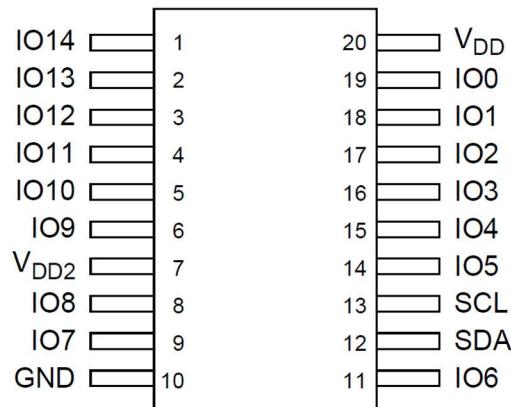


Emulator/Manual Reset Switching Circuit

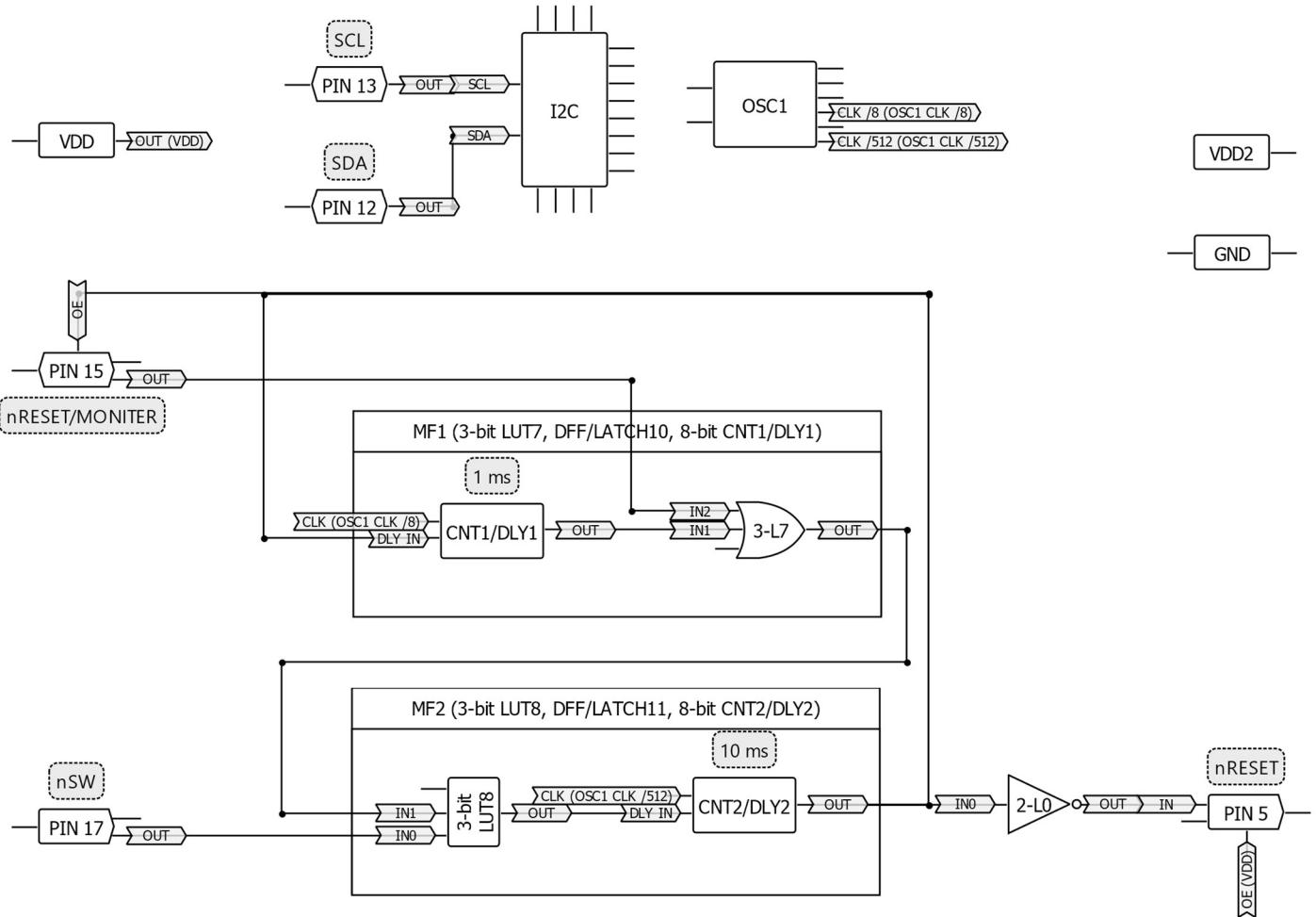

General Description

Renesas SLG7RN46471 is a low power and small form device. The SoC is housed in a 6.5mm x 6.4mm TSSOP package which is optimal for using with small devices.

Features

- Low Power Consumption
- Pb - Free / RoHS Compliant
- Halogen - Free
- TSSOP - 20 Package

Pin Configuration


**TSSOP-20
(Top View)**

Pin name

Pin #	Pin name	Pin #	Pin name
1	NC	11	NC
2	NC	12	SDA
3	NC	13	SCL
4	NC	14	NC
5	nRESET	15	nRESET/MONITER
6	NC	16	NC
7	VDD2	17	nSW
8	NC	18	NC
9	NC	19	NC
10	GND	20	VDD

Emulator/Manual Reset Switching Circuit

Block Diagram

Emulator/Manual Reset Switching Circuit**Pin Configuration**

Pin #	Pin Name	Type	Pin Description	Internal Resistor
1	NC	--	Keep Floating or Connect to GND	--
2	NC	--	Keep Floating or Connect to GND	--
3	NC	--	Keep Floating or Connect to GND	--
4	NC	--	Keep Floating or Connect to GND	--
5	nRESET	Digital Output	Open Drain NMOS 1X	100kΩ pullup
6	NC	--	Keep Floating or Connect to GND	--
7	VDD2	PWR	Supply Voltage	--
8	NC	--	Keep Floating or Connect to GND	--
9	NC	--	Keep Floating or Connect to GND	--
10	GND	GND	Ground	--
11	NC	--	Keep Floating or Connect to GND	--
12	SDA	Digital Input	Digital Input without Schmitt trigger	floating
13	SCL	Digital Input	Digital Input without Schmitt trigger	floating
14	NC	--	Keep Floating or Connect to GND	--
15	nRESET/MONITER	Bi-directional	Digital Input without Schmitt trigger / Open Drain NMOS 1X	100kΩ pullup
16	NC	--	Keep Floating or Connect to GND	--
17	nSW	Digital Input	Digital Input with Schmitt trigger	100kΩ pullup
18	NC	--	Keep Floating or Connect to GND	--
19	NC	--	Keep Floating or Connect to GND	--
20	VDD	PWR	Supply Voltage	--

Ordering Information

Part Number	Package Type
SLG7RN46471G	20-pin TSSOP
SLG7RN46471GTR	20-pin TSSOP - Tape and Reel (4k units)

Emulator/Manual Reset Switching Circuit

Absolute Maximum Conditions

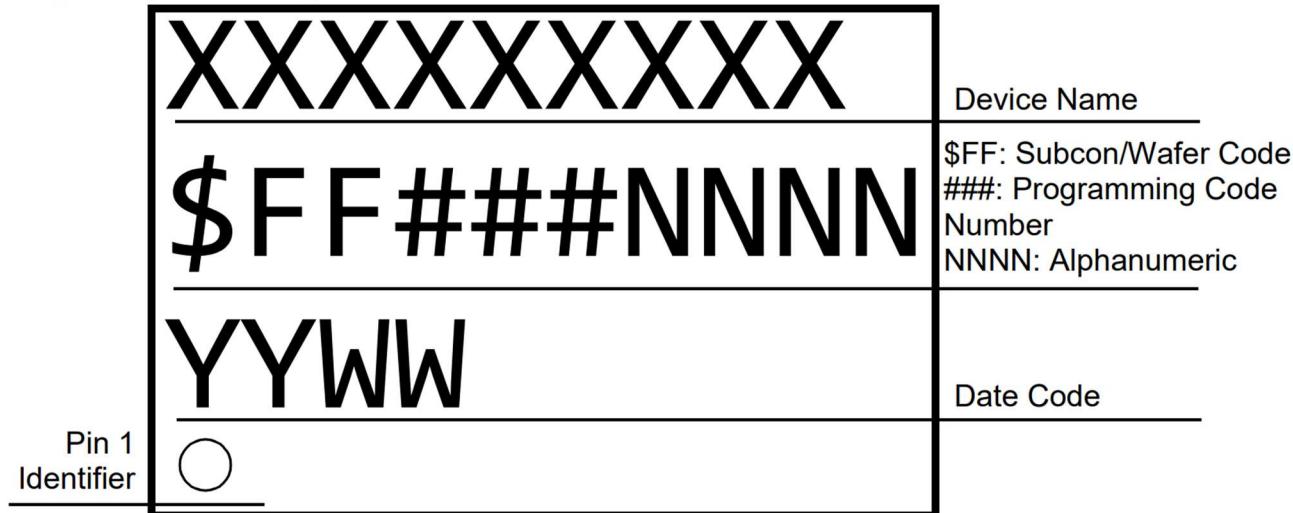
Parameter	Min.	Max.	Unit	
V_{HIGH} to GND	-0.3	7	V	
Voltage at Input Pin	GND-0.5V	VDD+0.5V	V	
Maximum Average or DC Current Through V_{DD} Pin	--	90	mA	
Maximum Average or DC Current Through V_{DD2} Pin	--	90	mA	
Maximum Average or DC Current Through GND Pin (Per chip side, (Note 1))	--	100	mA	
Maximum Average or DC Current (Through pin)	OD 1x	--	15.5	mA
Current at Input Pin	-1.0	1.0	mA	
Input leakage (Absolute Value)	--	1000	nA	
Storage Temperature Range	-65	150	°C	
Junction Temperature	--	150	°C	
ESD Protection (Human Body Model)	2000	--	V	
ESD Protection (Charged Device Model)	1300	--	V	
Moisture Sensitivity Level		1		

Note 1 The GreenPAK's GND rail is divided in two sides. IOs 0 to 6, SCL, SDA are connected to one side and IOs 7 to 14 are connected to another side.

Electrical Characteristics

Symbol	Parameter	Condition/Note	Min.	Typ.	Max.	Unit
V_{DD}	Supply Voltage		3	3.3	3.6	V
V_{DD2}	Supply Voltage		1.71	1.8	2	V
T_A	Operating Temperature		-40	25	85	°C
C_{VDD}	Capacitor Value at VDD		0.1	--	--	μF
C_{IN}	Input Capacitance		--	4	--	pF
I_Q	Quiescent Current	Static inputs and floating outputs	--	1	--	μA
V_O	Maximal Voltage Applied to any PIN in High-Impedance State		--	--	VDD+0.3 (Note 1)	V
V_{IH}	HIGH-Level Input Voltage	Logic Input	0.7xVDD	--	VDD+0.3	V
		Logic Input with Schmitt Trigger	0.8xVDD	--	VDD+0.3	V
V_{IL}	LOW-Level Input Voltage	Logic Input	GND-0.3	--	0.3xVDD	V
		Logic Input with Schmitt Trigger	GND-0.3	--	0.2xVDD	V
V_{OL}	LOW-Level Output Voltage	Open Drain NMOS 1X, $I_{OL}=1\text{mA}$, at VDD=2.5V	--	--	0.035	V
		Open Drain NMOS 1X, $I_{OL}=3\text{mA}$, at VDD=3.3V	--	--	0.088	V
I_{OL}	LOW-Level Output Current	Open Drain NMOS 1X, $V_{OL}=0.15\text{V}$, at VDD=2.5V	4.19	--	--	mA
		Open Drain NMOS 1X, $V_{OL}=0.4\text{V}$, at VDD=3.3V	13.02	--	--	mA
R_{PULL_UP}	Internal Pull Up Resistance	Pull up on PINs 5, 15, 17	--	100	--	kΩ
T_{DLY1}	Delay1 Time	At temperature 25°C	0.98	1	1.02	ms
		At temperature -40 +85°C	0.98	1	1.04	ms
T_{DLY2}	Delay2 Time	At temperature 25°C	9.89	10.12	10.37	ms
		At temperature -40 +85°C	9.83	10.12	10.53	ms
T_{SU}	Startup Time	From VDD rising past P_{ON_THR}	--	1.66	2.59	ms

Emulator/Manual Reset Switching Circuit


PON_{THR}	Power On Threshold	V_{DD} Level Required to Start Up the Chip	1.60	1.85	2.07	V
$POFF_{THR}$	Power Off Threshold	V_{DD} Level Required to Switch Off the Chip	0.97	1.23	1.46	V

Note:

1. The GreenPAK's power rails are divided in two sides. PINs 11 to 20 are powered from VDD (one side) and PINs 1 to 9 are powered from VDD2 (another side).

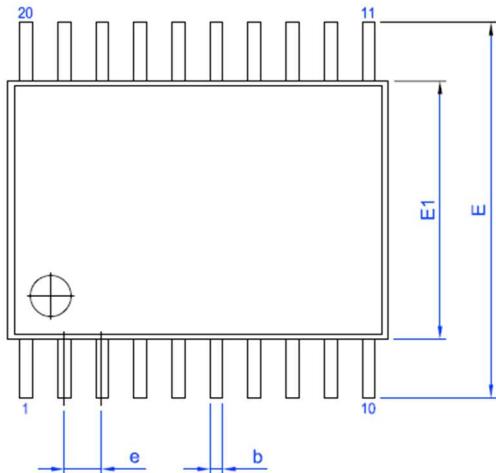
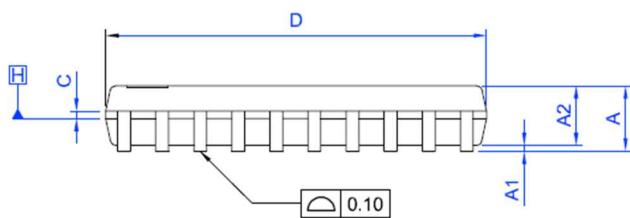
Emulator/Manual Reset Switching Circuit

Package Top Marking

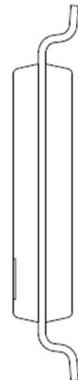
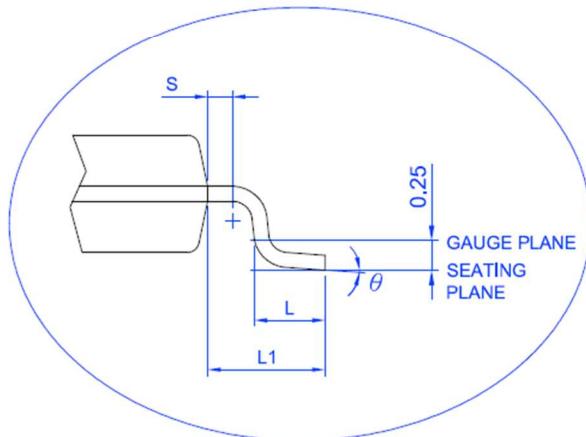
Note: For this package type, Revision code is not marked on the part but may be present on labels and other materials.

Instead, Wafer Code and Programming Code Number are marked on the part.

Datasheet Revision	Programming Code Number	Lock Status	Checksum	Part Code	Revision	Date
0.10	001	U	0x5607B56B			04/18/2023



Lock coverage for this part is indicated by √, from one of the following options:

√	Unlocked
	Partly lock read
	Partly lock write
	Partly lock read and write
	Partly lock read and lock write
	Lock read and partly lock write
	Read lock
	Write lock
	Lock read and write



The IC security bit is locked/set for code security for production unless otherwise specified. The Programming Code Number is not changed based on the choice of locked vs. unlocked status.

Emulator/Manual Reset Switching Circuit

Package Outlines

Marking ViewSide view

IC Net Weight: 0.083 g

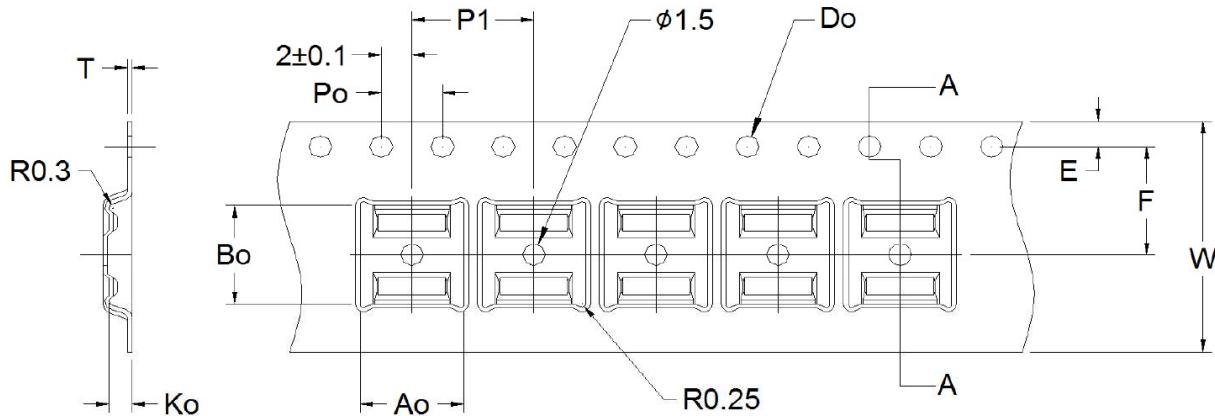
Side View

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	-	-	1.20	D	6.40	6.50	6.60
A1	0.05	-	0.15	E1	4.30	4.40	4.50
A2	0.80	0.90	1.05	E	6.40 BSC		
b	0.19	-	0.30	L	0.50	0.60	0.75
C	0.09	-	0.20	L1	1.00 REF		
e	0.65 BSC			S	0.20	-	-
				θ	0°	-	8°

NOTES:

- 1.JEDEC OUTLINE:
STANDARD : MO-153 AC REV.F
THERMALLY ENHANCED : MO-153 ACT REV.F
- 2.DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- 3.DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.
- 4.DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM.
- 5.DIMENSIONS 'D' AND 'E1' TO BE DETERMINED AT DATUM PLANE H

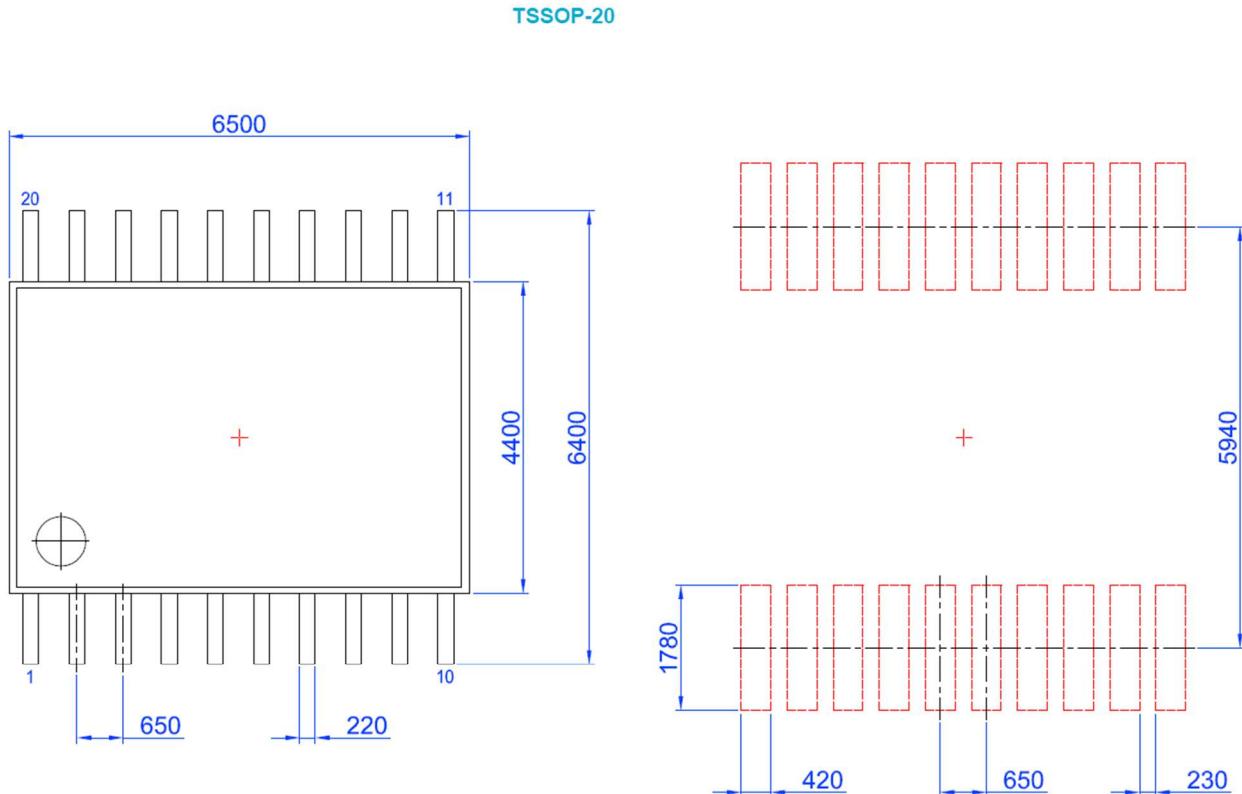

Emulator/Manual Reset Switching Circuit

Tape and Reel Specification

Package Type	# of Pins	Nominal Package Size [mm]	Max Units		Reel & Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
TSSOP 20L 173 MIL Green Package	20	6.5 x 6.4	4000	4000	330/100	42	336	42	336	16	8

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
TSSOP 20L 173 MIL Green Package	6.8	6.9	1.6	4	8	1.5	1.75	7.5	16


SECTION A-A

Refer to EIA-481 specification

Note: Orientation in carrier: Pin1 is at upper left corner (Quadrant1).

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 25.74 mm³ (nominal). More information can be found at www.jedec.org.

Layout GuidelinesUnit: μm

Datasheet Revision History

Date	Version	Change
04/18/2023	0.10	New design for SLG46826G chip

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.