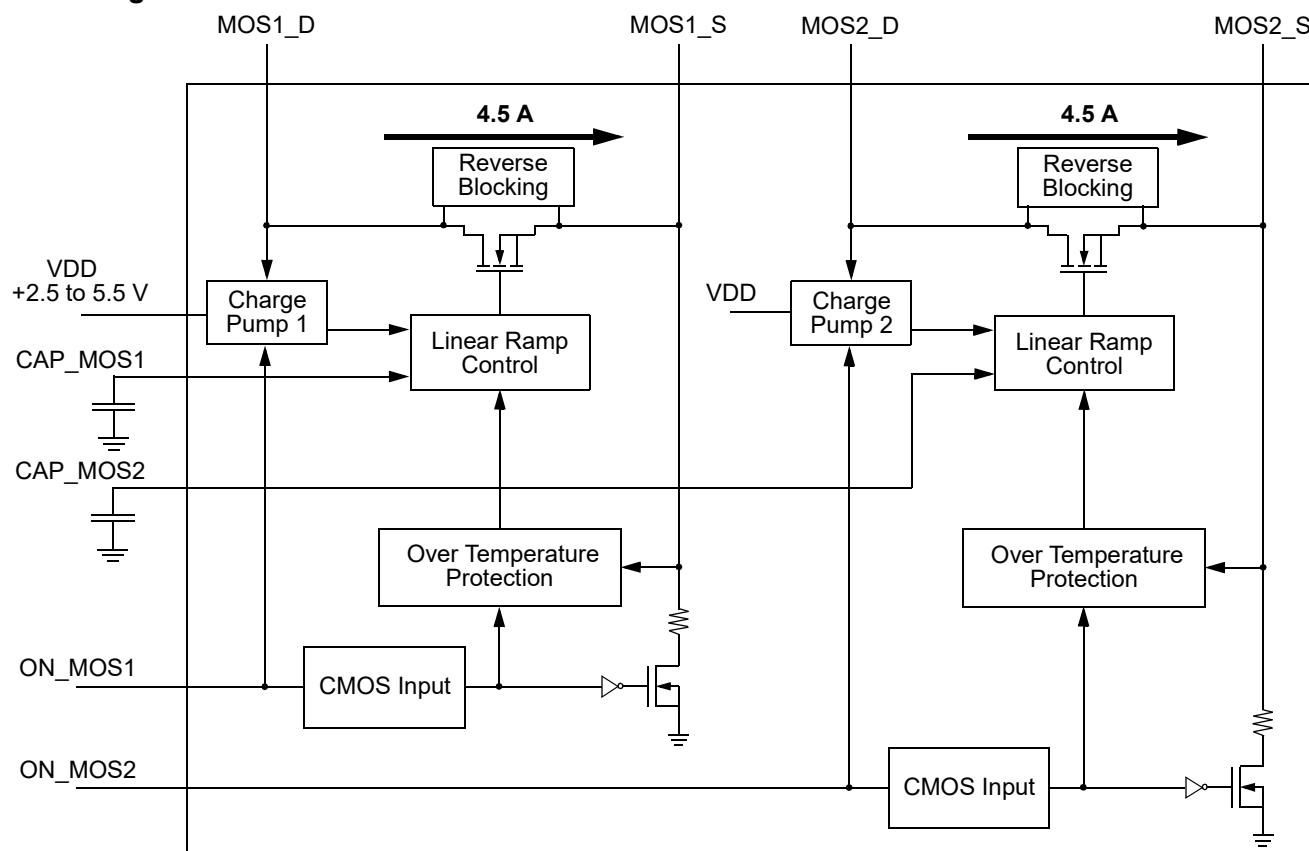


## Dual 4.5A Load Switch with Discharge and Reverse Current Blocking

### General Description

The SLG59M1603V is designed for load switching application. The part comes with two 4.5 A rated MOSFETs switched on by two ON control pins. Each MOSFETs turn on time is independently adjusted by an external capacitor.


### Features

- Two 4.5 A independent MOSFETs with Reverse Current Blocking
- Two Integrated VGS Charge Pumps
- Two internal discharges per channel for gate and source
- Independent Ramp Control
- Protected by thermal shutdown
- Pb-Free / RoHS Compliant
- Halogen-Free
- STDFN 14L, 1 x 3 x 0.55 mm

### Applications

- Ideal for switching ON and OFF S0 +5.0 and 3.3 V power rails with associated support circuitry discharges.
- Ideal for switching ON and OFF power rails 5 V or less.
- Can use either channel up to 5.5 A with combined maximum current of 8.5 A
- Maximum load capacitance of 1000  $\mu$ F for each Channel Source terminal.

### Block Diagram



### Pin Configuration

|         |   |    |          |
|---------|---|----|----------|
| MOS1_D  | 1 | 14 | MOS1_S   |
| MOS1_D  | 2 | 13 | MOS1_S   |
| ON_MOS1 | 3 | 12 | CAP_MOS1 |
| VDD     | 4 | 11 | GND      |
| ON_MOS2 | 5 | 10 | CAP_MOS2 |
| MOS2_D  | 6 | 9  | MOS2_S   |
| MOS2_D  | 7 | 8  | MOS2_S   |

**14-pin STDFN  
(Top View)**

**Pin Description**

| Pin # | Pin Name | Type   | Pin Description                         |
|-------|----------|--------|-----------------------------------------|
| 1     | MOS1_D   | MOSFET | Drain of MOSFET1                        |
| 2     | MOS1_D   | MOSFET | Drain of MOSFET1 (fused with pin 1)     |
| 3     | ON_MOS1  | Input  | Turns on MOS1 (4 MΩ pull down resistor) |
| 4     | VDD      | VDD    | +5VDD Power                             |
| 5     | ON_MOS2  | Input  | Turns on MOS2 (4 MΩ pull down resistor) |
| 6     | MOS2_D   | MOSFET | Drain of MOSFET2                        |
| 7     | MOS2_D   | MOSFET | Drain of MOSFET2 (fused with pin 6)     |
| 8     | MOS2_S   | MOSFET | Source of MOSFET2 (fused with pin 9)    |
| 9     | MOS2_S   | MOSFET | Source of MOSFET2                       |
| 10    | CAP_MOS2 | Input  | Sets ramp and turn on time for MOSFET2  |
| 11    | GND      | GND    | Ground                                  |
| 12    | CAP_MOS1 | Input  | Sets ramp and turn on time for MOSFET1  |
| 13    | MOS1_S   | MOSFET | Source of MOSFET1 (fused with pin 14)   |
| 14    | MOS1_S   | MOSFET | Source of MOSFET1                       |

**Ordering Information**

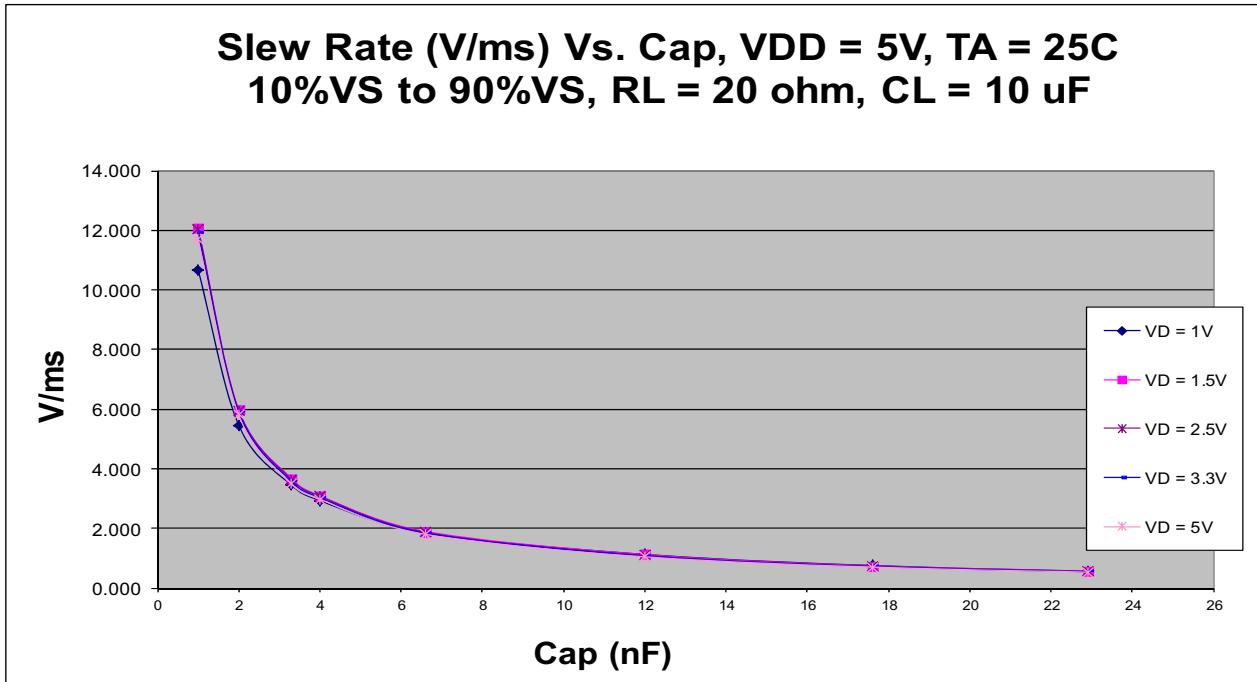
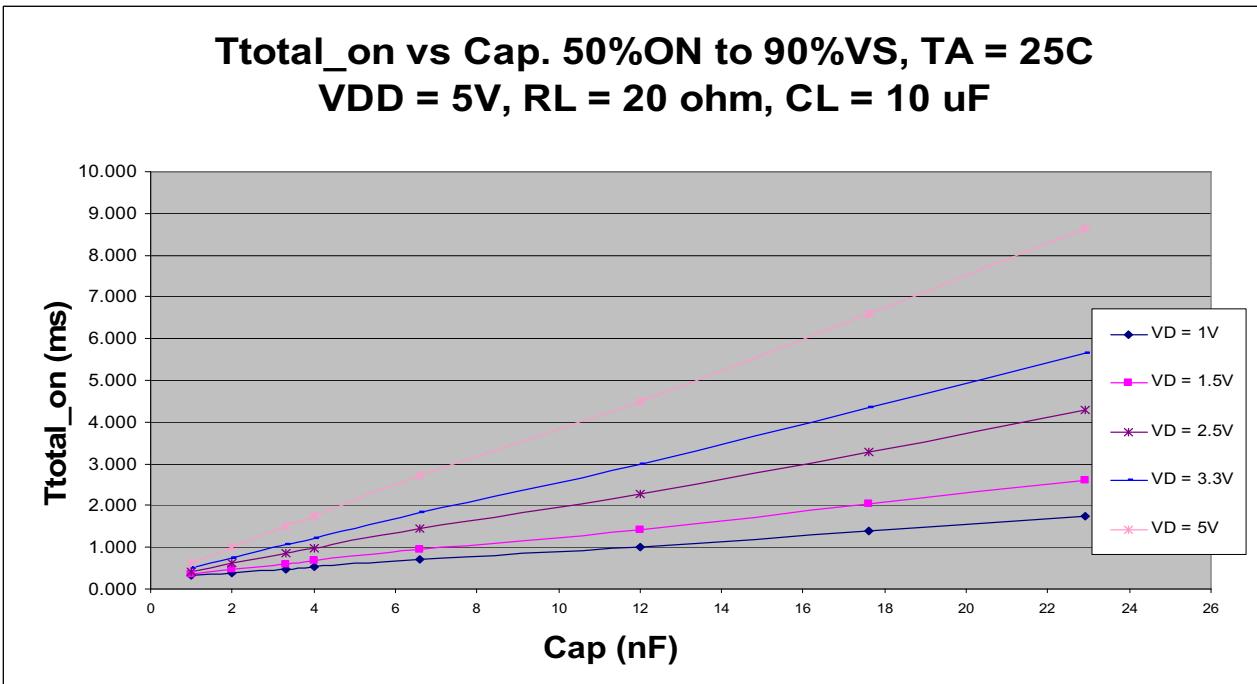
| Part Number   | Type                      | Production Flow             |
|---------------|---------------------------|-----------------------------|
| SLG59M1603V   | STDFN 14L                 | Industrial, -40 °C to 85 °C |
| SLG59M1603VTR | STDFN 14L (Tape and Reel) | Industrial, -40 °C to 85 °C |

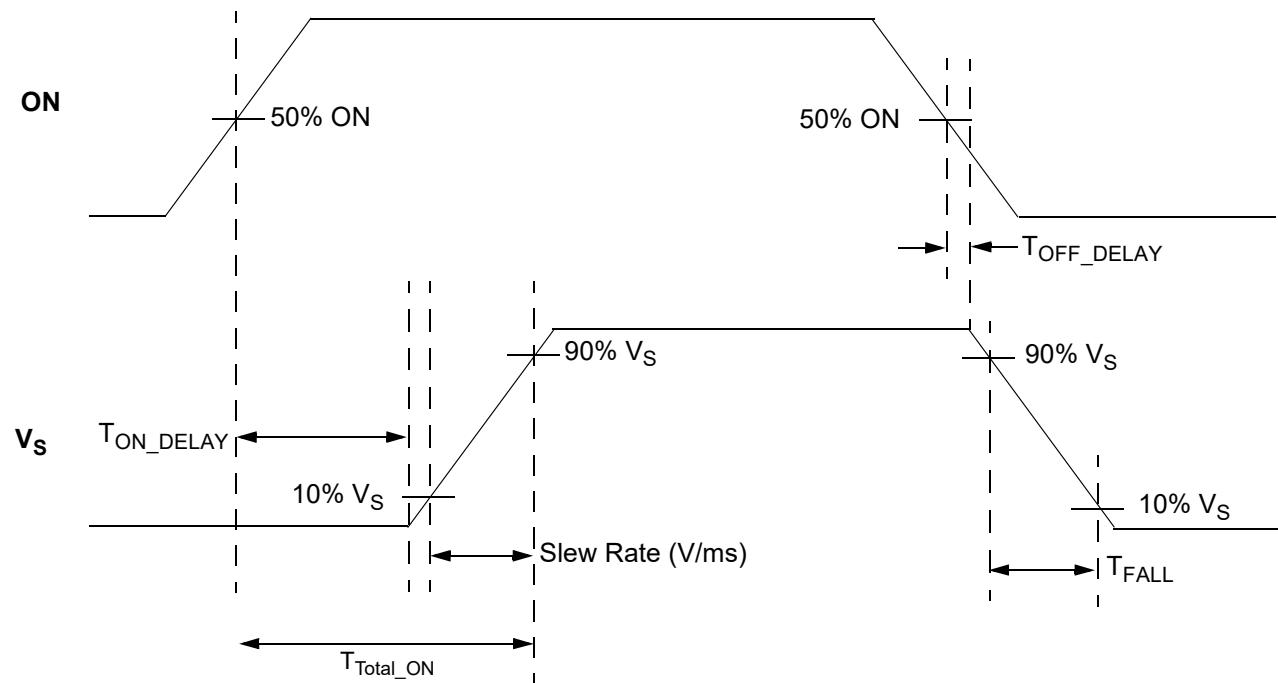
**Absolute Maximum Ratings**

| Parameter         | Description                       | Conditions                                                      | Min. | Typ. | Max. | Unit |
|-------------------|-----------------------------------|-----------------------------------------------------------------|------|------|------|------|
| $V_D$             | Power Supply                      |                                                                 | --   | --   | 6    | V    |
| $T_S$             | Storage Temperature               |                                                                 | -65  | --   | 150  | °C   |
| $ESD_{HBM}$       | ESD Protection                    | Human Body Model                                                | 2000 | --   | --   | V    |
| $W_{DIS}$         | Package Power Dissipation         |                                                                 | --   | --   | 1.2  | W    |
| $IDS_{MAX}$       | Max Operating Current             |                                                                 |      |      | 4.5  | A    |
| MOSFET $IDS_{PK}$ | Peak Current from Drain to Source | For no more than 10 continuous seconds out of every 100 seconds | --   | --   | 6    | A    |

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Electrical Characteristics** $T_A = -40^\circ\text{C}$  to  $85^\circ\text{C}$  (unless otherwise stated)

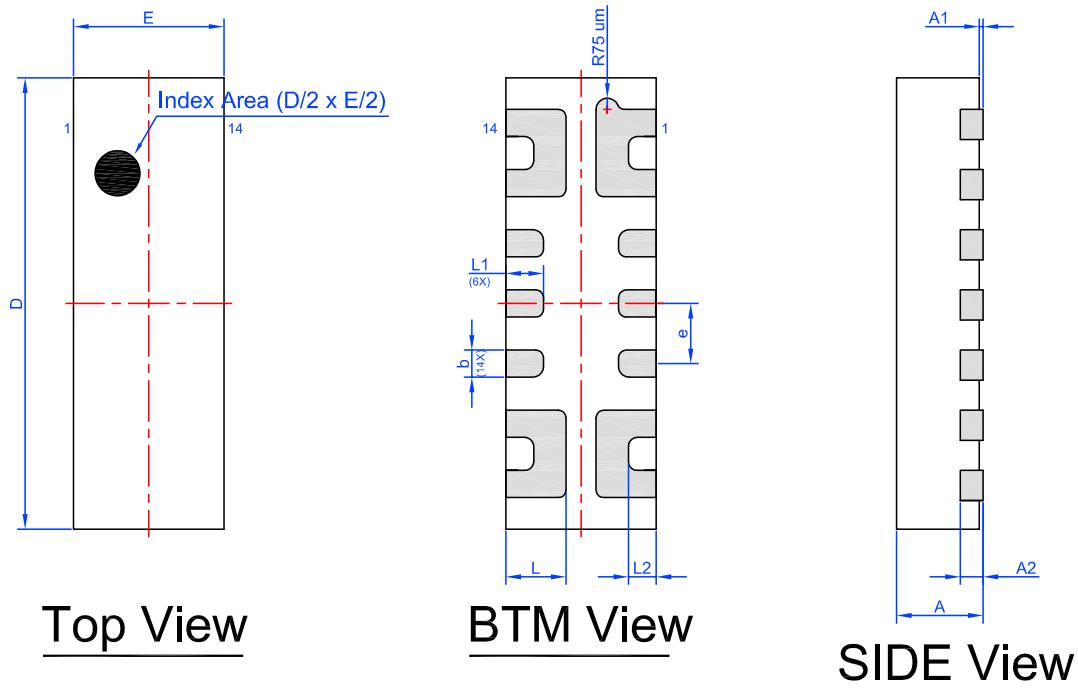


| Parameter       | Description                                             | Conditions                                                                                                                     | Min.                      | Typ. | Max.     | Unit |
|-----------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|----------|------|
| $V_{DD}$        | Power Supply Voltage                                    |                                                                                                                                | 2.5                       | --   | 5.5      | V    |
| $I_{DD}$        | Power Supply Current when OFF                           |                                                                                                                                | --                        | 0.1  | 1        | µA   |
|                 | Power Supply Current ON_MOS_1 & ON_MOS_2 (Steady State) |                                                                                                                                | --                        | 50   | 100      | µA   |
| $RDS_{ON}$      | ON Resistance                                           | $T_A = 25^\circ\text{C}$ MOSFET1 @100 mA                                                                                       | --                        | 16.0 | 19.8     | mΩ   |
|                 |                                                         | $T_A = 70^\circ\text{C}$ MOSFET1 @100 mA                                                                                       | --                        | 18.7 | 24.2     | mΩ   |
|                 |                                                         | $T_A = 85^\circ\text{C}$ MOSFET1 @100 mA                                                                                       |                           | 19.8 | 25.3     | mΩ   |
|                 |                                                         | $T_A = 25^\circ\text{C}$ MOSFET2 @100 mA                                                                                       | --                        | 16.0 | 19.8     | mΩ   |
|                 |                                                         | $T_A = 70^\circ\text{C}$ MOSFET2 @100 mA                                                                                       | --                        | 18.7 | 24.2     | mΩ   |
|                 |                                                         | $T_A = 85^\circ\text{C}$ MOSFET2 @100 mA                                                                                       |                           | 19.8 | 25.3     | mΩ   |
| MOSFET $IDS$    | Current from Drain to Source for each MOSFET            | Continuous, each channel                                                                                                       | --                        | --   | 4.5      | A    |
| $IDS_{LKG}$     | IDS Leakage (Reverse Blocking enabled)                  | $V_S = 1.0\text{ V}$ to $5.0\text{ V}$ , $V_{DD} = V_D = 0\text{ V}$ , ON_MOS = LOW, 0 to $85^\circ\text{C}$ , each channel    | --                        | 0.5  | 1.5      | µA   |
|                 |                                                         | $V_S = 1.0\text{ V}$ to $5.0\text{ V}$ , $V_{DD} = V_D = 0\text{ V}$ , ON_MOS = LOW, $-40$ to $0^\circ\text{C}$ , each channel | --                        | 3    | 5        | µA   |
| $V_D$           | Drain Voltage                                           |                                                                                                                                | 0.85                      | 5.0  | $V_{DD}$ | V    |
| $T_{ON\_Delay}$ | ON pin Delay Time                                       | 50% ON to Ramp Begin, $R_L = 20\text{ }\Omega$ , no $C_L$                                                                      | 0                         | 300  | 500      | µs   |
| $T_{Total\_ON}$ | Total Turn On Time                                      | 50% ON to 90% $V_S$                                                                                                            | Configurable <sup>1</sup> |      |          | ms   |
|                 |                                                         | Example: CAP = 4 nF, $V_{DD} = V_D = 5\text{ V}$ , Source_Cap = 10 µF, $R_L = 20\text{ }\Omega$                                | --                        | 2.0  | --       | ms   |
| $T_{SLEWRATE}$  | Slew Rate                                               | 10% $V_S$ to 90% $V_S$                                                                                                         | Configurable <sup>1</sup> |      |          | V/ms |
|                 |                                                         | Example: CAP = 4 nF, $V_{DD} = V_D = 5\text{ V}$ , Source_Cap = 10 µF, $R_L = 20\text{ }\Omega$                                | --                        | 3.0  | --       | V/ms |
| $CAP_{SOURCE}$  | Source Cap                                              | Source to GND                                                                                                                  | --                        | --   | 1000     | µF   |
| $R_{DIS}$       | Discharge Resistance                                    |                                                                                                                                | 100                       | 150  | 300      | Ω    |
| $ON\_V_{IH}$    | High Input Voltage on ON pin                            |                                                                                                                                | 0.85                      | --   | $V_{DD}$ | V    |
| $ON\_V_{IL}$    | Low Input Voltage on ON pin                             |                                                                                                                                | -0.3                      | 0    | 0.3      | V    |


$T_A$  = -40 °C to 85 °C (unless otherwise stated)

| Parameter        | Description                          | Conditions                                                                  | Min. | Typ. | Max. | Unit |
|------------------|--------------------------------------|-----------------------------------------------------------------------------|------|------|------|------|
| $THERM_{ON}^2$   | Thermal shutoff turn-on temperature  |                                                                             | --   | 125  | --   | °C   |
| $THERM_{OFF}$    | Thermal shutoff turn-off temperature |                                                                             | --   | 100  | --   | °C   |
| $THERM_{TIME}$   | Thermal shutoff time                 |                                                                             | --   | --   | 1    | ms   |
| $T_{OFF\_Delay}$ | OFF Delay Time                       | 50% ON to $V_S$ Fall, $V_{DD} = V_D = 5$ V,<br>$R_L = 20 \Omega$ , no $C_L$ | --   | --   | 15   | μs   |

Notes:

1. Refer to table for configuration details.
2. When device enters thermal shutdown, both channels will turn off.


**T<sub>SLEW</sub> vs. CAP****T<sub>TOTAL\_ON</sub> vs. CAP**

**T<sub>Total\_ON</sub>, T<sub>ON\_Delay</sub> and Slew Rate Measurement**

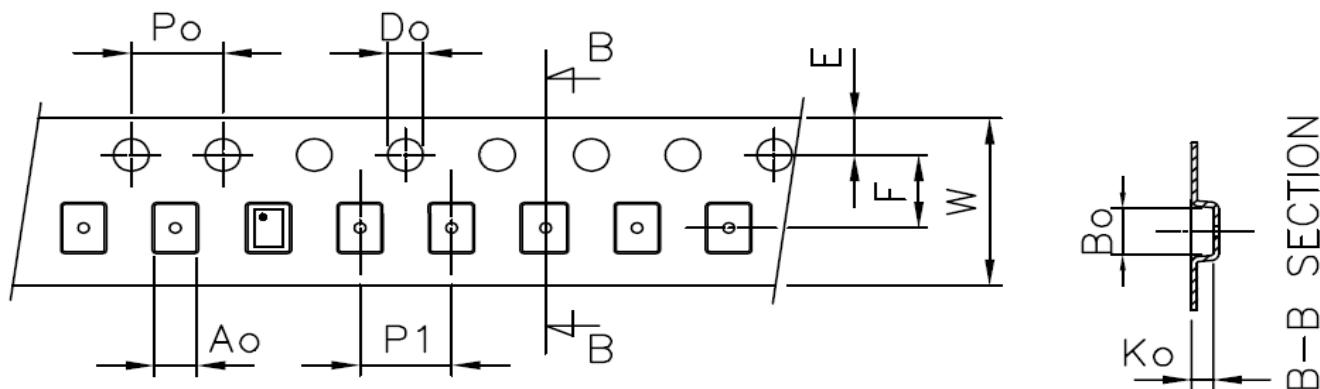
**Package Top Marking System Definition**

## Package Drawing and Dimensions

14 Lead STDFN Package 1 mm x 3 mm (Fused Lead)



Unit: mm


| Symbol | Min      | Nom. | Max   | Symbol | Min  | Nom. | Max  |
|--------|----------|------|-------|--------|------|------|------|
| A      | 0.50     | 0.55 | 0.60  | D      | 2.95 | 3.00 | 3.05 |
| A1     | 0.005    | -    | 0.050 | E      | 0.95 | 1.00 | 1.05 |
| A2     | 0.10     | 0.15 | 0.20  | L      | 0.35 | 0.40 | 0.45 |
| b      | 0.13     | 0.18 | 0.23  | L1     | 0.20 | 0.25 | 0.30 |
| e      | 0.40 BSC |      |       | L2     | 0.06 | 0.11 | 0.16 |

**Tape and Reel Specifications**

| Package Type | # of Pins | Nominal Package Size | Units per Reel | Max Units per Box | Reel & Hub Size (mm) | Trailer A |             | Leader B |             | Pocket Tape (mm) |       |
|--------------|-----------|----------------------|----------------|-------------------|----------------------|-----------|-------------|----------|-------------|------------------|-------|
|              |           |                      |                |                   |                      | Pockets   | Length (mm) | Pockets  | Length (mm) | Width            | Pitch |
| STDFN 14L    | 14        | 1x3x0.55mm           | 3000           | 3000              | 178/60               | 100       | 400         | 100      | 400         | 8                | 4     |

**Carrier Tape Drawing and Dimensions**

| Package Type | Pocket BTM Length [mm] | Pocket BTM Width [mm] | Pocket Depth [mm] | Index Hole Pitch [mm] | Pocket Pitch [mm] | Index Hole Diameter [mm] | Index Hole to Tape Edge [mm] | Index Hole to Pocket Center [mm] | Tape Width [mm] |
|--------------|------------------------|-----------------------|-------------------|-----------------------|-------------------|--------------------------|------------------------------|----------------------------------|-----------------|
|              | A0                     | B0                    | K0                | P0                    | P1                | D0                       | E                            | F                                | W               |
| STDFN 14L    | 1.15                   | 3.15                  | 0.7               | 4                     | 4                 | 1.5                      | 1.75                         | 3.5                              | 8               |


**Recommended Reflow Soldering Profile**

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 1.65 mm<sup>3</sup> (nominal). More information can be found at [www.jedec.org](http://www.jedec.org).

**Revision History**

| Date      | Version | Change                                       |
|-----------|---------|----------------------------------------------|
| 2/4/2022  | 1.03    | Updated Company name and logo<br>Fixed typos |
| 9/29/2015 | 1.02    | Updated Block Diagram                        |

## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit [www.renesas.com/contact-us/](http://www.renesas.com/contact-us/).