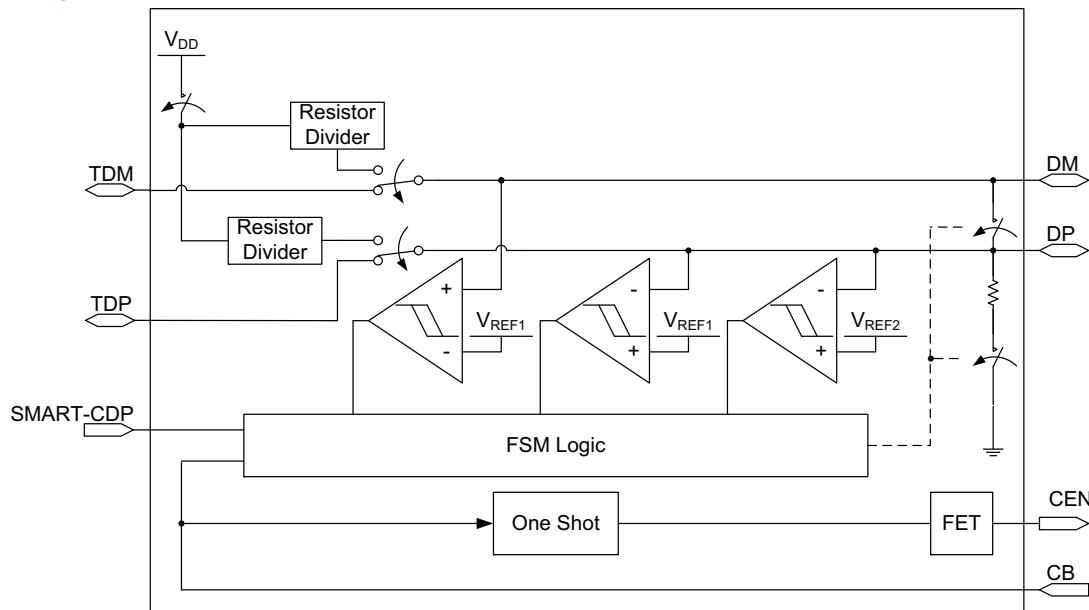
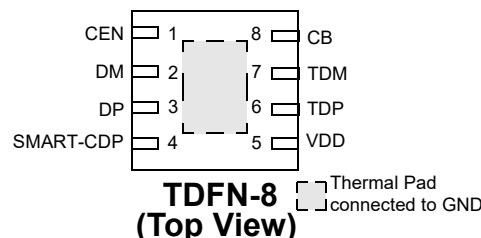


General Description

The SLG55596AV is a USB device that combines high speed USB switches with a USB host charger (dedicated charger) identification circuit. The device supports both the latest USB Battery Charging Specification Revision 1.2 including data contact detection and a set resistor bias for Apple* compliant devices as well as legacy USB D+/D- short detection using data line pull-up.


The SLG55596AV can also support CDP mode (FAST charging and data communication available mode if smartphone can support CDP mode).

The SLG55596AV can also support low speed / full speed mouse/keyboard wake-up from S3 mode.


Features

- High Speed USB Switching
- Low 4.0 pF (typ) On Capacitance
- Low 4.0 Ω (typ) On Resistance
- Low 0.5 Ω (typ) On Resistance Flatness
- 4.5 V to 5.5 V Supply Range
- Low Supply Current
- Automatic Current-Limit Switch Control
- Automatic USB Charger Identification Circuit
- CDP Support (active USB 2.0 data communication with 1.5 A charging)
- Apple iPad* @ 2.4 A charging current support
- Automatic CDP/SDP mode support with SMART-CDP=1 for "Always Data Communication"
- Chinese Telecom Standard YD/T 1591-2009 specification support
- Samsung Galaxy Tab** charge scheme support
- Pb-Free / RoHS Compliant / Halogen-Free
- TDFN-8 Package

Block Diagram

Pin Configuration

* Apple iPhone, iPad and iPod are trademarks of Apple Inc., registered in the U.S. and other countries.

** Samsung Galaxy Tab are trademarks of Samsung Electronics, registered in Korea and other countries.

Pin Description

Pin #	Pin Name	Type	Pin Description
1	CEN	Output	N-FET Open Drain Output. Current Limit Switch (CLS) Control Output. CB changes from 0 to 1 or 1 to 0. CEN will be low for 2 seconds (typ)
2	DM	Input/Output	USB Connector D-
3	DP	Input/Output	USB Connector D+
4	SMART-CDP	Input	Input Control logic (see truth table)
5	VDD	PWR	Power Supply. Connect a 0.1µF capacitor between VDD and GND as close as possible to the device.
6	TDP	Input/Output	Host USB Transceiver D+ Connection
7	TDM	Input/Output	Host USB Transceiver D- Connection
8	CB	Input	Switch Control Bit 0 = auto-detection charger identification active 1 = charging downstream port with active USB2.0 data communication mode with 1.5 A support
9	Thermal Pad	GND	Ground

Truth Table

CB	SMART-CDP	Function
0	0 or 1	DCP autodetect with mouse/keyboard wakeup (Pin 4 = 0 or 1)
1	0	S0 charging with SDP only
1	1	S0 charging with CDP or SDP only (depending on external device) And, when Non-CDP phone is plugged in, the CDP mode will be changed automatically to SDP mode during handshaking protocol for supporting data communication.

Ordering Information

Part Number	Type
SLG55596AV	TDFN-8
SLG55596AVTR	TDFN-8 - Tape and Reel

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
Supply Voltage	-0.3	6.0	V
Continuous Current into any terminal	-30	+30	mA
Continuous Power Dissipation	--	954	mW
Operating Temperature Range	-40	85	°C
Junction Temperature		150	°C
Storage Temperature Range	-65	150	°C
Lead Temperature (Soldering, 10s)		260	°C

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics - Power Supply $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = 25 \text{ }^{\circ}\text{C}$ (unless specified otherwise)

Parameter	Description	Condition/Note	Min.	Typ.	Max.	Unit
V_{DD}	Power Supply Range	$V_{CB} > V_{IH}$	4.5	5.0	5.5	V
		$V_{CB} = 0 \text{ V}$	4.75	--	5.25	V
I_{DD}	Supply Current $V_{DD} = 5 \text{ V}$	CB = LOW, SMART-CDP = X (autodetect with wakeup)	--	140	160	µA
		CB = HIGH, SMART-CDP = LOW (SDP)	--	20	30	µA
		CB = HIGH, SMART-CDP = HIGH (CDP)	--	30	50	µA

Electrical Characteristics - Analog Switch

 $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = 25^\circ\text{C}$ (unless specified otherwise)

Parameter	Description	Condition/Note	Min.	Typ.	Max.	Unit
V_{DP}, V_{DM}	Analog signal Range		0	--	V_{DD}	V
R_{ON}	On Resistance TDP/TDM Switch	$V_{DD} = -0.4 \text{ V to } 0.4 \text{ V}$, $I = 10 \text{ mA}$	--	3.5	--	Ω
		$V_{DP} = V_{DM} = 0 \text{ V to } 3.3 \text{ V}$ $V_{DD} = 5 \text{ V}$	--	4.0	7	Ω
ΔR_{ON}	On Resistance Match between channels TDP/TDM Switch	$V_{DD} = 5.0 \text{ V}$ $V_{DP} = V_{DM} = 400 \text{ mV}$ $I_{DP} = I_{DM} = 10 \text{ mA}$	--	0.1	--	Ω
R_{FLAT}	On Resistance flatness TDP/TDM Switch	$V_{DD} = 5.0 \text{ V}$ $V_{DP} = V_{DM} = 0 \text{ V to } V_{DD}$ $I_{DP} = I_{DM} = 10 \text{ mA}$	--	0.5	--	Ω
R_{SHORT}	On Resistance of TDP/TDM Short	$V_{CB} = 0 \text{ V}$ $V_{DP} = 1 \text{ V}$ $I_{DP} = I_{DM} = 10 \text{ mA}$	--	50	70	Ω
I_{TDPOFF}, I_{TDMOFF}	Off-Leakage Current	$V_{DD} = 3.6 \text{ V}$ $V_{DP} = V_{DM} = 0.3 \text{ V to } 3.3 \text{ V}$ $V_{TDP} = V_{TDM} = 3.3 \text{ V to } 0.3 \text{ V}$ $V_{CB} = 0 \text{ V}$	-250	--	250	nA
I_{DPON}, I_{DMON}	Off-Leakage Current	$V_{DD} = 3.6 \text{ V}$ $V_{DP} = V_{DM} = 3.3 \text{ V to } 0.3 \text{ V}$ $V_{CB} = V_{DD}$	-250	--	250	nA

Electrical Characteristics - Dynamic Performance

 $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = 25^\circ\text{C}$ (unless specified otherwise)

Parameter	Description	Condition/Note	Min.	Typ.	Max.	Unit
T_{ON}	Turn On Time	$V_{TDP} \text{ or } V_{TDM} = 1.5 \text{ V}$ $R_L = 300 \Omega$ $C_L = 35 \text{ pF}$	--	20	100	μs
T_{OFF}	Turn Off Time	$V_{TDP} \text{ or } V_{TDM} = 1.5 \text{ V}$ $R_L = 300 \Omega$ $C_L = 35 \text{ pF}$	--	1	5	μs
T_{PLH}, T_{PHL}	TDP/TDM Switch Propagation Delay	$R_L = R_S = 50 \Omega$	--	60	--	ps
T_{SKEW}	Output Skew	Skew between DP and DM when connected to TDP and TDM $R_L = R_S = 50 \Omega$	--	40	--	ps
C_{OFF}	TDP/TDM Off-Capacitance	$f = 1 \text{ MHz}$	--	2.0	--	pF
C_{ON}	DP/DM On-Capacitance	$f = 240 \text{ MHz}$	--	4.0	5.5	pF
BW	-3 dB Bandwidth	$R_L = R_S = 50 \Omega$	--	1000	--	MHz
V_{ISO}	Off-Isolation	$V_{TDP}, V_{DP} = 0 \text{ dBm}$ $R_L = R_S = 50 \Omega$ $f = 250 \text{ MHz}$	--	-20	--	dB
V_{CT}	Crosstalk	$V_{TDP}, V_{DP} = 0 \text{ dBm}$ $R_L = R_S = 50 \Omega$ $f = 250 \text{ MHz}$	--	-25	--	dB

Electrical Characteristics - Internal Resistors $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = 25^\circ\text{C}$ (unless specified otherwise)

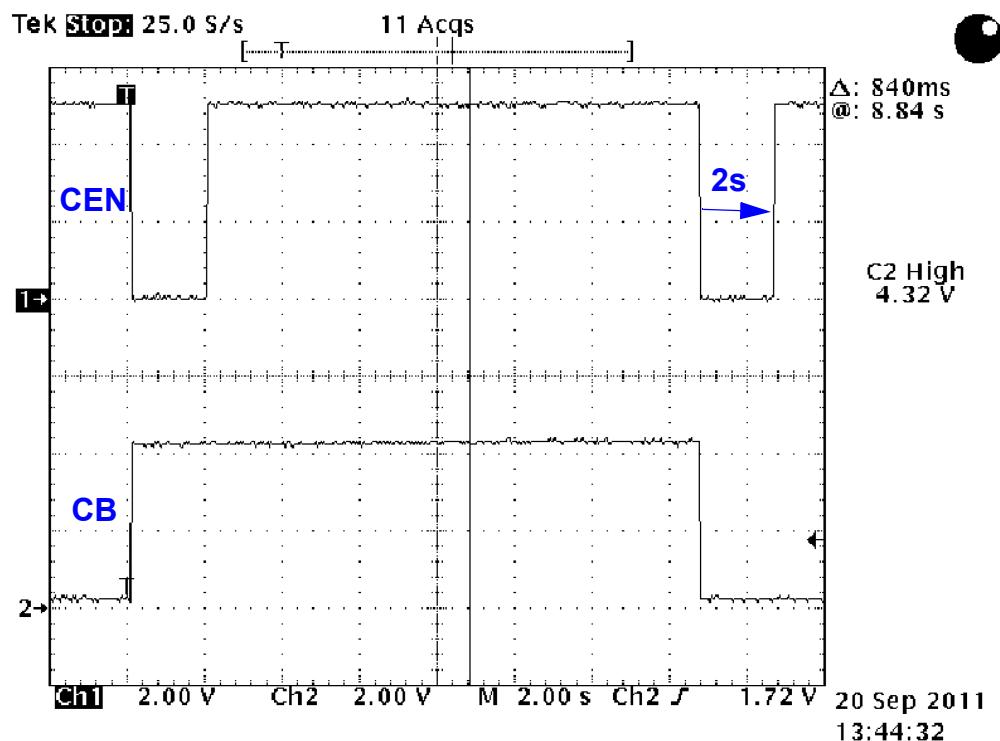
Parameter	Description	Condition/Note	Min.	Typ.	Max.	Unit
R_{PD}	DP/DM Short Pull-down		350	500	700	$\text{k}\Omega$
RT_{RP}	RP1/RP2 Ratio		0.8544	0.863	0.872	Ratio
R_{RP}	RP1 + RP2 Resistance		69.75	93.0	115.18	$\text{k}\Omega$
RT_{RM}	RM1/RM2 Ratio		0.8544	0.863	0.872	Ratio
R_{RM}	RM1 + RM2 Resistance		69.75	93.0	115.18	$\text{k}\Omega$

Electrical Characteristics - Logic Input CB $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = 25^\circ\text{C}$ (unless specified otherwise)

Parameter	Description	Condition/Note	Min.	Typ.	Max.	Unit
V_{IH}	CB Input Logic High		1.4	--	--	V
V_{IL}	CB Input Logic Low		--	--	0.4	V
I_{IN}	CB Input Leakage Current	$V_{DD} = 5.5 \text{ V}$ $0 \leq V_{CB} \leq V_{IL}$ or $V_{IH} \leq V_{CB} \leq V_{DD}$	-1	--	1	μA

Electrical Characteristics - Logic Input SMART-CDP $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = 25^\circ\text{C}$ (unless specified otherwise)

Parameter	Description	Condition/Note	Min.	Typ.	Max.	Unit
V_{IH}	SMART-CDP input Logic High		3.0	--	--	V
V_{IL}	SMART-CDP input Logic Low		--	--	0.8	V
I_{IN}	SMART-CDP Input Leakage Current	$V_{DD} = 5.5 \text{ V}$ $0 \text{ V} < V_{SMART-CDP} < V_{IL}$ or $V_{IH} < V_{SMART-CDP} < V_{DD}$	-1	--	1	μA


Electrical Characteristics - CEN Outputs $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = 25^\circ\text{C}$ (unless specified otherwise)

Parameter	Description	Condition/Note	Min.	Typ.	Max.	Unit
T_{VBT}	V_{BUS} Toggle Time	CB = Logic 0 to Logic 1 or Logic 1 to Logic 0	1.5	2.0	2.5	s
V_{OL_CEN}	CEN Output Logic Low Voltage	CB = Logic 0 to Logic 1 $I_{SINK} = 2 \text{ mA}$	--	--	0.4V	V
I_{OUT_CEN}	CEN Output Leakage Current	$V_{DD} = 5.5 \text{ V}$ $V_{CEN} = 5.5 \text{ V}$ or CEN deasserted	--	--	1	μA

Electrical Characteristics - ESD Protection $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = 25^\circ\text{C}$ (unless specified otherwise)

Parameter	Description	Condition/Note	Min.	Typ.	Max.	Unit
V_{ESD}	ESD Protection Level (DP and DM Only)	Human Body Model	--	± 8	--	kV
V_{ESD}	ESD Protection Level (All other pins)	Human Body Model	--	± 2	--	kV

CEN Function Waveform

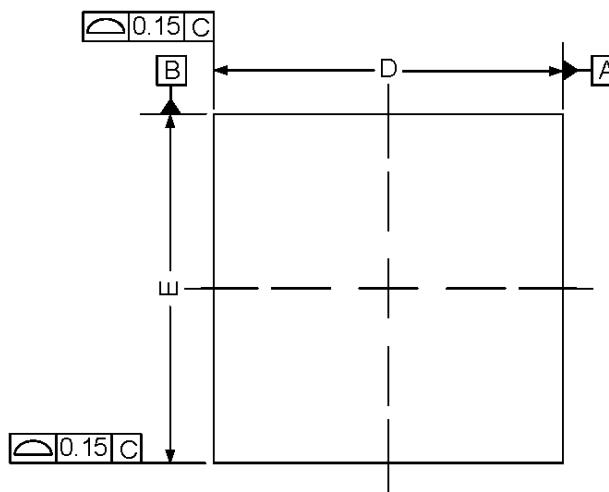
Package Top Marking System Definition

Part ID	8 7 6 5 XX A	Assembly Code
Datecode	DD L	Lot
	R	Revision

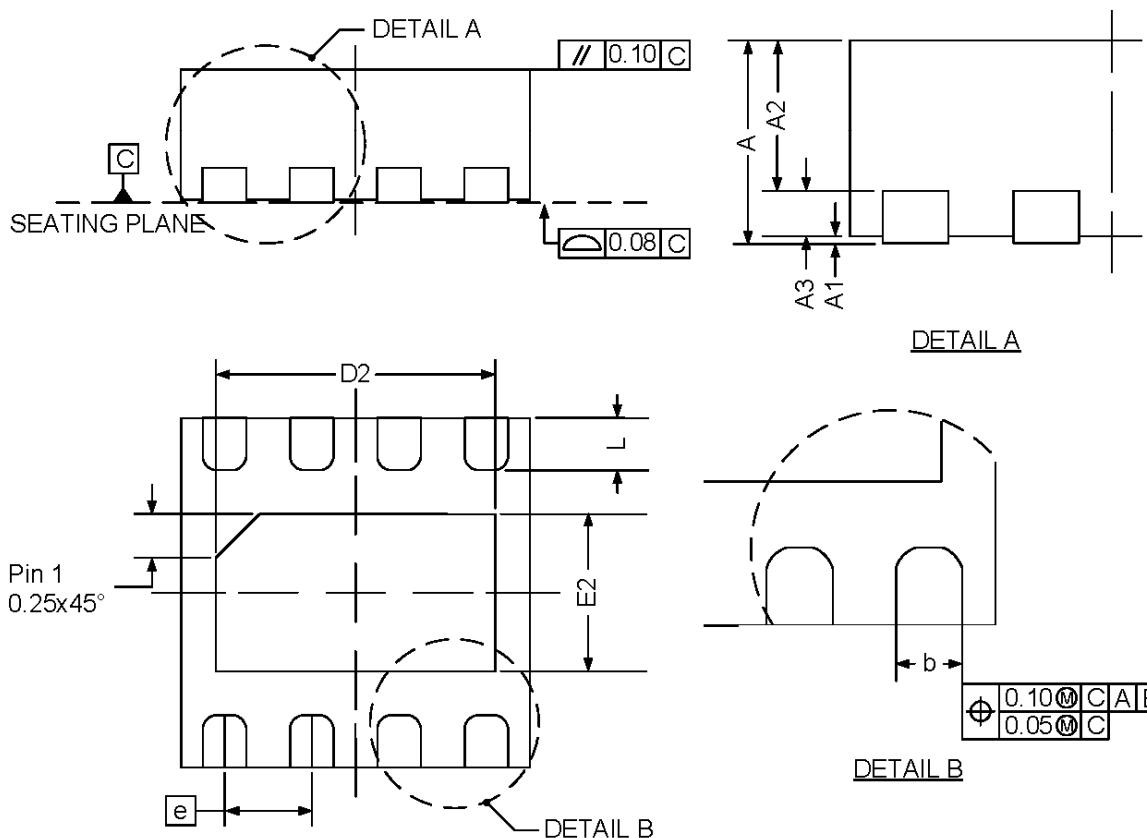
1 2 3 4

XX – Part ID Field: identifies the specific device configuration

A – Assembly Code Field: Assembly Location of the device.


DD – Date Code Field: Coded date of manufacture

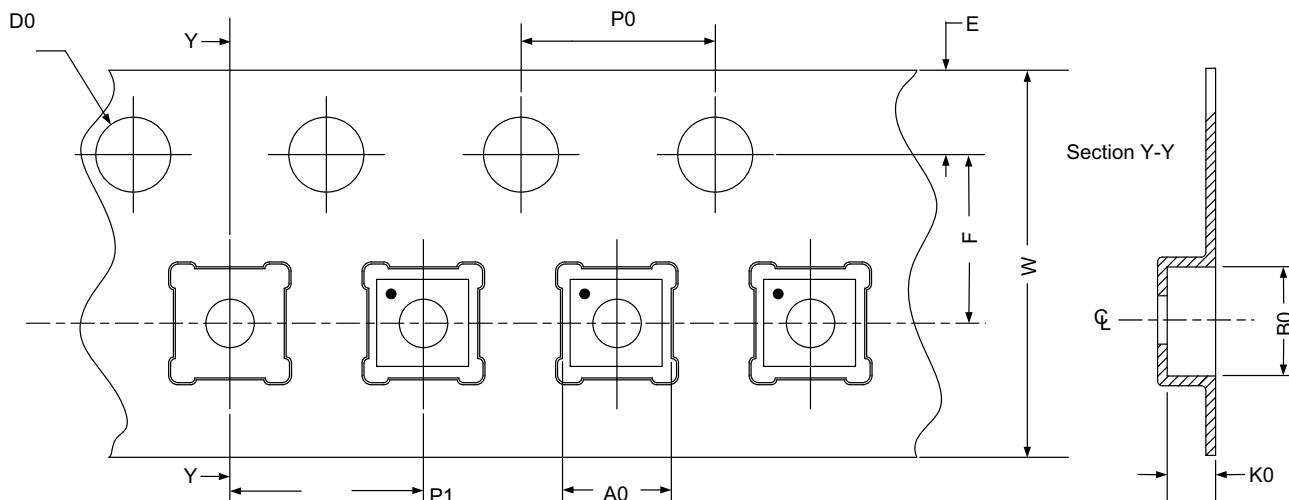
L – Lot Code: Designates Lot #


R – Revision Code: Device Revision

Package Drawing and Dimensions

8 Lead TDFN Package
JEDEC MO-229, Variation WCCD
IC Net Weight: 0.0095 g

Symbol	Min (mm)	NOM (mm)	Max (mm)
A	0.70	0.75	0.80
A1	0.00	--	0.05
A2	--	0.55	--
A3	--	0.20	--
b	0.20	0.25	0.30
D	1.90	2.00	2.10
D2	1.50	1.60	1.70
E	1.90	2.00	2.10
E2	0.80	0.90	1.00
e	0.50 BSC		
L	0.20	0.30	0.40



Tape and Reel Specifications

Package Type	# of Pins	Nominal Package Size [mm]	Max Units		Reel & Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
TDFN 8L Green	8	2 x 2 x 0.75	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
TDFN 8L Green	2.3	2.3	1.05	4	4	1.55	1.75	3.5	8

Refer to EIA-481 specification

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.00 mm³ (nominal). More information can be found at www.jedec.org.

Revision History

Date	Version	Change
2/8/2022	1.02	Updated Company name and logo Fixed typos
5/27/2020	1.01	Updated Style and formatting
4/22/2014	1.00	Production Release

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.