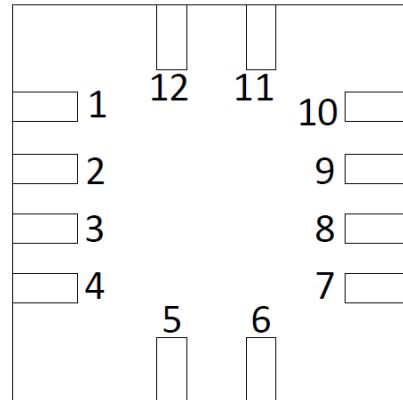


Standard reset circuit for JTAG I/F

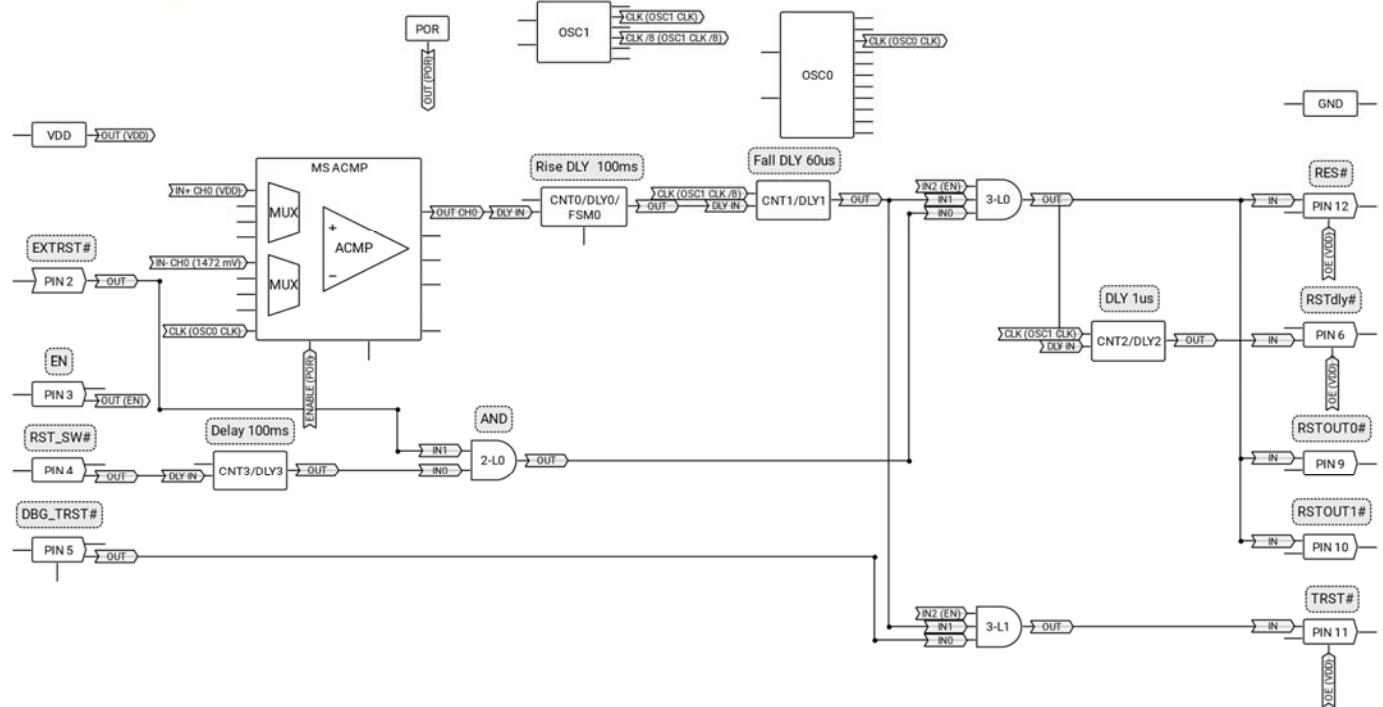

General Description

Renesas SLG7RN46360 is a low power and small form device. The SoC is housed in a 1.6mm x 1.6mm STQFN package which is optimal for using with small devices.

Features

- Low Power Consumption
- Pb - Free / RoHS Compliant
- Halogen - Free
- STQFN - 12 Package

Pin Configuration


Output Summary

3 Outputs - 3-State Output 1X
2 Outputs - Open Drain NMOS 1X

STQFN-12
(Top View)

Pin Name

Pin #	Pin name	Pin #	Pin name
1	VDD	7	GND
2	EXTRST#	8	NC
3	EN	9	RSTOUT0#
4	RST_SW#	10	RSTOUT1#
5	DBG_TRST#	11	TRST#
6	RSTdly#	12	RES#

Block Diagram

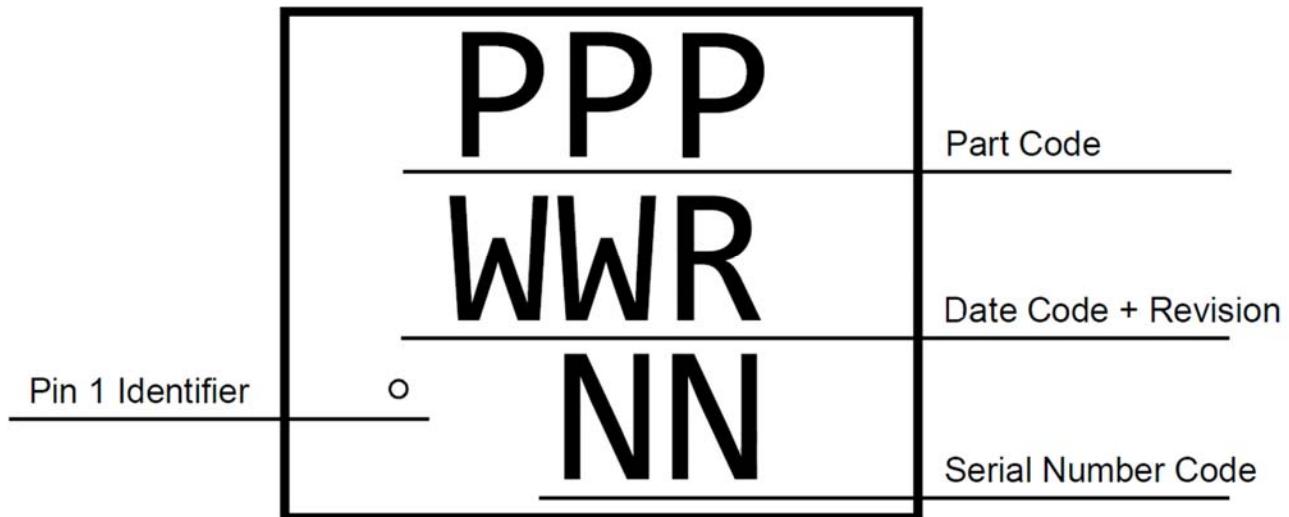
Standard reset circuit for JTAG I/F**Pin Configuration**

Pin #	Pin Name	Type	Pin Description	Internal Resistor
1	VDD	PWR	Supply Voltage	--
2	EXTRST#	Digital Input	Digital Input without Schmitt trigger	1MΩ pulldown
3	EN	Digital Input	Digital Input without Schmitt trigger	floating
4	RST_SW#	Digital Input	Digital Input without Schmitt trigger	floating
5	DBG_TRST#	Digital Input	Digital Input without Schmitt trigger	1MΩ pulldown
6	RSTdly#	Digital Output	3-State Output 1X	1MΩ pulldown
7	GND	GND	Ground	--
8	NC	--	Keep Floating or Connect to GND	--
9	RSTOUT0#	Digital Output	Open Drain NMOS 1X	floating
10	RSTOUT1#	Digital Output	Open Drain NMOS 1X	floating
11	TRST#	Digital Output	3-State Output 1X	1MΩ pulldown
12	RES#	Digital Output	3-State Output 1X	1MΩ pulldown

Ordering Information

Part Number	Package Type
SLG7RN46360V	12-pin STQFN - Tape and Reel (3k units)

Standard reset circuit for JTAG I/F
Absolute Maximum Conditions


Parameter	Min.	Max.	Unit
V_{HIGH} to GND	-0.3	7	V
Voltage at Input Pin	GND-0.5V	$V_{DD}+0.5V$	V
Maximum Average or DC Current (Through V_{DD} or GND pin)	--	90	mA
Maximum Average or DC Current (Through pin)	Push-Pull 1x	--	11
	OD 1x	--	11
Current at Input Pin	-1.0	1.0	mA
Input leakage Current (Absolute Value)	--	1000	nA
Storage Temperature Range	-65	150	°C
Junction Temperature	--	150	°C
ESD Protection (Human Body Model)	2000	--	V
ESD Protection (Charged Device Model)	1300	--	V
Moisture Sensitivity Level	1		

Electrical Characteristics

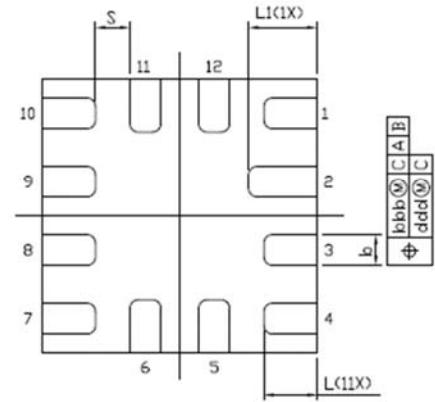
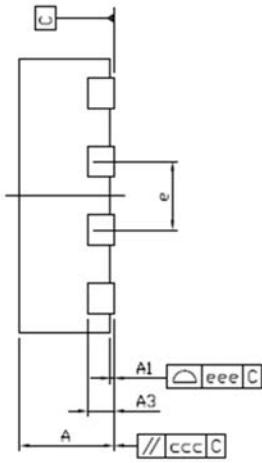
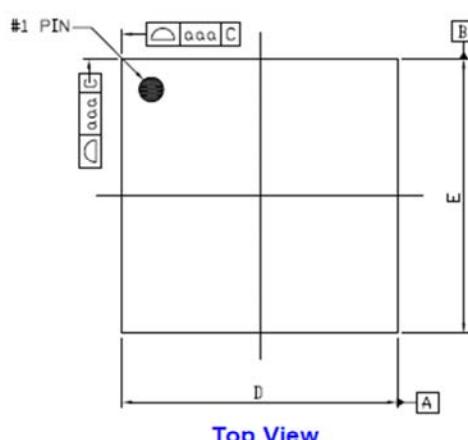
Symbol	Parameter	Condition/Note	Min.	Typ.	Max.	Unit
V_{DD}	Supply Voltage		3	3.3	3.6	V
T_A	Operating Temperature		-40	25	85	°C
C_{VDD}	Capacitor Value at V_{DD}		0.1	--	--	μF
C_{IN}	Input Capacitance		--	2.5	--	pF
I_Q	Quiescent Current	Static inputs and floating outputs. PINs 2,3,4,5 are LOW. (after DLY0 time)	--	40	--	μA
V_O	Maximal Voltage Applied to any PIN in High-Impedance State		--	--	$V_{DD}+0.3$	V
V_{IH}	HIGH-Level Input Voltage	Logic Input (Note 1)	$0.7 \times V_{DD}$	--	$V_{DD}+0.3$	V
V_{IL}	LOW-Level Input Voltage	Logic Input (Note 1)	GND-0.3	--	$0.3 \times V_{DD}$	V
V_{OH}	HIGH-Level Output Voltage	Push-Pull 1X, $I_{OH}=3mA$ at $V_{DD}=3.3V$	2.68	--	--	V
V_{OL}	LOW-Level Output Voltage	Push-Pull 1X, $I_{OL}=3mA$, at $V_{DD}=3.3V$	--	--	0.227	V
		Open Drain NMOS 1X, $I_{OL}=3mA$, at $V_{DD}=3.3V$	--	--	0.089	V
I_{OH}	HIGH-Level Output Current	Push-Pull 1X, $V_{OH}=2.4V$ at $V_{DD}=3.3V$	5.125	--	--	mA
I_{OL}	LOW-Level Output Current (Note 2)	Push-Pull 1X, $V_{OL}=0.4V$, at $V_{DD}=3.3V$	4.622	--	--	mA
		Open Drain NMOS 1X, $V_{OL}=0.4V$, at $V_{DD}=3.3V$	11.438	--	--	mA
R_{PULL_DOWN}	Internal Pull Down Resistance	Pull down on PINs 2, 5, 6, 11, 12	--	1	--	MΩ
T_{DLY0}	Delay time	At temperature 25°C	97.57	100.34	103.60	ms
		At temperature -40 +85°C (Note 3)	96.74	100.34	109.89	ms
T_{DLY1}	Delay time	At temperature 25°C	59	60	63	μs
		At temperature -40 +85°C (Note 3)	59	60	65	μs
T_{DLY2}	Delay time	At temperature 25°C	0.9	1.0	1.4	μs
		At temperature -40 +85°C (Note 3)	0.9	1.0	1.5	μs

Standard reset circuit for JTAG I/F

T _{DLY3}	Delay time	At temperature 25°C	97.57	100.34	103.60	ms
		At temperature -40 +85°C (Note 3)	96.74	100.34	109.89	ms
V _{ACMP}	MS ACMP Channel0 Threshold Voltage	Low to High transition, at temperature 25°C	2924	--	2963	mV
		Low to High transition, at temperature -40 +85°C (Note 3)	2910	--	2970	mV
		High to Low transition, at temperature 25°C	2925	--	2963	mV
		High to Low transition, at temperature -40 +85°C (Note 3)	2909	--	2971	mV
T _{su}	Startup Time	From V _{DD} rising past P _{ONTHR}	--	1.85	3.42	ms
P _{ONTHR}	Power On Threshold	V _{DD} Level Required to Start Up the Chip	1.55	1.86	2.17	V
P _{OFFTHR}	Power Off Threshold	V _{DD} Level Required to Switch Off the Chip	1.06	1.34	1.62	V
Note 1 No hysteresis.						
Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.						
Note 3 Guaranteed by Design.						

Package Top Marking

Datasheet Revision	Programming Code Number	Lock Status	Checksum	Part Code	Revision	Date
0.20	008	U	0xC9D5A51E	1EZ	C	09/03/2024




Lock coverage for this part is indicated by , from one of the following options:

<input checked="" type="checkbox"/>	Unlocked
<input type="checkbox"/>	Partly lock read (mode 1)
<input type="checkbox"/>	Partly lock read2 (mode 2)
<input type="checkbox"/>	Partly lock read2/write (mode 3)
<input type="checkbox"/>	All lock read (mode 4)
<input type="checkbox"/>	All lock write (mode 5)
<input type="checkbox"/>	All lock read/write (mode 6)

The IC security bit is locked/set for code security for production unless otherwise specified. The Programming Code Number is not changed based on the choice of locked vs. unlocked status.

Package Outlines

JEDEC MO-220IC Net Weight: 0.0035 g

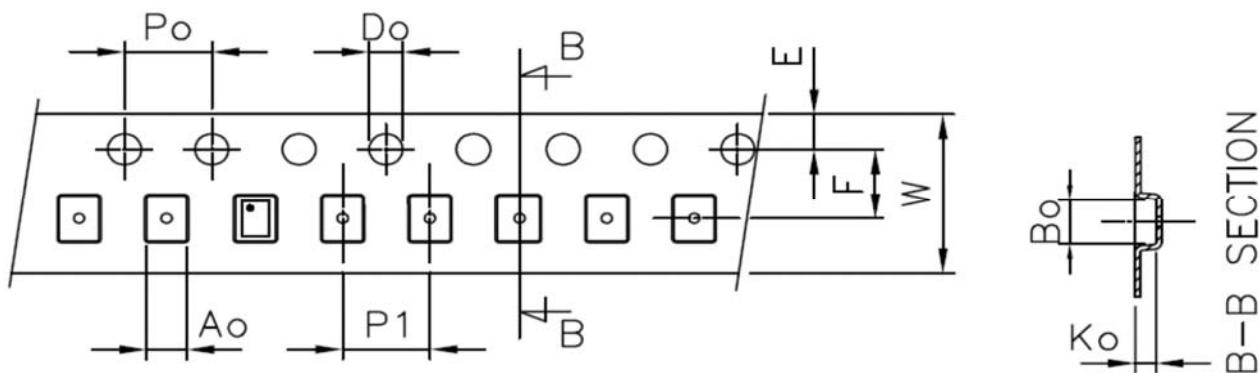
Controlling dimensions: mm

Symbol	MILLIMETER			INCH					
	Min	Nom.	Max	Min	Nom.	Max			
A	0.50	0.55	0.60	0.020	0.022	0.024			
A1	0.00	0.02	0.05	0.000	0.001	0.002			
A3	0.10	0.15	0.20	0.004	0.006	0.008			
B	1.55	1.60	1.65	0.061	0.063	0.065			
E	1.55	1.60	1.65	0.061	0.063	0.065			
e	0,40 BSC			0,016 BSC					
L	0.26	0.31	0.36	0.010	0.012	0.014			
L1	0.35	0.40	0.45	0.014	0.016	0.018			
b	0.13	0.18	0.23	0.005	0.007	0.009			
S	0.200 REF			0.008 REF					
aaa	0.07		0.003						
bbb	0.07		0.003						
ccc	0.10		0.004						
ddd	0.05		0.002						
eee	0.08		0.003						

"A1" max lead coplanarity 0.05 mm

Standard tolerance: ± 0.05

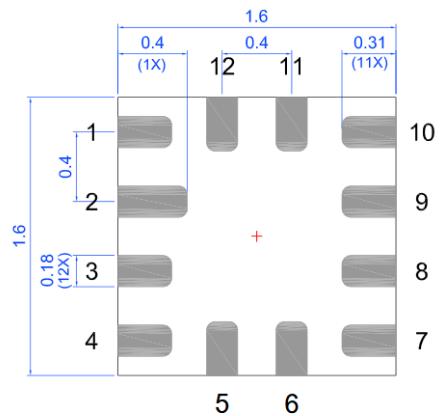
Notes:


1. All dimensions are in millimeters.
2. Dimension "b" applies to metalized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension "b" should not be measured in that radius area.
3. Bilateral coplanarity zone applies to the exposed heat sink slug as well as the terminals.

Standard reset circuit for JTAG I/F
Tape and Reel Specification

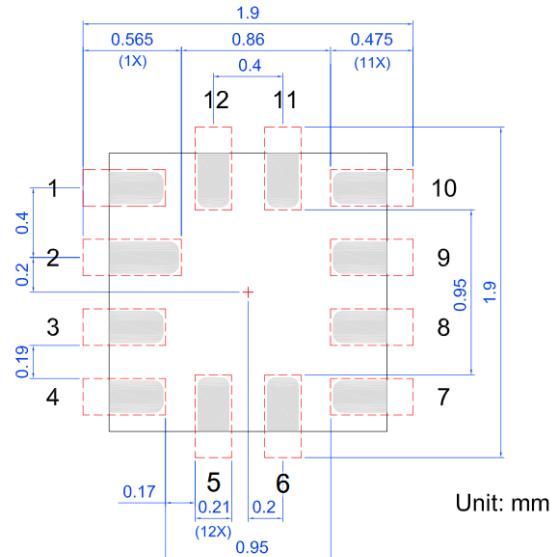
Package Type	# of Pins	Nominal Package Size [mm]	Max Units		Reel & Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
STQFN 12L 1.6mm x 1.6mm x 0.55mm 0.4P FC Green	12	1.6x1.6x0.55	3000	3000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions


Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
STQFN 12L 1.6mm x 1.6mm x 0.55mm 0.4P FC Green	1.9	2.3	0.76	4	4	1.5	1.75	3.5	8



Recommended Reflow Soldering Profile


Please see IPC/JEDEC J-STD-020. More information can be found at www.jedec.org.

Layout Guidelines

Expose Pad
(Package face down)

Recommended Landing Pattern
(Package face down)

Datasheet Revision History

Date	Version	Change
03/07/2023	0.10	New design
10/13/2023	0.11	Updated Device Revision Table
10/25/2023	0.12	Added PIN2 and 2-L0 LUT, set PIN12 output mode to 1x push pull
10/30/2023	0.13	Updated Device Revision Table
01/23/2024	0.14	The PIN11 and PIN12 output mode were updated to 1x 3-State
03/14/2024	0.15	Design updated by customer
04/23/2024	0.16	Design updated by customer
05/15/2024	0.17	Design updated by customer
08/12/2024	0.18	Design updated by customer
08/20/2024	0.19	Design updated by customer
09/03/2024	0.20	Updated DRS Table

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.