Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUITS μ PD70F3102-33

V850E/MS1 32-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD70F3102-33 is a product that substitutes the internal mask ROM of the μ PD703102-33 with flash memory. This enables users to perform on-board program writing and erasure, enabling effective evaluation during system development, small-lot production of multiple devices, and rapid production start, and quick development and time-to-market.

A version using a 3.3 V power supply for external pins, the μ PD70F3102A-33, is also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

V850E/MS1 User's Manual	Hardware:		U12688E
V850E/MS1, V850E/MS2 Use	er's Manual	Architecture:	U12197E

FEATURES

- Compatible with μPD703102-33
 Can be replaced by the μPD703102-33 with internal mask ROM for mass production
- Internal flash memory: 128 KB

ORDERING INFORMATION

	Part Number	Package
_	μPD70F3102GJ-33-8EU	144-pin plastic LQFP (fine pitch) (20 $ imes$ 20)
*	μPD70F3102GJ-33-8EU-Α ^{Νοτe}	144-pin plastic LQFP (fine pitch) (20 $ imes$ 20)
	μPD70F3102GJ-33-UEN ^{№0®}	144-pin plastic LQFP (fine pitch) (20×20)

Note Under development

Remark Products with -A at the end of the part number are lead-free products.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

PIN CONFIGURATION (TOP VIEW)

144-pin plastic LQFP (fine pitch) (20×20)

- μPD70F3102GJ-33-8EU
- *• μPD70F3102GJ-33-8EU-A
- μPD70F3102GJ-33-UEN

PIN IDENTIFICATION

A.O. Ha. A.O.O.			Dette
A0 to A23:	Address bus	P50 to P57:	Port 5
ADTRG:	AD trigger input	P60 to P67:	Port 6
ANI0 to ANI7:	Analog input	P70 to P77:	Port 7
AVDD:	Analog power supply	P80 to P87:	Port 8
AVREF:	Analog reference voltage	P90 to P97:	Port 9
AVss:	Analog ground	P100 to P107:	Port 10
BCYST:	Bus cycle start timing	P110 to P117:	Port 11
CKSEL:	Clock generator operating mode	P120 to P127:	Port 12
	select	PA0 to PA7:	Port A
CLKOUT:	Clock output	PB0 to PB7:	Port B
$\overline{\text{CS0}}$ to $\overline{\text{CS7}}$:	Chip select	PX5 to PX7:	Port X
CVDD:	Clock generator power supply	RASO to RAS7:	Row address strobe
CVss:	Clock generator	RD:	Read
D0 to D15:	Data bus	REFRQ:	Refresh request
DMAAK0 to DMAAK3:	DMA acknowledge	RESET:	Reset
DMARQ0 to DMARQ3:	DMA request	RXD0, RXD1:	Receive data
HLDAK:	Hold acknowledge	SCK0 to SCK3:	Serial clock
HLDRQ:	Hold request	SI0 to SI3:	Serial input
HVDD:	Power supply for external pins	SO0 to SO3:	Serial output
INTP100 to INTP103,		TC0 to TC3:	Terminal count signal
INTP110 to INTP113,		TCLR10 to TCLR15:	Timer clear
INTP120 to INTP123,		TI10 to TI15:	Timer input
INTP130 to INTP133,		TO100, TO101,	
INTP140 to INTP143,		TO110, TO111,	
INTP150 to INTP153:	Interrupt request from peripherals	TO120, TO121,	
IORD:	I/O read strobe	TO130, TO131,	
IOWR:	I/O write strobe	TO140, TO141,	
LCAS:	Lower column address strobe	TO150, TO151:	Timer output
LWR:	Lower write strobe	TXD0, TXD1:	Transmit data
MODE0 to MODE3:	Mode	UCAS:	Upper column address strobe
NMI:	Non-maskable interrupt request	UWR:	Upper write strobe
OE:	Output enable	VDD:	Power supply for internal unit
P00 to P07:	Port 0	Vpp:	Programming power supply
P10 to P17:	Port 1	Vss:	Ground
P20 to P27:	Port 2	WAIT:	Wait
P30 to P37:	Port 3	WE:	Write enable
P40 to P47:	Port 4	X1, X2:	Crystal
		,	

INTERNAL BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES AMONG PRODUCTS	6
	1.1 Differences Between μ PD70F3102-33 and μ PD703102-33	6
	1.2 Differences Between μ PD70F3102-33 and μ PD70F3102A-33	6
2.	PIN FUNCTIONS	7
	2.1 Port Pins	7
	2.2 Non-Port Pins	0
	2.3 Pin I/O Circuit Types and Recommended Connection of Unused Pins14	4
3.	FLASH MEMORY PROGRAMMING17	
	3.1 Selection of Communication Mode1	
	3.2 Flash Memory Programming Functions1	8
	3.3 Connecting the Dedicated Flash Programmer1	8
4.	ELECTRICAL SPECIFICATIONS	
	4.1 Normal Operation Mode19	9
	4.2 Flash Memory Programming Mode74	4
5.	PACKAGE DRAWINGS	7
6.	RECOMMENDED SOLDERING CONDITIONS	9

1. DIFFERENCES AMONG PRODUCTS

1.1 Differences Between μ PD70F3102-33 and μ PD703102-33

Product	μPD70F3102-33	μPD703102-33	
Item			
Internal ROM	Flash memory	Mask ROM	
Flash memory programming pin	Provided (V _{PP})	None	
Flash memory programming mode	Provided (MODE0 = L, MODE1 = H, MODE2 = L, MODE3/V _{PP} = 7.8 V)	None	
Electrical specifications	Current consumption etc. differs (see individual data sheets).		
Others	Circuit scale and master layout differ, thus noise immunity, noise radiation, etc. differ.		

- Cautions 1. There are differences in noise immunity and noise radiation between the flash memory version and mask ROM version. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluation for commercial samples (not engineering samples) of the mask ROM version.
 - 2. When switching from the flash memory version to the mask ROM version, write the same code to the free area of the internal ROM.

1.2 Differences Between *µ*PD70F3102-33 and *µ*PD70F3102A-33

Product	μPD70F3102-33	μPD70F3102A-33
Item		
HVDD	4.5 to 5.5 V	3.0 to 3.6 V
Electrical specifications	See individual data sheets.	
Package	• 144-pin plastic LQFP (fine pitch) (20×20)	 157-pin plastic FBGA (14 × 14) 144-pin plastic LQFP (fine pitch) (20 × 20)

2. PIN FUNCTIONS

2.1 Port Pins

Pin Name	I/O	Function	Alternate Function
P00	I/O	Port 0	TO100
P01		8-bit I/O port	TO101
P02		Input/output can be specified in 1-bit units.	TCLR10
P03			TI10
P04			INTP100/DMARQ0
P05			INTP101/DMARQ1
P06			INTP102/DMARQ2
P07			INTP103/DMARQ3
P10	I/O	Port 1	TO110
P11		8-bit I/O port	TO111
P12		Input/output can be specified in 1-bit units.	TCLR11
P13			TI11
P14			INTP110/DMAAK0
P15			INTP111/DMAAK1
P16			INTP112/DMAAK2
P17			INTP113/DMAAK3
P20	Input	Port 2	NMI
P21	I/O	P20 is an input-only port.	-
P22		When a valid edge is input, it operates as an NMI input. The status of the NMI input is shown by bit 0 of register P2.	TXD0/SO0
P23		P21 to P27 is a 7-bit I/O port.	RXD0/SI0
P24		Input/output can be specified in 1-bit units.	SCKO
P25			TXD1/SO1
P26			RXD1/SI1
P27			SCK1
P30	I/O	Port 3	TO130
P31		8-bit I/O port Input/output can be specified in 1-bit units.	TO131
P32		inpuvouput can be specified in 1-bit units.	TCLR13
P33			TI13
P34			INTP130
P35			INTP131/SO2
P36			INTP132/SI2
P37			INTP133/SCK2
P40 to P47	I/O	Port 4 8-bit I/O port Input/output can be specified in 1-bit units.	D0 to D7

Pin Name	I/O	Function	Alternate Function
P50 to P57	I/O	Port 5 8-bit I/O port Input/output can be specified in 1-bit units.	D8 to D15
P60 to P67	I/O	Port 6 8-bit I/O port Input/output can be specified in 1-bit units.	A16 to A23
P70 to P77	Input	Port 7 8-bit input-only port	ANI0 to ANI7
P80	I/O	Port 8	CS0/RAS0
P81		8-bit I/O port	CS1/RAS1
P82		Input/output can be specified in 1-bit units.	CS2/RAS2
P83			CS3/RAS3
P84			CS4/RAS4/IOWR
P85			CS5/RAS5/IORD
P86			CS6/RAS6
P87			CS7/RAS7
P90	I/O	Port 9	LCAS/LWR
P91		8-bit I/O port	UCAS/UWR
P92		Input/output can be specified in 1-bit units	RD
P93			WE
P94			BCYST
P95			ŌĒ
P96			HLDAK
P97			HLDRQ
P100	I/O	Port 10	TO120
P101		8-bit I/O port	TO121
P102		Input/output can be specified in 1-bit units.	TCLR12
P103			TI12
P104			INTP120/TC0
P105			INTP121/TC1
P106			INTP122/TC2
P107			INTP123/TC3

(3/3)

Pin Name	I/O	Function	Alternate Function
P110	I/O	Port 11	TO140
P111		8-bit I/O port Input/output can be specified in 1-bit units.	TO141
P112		inpu/output can be specified in 1-bit units.	TCLR14
P113			TI14
P114			INTP140
P115			INTP141/SO3
P116			INTP142/SI3
P117			INTP143/SCK3
P120	I/O	Port 12	TO150
P121		8-bit I/O port	TO151
P122		Input/output can be specified in 1-bit units.	TCLR15
P123			TI15
P124			INTP150
P125			INTP151
P126			INTP152
P127			INTP153/ADTRG
PA0	I/O	Port A	AO
PA1		8-bit I/O port	A1
PA2		Input/output can be specified in 1-bit units.	A2
PA3			A3
PA4			A4
PA5			A5
PA6			A6
PA7			A7
PB0	I/O	Port B	A8
PB1		8-bit I/O port	A9
PB2		Input/output can be specified in 1-bit units.	A10
PB3]		A11
PB4]		A12
PB5			A13
PB6			A14
PB7			A15
PX5	I/O	Port X	REFRQ
PX6]	3-bit I/O port	WAIT
PX7]	Input/output can be specified in 1-bit units.	CLKOUT

2.2 Non-Port Pins

Pin Name	I/O	Function	Alternate Function
TO100	Output	Pulse signal output of timers 10 to 15	P00
TO101			P01
TO110			P10
TO111			P11
TO120			P100
TO121			P101
TO130			P30
TO131			P31
TO140			P110
TO141			P111
TO150			P120
TO151			P121
TCLR10	Input	External clear signal input of timers 10 to 15	P02
TCLR11			P12
TCLR12			P102
TCLR13			P32
TCLR14			P112
TCLR15			P122
TI10	Input	External count clock input of timers 10 to 15	P03
TI11			P13
TI12			P103
TI13			P33
TI14			P113
TI15			P123
INTP100	Input	External maskable interrupt request input, or timer 10 external capture	P04/DMARQ0
INTP101		trigger input	P05/DMARQ1
INTP102			P06/DMARQ2
INTP103			P07/DMARQ3
INTP110	Input	External maskable interrupt request input, or timer 11 external capture	P14/DMAAK0
INTP111		trigger input	P15/DMAAK1
INTP112			P16/DMAAK2
INTP113			P17/DMAAK3
INTP120	Input	External maskable interrupt request input, or timer 12 external capture	P104/TC0
INTP121		trigger input	P105/TC1
INTP122			P106/TC2
INTP123			P107/TC3

(2/4)

Pin Name	I/O	Function	Alternate Function
INTP130	Input	External maskable interrupt request input, or timer 13 external capture	P34
INTP131	-	trigger input	P35/SO2
INTP132			P36/SI2
INTP133			P37/SCK2
INTP140	Input	External maskable interrupt request input, or timer 14 external capture	P114
INTP141	-	trigger input	P115/SO3
INTP142	-		P116/SI3
INTP143	-		P117/SCK3
INTP150	Input	External maskable interrupt request input, or timer 15 external capture	P124
INTP151	-	trigger input	P125
INTP152	-		P126
INTP153			P127/ADTRG
SO0	Output	CSI0 to CSI3 serial transmission data output (3-wire)	P22/TXD0
SO1	-		P25/TXD1
SO2			P35/INTP131
SO3			P115/INTP141
SI0	Input	CSI0 to CSI3 serial reception data input (3-wire)	P23/RXD0
SI1			P26/RXD1
SI2			P36/INTP132
SI3	-		P116/INTP142
SCK0	I/O	CSI0 to CSI3 serial clock input/output (3-wire)	P24
SCK1			P27
SCK2			P37/INTP133
SCK3			P117/INTP143
TXD0	Output	UART0 and UART1 serial transmission data output	P22/SO0
TXD1			P25/SO1
RXD0	Input	UART0 and UART1 serial reception data input	P23/SI0
RXD1			P26/SI1
D0 to D7	I/O	16-bit data bus for external memory	P40 to P47
D8 to D15			P50 to P57
A0 to A7	Output	24-bit address bus for external memory	PA0 to PA7
A8 to A15			PB0 to PB7
A16 to A23			P60 to P67
LWR	Output	External data bus lower byte write enable signal output	P90/LCAS
UWR	Output	External data bus upper byte write enable signal output	P91/UCAS
RD	Output	External data bus read strobe signal output	P92
WE	Output	Write enable signal output for DRAM	P93
ŌĒ	Output	Output enable signal output for DRAM	P95

Pin Name	I/O	Function	Alternate Function
LCAS	Output	Column address strobe signal output for lower data of DRAM	P90/LWR
UCAS	Output	Column address strobe signal output for higher data of DRAM	P91/UWR
RASO to RAS3	Output	Row address strobe signal output for DRAM	P80/CS0 to P83/CS3
RAS4			P84/CS4/IOWR
RAS5			P85/CS5/IORD
RAS6			P86/CS6
RAS7			P87/CS7
BCYST	Output	Strobe signal output indicating start of bus cycle	P94
$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	Output	Chip select signal output	P80/RAS0 to P83/RAS3
CS4			P84/RAS4/IOWR
CS5			P85/RAS5/IORD
CS6			P86/RAS6
CS7			P87/RAS7
WAIT	Input	Control signal input that inserts a wait in the bus cycle	PX6
REFRQ	Output	Refresh request signal output for DRAM	PX5
IOWR	Output	DMA write strobe signal output	P84/RAS4/CS4
IORD	Output	DMA read strobe signal output	P85/RAS5/CS5
DMARQ0 to DMARQ3	Input	DMA request signal input	P04/INTP100 to P07/INTP103
DMAAK0 to DMAAK3	Output	DMA acknowledge signal output	P14/INTP110 to P17/INTP113
TC0 to TC3	Output	DMA termination (terminal count) signal output	P104/INTP120 to P107/INTP123
HLDAK	Output	Bus hold acknowledge output	P96
HLDRQ	Input	Bus hold request input	P97
ANI0 to ANI7	Input	Analog input to A/D converter	P70 to P77
NMI	Input	Non-maskable interrupt request input	P20
CLKOUT	Output	System clock output	PX7
CKSEL	Input	Input that specifies the clock generator's operation mode	-
MODE0 to MODE2	Input	Operation mode specification	-
MODE3			VPP
RESET	Input	System reset input	-
X1	Input	Connecting system clock resonator. In the case of an external clock, it is	-
X2	_	input to X1.	-
ADTRG	Input	A/D converter external trigger input	P127/INTP153
AVREF	Input	Reference voltage applied to A/D converter	-
AVdd	_	Positive power supply for A/D converter	_

(4/4)

Pin Name	I/O	Function	Alternate Function
AVss	_	Ground potential for A/D converter	_
CVDD	_	Positive power supply for the dedicated clock generator	-
CVss	-	Ground potential for dedicated clock generator	_
VDD	-	Positive power supply (internal unit power supply)	_
HVDD	-	Positive power supply (external pin power supply)	_
Vss	-	Ground potential	_
VPP	-	High-voltage application pin during program write/verify	MODE3

2.3 Pin I/O Circuit Types and Recommended Connection of Unused Pins

Table 2-1 shows the I/O circuit type of each pin and the recommended connection of unused pins, and Figure 2-1 shows the schematic circuit diagram for each I/O circuit type.

In the case of connection to V_DD or V_SS via a resistor, connection of a resistor of 1 to 10 k Ω is recommended.

Table 2-1. Pin I/O Circuit Types and Recommended Connection of Unused Pins (1/2)

Pin	I/O Circuit Type	Recommended Connection of Unused Pins
P00/TO100, P01/TO101	5	Input: Independently connect to HVDD or Vss via a resistor.
P02/TCLR10, P03/TI10	5-K	Output: Leave open.
P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3		
P10/TO110, P11/TO111	5	
P12/TCLR11, P13/TI11	5-K	
P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3		
P20/NMI	2	Connect directly to Vss.
P21	5	Input: Independently connect to HVDD or Vss via a resistor.
P22/TXD0/SO0		Output: Leave open.
P23/RXD0/SI0	5-K	
P24/SCK0		
P25/TXD1/SO1	5	
P26/RXD1/SI1	5-K	
P27/SCK1		
P30/TO130, P31/TO131	5	
P32/TCLR13, P33/TI13	5-K	
P34/INTP130		
P35/INTP131/SO2		
P36/INTP132/SI2		
P37/INTP133/SCK2		
P40/D0 to P47/D7	5	
P50/D8 to P57/D15		
P60/A16 to P67/A23		
P70/ANI0 to P77/ANI7	9	Connect directly to Vss.

Pin	I/O Circuit Type	Recommended Connection of Unused Pins
P80/CS0/RAS0 to P83/CS3/RAS3 P84/CS4/RAS4/IOWR, P85/CS5/RAS5/IORD P86/CS6/RAS6, P87/CS7/RAS7	5	Input: Independently connect to HV _{DD} or V _{SS} via a resistor. Output: Leave open.
P90/LCAS/LWR		
P91/UCAS/UWR		
P92/RD		
P93/WE		
P94/BCYST		
P95/OE		
P96/HLDAK		
P97/HLDRQ		
P100/TO120, P101/TO121	5	Input: Independently connect to HVDD or Vss via a resistor.
P102/TCLR12, P103/TI12	5-K	Output: Leave open.
P104/INTP120/TC0 to P107/INTP123/TC3		
P110/TO140, P111/TO141	5	
P112/TCLR14, P113/TI14	5-K	
P114/INTP140		
P115/INTP141/SO3		
P116/INTP142/SI3		
P117/INTP143/SCK3		
P120/TO150, P121/TO151	5	
P122/TCLR15, P123/TI15	5-K	
P124/INTP150 to P126/INTP152		
P127/INTP153/ADTRG		
PA0/A0 to PA7/A7	5	
PB0/A8 to PB7/A15		
PX5/REFRQ		
PX6/WAIT		
PX7/CLKOUT		
CKSEL	1	-
RESET	2	
MODE0 to MODE2		
MODE3/VPP		Connect to Vss via a resistor (Rvpp).
AVREF, AVSS	_	Connect directly to Vss.
AVDD	_	Connect directly to HVDD.

Table 2-1. Pin I/O Circuit Types and Recommended Connection of Unused Pins (2/2)

Figure 2-1. Pin I/O Circuits

3. FLASH MEMORY PROGRAMMING

The following two flash memory programming methods are available.

(1) On-board programming

The program is written to the flash memory using a dedicated flash programmer after the μ PD70F3102-33 is mounted on the target board. Install the connectors, etc. required for communication with the dedicated flash programmer on the target board.

(2) Off-board programming

The program is written to the flash memory using a dedicated adapter before the μ PD70F3102-33 is mounted on the target board.

3.1 Selection of Communication Mode

Writing to the flash memory is done via serial communication using the dedicated flash programmer. Select one of the communication modes listed in Table 3-1. Base your selection of the communication mode on the selection format shown in Table 3-1. Refer to the number of VPP pulses shown in Table 3-1 when selecting the communication mode.

Table 3-1. Communication Modes

Communication Mode	Pins Used	Number of VPP Pulses		
CSIO	SO0 (serial data output) SI0 (serial data input) SCK0 (serial clock input)	0		
UART0	TXD0 (serial data output) RXD0 (serial data input)	8		

Figure 3-1. Communication Mode Selection Format

3.2 Flash Memory Programming Functions

Flash memory programming is performed by sending and receiving commands and data according to the selected communication mode. Table 3-2 shows the main flash memory programming functions.

Table 3-2.	Main Flash	Memory	Programming	Functions
------------	------------	--------	-------------	-----------

Function	Description		
Batch erasure Erases the contents of the entire memory.			
Batch blank check	Checks whether the entire memory has been erased.		
Data write	Writes data to flash memory based on the write start address and the number of bytes to be written.		
Batch verify	Compares the contents of the entire memory with the input data.		

3.3 Connecting the Dedicated Flash Programmer

The connection of the dedicated flash programmer to the μ PD70F3102-33 differs depending on the communication mode. Figures 3-2 and 3-3 show the various connection types.

Figure 3-2. Connection of Dedicated Flash Programmer for CSI0 Mode

Figure 3-3. Connection of Dedicated Flash Programmer for UART0 Mode

4. ELECTRICAL SPECIFICATIONS

4.1 Normal Operation Mode

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Condit	ions	Ratings	Unit
Supply voltage	VDD	V _{DD} pin		-0.5 to +4.6	V
	HVDD	HV_{DD} pin, $HV_{DD} \ge 1$	Vdd	-0.5 to +7.0	V
	CVDD	CV _{DD} pin		-0.5 to +4.6	V
	CVss	CVss pin		-0.5 to +0.5	V
	AVDD	AV _{DD} pin		-0.5 to HV _{DD} + 0.5^{Note}	V
	AVss	AVss pin		-0.5 to +0.5	V
Input voltage	Vı	Except X1 pin, MC	DDE3/VPP pin	-0.5 to HV _{DD} + 0.5^{Note}	V
		MODE3/VPP pin		-0.5 to V _{DD} + 0.5^{Note}	V
		MODE3/VPP pin in programming mode		-0.5 to +11.0	V
Clock input voltage	Vк	X1, V _{DD} = 3.0 to 3.0	6 V	-0.5 to VDD + 1.0^{Note}	V
Output current, low	lo∟	1 pin		4.0	mA
		Total of all pins		100	mA
Output current, high	Іон	1 pin		-4.0	mA
		Total of all pins		-100	mA
Output voltage	Vo	HV _{DD} = 5.0 V ±10%	6	-0.5 to HV _{DD} + 0.5^{Note}	V
Analog input voltage	VIAN	P70/ANI0 to	AVDD > HVDD	-0.5 to HV _{DD} + 0.5^{Note}	V
		P77/ANI7 pins	$HV_{\text{DD}} \geq AV_{\text{DD}}$	-0.5 to AV _{DD} + 0.5^{Note}	V
A/D converter reference input	AVREF	AVDD > HVDD	•	-0.5 to HV _{DD} + 0.5^{Note}	V
voltage		$HV_{DD} \ge AV_{DD}$		-0.5 to AV _{DD} + 0.5^{Note}	V
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +125	°C

- **Note** Use the product under conditions that ensure the absolute maximum ratings (MAX. values) of respective supply voltages are not exceeded.
- Cautions 1. Do not directly connect the output pins (or I/O pins) of IC products to each other, to VDD, Vcc, and GND. Open-drain pins and open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to a high-impedance state and the output timing of the external circuit is designed to avoid output conflict.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Capacitance (T_A = 25° C, V_{DD} = HV_{DD} = CV_{DD} = V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	fc = 1 MHz			15	pF
I/O capacitance	Сю	Unmeasured pins returned to 0 V			15	pF
Output capacitance	Co				15	pF

Operating Conditions

	Operation Mode	Internal Operation Clock Frequency (fx)	Operating Ambient Temperature (T _A)	Supply Voltage (Vdd, HVdd)		
*	Direct mode	2 to 33 MHz	-40 to +85°C	$V_{DD} = 3.0 \text{ to } 3.6 \text{ V},$ $HV_{DD} = 5.0 \text{ V} \pm 10\%$		
	PLL mode ^{Note 1}	20 to 33 MHz ^{Note 2}	−40 to +85°C	$V_{DD} = 3.0 \text{ to } 3.6 \text{ V},$ $HV_{DD} = 5.0 \text{ V} \pm 10\%$		

- ★ Notes 1. The internal operation clock frequency in PLL mode is the value during operation with a ×5 clock. When using a ×1 or ×1/2 clock by setting the CKDIVn (n = 0, 1) bit in the CKC register, operation is possible at a frequency of 20 MHz or lower.
 - 2. Set the input clock frequency used in PLL mode to 4.0 to 6.6 MHz.

Recommended Oscillator

(a) Connection of ceramic resonator ($T_A = -40$ to $+85^{\circ}C$)

X1 $X2R_dC1$ $C2777$									
Туре	Product Name	Oscillation Frequency	Reco	mmended (Constant	Circuit		n Voltage nge	Oscillation Stabilization Time (MAX.)	
		fxx (MHz)	C1 (pF)	C2 (pF)	R_{d} (k Ω)	MIN. (V)	MAX. (V)	Tost (ms)	
Surface	CSAC4.00MGC040	4.0	100	100	0	3.0	3.6	0.5	
mount	CSTCC4.00MG0H6	4.0	On-chip	On-chip	0	3.0	3.6	0.3	
	CSAC5.00MGC040	5.0	100	100	0	3.0	3.6	0.4	
	CSTCC5.00MG0H6	5.0	On-chip	On-chip	0	3.0	3.6	0.2	
	CSAC6.60MT	6.6	30	30	0	3.0	3.6	0.2	
	CSTCC6.60MG0H6	6.6	On-chip	On-chip	0	3.0	3.6	0.1	
	CSAC8.00MT	8.0	30	30	0	3.0	3.6	0.2	
	CSTCC8.00MG0H6	8.0	On-chip	On-chip	0	3.0	3.6	0.3	
Lead	CSA4.00MG040	4.0	100	100	0	3.0	3.6	0.5	
	CST4.00MGW040	4.0	On-chip	On-chip	0	3.0	3.6	0.5	
	CSA5.00MG040	5.0	100	100	0	3.0	3.6	0.5	
	CST5.00MGW040	5.0	On-chip	On-chip	0	3.0	3.6	0.5	
	CSA6.60MTZ	6.6	30	30	0	3.0	3.6	0.1	
	CST6.60MTW	6.6	On-chip	On-chip	0	3.0	3.6	0.1	
	CSA8.00MTZ	8.0	30	30	0	3.0	3.6	0.1	
	CST8.00MTW	8.0	On-chip	On-chip	0	3.0	3.6	0.1	

(i) Murata Mfg. Co., Ltd. ($T_A = -40$ to $+85^{\circ}C$)

Cautions 1. Connect the oscillator as close to the X1 and X2 pins as possible.

2. Do not wire any other signal lines in the area indicated by the broken lines.

3. Thoroughly evaluate the matching between the μ PD70F3102-33 and the resonator.

(ii) TDK Corporation ($T_A = -40$ to $+85^{\circ}C$)

Manufacturer	Product Name	Frequency Constant		Oscillation Voltage Range		Oscillation Stabilization Time (MAX.)		
		fxx (MHz)	C1 (pF)	C2 (pF)	Rd (kΩ)	MIN. (V)	MAX. (V)	Tost (ms)
TDK	CCR4.0MC3	4.0	On-chip	On-chip	0	3.0	3.6	0.17
	CCR5.0MC3	5.0	On-chip	On-chip	0	3.0	3.6	0.15
	CCR8.0MC5	8.0	On-chip	On-chip	0	3.0	3.6	0.11

Cautions 1. Connect the oscillator as close to the X1 and X2 pins as possible.

- 2. Do not wire any other signal lines in the area indicated by the broken lines.
- 3. Thoroughly evaluate the matching between the μ PD70F3102-33 and the resonator.

(iii) Kyocera Corporation ($T_A = -20$ to $+80^{\circ}C$)

Manufacturer	Product Name	Oscillation Frequency	Reco	mmended (Constant	Circuit	Oscillatio Rai	n Voltage nge	Oscillation Stabilization Time (MAX.)
		fxx (MHz)	C1 (pF)	C2 (pF)	R₁ (kΩ)	MIN. (V)	MAX. (V)	Tost (ms)
Kyocera	PBRC5.00BR-A	5.0	On-chip	On-chip	0	3.0	3.6	0.06
	PBRC6.00BR-A	6.0	On-chip	On-chip	0	3.0	3.6	0.06
	PBRC6.60BR-A	6.6	On-chip	On-chip	0	3.0	3.6	0.06

Cautions 1. Connect the oscillator as close to the X1 and X2 pins as possible.

- 2. Do not wire any other signal lines in the area indicated by the broken lines.
- 3. Thoroughly evaluate the matching between the μ PD70F3102-33 and the resonator.

(b) External clock input ($T_A = -40$ to $+85^{\circ}C$)

Cautions when turning on/off the power

The μ PD70F3102-33 is configured with power supply pins for the internal unit (V_{DD}) and for the external pins (HV_{DD}).

The operation guaranteed range is $V_{DD} = CV_{DD} = 3.0$ to 3.6 V, $HV_{DD} = 5.0$ V $\pm 10\%$. The input and output state of ports may be undefined when the voltage exceeds this range.

Parameter	Symbol	(Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	Except No	ote 1	2.2		HV _{DD} + 0.3	V
		Note 1		0.8HVDD		HV _{DD} + 0.3	V
Input voltage, low	VIL	Except No	otes 1 and 2	-0.5		+0.8	V
		Note 1		-0.5		0.2HVDD	V
Clock input voltage, high	Vхн	X1 pin	Direct mode	0.8VDD		VDD + 0.3	V
			PLL mode	0.8VDD		VDD + 0.3	V
Clock input voltage, low	VxL	X1 pin	Direct mode	-0.3		0.15VDD	V
			PLL mode	-0.3		0.15VDD	V
Schmitt-triggered input	HV⊤⁺	Note 1, ri	sing edge		3.0		V
threshold voltage	HV⊤⁻	Note 1, fa	alling edge		2.0		V
Schmitt-triggered input hysteresis width	HV⊤⁺ –HV⊤⁻	Note 1		0.5			V
Output voltage, high	Vон	Іон = −2.5	mA	0.7HVdd			V
		Іон = -100) <i>μ</i> Α	HV _{DD} – 0.4			V
Output voltage, low	Vol	lo∟ = 2.5 mA				0.45	V
Input leakage current, high	Іцн	VI = HVDD, except Note 2				10	μA
Input leakage current, low	Lil	VI = 0 V, except Note 2				-10	μA
Output leakage current, high	Ігон	Vo = HVDD				10	μA
Output leakage current, low	Ilol	Vo = 0 V				-10	μA

DC Characteristics (T_A = -40 to +85°C, V_{DD} = CV_{DD} = 3.0 to 3.6 V, HV_{DD} = 5.0 V \pm 10%, V_{SS} = 0 V) (1/2)

Notes 1. P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to P107/INTP123/TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET

2. When using the P70/AN10 to P77/ANI7 pins as analog inputs.

Remark TYP. values are reference values for when $T_A = 25^{\circ}C$, $V_{DD} = CV_{DD} = 3.3 \text{ V}$, $HV_{DD} = 5.0 \text{ V}$.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = CV_{DD} = 3.0 to 3.6 V, HV_{DD} = 5.0 V \pm 10%, V_{SS} = 0 V) (2/2)

Parameter Sym		Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Supply	During normal	IDD1	VDD + CVDD			2.0 imes fx	4.5 imes fx	mA
current			HVDD			1.8 imes fx	3.0 imes fx	mA
	During HALT	IDD2	VDD + CVDD			1.4 imes fx	3.0 imes fx	mA
			HVDD			0.8 imes fx	1.5 imes fx	mA
	During IDLE	Idd3	VDD + CVDD			3.0	10	mA
			HVDD			0.5	1.0	mA
During STOP IDD4	IDD4	VDD + CVDD	$-40^\circ C \leq T_A \leq +40^\circ C$		20	50	μA	
				$+40^\circ C < T_A \leq +85^\circ C$			600	μA
			HVDD			10	20	μA

Remarks 1. TYP. values are reference values for when $T_A = 25^{\circ}C$, $V_{DD} = CV_{DD} = 3.3 \text{ V}$, $HV_{DD} = 5.0 \text{ V}$.

Direct mode: fx = 2 to 33 MHz
 PLL mode: fx = 20 to 33 MHz

3. The fx unit is MHz.

*

 \star

*

Data Retention Characteristics ($T_A = -40$ to $+85^{\circ}C$)

	Parameter	Symbol	(Conditions	MIN.	TYP.	MAX.	Unit
	Data retention voltage	VDDDR	STOP mode,	Vdd = Vdddr	1.5		3.6	V
		HVdddr	STOP mode,	HVDD = HV DDDR	VDDDR		5.5	V
*	Data retention current	IDDDR	$V_{DD} = V_{DDDR}$	$-40^\circ C \leq T_A \leq +40^\circ C$		20	50	μA
				$+40^\circ C < T_A \leq +85^\circ C$			600	μA
	Supply voltage rise time	trvd			200			μs
	Supply voltage fall time	tevd			200			μs
	Supply voltage hold time (from STOP mode setting)	tнvd			0			ms
	STOP release signal input time	t DREL			0			ns
	Data retention high-level input voltage	VIHDR	Note		0.8HVdddr		HVdddr	V
	Data retention low-level input voltage	Vildr	Note		0		0.2HVdddr	V

Note P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2,

P104/INTP120/TC0 to P107/INTP123/TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET

AC Characteristics (T_A = -40 to +85°C, V_{DD} = CV_{DD} = 3.0 to 3.6 V, HV_{DD} = 5.0 V \pm 10%, V_{SS} = 0 V, Output Pin Load Capacitance: C_L = 50 pF)

AC Test Input Measurement Points

(a) P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to P107/INTP123/TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET

(b) Other than (a)

AC Test Output Measurement Points

Load Conditions

(1) Clock timing

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
X1 input cycle	<1>	tcyx	In direct mode	15	250	ns
			In PLL mode	150	250	ns
X1 input high-level width	<2>	twxн	In direct mode	5		ns
			In PLL mode	50		ns
X1 input low-level width	<3>	twx∟	In direct mode	5		ns
			In PLL mode	50		ns
X1 input rise time	<4>	tхя	In direct mode		4	ns
			In PLL mode		10	ns
X1 input fall time	<5>	tхғ	In direct mode		4	ns
			In PLL mode		10	ns
CLKOUT output cycle	<6>	tсүк		30	100	ns
CLKOUT high-level width	<7>	twкн		0.5T – 7		ns
CLKOUT low-level width	<8>	twĸ∟		0.5T – 4		ns
CLKOUT rise time	<9>	tкв			5	ns
CLKOUT fall time	<10>	tкғ			5	ns

Remark T = tcyk

(2) Output waveform (other than X1, CLKOUT)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Output rise time	<12>	tor			10	ns
Output fall time	<13>	tor			10	ns

(3) Reset timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
RESET pin high-level width	<14>	twrsh		500		ns
RESET pin low-level width	<15>	twrsl	At power ON, STOP mode release	500 + Tos		ns
			Except at power ON, STOP mode release	500		ns

Remark Tos: Oscillation stabilization time

(4) SRAM, external ROM, external I/O access timing

(a) Access timing (SRAM, external ROM, external I/O) (1/2)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
Address, CSn output delay time (from CLKOUT↓)	<16>	t dka		2	10	ns
Address, $\overline{\text{CSn}}$ output hold time (from CLKOUT \downarrow)	<17>	tнка		2	10	ns
RD, IORD↓ delay time (from CLKOUT↑)	<18>	t dkrdl		2	14	ns
RD, IORD↑ delay time (from CLKOUT↑)	<19>	tнквон		2	14	ns
UWR, LWR, IOWR↓ delay time (from CLKOUT↑)	<20>	t dkwrl		2	10	ns
UWR, LWR, IOWR↑ delay time (from CLKOUT↑)	<21>	tнкwвн		2	10	ns
BCYST↓ delay time (from CLKOUT↓)	<22>	t dkbsl		2	10	ns
BCYST [↑] delay time (from CLKOUT↓)	<23>	tнквsн		2	10	ns
$\overline{\text{WAIT}}$ setup time (to CLKOUT \downarrow)	<24>	tswĸ		15		ns
\overline{WAIT} hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
Data input setup time (to CLKOUT↑)	<26>	tskid		18		ns
Data input hold time (from CLKOUT [↑])	<27>	tнкір		2		ns
Data output delay time (from CLKOUT↓)	<28>	t dkod		2	10	ns
Data output hold time (from CLKOUT↓)	<29>	tнкор		2	10	ns

Remarks 1. Observe at least one of the data input hold times, thkid or thrond.

2. n = 0 to 7

(a) Access timing (SRAM, external ROM, external I/O) (2/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Data input setup time (to address)	<30>	t SAID			(1.5 + w _D + w) T − 28	ns
Data input setup time (to RD)	<31>	tsrdid			(1 + w _D +w) T – 32	ns
RD, IORD low-level width	<32>	twrdl		(1 + w⊳ + w) T – 10		ns
RD, IORD high-level width	<33>	twrdh		T – 10		ns
Delay time from address, $\overline{\text{CSn}}$ to $\overline{\text{RD}}$, $\overline{\text{ORD}} \downarrow$	<34>	t dard		0.5T – 10		ns
Delay time from RD, IORD↑ to address	<35>	t drda		(0.5 + i) T – 10		ns
Data input hold time (from RD, IORD↑)	<36>	thrdid		0		ns
Delay time from RD, IORD↑ to data output	<37>	tordod		(0.5 + i) T – 10		ns
WAIT setup time (to address)	<38>	tsaw	Note		T – 25	ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{BCYST}}$)	<39>	tsssw	Note		T – 25	ns
\overline{WAIT} hold time (from \overline{BCYST})	<40>	tнвsw	Note	0		ns

(b) Read timing (SRAM, external ROM, external I/O) (1/2)

Note During the first WAIT sampling, when the number of waits specified by registers DWC1 and DWC2 is 0.

Remarks 1. T = tCYK

- 2. w: Number of waits due to WAIT
- 3. wd: Number of waits specified by registers DWC1, DWC2
- 4. i: Number of idle states inserted when a write cycle follows the read cycle.
- 5. Observe at least one of the data input hold times, thkid or thrond.

6. n = 0 to 7

(b) Read timing (SRAM, external ROM, external I/O) (2/2)

(c) Write timing (SRAM, external ROM, external I/O) (1/2)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
WAIT setup time (to address)	<38>	tsaw	Note		T – 25	ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{BCYST}}\downarrow$)	<39>	tsesw	Note		T – 25	ns
WAIT hold time (from BCYST↑)	<40>	tнвsw	Note	0		ns
Delay time from address, \overline{CSn} to UWR, \overline{LWR} , $\overline{IOWR} \downarrow$	<41>	t dawr		0.5T – 10		ns
Address setup time (to UWR, LWR, IOWR↑)	<42>	t sawr		(1.5 + w⊳ + w) T − 10		ns
Delay time from ŪWR, ŪWR, IOWR↑ to address	<43>	t dwra		0.5T – 10		ns
UWR, LWR, IOWR high-level width	<44>	twwrн		T – 10		ns
UWR, LWR, IOWR low-level width	<45>	twwRL		(1 + w⊳ + w) T – 10		ns
Data output setup time (to \overline{UWR} , \overline{LWR} , \overline{IOWR})	<46>	t sodwr		(1.5 + w⊳ + w) T – 10		ns
Data output hold time (from \overline{UWR} , \overline{LWR} , \overline{IOWR})	<47>	t HWROD		0.5T – 10		ns

Note During the first $\overline{\text{WAIT}}$ sampling, when the number of waits specified by registers DWC1 and DWC2 is 0.

Remarks 1. T = tcyk

- **2.** w: Number of waits due to \overline{WAIT}
- 3. wb: Number of waits specified by registers DWC1 and DWC2

4. n = 0 to 7
NEC

(c) Write timing (SRAM, external ROM, external I/O) (2/2)

(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (1/2)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
$\overline{\text{WAIT}}$ setup time (to CLKOUT \downarrow)	<24>	tswĸ		15		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
RD low-level width	<32>	twrdl		$(1 + w_D + w_F + w) T - 10$		ns
RD high-level width	<33>	twrdh		T – 10		ns
Delay time from address, $\overrightarrow{\text{CSn}}$ to $\overrightarrow{\text{RD}}\downarrow$	<34>	t dard		0.5T – 10		ns
Delay time from \overline{RD} to address	<35>	t DRDA		(0.5 + i) T – 10		ns
Delay time from RD↑ to data output	<37>	tdrdod		(0.5 + i) T – 10		ns
WAIT setup time (to address)	<38>	tsaw	Note		T – 25	ns
$\overline{\text{WAIT}}$ setup time (to $\overline{\text{BCYST}}$)	<39>	t sbsw	Note		T – 25	ns
WAIT hold time (from BCYST↑)	<40>	tнвsw	Note	0		ns
Delay time from address to $\overline{\text{IOWR}}\downarrow$	<41>	t DAWR		0.5T – 10		ns
Address setup time (to IOWR↑)	<42>	t SAWR		(1.5 + w _D + w) T - 10		ns
Delay time from IOWR↑ to address	<43>	t dwra		0.5T – 10		ns
IOWR high-level width	<44>	twwrn		T – 10		ns
IOWR low-level width	<45>	twwRL		(1 + w _D + w) T − 10		ns
Delay time from \overline{IOWR} to \overline{RD}	<48>	towrrd	wf = 0	0		ns
			WF = 1	T – 10		ns
Delay time from DMAAKm↓ to IOWR↓	<49>	t ddawr		0.5T – 10		ns
Delay time from IOWR↑ to DMAAKm↑	<50>	t dwrda		(0.5 + w⊧) T – 10		ns

Note During the first WAIT sampling, when number of waits specified by registers DWC1 and DWC2 is 0.

- **2.** w: Number of waits due to \overline{WAIT}
- 3. wd: Number of waits specified by registers DWC1, DWC2
- 4. wF: Number of waits inserted to source-side access during DMA flyby transfer
- 5. i: Number of idle states inserted when a write cycle follows the read cycle
- **6.** n = 0 to 7, m = 0 to 3

(d) DMA flyby transfer timing (SRAM \rightarrow external I/O transfer) (2/2)

(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (1/2)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
\overline{WAIT} setup time (to CLKOUT \downarrow)	<24>	tswк		15		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
IORD low-level width	<32>	twrdl		$(1 + w_D + w_F + w) T - 10$		ns
IORD high-level width	<33>	twrdh		T – 10		ns
Delay time from address, $\overrightarrow{\text{CSn}}$ to $\overrightarrow{\text{IORD}}\downarrow$	<34>	t dard		0.5T – 10		ns
Delay time from IORD [↑] to address	<35>	t drda		(0.5 + i) T – 10		ns
Delay time from IORD↑ to data output	<37>	tdrdod		(0.5 + i) T – 10		ns
WAIT setup time (to address)	<38>	tsaw	Note		T – 25	ns
\overline{WAIT} setup time (to $\overline{BCYST}\downarrow$)	<39>	tsssw	Note		T – 25	ns
WAIT hold time (from BCYST↑)	<40>	tнвsw	Note	0		ns
Delay time from address to $\overline{UWR},$ $\overline{LWR}\downarrow$	<41>	t dawr		0.5T – 10		ns
Address setup time (to UWR, LWR↑)	<42>	t sawr		(1.5 + w _D + w) T – 10		ns
Delay time from UWR, LWR↑ to address	<43>	t dwra		0.5T – 10		ns
UWR, LWR high-level width	<44>	twwrn		T – 10		ns
UWR, LWR low-level width	<45>	twwRL		(1 + w _D + w) T - 10		ns
Delay time from UWR, UWR↑ to	<48>	towrrd	wf = 0	0		ns
IORD↑			w _F = 1	T – 10		ns
Delay time from DMAAKm↓ to IORD↓	<51>	tddard		0.5T – 10		ns
Delay time from IORD↑ to DMAAKm↑	<52>	tordda		0.5T – 10		ns

Note During the first \overline{WAIT} sampling, when the number of waits specified by registers DWC1 and DWC2 is 0.

- **2.** w: Number of waits due to \overline{WAIT}
- 3. wD: Number of waits specified by registers DWC1 and DWC2.
- 4. wF: Number of waits inserted to source-side access during DMA flyby transfer.
- 5. i: Number of idle states inserted when a write cycle follows the read cycle.
- **6.** n = 0 to 7, m = 0 to 3

NEC

(e) DMA flyby transfer timing (external I/O \rightarrow SRAM transfer) (2/2)

(5) Page ROM access timing (1/2)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
\overline{WAIT} setup time (to CLKOUT \downarrow)	<24>	tswĸ		15		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
Data input setup time (to CLKOUT↑)	<26>	tskid		18		ns
Data input hold time (from CLKOUT↑)	<27>	tнкір		2		ns
Off-page data input setup time (to address)	<30>	t SAID			(1.5 + w⊳ +w) T – 28	ns
Off-page data input setup time (to RD)	<31>	tsrdid			(1 + w⊳ + w) T – 32	ns
Off-page RD low-level width	<32>	twrdl		(1 + w _D + w) T – 10		ns
RD high-level width	<33>	twrdh		0.5T – 10		ns
Data input hold time (from \overline{RD})	<36>	thrdid		0		ns
Delay time from RD↑ to data output	<37>	tordod		(0.5 + i) T – 10		ns
On-page RD low-level width	<53>	twordl		(1.5 + wpr + w) T - 10		ns
On-page data input setup time (to address)	<54>	tsoaid			(1.5 + wpr + w) T - 28	ns
On-page data input setup time (to RD)	<55>	tsordid			(1.5 + wpr + w) T - 32	ns

- **2.** w: Number of waits due to \overline{WAIT}
- 3. wb: Number of waits specified by registers DWC1 and DWC2.
- 4. WPR: Number of waits specified by register PRC.
- 5. i: Number of idle states inserted when a write cycle follows the read cycle.
- 6. Observe at least one of the data input hold times, thkid or thrond.

(5) Page ROM access timing (2/2)

(6) DRAM access timing

(a) Read timing (high-speed page DRAM access, normal access: off-page) (1/3)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
$\overline{\text{WAIT}}$ setup time (to CLKOUT \downarrow)	<24>	tswк		15		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
Data input setup time (to CLKOUT↑)	<26>	t skid		18		ns
Data input hold time (from CLKOUT↑)	<27>	tнкid		2		ns
Delay time from \overline{OE}^\uparrow to data output	<37>	tdrdod		(0.5 + i) T – 10		ns
Row address setup time	<56>	tasr		(0.5 + wrp) T – 10		ns
Row address hold time	<57>	traн		(0.5 + wвн) T – 10		ns
Column address setup time	<58>	tasc		0.5T – 10		ns
Column address hold time	<59>	tсан		(1.5 + wda + w) T – 10		ns
Read/write cycle time	<60>	trc		(3 + wrp + wrh + wda + w) T - 10		ns
RAS recharge time	<61>	t RP		(0.5 + wrp) T – 10		ns
RAS pulse time	<62>	tras		(2.5 + wrh + wda + w) T – 10		ns
RAS hold time	<63>	tяsн		(1.5 + wda + w) T – 10		ns
Column address read time for RAS	<64>	t RAL		(2 + wda + w) T - 10		ns
CAS pulse width	<65>	tcas		(1 + wda + w) T - 10		ns
CAS to RAS precharge time	<66>	t CRP		(1 + wrp) T – 10		ns
CAS hold time	<67>	tcsн		(2 + wrh + wda + w) T - 10		ns
WE setup time	<68>	trcs		(2 + wrp + wrh) T – 10		ns
\overline{WE} hold time (from \overline{RAS})	<69>	tввн		0.5T – 10		ns
\overline{WE} hold time (from \overline{CAS})	<70>	t RCH		T – 10		ns
CAS precharge time	<71>	t CPN		(2 + wrp + wrh) T – 10		ns
Output enable access time	<72>	t OEA			(2 + wrp + wrh + wda + w) T - 28	ns
RAS access time	<73>	t rac			(2 + wrh + wda + w) T – 28	ns
Access time from column address	<74>	taa			(1.5 + wda + w) T – 28	ns
CAS access time	<75>	tcac			(1 + wda + w) T – 28	ns

Remarks 1. T = tCYK

- **2.** w: Number of waits due to \overline{WAIT}
- 3. WRP: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 4. WRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 5. wDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 6. i: Number of idle states inserted when a write cycle follows the read cycle.

(a) Read timing (high-speed page DRAM access, normal access: off-page) (2/3)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
RAS column address delay time	<76>	t RAD		(0.5 + w _{RH}) T – 10		ns
\overline{RAS} to \overline{CAS} delay time	<77>	trcd		(1 + wвн) T – 10		ns
Output buffer turn off delay time (from OE↑)	<78>	toez		0		ns
Output buffer turn off delay time (from CAS↑)	<79>	toff		0		ns

Remarks 1. T = tcyk

2. wRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

NEC

(a) Read timing (high-speed page DRAM access, normal access: off-page) (3/3)

[MEMO]

(b)	Read timing	(high-speed	DRAM access:	on-page) (1/2)
-----	-------------	-------------	---------------------	----------------

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
Data input setup time (to CLKOUT↑)	<26>	t skid		18		ns
Data input hold time (from CLKOUT↑)	<27>	tнкıd		2		ns
Delay time from \overline{OE}^\uparrow to data output	<37>	tdrdod		(0.5 + i) T – 10		ns
Column address setup time	<58>	tasc		(0.5 + wcp) T – 10		ns
Column address hold time	<59>	tсан		(1.5 + wda) T – 10		ns
RAS hold time	<63>	tяsн		(1.5 + wda) T – 10		ns
Column address read time for \overline{RAS}	<64>	t RAL		(2 + wcp + wda) T – 10		ns
CAS pulse width	<65>	tcas		(1 + wda) T – 10		ns
\overline{WE} setup time (to $\overline{CAS}\downarrow$)	<68>	trcs		(1 + wcp) T - 10		ns
\overline{WE} hold time (from \overline{RAS})	<69>	t RRH		0.5 T – 10		ns
\overline{WE} hold time (from \overline{CAS})	<70>	t RCH		T – 10		ns
Output enable access time	<72>	toea			(1 + wcp + wda) T - 28	ns
Access time from column address	<74>	taa			(1.5 + WCP + WDA) T - 28	ns
CAS access time	<75>	tcac			(1 + wda) T – 28	ns
Output buffer turn-off delay time (from $\overline{\text{OE}}^{\uparrow}$)	<78>	toez		0		ns
Output buffer turn-off delay time (from $\overline{CAS}^{\uparrow}$)	<79>	toff		0		ns
Access time from CAS precharge	<80>	t acp			(2 + wcp + wda) T - 28	ns
CAS precharge time	<81>	tcp		(1 + wcp) T – 10		ns
High-speed page mode cycle time	<82>	t _{PC}		(2 + wcp + wda) T – 10		ns
RAS hold time from CAS precharge	<83>	t RHCP		(2.5 + wcp + wda) T – 10		ns

- **2.** wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- **3.** wDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 4. i: Number of idle states inserted when a write cycle follows the read cycle.

(c) Write timing (high-speed page DRAM access, normal access: off-page) (1/2)

Parameter	Syn	nbol	Conditions	MIN.	MAX.	Unit
\overline{WAIT} setup time (to CLKOUT \downarrow)	<24>	tswк		15		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
Row address setup time	<56>	tasr		(0.5 + wrp) T – 10		ns
Row address hold time	<57>	t RAH		(0.5 + wrн) T – 10		ns
Column address setup time	<58>	tasc		0.5T – 10		ns
Column address hold time	<59>	tсан		(1.5 + wda + w) T - 10		ns
Read/write cycle time	<60>	trc		(3 + wrp + wrh + wda + w) T - 10		ns
RAS precharge time	<61>	t _{RP}		(0.5 + wrp) T - 10		ns
RAS pulse time	<62>	t ras		(2.5 + wrh + wda + w) T - 10		ns
RAS hold time	<63>	t RSH		(1.5 + wda + w) T - 10		ns
$\frac{\text{Column address read time (from }}{\text{RAS}} \uparrow)$	<64>	t RAL		(2 + wda + w) T - 10		ns
CAS pulse width	<65>	tcas		(1 + wda + w) T - 10		ns
CAS to RAS precharge time	<66>	t CRP		(1 + wrн) T – 10		ns
CAS hold time	<67>	tсsн		(2 + w _{RH} + w _{DA} + w) T - 10		ns
CAS precharge time	<71>	t CPN		(2 + wrp + wrн) T – 10		ns
RAS column address delay time	<76>	t RAD		(0.5+ wrн) T – 10		ns
RAS to CAS delay time	<77>	t RCD		(1 + wrн) T – 10		ns
\overline{WE} setup time (to $\overline{CAS}\downarrow$)	<84>	twcs		(1 + wrp + wrh) T – 10		ns
\overline{WE} hold time (from \overline{CAS})	<85>	twcн		(1 + wda + w) T - 10		ns
Data setup time (to $\overline{CAS}\downarrow$)	<86>	t⊳s		(1.5 + wrp + wrh) T – 10		ns
Data hold time (from $\overline{CAS}\downarrow$)	<87>	tрн		(1.5 + wda + w) T – 10		ns

Remarks 1. T = tcyk

- **2.** w: Number of waits due to \overline{WAIT}
- 3. WRP: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 4. WRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

5. wDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

(c) Write timing (high-speed page DRAM access, normal access: off-page) (2/2)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
Column address setup time	<58>	tasc		(0.5 + wcp) T – 10		ns
Column address hold time	<59>	tсан		(1.5 + wda) T – 10		ns
RAS hold time	<63>	tяsн		(1.5 + wda) T – 10		ns
Column address read time (from \overline{RAS})	<64>	t RAL		(2 + wcp + wda) T – 10		ns
CAS pulse width	<65>	tcas		(1 + wda) T – 10		ns
CAS precharge time	<81>	tcp		(1 + wcp) T – 10		ns
RAS hold time for CAS precharge	<83>	t rhcp		(2.5 + wcp + wda) T – 10		ns
\overline{WE} setup time (to $\overline{CAS}\downarrow$)	<84>	twcs	WCP ≥ 1	wcpT – 10		ns
\overline{WE} hold time (from $\overline{CAS}\downarrow$)	<85>	twcн		(1 + wda) T – 10		ns
Data setup time (to $\overline{CAS}\downarrow$)	<86>	tos		(0.5 + wcp) T – 10		ns
Data hold time (from $\overline{CAS}\downarrow$)	<87>	tрн		(1.5 + wda) T – 10		ns
\overline{WE} read time (from \overline{RAS})	<88>	trwL	WCP = 0	(1.5 + wda) T – 10		ns
\overline{WE} read time (from \overline{CAS})	<89>	tcw∟	WCP = 0	(1 + wda) T – 10		ns
Data setup time (to $\overline{WE}\downarrow$)	<90>	toswe	WCP = 0	0.5T – 10		ns
Data hold time (from $\overline{\text{WE}}\downarrow$)	<91>	t DHWE	WCP = 0	(1.5 + wda) T – 10		ns
WE pulse width	<92>	twp	WCP = 0	(1 + wda) T - 10		ns

(d) Write timing (high-speed page DRAM access: on-page) (1/2)

- 2. wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- **3.** wDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

(d) Write timing (high-speed page DRAM access: on-page) (2/2)

(e) Read timing (EDO DRAM) (1/3)

Para	meter	Sy	mbol	Conditions	MIN.	MAX.	Unit
Data input setup ti	ime (to CLKOUT↑)	<26>	t skid		18		ns
Data input hold tin (from CLKOUT↑)	ne	<27>	tнкір		2		ns
Delay time from O	E↑ to data output	<37>	tdrdod		(0.5 + i) T – 10		ns
Row address setu	p time	<56>	tasr		(0.5 + wrp) T - 10		ns
Row address hold	time	<57>	t RAH		(0.5 + wвн) T – 10		ns
Column address s	etup time	<58>	tasc		0.5T – 10		ns
Column address h	old time	<59>	tсан		(0.5 + wda) T - 10		ns
RAS precharge tir	ne	<61>	t _{RP}		(0.5 + wrp) T - 10		ns
Column address r (to RAS↑)	ead time	<64>	t ral		(2 + wcp + wda) T - 10		ns
CAS to RAS prech	narge time	<66>	t CRP		(1 + wrp) T – 10		ns
CAS hold time		<67>	tсsн		(1.5 + wrh + wda) T - 10		ns
WE setup time (to	CAS↓)	<68>	tRCS		(2 + wrp +wrh) T – 10		ns
WE hold time (from	m RAS↑)	<69>	t RRH		0.5T – 10		ns
WE hold time (from	m <mark>CAS</mark> ↑)	<70>	t RCH		1.5T – 10		ns
RAS access time		<73>	t rac			(2 + wrh + wda) T – 28	ns
Access time from	column address	<74>	taa			(1.5 + wda) T – 28	ns
CAS access time		<75>	tcac			(1 + wda) T – 28	ns
Delay time from R address	AS to column	<76>	t RAD		(0.5 + wrн) T – 10		ns
RAS to CAS delay	<i>i</i> time	<77>	trcd		(1 + wвн) T – 10		ns
Output buffer turn- (from OE)	off delay time	<78>	toez		0		ns
Access time from	CAS precharge	<80>	t ACP			(1.5 + wcp + wda) T – 28	ns
CAS precharge tir	ne	<81>	tcp		(0.5 + wcp) T - 10		ns
RAS hold time for	CAS precharge	<83>	t RHCP		(2 + wcp + wda) T – 10		ns
Read cycle time		<93>	thpc		(1 + wda + wcp) T - 10		ns
RAS pulse width		<94>	t RASP		(2.5 + wrh + wda) T - 10		ns
CAS pulse width		<95>	t HCAS		(0.5 + wda) T - 10		ns
Hold time from	Off-page	<96>	tocH1		(2 + wrh + wda) T – 10		ns
OE to CAS	On-page	<97>	tocH2		(0.5 + wda) T - 10		ns
Data input hold tin	ne (from CAS↓)	<98>	tрнс		0		ns

Remarks 1. T = tcyk

2. WRP: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

3. WRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

- 4. WDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 5. wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 6. i: Number of idle states inserted when a write cycle follows the read cycle.

(e) Read timing (EDO DRAM) (2/3)

Parame	ter	Symbol		Conditions	MIN.	MAX.	Unit
Output enable access time	Off-page	<99>	toea1			(2 + WRP + WRH + WDA) T – 28	ns
	On-page	<100>	toea2			(1 + wcp + wda) T – 28	ns

- 2. WRP: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 3. WRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 4. wDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 5. wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

(e) Read timing (EDO DRAM) (3/3)

[MEMO]

(f) Write timing (EDO DRAM) (1/2)

Paramet	er	Sy	mbol	Conditions	MIN.	MAX.	Unit
Row address setup t	ime	<56>	tasr		(0.5 + wrp) T – 10		ns
Row address hold tin	ne	<57>	t RAH		(0.5 + wвн) T –10		ns
Column address setu	ıp time	<58>	tasc		0.5T – 10		ns
Column address hold	l time	<59>	tсан		(0.5 + wda) T - 10		ns
RAS precharge time		<61>	t _{RP}		(0.5 + wrp) T - 10		ns
RAS hold time		<63>	tяsн		(1.5 + wda) T – 10		ns
Column address read (to RAS↑)	d time	<64>	tral		(2 + wcp + wda) T - 10		ns
CAS to RAS prechar	ge time	<66>	t CRP		(1 + wrp) T – 10		ns
CAS hold time		<67>	tсsн		(1.5 + wrh + wda) T – 10		ns
Delay time from RAS address	to column	<76>	t rad		(0.5 + wrн) T – 10		ns
RAS to CAS delay tir	ne	<77>	trcd		(1 + wвн) T – 10		ns
CAS precharge time		<81>	t _{CP}		(0.5 + wcp) T - 10		ns
\overline{RAS} hold time for \overline{CA}	AS precharge	<83>	t RHCP		(2 + wcp + wda) T - 10		ns
WE hold time (from 0	CAS↓)	<85>	twcн		(1 + wda) T – 10		ns
Data hold time (from	CAS↓)	<87>	tон		(0.5 + wda) T - 10		ns
WE read time (to RAS↑)	On-page	<88>	trwL	WCP = 0	(1.5 + twda) T – 10		ns
$\frac{\overline{WE}}{\overline{CAS}}$ read time (to	On-page	<89>	tcw∟	WCP = 0	(0.5 + wda) T - 10		ns
WE pulse width	On-page	<92>	twp	WCP = 0	(1 + wda) T - 10		ns
Write cycle time		<93>	thpc		(1 + wda + wcp) T - 10		ns
RAS pulse width		<94>	t RASP		(2.5 + wrh + wda) T – 10		ns
CAS pulse width		<95>	thcas		(0.5 + wda) T - 10		ns
WE setup time	Off-page	<101>	twcs1		(1 + wrp + wrh) T - 10		ns
(to CAS ↓)	On-page	<102>	twcs2	wcp ≥ 1	wcpT – 10		ns
Data setup time	Off-page	<103>	t _{DS1}		(1.5 + wrp + wrh) T – 10		ns
(to CAS↓)	On-page	<104>	t _{DS2}		(0.5 + wcp) T - 10		ns

- **2.** wRP: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 3. wRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 4. wDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 5. wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

(f) Write timing (EDO DRAM) (2/2)

(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (1/3)

Parameter	Parameter Symbol		Conditions	MIN.	MAX.	Unit
WAIT setup time (to CLKOUT \downarrow)	<24>	tswĸ		15		ns
$\overline{\text{WAIT}}$ hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
Delay time from \overline{OE}^\uparrow to data output	<37>	t drdod		(0.5 + i) T – 10		ns
Delay time from address to IOWR \downarrow	<41>	t DAWR		(0.5 + wrp) T – 10		ns
Address setup time (to IOWR↑)	<42>	t sawr		(2 + wrp + wrh + wda + w) T -10		ns
Delay time from IOWR↑ to address	<43>	t dwra		0.5T – 10		ns
Delay time from IOWR \uparrow to $\overline{\text{RD}} \uparrow$	<48>	towrrd	WF = 0	0		ns
			WF = 1	T – 10		ns
IOWR low-level width	<50>	twwRL		(2 + wrh + wda + w) T – 10		ns
Row address setup time	<56>	tasr		(0.5 + wrp) T – 10		ns
Row address hold time	<57>	tган		(0.5 + w _{RH}) T – 10		ns
Column address setup time	<58>	tasc	0.5T – 10			ns
Column address hold time	<59>	tсан		(1.5 + WDA + WF + W) T - 10		ns
Read/write cycle time	<60>	trc		$(3 + W_{RP} + W_{RH} + W_{DA} + W_F + W)$ T - 10		ns
RAS precharge time	<61>	t _{RP}		(0.5 + wrp) T – 10		ns
RAS hold time	<63>	tяsн		(1.5 + wda + wf + w) T - 10		ns
Column address read time for \overline{RAS}	<64>	t RAL		(2 + wcp + wda + wf + w) T - 10		ns
CAS pulse width	<65>	tcas		(1 + wda + wf + w) T - 10		ns
CAS to RAS precharge time	<66>	tcrp		(1 + wrp) T -10		ns
CAS hold time	<67>	tсsн		(2 + wrh + wda + wf + w) T - 10		ns
$\overline{\text{WE}}$ setup time (to $\overline{\text{CAS}}\downarrow$)	<68>	trcs		(2 + wrp + wrн) T – 10		ns
WE hold time (from RAS↑)	<69>	trrн		0.5T – 10		ns
WE hold time (from CAS↑)	<70>	tясн		1.5T – 10		ns
CAS precharge time	<71>	t CPN		(2 + wrp + wrн) T – 10		ns
Delay time from RAS to column address	<76>	trad		(0.5 + w _{BH}) T – 10		ns
\overline{RAS} to \overline{CAS} delay time	<77>	trcd		(1 + wвн) T – 10		ns

- **2.** w: Number of waits due to \overline{WAIT}
- 3. wRP: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 4. WRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 5. wDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 6. wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 7. wF: Number of waits inserted to source-side access during DMA flyby transfer.
- 8. i: Number of idle states inserted when a write cycle follows the read cycle.

Para	meter	Sy	mbol	Conditions	MIN.	MAX.	Unit
Output buffer turn (from ŌE↑)	n-off delay time	<78>	toez		0		ns
Output buffer turr (from CAS↑)	n-off delay time	<79>	toff		0		ns
CAS precharge ti	me	<81>	t CP		(0.5 + wcp) T – 10		ns
High-speed mode	e cycle time	<82>	t₽C		(2 + wcp + wda + wf + w) T - 10		ns
RAS hold time for	r CAS precharge	<83>	t RHCP		(2.5 + wcp + wda + wf + w) T - 10		ns
RAS pulse width		<94>	t RASP		(2.5 + wrh + wda + wf + w) T - 10		ns
Hold time from \overline{OE} to \overline{CAS}	Off-page	<96>	tocH1		(2.5 + WRP + WRH + WDA + WF + W) T - 10		ns
(from CAS↑)	On-page	<97>	tocH2		(1.5 + wcp + wda + wf + w) T - 10		ns
Delay time from Ē CAS↓	DMAAKm↓ to	<105>	tddacs		(1.5 + w _{вн}) T – 10		ns
Delay time from I	OWR↓ to CAS↓	<106>	t DRDCS		(1 + wвн) T – 10		ns

(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (2/3)

Remarks 1. T = tcyk

2. w: Number of waits due to WAIT

3. wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

4. WDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

5. WRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

6. w_{RP}: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

7. wF: Number of waits inserted to source-side access during DMA flyby transfer.

8. m = 0 to 3

(g) DMA flyby transfer timing (DRAM (EDO, high-speed page) \rightarrow external I/O transfer) (3/3)

Parameter	Sy	mbol	nbol Conditions MIN.		MAX.	Unit
\overline{WAIT} setup time (to CLKOUT \downarrow)	<24>	tswк		15		ns
\overline{WAIT} hold time (from CLKOUT \downarrow)	<25>	tнкw		2		ns
IORD low-level width	<32>	twrdl		(2 + wrh + wda + wf + w) T – 10		ns
IORD high-level width	<33>	twrdh		T – 10		ns
Delay time from address to IORD↑	<34>	tdard		0.5T – 10		ns
Delay time from IORD↑ to address	<35>	t drda		(0.5 + i) T – 10		ns
Row address setup time	<56>	tasr		(0.5 + WRP) T – 10		ns
Row address hold time	<57>	tган		(0.5 + wвн) T – 10		ns
Column address setup time	<58>	tasc		0.5T – 10		ns
Column address hold time	<59>	tсан		(1.5 + WDA + WF) T – 10		ns
Read/write cycle time	<60>	trc		(3 + wrp + wrh + wda + wf + w) T - 10		ns
RAS precharge time	<61>	tRP		(0.5 + wrp) T – 10		ns
RAS hold time	<63>	tяsн		(1.5 + WDA + WF) T - 10		ns
Column address read time for RAS	<64>	t RAL		(2 + WCP + WDA + WF + W) T - 10		ns
CAS pulse width	<65>	tcas		(1 + wda + wf) T - 10		ns
CAS to RAS precharge time	<66>	t CRP		(1 + wrp) T - 10		ns
CAS hold time	<67>	tсsн		(2 + wrh + wda + wf + w) T – 10		ns
CAS precharge time	<71>	t CPN		(2 + wrp + wrh + w) T – 10		ns
Delay time from RAS to column address	<76>	t rad		(0.5 + w _{RH}) T – 10		ns
RAS to CAS delay time	<77>	trcd		(1 + wвн + w) T – 10		ns
CAS precharge time	<81>	t _{CP}		(0.5 + wcp + w) T – 10		ns
High-speed page mode cycle time	<82>	t₽C		(2 + wcp + wda + wf + w) T - 10		ns
RAS hold time for CAS precharge	<83>	t RHCP		(2.5 + wcp + wda + w) T - 10		ns
\overline{WE} hold time (from $\overline{CAS}\downarrow$)	<85>	twcн		(1 + wda) T - 10		ns
WE read time (to RAS↑)	<88>	trwL	WCP = 0	(1.5 + wda + w) T – 10		ns
WE read time (to CAS↑)	<89>	tcw∟	WCP = 0	(1 + wda + w) T – 10		ns
WE pulse width	<92>	tw₽	WCP = 0	(1 + wda + w) T – 10		ns
RAS pulse width	<94>	t RASP		(2.5 + wrh + wda + wf + w) T – 10		ns

(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (1/3)

- 2. w: Number of waits due to WAIT
- 3. WRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 4. wDA: Number of waits specified by DACxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 5. wRP: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- **6.** wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)
- 7. wF: Number of waits inserted to source-side access during DMA flyby transfer.
- **8.** i: Number of idle states inserted when a write cycle follows the read cycle.

(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (2/3)

Para	meter	Sy	mbol	Conditions	MIN.	MAX.	Unit
WE setup time	Off-page	<101>	<101> twcs1 wcP = 0 (1 + WRH + WRP + W) T - 10			ns	
(to CAS↓)	On-page	<102>	twcs2	$w_{CP} \ge 1$	wcpT - 10		ns
Delay time from $\overline{\overline{CAS}}\downarrow$	DMAAKm↓ to	<105>	tddacs		(1.5 + w _{RH} + w) T – 10		ns
Delay time from Ī	ORD↓ to CAS↓	<106>	tDRDCS		(1 + writh + w) T – 10		ns
Delay time from \bar{V}	VE↑ to IORD↑	<107>	towerd	WF = 0	0		ns
				WF = 1	T – 10		ns

Remarks 1. T = tcyk

2. w: Number of waits due to \overline{WAIT}

3. WRH: Number of waits specified by RHCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

4. WRP: Number of waits specified by RPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

5. wcp: Number of waits specified by CPCxx bit of register DRCn (n = 0 to 3, xx = 00 to 03, 10 to 13)

6. wF: Number of waits inserted to source-side access during DMA flyby transfer.

7. m = 0 to 3

(h) DMA flyby transfer timing (external I/O \rightarrow DRAM (EDO, high-speed page) transfer) (3/3)

(i) CBR refresh timing

Parameter	Syn	nbol	Conditions	MIN.	MAX.	Unit
RAS precharge time	<61>	tRP		(1.5 + wrrw) T – 10		ns
RAS pulse width	<62>	tras		(1.5 + WRCW ^{Note}) T - 10		ns
CAS hold time	<108>	t CHR		(1.5 + WRCW ^{Note}) T - 10		ns
REFRQ pulse width	<109>	twrfl		(3 +WRRW + WRCW ^{Note}) T - 10		ns
RAS precharge CAS hold time	<110>	t RPC		(0.5 + wrrw) T – 10		ns
REFRQ active delay time (from CLKOUT↓)	<111>	t dkrf		2	10	ns
REFRQ inactive delay time (from CLKOUT↓)	<112>	tнквғ		2	10	ns
CAS setup time	<113>	t CSR		T – 10		ns

Note wRCW is inserted for at least 1 clock, regardless of the setting of bits RCW0 to RCW2 of register RWC.

- 2. WRRW: Number of waits specified by bits RRW0 and RRW1 of register RWC.
- 3. WRCW: Number of waits specified by bits RCW0 to RCW2 of register RWC.

(j) CBR self refresh timing

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
REFRQ active delay time (from CLKOUT↓)	<111>	t dkrf		2	10	ns
REFRQ inactive delay time (from CLKOUT↓)	<112>	t HKRF		2	10	ns
CAS hold time	<114>	t CHS		-5		ns
RAS precharge time	<115>	trps		(1 + 2wsrw) T – 10		ns

Remarks 1. T = tcyk

2. WSRW: Number of waits specified by bits SRW0 to SRW2 of register RWC.

(7) DMAC timing

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
DMARQn setup time (to CLKOUT↑)	<116>	t sdrk		15		ns
DMARQn hold time	<117>	t HKDR1		2		ns
(from CLKOUT↑)	<118>	thkdr2		Until <mark>DMAAKn</mark> ↓		ns
DMAAKn output delay time (from CLKOUT↓)	<119>	t dkda		2	10	ns
DMAAKn output hold time (from CLKOUT↓)	<120>	t hkda		2	10	ns
TCn output delay time (from CLKOUT↓)	<121>	tdktc		2	10	ns
TCn output hold time (from CLKOUT↓)	<122>	tнктс		2	10	ns

Remark n = 0 to 3

[MEMO]

(8) Bus hold timing (1/2)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
HLDRQ setup time (to CLKOUT↑)	<123>	t shrk		15		ns
HLDRQ hold time (from CLKOUT↑)	<124>	tнкнв		2		ns
Delay time from CLKOUT↓ to HLDAK	<125>	t dkha		2	10	ns
HLDRQ high-level width	<126>	twнqн		T + 17		ns
HLDAK low-level width	<127>	t WHAL		T – 8		ns
Delay time from CLKOUT↓ to bus float	<128>	t dkCF			10	ns
Delay time from HLDAK↑ to bus output	<129>	t dhac		0		ns
Delay time from $\overline{\text{HLDRQ}}\downarrow$ to $\overline{\text{HLDAK}}\downarrow$	<130>	tdhqha1		2.5T		ns
Delay time from HLDRQ↑ to HLDAK↑	<131>	tdhqha2		0.5T	1.5T	ns

Remark T = tcyk

(8) Bus hold timing (2/2)

(9) Interrupt timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
NMI high-level width	<132>	twniн		500		ns
NMI low-level width	<133>	twni∟		500		ns
INTPn high-level width	<134>	twiтн		4T + 10		ns
INTPn low-level width	<135>	twi⊤∟		4T + 10		ns

Remarks 1. n = 100 to 103, 110 to 113, 120 to 123, 130 to 133, 140 to 143, and 150 to 153

2. T = tсук

(10) RPU timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
TI1n high-level width	<136>	twтıн		3T + 18		ns
TI1n low-level width	<137>	tw⊤ı∟		3T + 18		ns
TCLR1n high-level width	<138>	twтсн		3T + 18		ns
TCLR1n low-level width	<139>	t wtcl		3T + 18		ns

Remarks 1. n = 0 to 5 **2.** T = tcyκ

(11) UART0, UART1 timing (synchronized with clock, master mode only)

Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
SCKn cycle	<140>	tcysko	Output	250		ns
SCKn high-level width	<141>	twsкoн	Output	0.5tcysko – 20		ns
SCKn low-level width	<142>	t wskol	Output	0.5tcysko – 20		ns
RXDn setup time (to SCKn↑)	<143>	t srxsk		30		ns
RXDn hold time (from SCKn↑)	<144>	t HSKRX		0		ns
TXDn output delay time (from SCKn↓)	<145>	t DSKTX			20	ns
TXDn output hold time (from SCKn↑)	<146>	tнѕктх		0.5tcysко – 5		ns

Remark n = 0, 1

(12) CSI0 to CSI3 timing

(a) Master mode

Parameter	Syn	nbol	Conditions	MIN.	MAX.	Unit
SCKn cycle	<147>	tcysk1	Output	100		ns
SCKn high-level width	<148>	twsĸ1H	Output	0.5tcvsк1 – 20		ns
SCKn low-level width	<149>	twsĸ1∟	Output	0.5tcvsк1 – 20		ns
SIn setup time (to SCKn↑)	<150>	tssisk		30		ns
SIn hold time (from $\overline{\text{SCKn}}$)	<151>	thsksi		0		ns
SOn output delay time (from $\overline{\text{SCKn}}\downarrow$)	<152>	t DSKSO			20	ns
SOn output hold time (from $\overline{\text{SCKn}}^\uparrow$)	<153>	thskso		0.5tсүзк1 – 5		ns

Remark n = 0 to 3

(b) Slave mode

Parameter	Syr	nbol	Conditions	MIN.	MAX.	Unit
SCKn cycle	<147>	tcysk1	Input	100		ns
SCKn high-level width	<148>	twsĸ1H	Input	30		ns
SCKn low-level width	<149>	twsĸ1∟	Input	30		ns
SIn setup time (to SCKn↑)	<150>	tssisk		10		ns
SIn hold time (from $\overline{\text{SCKn}}$)	<151>	thsksi		10		ns
SOn output delay time (from $\overline{\text{SCKn}}\downarrow$)	<152>	t DSKSO			30	ns
SOn output hold time (from $\overline{\text{SCKn}}$)	<153>	thskso		twsк1н		ns

Remark n = 0 to 3

A/D Converter Characteristics (T _A = -40 to +85°C, V _{DD} = CV _{DD} = 3.0 to 3.6 V, HV _{DD} = 5.0 V \pm 10%, V _{SS} = 0 V,
$HV_{DD} - 0.5 V \le AV_{DD} \le HV_{DD}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	-		10			bit
Overall error	-				±4	LSB
Quantization error	-				±1/2	LSB
Conversion time	tCONV		5		10	μs
Sampling time	tsamp		Conversion clock ^{Note} /6			ns
Zero scale error	-				±4	LSB
Scale error	-				±4	LSB
Linearity error	-				±3	LSB
Analog input voltage	VIAN		-0.3		AVREF + 0.3	V
Analog input resistance	Ran			2		MΩ
AVREF input voltage	AVREF	$AV_{REF} = AV_{DD}$	4.5		5.5	V
AVREF input current	AIREF				2.0	mA
AVDD current	Aldd				6	mA

 \star

 \star

Note The conversion clock is the clock value set by the ADM1 register.

4.2 Flash Memory Programming Mode

* Basic Characteristics (T _A = -40 to $+85^{\circ}$ C (Other	Than When Rewriting), $HV_{DD} = AV_{DD} = 4.5$ to 5.5 V,
VDD = 3.0 to 3.6 V, Vss = AVss = 0 V) (1/2)	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fx		20		33	MHz
VPP supply voltage	V _{PP1}	During flash memory programming	7.5	7.8	8.1	V
	Vppl	VPP low-level detection	0.8Vdd		1.2VDD	V
	Vppm	VPP and VDD level detection	0.65VDD	Vdd	Vdd + 0.3	V
	Vpph	V _{PP} high-voltage level detection	7.5	7.8	8.1	V
HVDD supply current	loo	VPP = VPP1			50	mA
VPP supply current	IPP	V _{PP} = 8.1 V			150	mA
Step erase time	ter	K, P category ^{Note 1} (Recommendation: Step erase = 5 s)		5		S
		Other than K, P category ^{Note 1} (Recommendation: Step erase = 0.2 s)		0.2		S
Total erase time	tera	K, P category ^{Note 1} When step erase time = 5 s Note 2			60	S
		Other than K, P category ^{Note 1} When step erase time = 0.2 s Note 2			20	S
Write-back time	twв	Note 3	0.99	1	1.01	ms

Notes 1. The category is indicated by the fifth letter from the left of the lot number.

- 2. The prewrite time prior to erasure and the erase verify time (write-back time) are not included.
- 3. The recommended set value of the write-back time is 1 ms.
- Caution The I category is applied to engineering samples only. The number of rewrites is not guaranteed for I category products.
- **Remark** When PG-FP3 is used, the time parameters required for write/erase are automatically set by downloading parameter files. Do not change the set values unless otherwise specified.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Number of write-backs per write- back command	Сwв	When write-back time = 1 ms Note 1			300	Times/write- back command
Number of erase/write-backs	CERWB				16	Times
Step write time	twт	Note 2	18	20	22	μs
Total write time per word	twrw	Setting: Step write time = 20 μ s (1 word = 4 bytes) Note 3	20		200	<i>µ</i> s/word
Number of rewrites	CERWR	K category ^{Note 4}		5		Tiimes
		P category ^{Note 4}		10		Times
		Other than K, P category ^{Note 4} One erase + one write after erase = one rewrite Note 5	20		Times	
Temperature during write	TPRG	K, P category ^{Note 4}	10		40	°C
		Other than K, P category ^{Note 4}	10		85	°C

Basic Characteristics (T_A = -40 to $+85^{\circ}$ C (Other Than When Rewriting), HV_{DD} = AV_{DD} = 4.5 to 5.5 V, V_{DD} = 3.0 to 3.6 V, V_{SS} = AV_{SS} = 0 V) (2/2)

- **Notes 1.** When the write-back command is issued, write-back is performed once. Therefore, the retry count must be the maximum value minus the number of commands issued.
 - **2.** The recommended set value of the step write time is 20 μ s.
 - **3.** The actual write time per word is the sum of this value plus 100 μ s. The internal verify time during and after write is not included.
 - 4. The category is indicated by the fifth letter from the left of the lot number.
 - 5. When writing initially to shipped products, "erase to write" and "write only" are both counted as one rewrite.

Example (P: Write E: Erase)

Product $\longrightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: Three rewrites Product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: Three rewrites

- Caution The I category is applied to engineering samples only. The number of rewrites is not guaranteed for I category products.
- **Remark** When PG-FP3 is used, the time parameters required for write/erase are automatically set by downloading parameter files. Do not change the set values unless otherwise specified.

Serial Write Operation Characteristics

Parameter	Syr	nbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} ↑ to V _{PP} ↑ set time	<201>	t DRPSR		200			ns
V _{PP} ↑ to RESET↑ set time	<202>	t PSRRF		1			μs
RESET↑ to VPP count start time	<203>	trfof	V _{PP} = 7.8 V	5T + 500			μs
Count execution time	<204>	tcount				10	ms
VPP counter high-level width	<205>	tсн		1			μs
VPP counter low-level width	<206>	tc∟		1			μs
VPP counter rise time	<207>	tR				3	μs
VPP counter fall time	<208>	t⊧				3	μs

5. PACKAGE DRAWINGS

144-PIN PLASTIC LQFP (FINE PITCH) (20x20)

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	22.0±0.2
В	20.0±0.2
С	20.0±0.2
D	22.0±0.2
F	1.25
G	1.25
н	$0.22\substack{+0.05\\-0.04}$
I	0.10
J	0.5 (T.P.)
К	1.0±0.2
L	0.5±0.2
М	$0.145\substack{+0.055\\-0.045}$
Ν	0.10
Р	1.4±0.1
Q	0.125±0.075
R	3° ^{+7°} 3°
S	1.7 MAX.
	S144GJ-50-8EU-3

144-PIN PLASTIC LQFP (FINE PITCH) (20x20)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	22.0±0.2
В	20.0±0.2
С	20.0±0.2
D	22.0±0.2
F	1.25
G	1.25
Н	0.22 ± 0.05
I	0.08
J	0.5 (T.P.)
К	1.0±0.2
L	0.5±0.2
М	$0.17\substack{+0.03 \\ -0.07}$
Ν	0.08
Р	1.4
Q	0.10±0.05
R	3° ^{+4°} -3°
S	1.5±0.1
	S144GJ-50-UEN

R

6. RECOMMENDED SOLDERING CONDITIONS

The μ PD70F3102-33 should be soldered and mounted under the following recommended conditions. For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 6-1. Surface Mounting Type Soldering Conditions

 μ PD70F3102GJ-33-8EU: 144-pin plastic LQFP (fine pitch) (20 × 20) μ PD70F3102GJ-33-UEN: 144-pin plastic LQFP (fine pitch) (20 × 20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-103-2
VPS	Package peak temperature: 215°C, Time: 25 to 40 seconds max. (at 200°C or higher), Count: Twice or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-103-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

- Remarks 1. For soldering methods and conditions other than those recommended above, consult an NEC Electronics sales representative.
- *

*

- **2.** The soldering conditions for the μ PD70F3102GJ-33-8EU-A have not been determined.
- 3. Products with -A at the end of the part number are lead-free products.

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

⑤ POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

 Related Documents
 μPD70F3102A-33
 Data Sheet (U13845E)

 μPD703100-33, 703100-40, 703101-33, 703102-33
 Data Sheet (U13995E)

 μPD703100A-33, 703100A-40, 703101A-33, 703102A-33
 Data Sheet (U14168E)

Reference Materials Electrical Characteristics for Microcomputer (U15170J^{Note})

Note This document number is that of Japanese version.

The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782	NEC Electronics (Europe) GmbH Duesseldorf, Germany Tel: 0211-65030	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318
	 Sucursal en España Madrid, Spain Tel: 091-504 27 87 Succursale Française 	NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-558-3737
	Vélizy-Villacoublay, France Tel: 01-30-675800	NEC Electronics Shanghai Ltd. Shanghai, P.R. China Tel: 021-5888-5400
	• Filiale Italiana Milano, Italy Tel: 02-66 75 41	NEC Electronics Taiwan Ltd. Taipei, Taiwan
	Branch The Netherlands Eindhoven, The Netherlands Tel: 040-2654010	Tel: 02-2719-2377 NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311
	• Tyskland Filial Taeby, Sweden Tel: 08-63 87 200	
	United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133	

- The information in this document is current as of July, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).