

Description

The SGAS706 is a solid-state chemiresistor sensor designed to detect nitrogen oxides in air. The sensor uses an integrated heater with highly sensitive MOx material tailored for detection of nitrogen oxides.

SGAGS706 Sensor

Features

- Sensor detects very low NO_x concentrations (<0.5 to 10 ppm)
- Larger dynamic range available (5 to 100 ppm with modified heater input)
- Environmental temperature range of -20°C to 50°C
- Environmental humidity range of 0% to 90% RH, noncondensing
- Low dependence on flow rate

Applications

- Outdoor Air Quality
- Breath Detection

Sensor Response Characteristics

Figure 1. Typical Response Data for Sensors Operated in Clean, Dry Gas

The NO_x sensor responds to most potential interferent vapors in the opposite direction from the NO_x response. This includes carbon monoxide and VOCs. The sensor exhibits a small response to ozone in the same direction as NO_x. The response to 0.1ppm ozone is less than the response to 0.1ppm NO₂.

Figure 2. Sensitivity and Selectivity

Typical NO_X Sensor Selectivity

Table 1. Typical NO_x Sensor Selectivity

Challenge Gas	Concentration	R_g/R_a or $-R_a/R_g$
NO ₂	10ppm	200
NOx	10ppm	45
H ₂	100pm	-2.2
NH ₃	25ppm	-1.1
CO ₂	5%	No response
SO ₂	5ppm	No response
CH ₄	1%	No response

Pin Assignments

Figure 3. Pin Assignments for SGAS706 Header – Top View

Table 2. Pin Descriptions

Pin Number	Name	Description	
1	Heater +	Positive input for V_H heater voltage supply	
2	Sensor +	High-side of resistive sensor element; positive input for sensing voltage V_C	
3	Heater –	Negative (ground) input for V_H heater voltage supply	
4	Sensor –	Low-side of resistive sensor element; connects to middle of resistor divider circuit and produces sensing voltage output (V_{OUT})	

Electrical Characteristics

Note: The specifications in Table 1 are typical values for NOx sensors. If the actual values differ, the customer will be notified with the shipment.

Note: All measurements were made in dry gas at room temperature. Specifications are subject to change.

 Table 3.
 DC Electrical Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
Рн	Heater power consumption	V _H = 4.7		500		mW
V _H	Recommended heater voltage	T _{sensor} = 200°C		4.7		VDC
R _H	Heater resistance	At room temperature	28	30	32	Ω
Vc	Recommended sensing voltage	Recommended	2.5		5.0	VDC
Ra	Resistance in air		0.020		20	MΩ
R ₁₀	Resistance in 10 ppm NO ₂		0.002		10	GΩ
R ₁₀ / R _a	Sensitivity		100			

Basic Measurement Circuit

The sensor can be operated using a simple voltage divider. This requires two voltage supplies: heater voltage (V_H) and circuit voltage (V_C). V_H is applied to the heater in order to maintain a constant, elevated temperature for optimum sensing. V_C is applied to allow a measurement of the output voltage (V_{OUT}) across a load resistor (R_L).

Figure 4. Basic Measurement Circuit

Pins 1 and 3 are attached to the heater. Apply V_H across these pins.

Pins 2 and 4 are attached to the resistive sensor element. Connect these pins in the measuring circuit. IDT supplies basic measurement circuitry for many of our sensors. Contact your local sales representative for more information.

Sensor Resistance Calculation

Sensor resistance (R_S) is calculated using the following formula (see Figure 4):

$$R_S = \frac{V_C - V_{OUT}}{V_{OUT}} \times R_L$$

Package Drawing

Figure 5. Package Outline Drawing and Dimensions

Ordering Information

Orderable Part Number	Package	Shipping Packaging	Temperature
SGAS706	TO-39	Box	-20°C to +50°C

Revision History

Revision Date	Description of Change	
November 9, 2016	Initial release with IDT branding.	

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 www.IDT.com Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales

Tech Support

www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.