mV		70	150	ns
Operation stabilization	tсмр	CMPn = 0→1	V _{DD} = 3.3 to 5.5 V			1	μs
time ^{Note 1}			V _{DD} = 2.7 to 3.3 V			3	μs
Reference voltage stabilization wait time	tvr	$CVRE: 0 \rightarrow 1^{Note 2}$				20	μs
Operation current	ICMPDD	Separately, it is defined as	the operation current of perip	heral function	ons.		

(TA = -40 to +105°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Note 1. Time taken until the comparator satisfies the DC/AC characteristics after the comparator operation enable signal is switched (CMPnEN = $0 \rightarrow 1$).

Note 2. Enable comparator output (CnOE bit = 1; n = 0 to 1) after enabling operation of the internal reference voltage generator (by setting the CVREm bit to 1; m = 0 to 1) and waiting for the operation stabilization time to elapse.

3.6.5 PGA

$(TA = -40 \text{ to } +105^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	VIOPGA					±10	mV
Input voltage range	Vipga			0		0.9 × V₀₀/Gain	V
Output voltage range	VIOHPGA			$0.93 \times V_{\text{DD}}$			V
	VIOLPGA				$0.07\times V_{\text{DD}}$	V	
Gain error		x4, x8				±1	%
		x16 x32				±1.5	%
						±2	%
Slew rate	SR _{RPGA} Rising When Vin= 0.1V _{DD} /gai to 0.9V _{DD} /gain. 10 to 90% of output voltage amplitude	When Vin= 0.1V _{DD} /gain	$4.0 V \le V_{DD} \le 5.5 V$ (Other than x32)	3.5			V/µs
		10 to 90% of output voltage amplitude SRFPGA Falling When Vin= 0.1Vpd/gain	$4.0 V \le V_{DD} \le 5.5 V (x32)$	3.0			
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{V}$	0.5			
	SRfpga		$4.0 V \le V_{DD} \le 5.5 V$ (Other than x32)	3.5			
		to 0.9V₀₀/gain. 90 to 10% of output	$4.0 V \le V_{DD} \le 5.5 V (x32)$	3.0			
		voltage amplitude	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{V}$	0.5			
Reference voltage	t PGA	x4, x8				5	μs
stabilization wait time- Note 1		x16, x32				10	μs
Operation current	IPGADD	Separately, it is defined a	as the operation current of per	ripheral function	ons.		

Note 1. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

3.6.6 POR circuit characteristics

(ТА	=	-40	to	+105°	°C.	Vss	=	٥ \	Λ
						Ξ,			•	''

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.45	1.51	1.55	V
	VPDR	Voltage threshold on VDD falling Note 1	1.44	1.50	1.54	V
Minimum pulse width Note 2	TPW		300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in **3.4 AC Characteristics**.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.7 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection	Supply voltage level	VLVD0	Rising edge	3.90	4.06	4.22	V
threshold			Falling edge	3.83	3.98	4.13	V
		VLVD1	Rising edge	3.60	3.75	3.90	V
			Falling edge	3.53	3.67	3.81	V
		VLVD2	Rising edge	3.01	3.13	3.25	V
			Falling edge	2.94	3.06	3.18	V
		Vlvd3	Rising edge	2.90	3.02	3.14	V
			Falling edge	2.85	2.96	3.07	V
		VLVD4	Rising edge	2.81	2.92	3.03	V
			Falling edge	2.75	2.86	2.97	V
		Vlvd5	Rising edge	2.70	2.81	2.92	V
			Falling edge	2.64	2.75	2.86	V
		VLVD6	Rising edge	2.61	2.71	2.81	V
			Falling edge	2.55	2.65	2.75	V
		VLVD7	Rising edge	2.51	2.61	2.71	V
			Falling edge	2.45	2.55	2.65	V
Minimum pulse wid	dth	tlw		300			μs
Detection delay time						300	μs

(2) Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Con	MIN.	TYP.	MAX.	Unit	
Voltage detection	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1, f	2.64	2.75	2.86	V	
threshold	VLVDD1 LVIS1, LVIS0 = 1, 0 Rising release reset voltage			2.81	2.92	3.03	V	
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	Vlvdd3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.8 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 Notes 1, 2		5.5	V

Note 1. The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

Note 2. Enter STOP mode before the supply voltage falls below the recommended operating voltage.

3.8 Flash Memory Programming Characteristics

(T_A = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1		32	MHz

(T_A = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditior	าร	MIN.	TYP.	MAX.	Unit
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 year	TA = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	TA = 85°C	100,000			
		Retained for 20 years	TA = 85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

3.9 Dedicated Flash Memory Programmer Communication (UART)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tнD	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends

tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

4.1 24-pin products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-1	0.04

© 2012 Renesas Electronics Corporation. All rights reserved.

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN024-4x4-0.50	PWQN0024KF-A	0.04

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
А	-	-	0.80
A1	0.00	0.02	0.05
A3		0.203 REF	
b	0.18	0.25	0.30
D		4.00 BSC	
Е		4.00 BSC	
е		0.50 BSC	
L	0.35 0.40		0.45
К	0.20	-	-
D2	2.55	2.60	2.65
E2	2.55	2.60	2.65
aaa	0.15		
bbb	0.10		
ccc	0.10		
ddd		0.05	
eee	0.08		
fff	0.10		

JEITA Package Code	RENESAS Code	MASS(Typ.)[g]
P-HWQFN24-4×4-0.50	PWQN0024KH-A	0.04

Referenc	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
Α	_	_	0.80
A ₁	0.00	_	0.05
A ₃	0	.20 REF	-
b	0.20	0.25	0.30
D	_	4.00	—
Ε	—	4.00	—
е	—	0.50	—
Ν		24	
L	0.30	0.40	0.50
K	0.20	_	—
D ₂	2.50	2.60	2.70
E ₂	2.50	2.60	2.70
aaa	_	_	0.15
bbb	_	_	0.10
ссс	_	_	0.10
ddd	_	—	0.05
eee	_	_	0.08

4.2 32-pin products

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN032-5x5-0.50	PWQN0032KE-A	0.06

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
А	_	-	0.80
A ₁	0.00	0.02	0.05
A3	(0.203 REF	
b	0.18	0.25	0.30
D		5.00 BSC	
E		5.00 BSC	
е	0.50 BSC		
L	0.35	0.40	0.45
к	0.20	-	—
D_2	3.15	3.20	3.25
E2	3.15	3.20	3.25
aaa		0.15	
bbb	0.10		
CCC	0.10		
ddd		0.05	
eee	0.08		
fff	0.10		

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

(UNIT:mm)

TIEM	DIMENSIONS
D	7.00±0.10
Е	7.00±0.10
HD	9.00±0.20
HE	9.00±0.20
А	1.70 MAX.
A1	0.10±0.10
A2	1.40
b	$0.37{\pm}0.05$
с	0.145 ± 0.055
L	0.50±0.20
θ	0° to 8°
е	0.80
х	0.20
У	0.10

NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "%3" does not include trim offset.

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LQFP32-7x7-0.80	PLQP0032GE-A	0.18

Reference	Dimensi	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.	
А	-	-	1.60	
A ₁	0.05	_	0.15	
A ₂	1.35	1.40	1.45	
D	-	9.00	_	
D ₁	-	7.00	-	
E	_	9.00	-	
E ₁	-	7.00	-	
N	-	32	-	
е	_	0.80	-	
b	0.30	0.37	0.45	
С	0.09	_	0.20	
θ	0°	3.5°	7°	
L	0.45	0.60	0.75	
L ₁	_	1.00	-	
aaa	_	_	0.20	
bbb	_	_	0.20	
ссс	_	_	0.10	
ddd	—	—	0.20	

4.3 36-pin products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023

4.4 48-pin products

© 2015 Renesas Electronics Corporation. All rights reserved.

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP48-7x7-0.50	PLQP0048KL-A	0.18

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
А	_	-	1.60
A ₁	0.05	_	0.15
A ₂	1.35	1.40	1.45
D		9.00	_
D ₁		7.00	—
E	-	9.00	—
E ₁	-	7.00	_
Ν		48	-
е		0.50	-
b	0.17	0.22	0.27
С	0.09	_	0.20
θ	0°	3.5°	7°
L	0.45	0.60	0.75
L ₁	-	1.00	_
aaa	_	-	0.20
bbb	-	_	0.20
ссс	_	_	0.08
ddd	_	_	0.08

64-pin products 4.5

JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-LFQFP64-10x10-0.50	PLQP0064KB-C	_	0.3

DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.
 DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.

3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA.

4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.

Reference	Dimensions in millimeters		
Symbol	Min	Nom	Max
D	9.9	10.0	10.1
E	9.9	10.0	10.1
A ₂	—	1.4	—
H _D	11.8	12.0	12.2
HE	11.8	12.0	12.2
A	—	_	1.7
A ₁	0.05	—	0.15
bp	0.15	0.20	0.27
с	0.09	_	0.20
θ	0°	3.5°	8°
е	—	0.5	
x	—		0.08
у	—		0.08
Lp	0.45	0.6	0.75
L1	—	1.0	—

© 2015 Renesas Electronics Corporation. All rights reserved.

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP064-10x10-0.50	PLQP0064KL-A	0.36

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
A	_	_	1.60
A ₁	0.05	_	0.15
A ₂	1.35	1.40	1.45
D	_	12.00	-
D ₁	_	10.00	
E	—	12.00	
E ₁	—	10.00	_
N	_	64	-
е	_	0.50	-
b	0.17	0.22	0.27
С	0.09	_	0.20
θ	0°	3.5°	7°
L	0.45	0.60	0.75
L	_	1.00	-
aaa	_	_	0.20
bbb	_	_	0.20
ссс	_	_	0.08
ddd	-	—	0.08

REVISION HISTORY

RL78/G1F Datasheet

Boy	Dete	Description	
Rev.	Date	Page	Summary
0.10		—	First Edition issued
0.50	Jan 14, 2015	3	Modification of description in Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1F
		10	Addition of description in 1.4 Pin Identification
		11	Modification of description in 1.5 Block Diagram
		12, 13	Modification of description in 1.6 Outline of Functions
		14	Addition of target products to the beginning
		17	Modification of 2.2.2 On-chip oscillator characteristics
		18	Addition of note 4 in 2.3.1 Pin characteristics
		23, 25, 27	Modification of 2.3.2 Supply current characteristics
		73	Modification of 2.6.4 Comparator
		73	Modification of 2.6.5 PGA
		77	Renamed to 2.7 RAM Data Retention Characteristics
		79	Addition of target products to the beginning
		83	Modification of 3.2.2 On-chip oscillator characteristics
		87	Modification of "Output voltage, low"
		89, 91, 93	Modification of 3.3.2 Supply current characteristics
		130	Modification of 3.6.4 Comparator
		130	Modification of 3.6.5 PGA
		133	Renamed to 3.7 RAM Data Retention Characteristics
1.00	Jan 14, 2015	All	Modification of the unit symbol (PWMOP into PWMOPA)
		1	Modification of descriptions in 1.1 Features
		10	Modification of 1.4 Pin Identification
		13	Modification of 1.6 Outline of Functions
		73	Modification of 2.6.5 PGA
		130	Modification of 3.6.5 PGA
1.10	Aug 12, 2016	5	Addition of product name (RL78/G1F) and description (Top View) in 1.3.1 24-pin products
		6	Addition of product name (RL78/G1F) and description (Top View) in 1.3.2 32-pin products
		8	Addition of product name (RL78/G1F) and description (Top View) in 1.3.4 48-pin products
		9	Addition of product name (RL78/G1F) and description (Top View) in 1.3.5 64-pin products
1.11	Dec 22, 2020	3	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G1F
		4	Addition of title and modification of description in Table 1-1 List of Ordering Part Numbers
		136 to 141	Addition and modification of all in CHAPTER 39 PACKAGE DRAWINGS
		100 10 141	

REVISION HISTORY	RL78/G1F Datasheet

Rev. Date			Description
		Page	Summary
1.12	2 Apr 28, 2021 4		Modification of Table 1 - 1 List of Ordering Part Numbers
		6	Addition of 32-pin plastic HWQFN (5 × 5 mm, 0.5-mm pitch) in 1.3.2 32-pin
			products
		139	Addition of package drawing of PWQN0032KE-A in 4.2 32-pin products
1.13	Dec 20, 2022	All	The module name for CSI was changed to Simplified SPI (CSI)
		All	"wait" for IIC was modified to "clock stretch"
		4	Modification of Table 1 - 1 List of Ordering Part Numbers
		139	Addition of package drawing of PWQN0024KH-A in 4.1 24-pin products
		141	Addition of package drawing of PWQN0032KG-A in 4.2 32-pin products
		143	Addition of package drawing of PLQP0032GE-A in 4.2 32-pin products
		146	Addition of package drawing of PLQP0048KL-A in 4.4 48-pin products
		148	Addition of package drawing of PLQP0064KL-A in 4.5 64-pin products
1.20	Jun 30, 2023	25	Modification of description of Note 1 and 4 in 2.3.2 Supply current characteristics ($T_A = -40$
			to +85°C, 1.6 V ≤ $EV_{DD0} \le V_{DD} \le 5.5$ V, $V_{SS} = EV_{SS0} = 0$ V) (1/2)
		27	Modification of Note 1 and 5, deletion of Note 6 in 2.3.2 Supply current characteristics (T_A =
			-40 to +85°C, 1.6 V ≤ $EV_{DD0} \le V_{DD} \le 5.5$ V, $V_{SS} = EV_{SS0} = 0$ V) (2/2)
		91	Modification of description of Note 1 and 4 in 3.3.2 Supply current characteristics ($T_A = -40$
			to +105°C, 2.4 V ≤ $EV_{DD0} \le V_{DD} \le 5.5$ V, $V_{SS} = EV_{SS0} = 0$ V) (1/2)
		93	Modification of Note 1 and 5, deletion of Note 6 in 3.3.2 Supply current characteristics (T _A
			= -40 to +105°C, 2.4 V \leq EV _{DD0} \leq V _{DD} \leq 5.5 V, V _{SS} = EV _{SS0} = 0 V) (2/2)
		141	Modification of package drawing of PWQN0032KG-A in 4.2 32-pin products
1.30	Apr 26, 2024	3	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G1F
		4	Modification of Table 1 - 1 List of Ordering Part Numbers

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.