Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT

μ PC3241TB

3.3 V, SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER

DESCRIPTION

The μ PC3241TB is a silicon monolithic integrated circuit designed as IF amplifier for DBS LNB.

This device exhibits low noise figure and high power gain characteristics.

This IC is manufactured using our UHS0 (\underline{U} Itra \underline{H} igh \underline{S} peed Process) bipolar process.

FEATURES

• Low current : Icc = 19.8 mA TYP.

• Power gain : $G_P = 23.5 \text{ dB TYP.} @ f = 1.0 \text{ GHz}$

: $G_P = 24.0 \text{ dB TYP}$. @ f = 2.2 GHz

• Gain flatness : $\Delta G_P = 0.7 \text{ dB TYP.}$ @ f = 1.0 to 2.2 GHz

Noise figure : NF = 4.0 dB TYP. @ f = 1.0 GHz

: NF = 4.3 dB TYP. @ f = 2.2 GHz

High linearity : Po (1dB) = +7.5 dBm TYP. @ f = 1.0 GHz

: Po (1dB) = +6.0 dBm TYP. @ f = 2.2 GHz

• Supply voltage : Vcc = 3.0 to 3.6 V• Port impedance : input/output 50 Ω

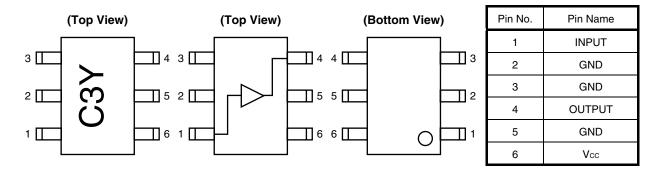
APPLICATIONS

· IF amplifiers in DBS LNB, other L-band amplifiers, etc.

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPC3241TB-E3	μPC3241TB-E3-A	6-pin super minimold (Pb-Free)		 Embossed tape 8 mm wide Pin 1, 2, 3 face the perforation side of the tape Qty 3 kpcs/reel

Remark To order evaluation samples, please contact your nearby sales office


Part number for sample order: µPC3241TB

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

PRODUCT LINE-UP OF 3 V or 3.3 V-BIAS SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER (Ta = +25°C, Vcc = Vout = 3.0 V or 3.3 V, Zs = ZL = 50 Ω)

Deat No.	\ /		0	NE	Б		Davida	Mandan
Part No.	Vcc	lcc	G₽	NF	Po (1 dB)	Po (sat)	Package	Marking
	(V)	(mA)	(dB)	(dB)	(dBm)	(dBm)		
μPC2762TB	3.0	26.5	13.0 (0.9 GHz)	6.5 (0.9 GHz)	+8.0 (0.9 GHz)	+9.0 (0.9 GHz)	6-pin	C1Z
			15.5 (1.9 GHz)	7.0 (1.9 GHz)	+7.0 (1.9 GHz)	+8.5 (1.9 GHz)	super	
μPC2763TB		27.0	20.0 (0.9 GHz)	5.5 (0.9 GHz)	+9.5 (0.9 GHz)	+11.0 (0.9 GHz)	minimold	C2A
			21.0 (1.9 GHz)	5.5 (1.9 GHz)	+6.5 (1.9 GHz)	+8.0 (1.9 GHz)		
μPC2771TB		36.0	21.0 (0.9 GHz)	6.0 (0.9 GHz)	+11.5 (0.9 GHz)	+12.5 (0.9 GHz)		C2H
			21.0 (1.5 GHz)	6.0 (1.5 GHz)	+9.5 (1.5 GHz)	+11.0 (1.5 GHz)		
μPC8181TB		23.0	19.0 (0.9 GHz)	4.5 (0.9 GHz)	+8.0 (0.9 GHz)	+9.5 (0.9 GHz)		C3E
			21.0 (1.9 GHz)	4.5 (1.9 GHz)	+7.0 (1.9 GHz)	+9.0 (1.9 GHz)		
			22.0 (2.4 GHz)	4.5 (2.4 GHz)	+7.0 (2.4 GHz)	+9.0 (2.4 GHz)		
μPC8182TB		30.0	21.5 (0.9 GHz)	4.5 (0.9 GHz)	+9.5 (0.9 GHz)	+11.0 (0.9 GHz)		C3F
			20.5 (1.9 GHz)	4.5 (1.9 GHz)	+9.0 (1.9 GHz)	+10.5 (1.9 GHz)		
			20.5 (2.4 GHz)	5.0 (2.4 GHz)	+8.0 (2.4 GHz)	+10.0 (2.4 GHz)		
μPC3239TB	3.3	29.0	25.0 (1.0 GHz)	4.0 (1.0 GHz)	+10 (1.0 GHz)	+12.5 (1.0 GHz)		C3V
			25.5 (2.2 GHz)	4.3 (2.2 GHz)	+8 (2.2 GHz)	+10 (2.2 GHz)		
μPC3241TB		19.8	23.5 (1.0 GHz)	4.0 (1.0 GHz)	+7.5 (1.0 GHz)	_		C3Y
			24.0 (2.2 GHz)	4.3 (2.2 GHz)	+6.0 (2.2 GHz)			

Remark Typical performance. Please refer to **ELECTRICAL CHARACTERISTICS** in detail.

ABSOLUTE MAXIMUM RATINGS

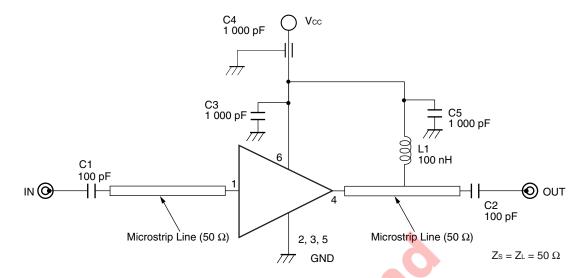
Parameter	Symbol	Conditions		Ratings	Unit
Supply Voltage	Vcc	$T_A = +25^{\circ}C$, pin 4 and 6		4.0	V
Total Circuit Current	Icc	T _A = +25°C, pin 4 and 6		55	mA
Power Dissipation	P□	T _A = +85°C	Note	270	mW
Operating Ambient Temperature	TA			-40 to +85	°C
Storage Temperature	Tstg			-55 to +150	°C
Input Power	Pin	T _A = +25°C		-10	dBm

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	The same voltage should be applied to pin 4 and 6.	3.0	3.3	3.6	٧
Operating Ambient Temperature	Та		-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS (T_A = +25°C, V_{CC} = V_{out} = 3.3 V, Z_S = Z_L = 50 Ω , unless otherwise specified)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No input signal	15	19.8	25	mA
Power Gain 1	G _P 1	$f = 0.25 \text{ GHz}, P_{in} = -30 \text{ dBm}$	20	23	26	dB
Power Gain 2	G _P 2	$f = 1.0 \text{ GHz}, P_{in} = -30 \text{ dBm}$	20.5	23.5	26.5	
Power Gain 3	G _P 3	f = 1.8 GHz, Pin = -30 dBm	21	24	27	
Power Gain 4	G _P 4	f = 2.2 GHz, Pin = -30 dBm	21	24	27	
Gain 1 dB Compression Output Power 1	Po (1 dB) 1	f = 1.0 GHz	+4.5	+7.5	-	dBm
Gain 1 dB Compression Output Power 2	Po (1 dB) 2	f = 2.2 GHz	+3.0	+6.0	-	
Noise Figure 1	NF1	f = 1.0 GHz	_	4.0	4.8	dB
Noise Figure 2	NF2	f = 2.2 GHz	<u>_</u>	4.3	5.1	
Isolation 1	ISL1	f = 1.0 GHz, Pin = -30 dBm	27	32	-	dB
Isolation 2	ISL2	f = 2.2 GHz, Pin = -30 dBm	28	33	-	
Input Return Loss 1	RLin1	f = 1.0 GHz, Pin = -30 dBm	15	20	-	dB
Input Return Loss 2	RLin2	f = 2.2 GHz, Pin = -30 dBm	10	16	_	
Output Return Loss 1	RLout1	f = 1.0 GHz, Pin = -30 dBm	11	17	-	dB
Output Return Loss 2	RLout2	f = 2.2 GHz, Pin = -30 dBm	13	25	-	

STANDARD CHARACTERISTICS FOR REFERENCE

(T_A = +25°C, V_{CC} = V_{out} = 3.3 V, Z_S = Z_L = 50Ω , unless otherwise specified)

Parameter	Symbol	Test Conditions	Reference Value	Unit
Power Gain 5	G _P 5	f = 2.6 GHz, Pin = -30 dBm	24	dB
Power Gain 6	G _P 6	$f = 3.0 \text{ GHz}, P_{in} = -30 \text{ dBm}$	23	
Gain Flatness	⊿Gp	f = 1.0 to 2.2 GHz, P _{in} = -30 dBm	0.7	dB
K factor 1	K1	f = 1.0 GHz, P _{in} = -30 dBm	1.4	-
K factor 2	K2	f = 2.2 GHz, P _{in} = -30 dBm	1.5	-
Output 3rd Order Intercept Point 1	OIP₃1	f1 = 1 000 MHz, f2 = 1 001 MHz	19.5	dBm
Output 3rd Order Intercept Point 2	OIP ₃ 2	f1 = 2 200 MHz, f2 = 2 201 MHz	15	
Input 3rd Order Intercept Point 1	IIP₃1	f1 = 1 000 MHz, f2 = 1 001 MHz	-4	dBm
Input 3rd Order Intercept Point 2	IIP₃2	f1 = 2 200 MHz, f2 = 2 201 MHz	-9	
2nd Order Intermodulation Distortion	IM ₂	f1 = 1 000 MHz, f2 = 1 001 MHz, P _{out} = -5 dBm/tone	50	dBc
2nd Harmonics	2f ₀	f0 = 1.0 GHz, P _{out} = -15 dBm	65	dBc

TEST CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS

	Туре	Value
L1 Note	Chip Inductor	100 nH
C1, C2	Chip Capacitor	100 pF
C3, C5	Chip Capacitor	1 000 pF
C4	Feed-through Capacitor	1 000 pF

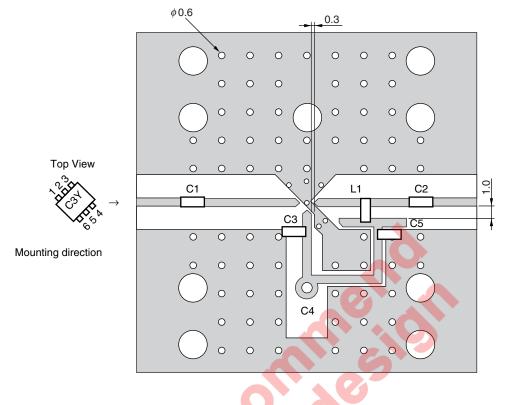
Note There is a case to show a dimple wave of characteristic by a chip inductor L1 part in the high frequency area. In that case, please reduce a value of L1.

INDUCTOR FOR THE OUTPUT PIN

The internal output transistor of this IC, to output medium power. To supply current for output transistor, connect an inductor between the Vcc pin (pin 6) and output pin (pin 4). Select inductance, as the value listed above.

The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum voltage drop to output enable high level. In terms of AC, the inductor makes output-port impedance higher to get enough gain. In this case, large inductance and Q is suitable (Refer to the following page).

CAPACITORS FOR THE Vcc, INPUT AND OUTPUT PINS


Capacitors of 1 000 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors for the input and output pins.

The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias can be supplied against Vcc fluctuation.

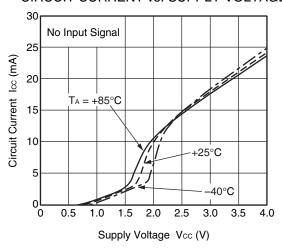
The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial impedance. Their capacitances are therefore selected as lower impedance against a 50 Ω load. The capacitors thus perform as high pass filters, suppressing low frequencies to DC.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

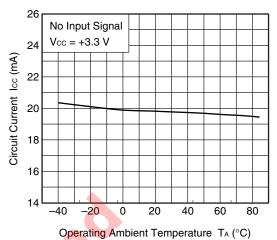
C4: Feed-through Capacitor

(Unit: mm)

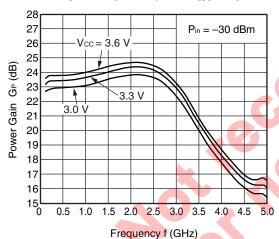
COMPONENT LIST

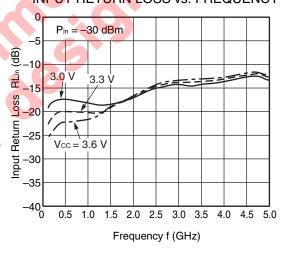

	Туре	Value	Size
L1	Chip Inductor	100 nH	1005
C1, C2	Chip Capacitor	100 pF	1608
C3, C5	Chip Capacitor	1 000 pF	1005
C4	Feed-through Capacitor	1 000 pF	-

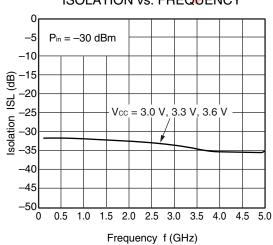
Notes

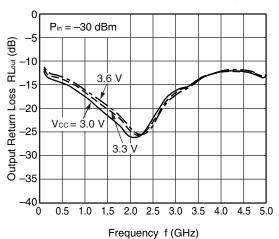

- 1. $30 \times 30 \times 0.4$ mm double sided 35 μ m copper clad polyimide board.
- 2. Back side: GND pattern
- 3. Solder plated on pattern
- 4. O: Through holes

TYPICAL CHARACTERISTICS (TA = +25°C, $V_{CC} = V_{out} = 3.3 \text{ V}$, $Z_S = Z_L = 50 \Omega$, unless otherwise specified)


CIRCUIT CURRENT vs. SUPPLY VOLTAGE


CURCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE


POWER GAIN vs. FREQUENCY


INPUT RETURN LOSS vs. FREQUENCY

ISOLATION vs. FREQUENCY

OUTPUT RETURN LOSS vs. FREQUENCY

Remark The graphs indicate nominal characteristics.

28

27

26

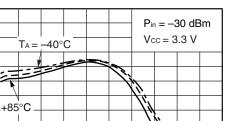
25

23

22

21

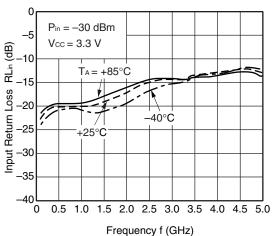
20


19

18 17

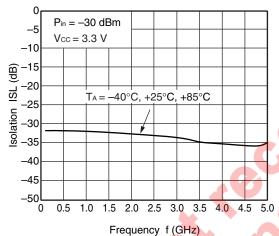
16

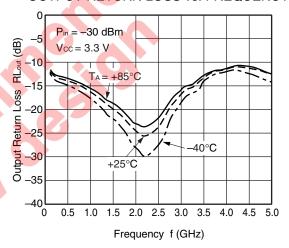
G_P (dB) 24


Power Gain

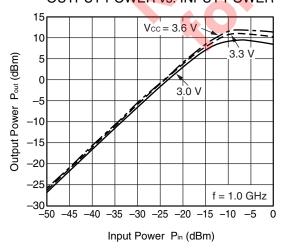
+25°C

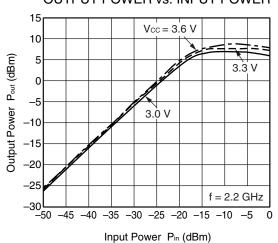
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0


POWER GAIN vs. FREQUENCY

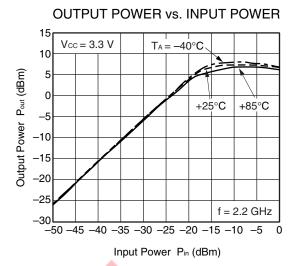

INPUT RETURN LOSS vs. FREQUENCY

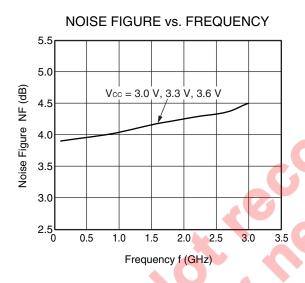
Frequency f (GHz)

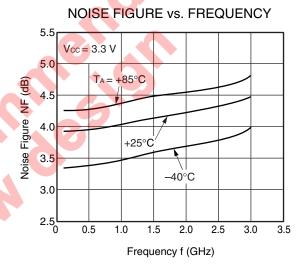

ISOLATION vs. FREQUENCY


OUTPUT RETURN LOSS vs. FREQUENCY

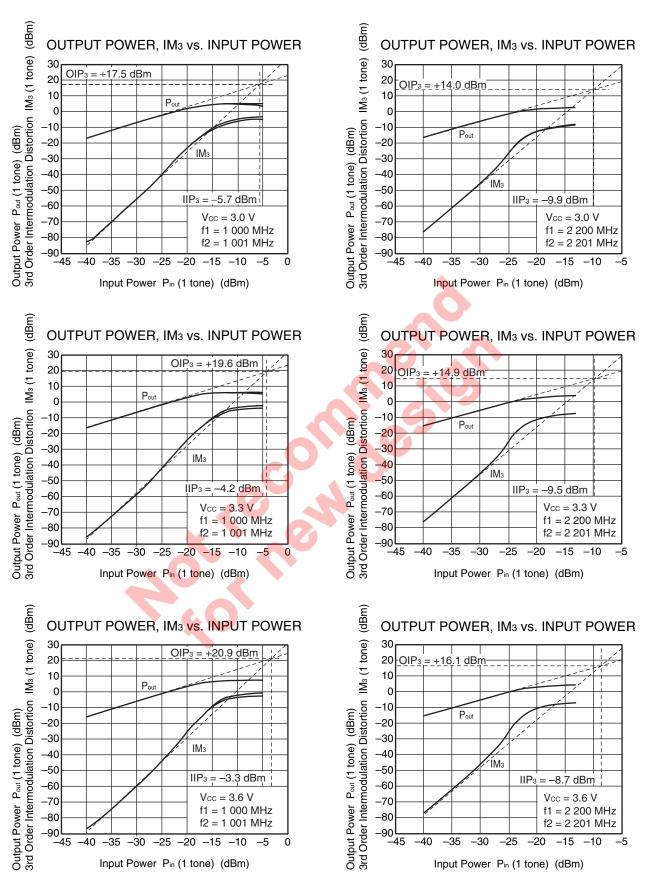
OUTPUT POWER vs. INPUT POWER

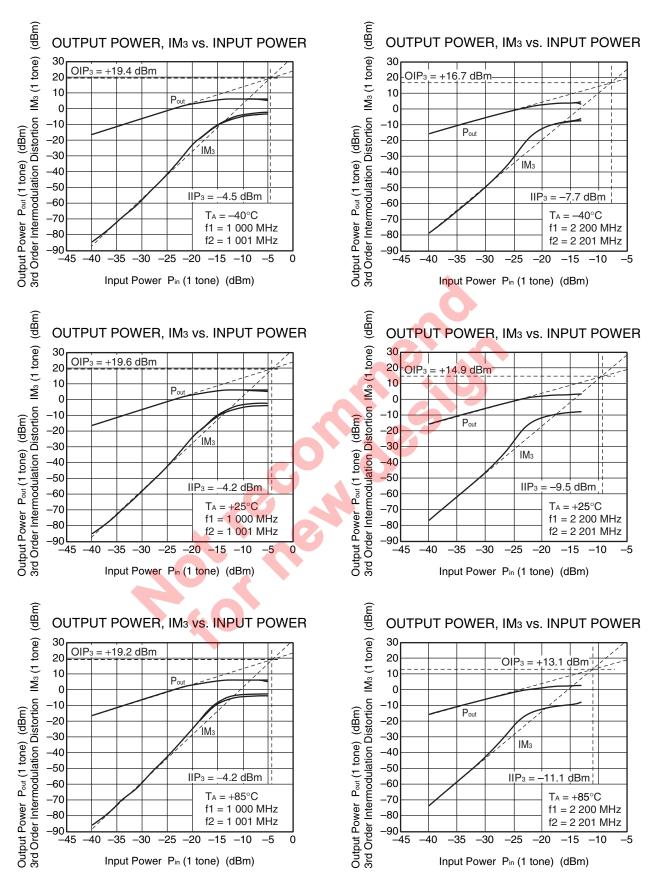


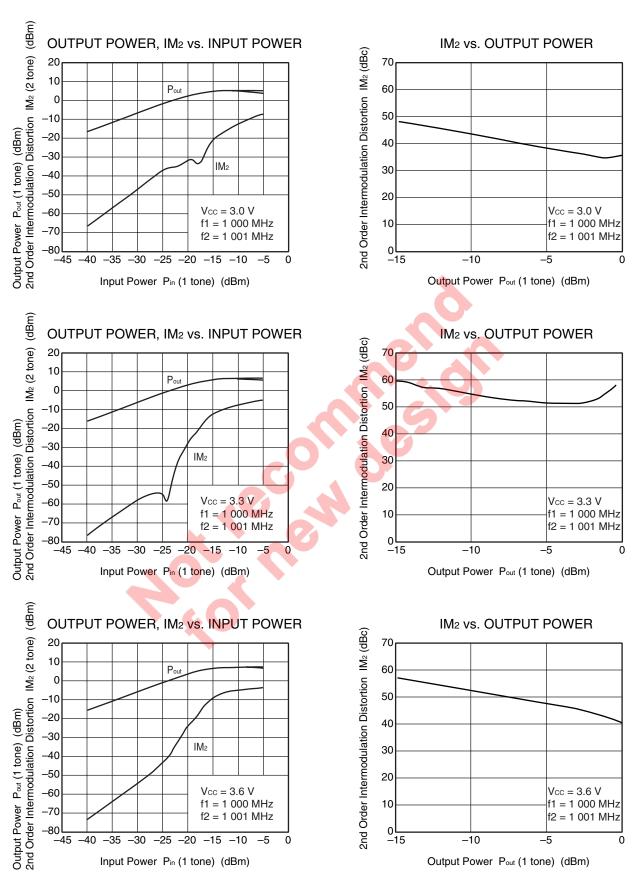

OUTPUT POWER vs. INPUT POWER

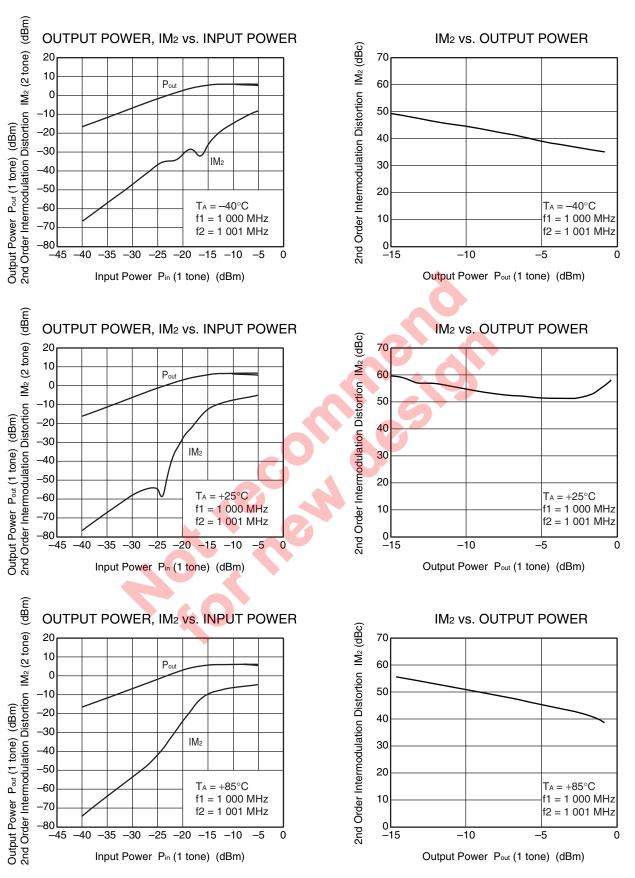


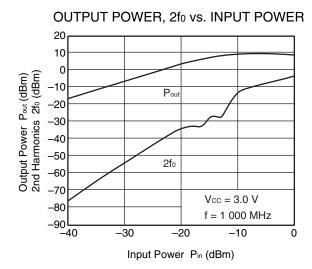
Remark The graphs indicate nominal characteristics.

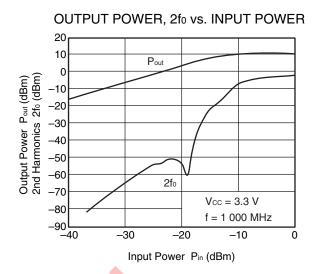

OUTPUT POWER vs. INPUT POWER 15 Vcc = 3.3 V 10 -40°C Output Power Pout (dBm) 5 0 -5 -10 -15 -20 $T_A = +25^{\circ}C, +85^{\circ}C$ -25 f = 1.0 GHz -30 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 Input Power Pin (dBm)

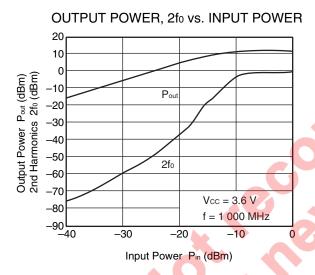



Remark The graphs indicate nominal characteristics.


Remark The graphs indicate nominal characteristics.


Remark The graphs indicate nominal characteristics.




Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

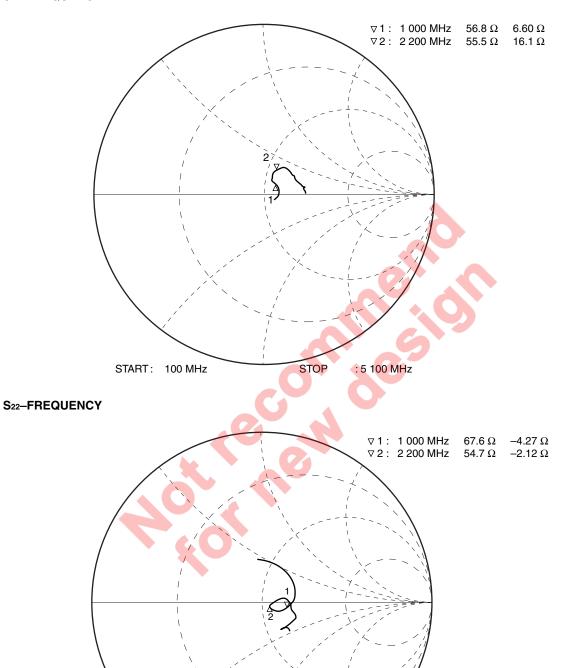
7.0 4.0 3.0 2.0 1.0 0.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Frequency f (GHz)

10.0

9.0

8.0


 $P_{in} = -30 \text{ dBm}$

K FACTOR vs. FREQUENCY

Remark The graphs indicate nominal characteristics.

S-PARAMETERS (TA = +25°C, Vcc = Vout = 3.3 V, Pin = -30 dBm)

S₁₁-FREQUENCY

Remarks 1. Measured on the test circuit of evaluation board.

START: 100 MHz

2. The graphs indicate nominal characteristics.

STOP

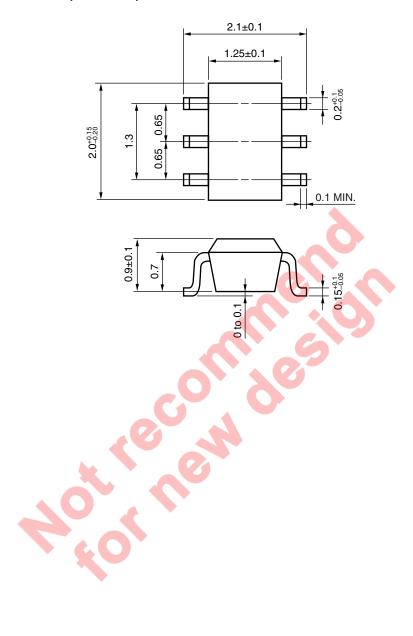
: 5 100 MHz

 μ PC3241TB

S-PARAMETERS

S-parameters and noise parameters are provided on our Web site in a format (S2P) that enables the direct import of the parameters to microwave circuit simulators without the need for keyboard inputs.

Click here to download S-parameters.


 $[\mathsf{RF} \ \mathsf{and} \ \mathsf{Microwave}] \to [\mathsf{Device} \ \mathsf{Parameters}]$

URL http://www.necel.com/microwave/en/

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).

 All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to the Vcc line.
- (4) The inductor (L) must be attached between Vcc and output pins. The inductance value should be determined in accordance with desired frequency.
- (5) The DC cut capacitor must be attached to input and output pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below	IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Wave Soldering	Peak temperature (molten solder temperature)	: 260°C or below	WS260
	Time at peak temperature	: 10 seconds or less	
	Preheating temperature (package surface temperature)	: 120°C or below	
	Maximum number of flow processes	: 1 time	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	

Caution Do not use different soldering methods together (except for partial heating).

- The information in this document is current as of June, 2009. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets,
 etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or
 types are available in every country. Please check with an NEC Electronics sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC Electronics products are not taken measures to prevent radioactive rays in the product design. When customers use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in order to avoid risks of the damages to property (including public or social property) or injury (including death) to persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).