

μPD166020T1F

MOS INTEGRATED CIRCUIT

1.1 Description

The μ PD166020T1F is a single N-channel high-side switch with charge pump, diagnostic feedback with load current sense and embedded protection functions.

1.2 Features

- Built-in charge pump
- Low on-state resistance
- Short circuit protection
 - Shutdown by over current detection and over load detection
- Over temperature protection
 - Shutdown with auto-restart on cooling
- Built-in diagnostic function
 - Proportional load current sensing
 - Defined fault signal in case of abnormal load condition
- Under voltage lock out
- Reverse battery protection by self turn on of N-ch MOSFET
- Small multi-chip package: JEDEC 5-pin TO-252 (MSL: 3, profile acc. J-STD-20C)
- AEC Qualified

1.3 Applications

- Light bulb (to 65 W) switching
- Switching of all types of 14 V DC grounded loads, such as LED, inductor, resistor and capacitor
- Replacement for fuse and relay

2. Ordering Information

Part No.	Lead plating	Packing	Package
μPD166020T1F-E1-AY ^{*1}	Sn	Tape 2500 p/reel	5-pin TO-252 (MP-3ZK)

Note: *1. Pb-free (This product does not contain Pb in the external electrode.)

Data Sheet

3. Specification

3.1 Block Diagram

3.2 Pin Configuration

Pin No.	Terminal Name	
1	OUT	
2	IN	
3/Tab	VCC	
4	IS	
5	OUT	

Pin Function

3.2 Pin (Conf	iguration	
Pin No.		Terminal Name	Tab
1	OUT	-	
2	IN		
3/Tab	VCC	;	
4	IS		
5	OUT		
Pin Funct		Pin function	Recommended connections
OUT		Output to load	Pin 1 and Pin 5 must be externally shorted
IN		Activates the output, if it shorted to ground	If reverse battery protection feature is used, refer to 3.6.3 Power Dissipation Under Reverse Battery Condition .
VCC		Supply Voltage; tab and pin 3 are internally shorted	Connected to battery voltage with small 100 nF capacitor in parallel
IS		Sense output, diagnostic feedback	If current sense and diagnostic feature are not used, connected to GND via resistor

3.3 Absolute Maximum Ratings

					$T_A = 25^{\circ}C$, unless otherwise specified
Parameter	Symbol	Rating	Unit		Test Conditions
V _{CC} Voltage	V _{CC1}	28	V		
V _{CC} voltage under Load Dump condition	V _{CC2}	42	V	R _I = 1 Ω, R _L =	= 1.5 Ω, R _{IS} = 1 kΩ, t _d = 400 ms
V _{CC} Voltage at reverse battery condition	-V _{CC}	-16	V	R _L = 2.2 Ω, 1	min.
Load Current (Short circuit current)	I _{L(SC)}	Self limited	A		
Power dissipation (DC)	P _D	1.2	W) mm x 50 mm x 1.5 mm epoxy PCB m ² of 70 μm copper area
Voltage of IN pin	V _{IN}	$V_{CC}-28$	V	DC	
		V _{CC} + 14		At reverse ba	attery condition, t < 1 min.
Voltage of IS pin	V _{IS}	$V_{CC}-28$	V	DC	
		V _{CC} + 14		At reverse ba	attery condition, t < 1 min.
Inductive load switch-off energy dissipation single pulse	E _{AS1}	50	mJ	refer to 3.6.8	L = 10 A, T _{ch,start} ≤ 150°C Inductive Load Switch Off Energy for a Single Pulse
Maximum allowable energy dissipation at shutdown operation	E _{AS2}	105	mJ	$L_{supply} = 5 \mu H$	_{ch,star} ≤ 150°C, , L _{short} = 15 μH Maximum Allowable Switch off gle Pulse)
Channel Temperature	T _{ch}	-40 to +150	°C		
Dynamic temperature increase while switching	ΔT_{ch}	60	°C	S	
Storage Temperature	T _{stg}	-55 to +150	°C		
ESD susceptibility	V _{ESD}	2000	V	НВМ	AEC-Q100-002 std. R = 1.5 kΩ, C = 100 pF
		400	V	MM	AEC-Q100-003 std. R = 0 Ω, C = 200 pF

3.4 Thermal Characteristics

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Test Conditions
Thermal characteristics	R _{th(ch-a)}		45		°C/W	Device on 50 mm x 50mm x 1.5 mm epoxy PCB FR4 with 6 cm ² of 70 μ m copper area
	R _{th(ch-c)}			3.17	°C/W	

3.5 Electrical Characteristics

Operation Function

Symbol	MIN.	TYP.	MAX.	Unit	Test Conditions
IIH		1.0	2.2	mA	T _{ch} = -40 to 150°C
IIL			50	μA	
I _{CC(off)}		2.5	5.0	μA	$R_L = 2.2 \Omega$, $I_{in} = 0 A$, $T_{ch} = 25^{\circ}C$
		2.5	15.0	μA	$R_L = 2.2 \Omega$, $I_{in} = 0 A$, $T_{ch} = -40$ to $150^{\circ}C$
Ron		8	10		I _L = 7.5 A, T _{ch} = 25°C
		14	18	102	I _L = 7.5 A, T _{ch} = 150°C
V _{on(NL)}		30	65	mV	T _{ch} = -40 to 150°C
t _{on}		120	360	μs	$R_L = 2.2 \Omega$, $T_{ch} = -40$ to 150° C,
t _{off}		250	500	μs	refer to 3.6.6 Measurement Condition
dv/dton		0.2	0.8	V/µs	25 to 50 % V _{OUT} , R _L = 2.2 Ω , T _{ch} = -40 to 150°C, refer to 3.6.6 Measurement Condition
-dv/dtoff		0.2	0.6	V/µs	50 to 25 % V _{OUT} , R _L = 2.2 Ω, T _{ch} = -40 to 150°C, refer to 3.6.6 Measurement Condition
	(0	6	4	6	
	5				
	I _{IH} I _{IL} I _{CC(off)} Ron Von(NL) ton toff dv/dton -dv/dtoff	I _{IH} I _{IL} I _{CC(off)} I _{CC(off)} Ron Von(NL) ton toff dv/dton -dv/dtoff	$ \begin{array}{ c c c c c } I_{IH} & 1.0 & 1.0 \\ \hline I_{IL} & 2.5 $	$\begin{array}{ c c c c c c } \hline I_{IH} & 1.0 & 2.2 \\ \hline I_{IL} & 50 \\ \hline I_{CC(off)} & 2.5 & 5.0 \\ \hline & 2.5 & 15.0 \\ \hline & 2.5 & 15.0 \\ \hline & 14 & 18 \\ \hline V_{on(NL)} & 30 & 65 \\ \hline t_{on} & 120 & 360 \\ \hline t_{off} & 250 & 500 \\ \hline dv/dton & 0.2 & 0.8 \\ \hline -dv/dtoff & 0.2 & 0.6 \\ \hline \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

- 25°C V

- 12 V unloss otherwise energified

Protection Function

 $T_{ch} = 25^{\circ}C$, $V_{CC} = 12$ V, unless otherwise specified

	-		I				ess otherwise specified
Parameter	Symbol	MIN.	TYP.	MAX.	Unit		Conditions
On-state resistance at reverse battery conditon	R _{on(rev)}		9.5	13	mΩ	T _{ch} = 25°C	$V_{CC} = -12 V,$ $I_L = -7.5 A,$
*1			16	22	mΩ	T _{ch} = 150°C	$R_{IS} = 1 k\Omega$
Short circuit detection	I _{L6,3(SC)} *1		50	120	Α	T _{ch} = -40°C	$V_{CC} - V_{IN} = 6 V,$
current			50			T _{ch} = 25°C	V _{on} = 3 V
		20	45			T _{ch} = 150°C	
	I _{L6,6(SC)} *1		35	110		T _{ch} = -40°C	$V_{CC} - V_{IN}$ = 6 V,
			35			T _{ch} = 25°C	V _{on} = 6 V
		10	35			T _{ch} = 150°C	
	I _{L12,3(SC)}		110	180		T _{ch} = -40°C	$V_{CC} - V_{IN} = 12 V$,
		76	105			T _{ch} = 25°C	$V_{on} = 3 V$
		50	95			T _{ch} = 150°C	
	I _{L12,6(SC)} *1		90	160		$T_{ch} = -40^{\circ}C$	$V_{CC} - V_{IN} = 12 V$,
			85			T _{ch} = 25°C	$V_{on} = 6 V$
		40	80			T _{ch} = 150°C	
	I _{L12,12(SC)} *1		55	120		$T_{ch} = -40^{\circ}C$	$V_{CC} - V_{IN}$ = 12 V,
			50			T _{ch} = 25°C	V _{on} = 12 V
		10	45			T _{ch} = 150°C	
	I _{L18,3(SC)} *1		130	200		$T_{ch} = -40^{\circ}C$	$V_{CC} - V_{IN} = 18 V$,
			125			T _{ch} = 25°C	$V_{on} = 3 V$
		60	110			T _{ch} = 150°C	
	I _{L18,6(SC)} *1		110	170		$T_{ch} = -40^{\circ}C$	$V_{CC} - V_{IN} = 18 V$,
			110			T _{ch} = 25°C	V _{on} = 6 V
		50	110			T _{ch} = 150°C	
	I _{L18,12(SC)} *1		75	120		T _{ch} = -40°C	$V_{CC} - V_{IN}$ = 18 V,
			70			T _{ch} = 25°C	V _{on} = 12 V
		30	65			T _{ch} = 150°C	
	I _{L18,18(SC)} *1		50	90		T _{ch} = -40°C	$V_{CC} - V_{IN}$ = 18 V,
			50			T _{ch} = 25°C	V _{on} = 18 V
		5	45			T _{ch} = 150°C	
Turn-on check delay after input current positive slope *1	t _{d(OC)}	0.9	2.1	3.8	ms	T _{ch} = -40 to 150°C	
Remaining Turn-on	t _{d(OC)} -t _{on}	0.65	1.6		ms	R _L = 2.2 Ω,	
check delay after turn-on time *1						$T_{ch} = -40$ to 150°	
Over load detection voltage	V _{on(OvL)}	0.65	1	1.45	V	$T_{ch} = -40$ to 150°	С
Under voltage shutdown	V _{CIN(Uv)}			5.5	V	T _{ch} = -40°C	
		3.2	4.0	5.35	V	T _{ch} = 25°C	
		2.7			V	T _{ch} = 150°C	
Under voltage restart of	V _{CIN(CPr)}			6.3	V	T _{ch} = -40°C	
charge pump		3.6	4.5	6.2	V	T _{ch} = 25°C	
		3.2			V	T _{ch} = 150°C	
Output clamp voltage (inductive load switch off)	V _{on(CL)}	30	34	40	V	$I_L = 40 \text{ mA}, T_{ch} =$	–40 to 150°C
Thermal shutdown temperature *1	T _{th}	150	175		°C		
Thermal hysteresis *1	ΔT_{th}		10		°C		
<u> </u>		l	I	I	t		

Note: *1. Not tested, specified by design

Diagnosis Function

 $T_{ch} = 25^{\circ}C$, $V_{CC} = 12$ V, unless otherwise specified

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Test Conditions		
Current sense ratio	K _{ILIS}					$K_{ILIS} = I_L/I_{IS}, I_{IS} < I_{IS,II}$	m	
		8300	9200	11000		$T_{ch} = -40^{\circ}C$	I _L = 30A	
		8300	9200	10600		T _{ch} = 25°C		
		8400	9300	10200		T _{ch} = 150°C		
		7500	9200	11400		$T_{ch} = -40^{\circ}C$	I _L = 7.5 A	
		8000	9300	10800		T _{ch} = 25°C		
		8300	9300	10400		T _{ch} = 150°C		
		7100	10200	13400		$T_{ch} = -40^{\circ}C$	I _L = 2.5 A	
		7700	10000	12500		T _{ch} = 25°C		
		8000	9800	12000		T _{ch} = 150°C		
		5000	12000	21000		$T_{ch} = -40^{\circ}C$	I _L = 0.5 A	
		5500	11500	17000		T _{ch} = 25°C		
		6000	11500	16000		T _{ch} = 150°C		
Sense current offset	I _{IS,offset}		0.1	1	μA	$V_{IN} = 0 V, I_{L} = 0 A$	·	
current								
Sense current under fault	I _{IS,fault}	3.5	6.0	12.0	mA	Under fault condition	าร	
condition						8 V < V _{CC} – V _{IS} < 12	: V,	
						T _{ch} = -40 to 150°C		
Sense current saturation	I _{IS,lim}	3.5	7.0	12.0	mA	V _{IS} < V _{OUT} – 6 V ,		
current						T _{ch} = -40 to 150°C		
Fault Sense Signal delay after short circuit detection *1	$t_{\text{sdelay(fault)}}$		2	6	μs	$T_{ch} = -40$ to 150°C		
Sense current leakage	I _{IS(LL)}		0.1	0.5	μΑ	I _{IN} = 0 A		
current	IIS(LL)			0.0	μη			
Current sense settling time	t _{son(IS)}			700	μs	T_{ch} = -40 to 150°C,		
to IIS(static) after input						I _{IN} = 0 A_ I _{IH} ,		
current positive slope *1						R _L = 2.2 Ω		
Current sense settling time	T _{sic(IS)}		50	100	μs	T_{ch} = -40 to 150°C,		
during on condition *1						I _L = 10A		

Note: *1. Not tested, specified by design

3.6 Feature Description

3.6.1 Driving Circuit

The high-side output is turned on, if the input pin is shorted to ground. The input current is below I_{IH} . The high-side output is turned off, if the input pin is open or the input current is below I_{IL} . R_{CC} is 100 Ω TYP. ESD protection diode: 46 V TYP.

Switching an inductive load

Dynamic clamp operation at inductive load switch off

The dynamic clamp circuit works only when the inductive load is switched off. When the inductive load is switched off, the voltage of OUT falls below 0 V. The gate voltage of SW1 is then nearly equal to GND because the IS terminal is connected to GND via an external resister. Next, the voltage at the source of SW1 (= gate of output MOS) falls below the GND voltage. SW1 is turned on, and the clamp diode is connected to the gate of the output MOS, activating the dynamic clamp circuit.

When the over-voltage is applied to V_{CC} , the gate voltage and source voltage of SW1 are both nearly equal to GND. SW1 is not turned on, the clamp diode is not connected to the gate of the output MOS, and the dynamic clamp circuit is not activated.

3.6.2 Short Circuit Protection

Case $1:I_{IN}$ pin is shorted to ground in an overload condition, which includes a short circuit condition.

The device shuts down automatically when either or both of following conditions (a, b) is detected. The sense current is fixed at I_{IS,fault}. Shutdown is latched until the next reset via input.

- (a) $I_L > I_{L(SC)}$
- (b) $V_{on} > V_{on(OvL)}$ after $t_{d(OC)}$

Typical Short circuit detection current characteristics

The short circuit detection current changes according V_{CC} voltage and V_{on} voltage for the purpose of to be strength of the robustness under short circuit condition.

Case 2:Short circuit during on-condition

The device shuts down automatically when following conditions (a) is detected. The sense current is fixed at $I_{IS,fault}$. Shutdown is latched until the next reset via input. In the case of $V_{on(NL)}$ works such open load condition at on-state, $t_{d(OC)}$ is expired.

(a) $V_{on} > V_{on(OvL)}$ after $t_{d(OC)}$

Over-temperature protection

The output is switched off if over-temperature is detected. The device switches on again after it cools down.

3.6.3 Power Dissipation under Reverse Battery Condition

In case of reverse battery condition, internal N-ch MOSFET is turned on to reduce the power dissipation by body diode. Additional power is dissipated by the internal resister. Following is the formula for estimation of total power dissipation Pd(rev) in reverse battery condition.

$$\begin{split} \mathsf{P}_{\mathsf{D}(\mathsf{rev})} &= \mathsf{R}_{\mathsf{on}(\mathsf{rev})} \ge \mathsf{I}_{\mathsf{L}(\mathsf{rev})}^2 \\ &\quad + \left(\mathsf{V}_{\mathsf{CC}} - \mathsf{V}_{\mathsf{f}} - \mathsf{I}_{\mathsf{in}(\mathsf{rev})} \ge \mathsf{R}_{\mathsf{IN}}\right) \ge \mathsf{I}_{\mathsf{in}(\mathsf{rev})} \\ &\quad + \left(\mathsf{V}_{\mathsf{CC}} - \mathsf{I}_{\mathsf{is}(\mathsf{rev})} \ge \mathsf{R}_{\mathsf{IS}}\right) \ge \mathsf{I}_{\mathsf{is}(\mathsf{rev})} \\ \\ &\mathsf{I}_{\mathsf{in}(\mathsf{rev})} &= \left(\mathsf{V}_{\mathsf{CC}} - 2 \ge \mathsf{V}_{\mathsf{f}}\right) / (\mathsf{R}_{\mathsf{CC}} + \mathsf{R}_{\mathsf{IN}}) \\ \\ &\mathsf{I}_{\mathsf{is}(\mathsf{rev})} &= \left(\mathsf{V}_{\mathsf{CC}} - \mathsf{V}_{\mathsf{f}}\right) / (\mathsf{R}_{\mathsf{CC}} + \mathsf{R}_{\mathsf{is}0} + \mathsf{R}_{\mathsf{IS}}) \end{split}$$

The reverse current through the N-ch MOSFET has to be limited by the connected load.

 $R_{IN} < (|V_{CC} - 8 V|)/0.08 A$

3.6.4 Device Behavior at Low Voltage Condition

If the supply voltage $(V_{CC} - V_{IN})$ goes down under $V_{CIN(Uv)}$, the device shuts down the output. If supply voltage $(V_{CC} - V_{IN})$ increase over $V_{CIN(CPr)}$, the device turns on the output automatically. The device keeps off state if supply voltage $(V_{CC} - V_{IN})$ does not increase over $V_{CIN(CPr)}$ after under voltage shutdown. It is assumed that $V_{IN} = 0$ V when I_{IN} is activated.

Remark It is assumed that $V_{IN} = 0$ V when I_{IN} is activated.

3.6.5 Current Sense Output

I_L - Load Current - A

3.6.6 Measurement Condition

3.6.7 Truth Table

Input Current	State	Output	Sense Current
L	_	OFF	I _{IS(LL)}
Н	Normal Operation	ON	I _L /K _{ILIS}
	Over-temperature or Short circuit	OFF	I _{IS,fault}
	Open Load	ON	I _{IS,offset}

3.6.8 Inductive Load Switch Off Energy Dissipation for a Single Pulse

MAXIMUM ALLOWABLE LOAD INDUCTANCE for a SINGLE SWITCH OFF

The energy dissipation for an inductive load switch-off single pulse in device (E_{AS1}) is estimated by the following formula as $R_L = 0 \Omega$.

$$E_{AS1} = \frac{1}{2} I^2 L \left(\frac{V_{On(CL)}}{V_{On(CL)} - V_{CC}} \right)$$

3.6.9 Maximum Allowable Switch off Energy (Single Pulse)

The harness connecting the power supply, the load and the device has a small inductance and resistance. When the device turns off, the energy stored in the harness inductance is dissipated by the device, the harness resistance and the internal resistance of power supply. If the current is abnormally high due to a load short, the energy stored in the harness can be large. This energy has to be taken into consideration for the safe operation. The following figure shows the condition for E_{AS2} , the maximum switch-off energy (single pulse) for abnormally high current.

3.7 Package Drawing (unit: mm)

5-pin TO-252 (MP-3ZK)

3.8 Taping Information

This is one type (E1) of direction of the device in the career tape.

3.9 Marking Information

This figure indicates the marking items and arrangement. However, details of the letterform, the size and the position aren't indicated.

4. Typical Characteristics

 T_A - Ambient Temperature - $^\circ C$

5. Thermal Characteristics

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

6. Application Example in Principle

- Notes: *1. If output current is over the maximum allowable current for inductive load at a single switch off, or if energy at a single Je ci .rminali switch off is over EAS1/EAS2, then a free wheeling diode must be connected in parallel the load. *2. If current sense and diagnostic features are not used, IS terminal has to be connected to GND via resistor.

Rov	vieion	History	
Nev	131011	ΠΙδίΟΙ γ	

			Description					
Rev.	Date	Page Summary						
1.00	Aug 15, 2011	-	First Edition Issued					

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics and use any Renesas Electronics product for any application arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for any application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction provention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulders 1: 4100-8584-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5041, Fax: +1-005-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-21-65030, Fax: +44-1628-585-900 Renease Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +49-21-65030, Fax: +49-21-6503-1327 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +48-10-285-1155, Fax: +486-235-7679 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Shanghai 200120, China Tel: +48-10-285-1155, Fax: +486-24-0887-7858 /-7898 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, AzIA Center, No.1233 Luijazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +48-10-285-1156, Fax: +486-24-0887-7858 /-7898 Renease Electronics Hong Kong Limited 7th Floor, 30, Stal K-Center, No.1233 Luijazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +486-24-0587-118, Fax: +4862-2866-9022/9044 Renease Electronics Singapore Pte. Ltd. 13F, No. 363, Fu Shing North Fload, Taipei, Taiwan Tel: +486-24-05175-9607, Fax: +4862-2817-59670 Renease Electronics Malaysia Stn.Bhd. 111906, Bloorking Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +65-63-785-9300, Fax: +603-7855-9510 Renease Electronics Malaysia Stn.Bhd. 1119, Samik Lawied' or Bidg, 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +65-627-830, Fax: +62-2785-9511