RX23T Inverter Kit — What enables you
to use Float in your motion control algorithm?

Introduction

The new microcontroller families RX23T and RX24T featuring
the new RX v2 core are designed to ensure the best
compromise in terms of performance and cost to address
motion control. In case of the RX23T, the latest benchmarks
are showing a performance of 80 DMIPs at 40 MHz. In case
of the RX24T, the MCU reaches up to 160 DMIPs at 80 MHz.
For both cores, according to EEMBC Certified Scores, the
RX23T/24T deliver up to 4.25 CoreMark per MHz. For more
details, please refer to the official website:
www.eembc.org/coremark/

These MCU's are designed to operate at 5V to ensure the highest
noise immunity and incorporate key hardware modules like the
Floating Point Unit (FPU). The FPU is the main topic of this paper
as itis becoming fundamental for software engineers to deliver
state of the art software, easy to maintain and to test.

Why has Renesas implemented a Floating Point unit
on the latest RX23T/RX24T families?

The current RX62T & RX63T have been extremely successful
in the current generation of motor control solutions. These
families already integrate Floating Point Unit. Renesas
decided to improve the overall RX Core and the FPU was
one component of it.

Please find below the instructions of the RX V2 Core
included in “red” the new one added to the V1.

D New instructions of the RX V2 Core

overall performance. The new RXv2 offers up to 2 DMIPs
per MHz, compared to 1.65 DMIPs per MHz of the RX v1.

New RX v2 Instruction Function

FSQRT Floating point square root
FTOU Floating point to integer conversion
UTOF Integer to floating-point conversion

By comparing the implementation of a three shunts sensorless
vector control algorithm on the same Microcontroller
RX23T, the on-chip FPU module shows high benefits by
decreasing the processing time by 27% and by reducing
the CPU load by 28%.

CPU clock 40 MHz,V2 core | Perform.
Arithmetic used in software Fixed | Float | Diff.
Control loop Timing 51ps | 40 ps 27%
Code size in Flash 26 KB [20KB | 30%
Code size in RAM 3KB |2KB 50%
CPU load @ 16 KHz PWM)/Control loop | 82% | 64% 28%

The measurements above are done on the inverter kit
software running on the RX23T kit called YROTATE-IT-RX23T
kit. The software incorporates the following software blocks:

e Proportional-Integral Current Controller
e Proportional-Integral Speed Controller
e Clamped Pulse Width

Based on the three additional FPU instructions below and the
fourteen DSP new instructions, the RX v2 core offers higher
calculation accuracy by executing 32-bit multiply by a single
instruction. Furthermore, the specific instructions to manage

Arithmetic/Logic Data Transfer DSP Modulation
| ABS | MAX | RORC | | MOV, [..POP . . PUSHC .sccnd | EMACA | mssio |mvraccu)| © Clarke and Eark
ADC | MIN - 0., juuPUSHLY [puskmy jusivzay | evsea | Mo mvracur Transformations
| _ADD | MUL ROTR [uBoRCY [uuREVEN stz | EMuta J1 mulH | mvTacio * Flux Phase estimator
. AND NEG SAT [LUPOPM. | REVW. | [LUXCHG MACHI MULLO | rac. | ¢ Speed estimation
e NOP_ _ SATR _ Systemmanipulation Branch | Strings | MacLH | lmveaccu| Racw o Three shunt current
| DIV NOT SBB . BRK MVTC Bend SCMPU MACLO MVFACHI | RDACL reading
. DIVU | OR | SHAR = CIRPSW RTE BrA | smovs | msshr | [mvracio] | roacw The complete source code of
| EMUL | RMPA | SHLL | INT RTFI BSR SMOVE | MSBLH | MVFACMI FTOI the software used for the
| EMULU | ROLC | SHLR | MVTIPL SETPSW IMP SMOVU Floating-point FTOU benchmarks and tests are
SuB TST XOR MVFC WAIT ISR SSTR FADD FMUL ITOF fully available and royalty-
Bit manipulation RTS SUNTIL FCMP FSUB ROUND free.
BCLR BMcnd BNOT BSET BTST RTSD SWHILE FDIV | FSQRT " UTOF | Additionally, in many motion
control applications, the

equipment is connected to sensors and filtering the signals
and data coming from them is a fundamental tasks.

That's why Renesas performed some comparisons
between the RX V1 and V2 versions, in various filtering

the accumulator and the rounding processing ensure high operations.
RENESANS 2015.10 1

RX23T Inverter Kit - What enables you to use Float in your motion control algorithm?

100 -

mRXv1l mRXv2

The complete material related
to the RX23T kit available on

Up to 3 times

faster !

the website:
www.renesas.eu/motorcontrol
First, let's dive into the

embedded software source

code of the inverter. The

constants used in the inverter
algorithm are showing high

ey ~ ~ (o)
= et}) =
w o w o w v o
25 Ak 52 = i B k=
a S [< S 33 =
Ee £e es | 83 | &
Swo S A O

= © o (=3} =
?'U 9‘0 % O b—
3= 3= = z

< < b =

FFT IR

(in: ¢i32, out: ¢i32)

Matrix Multiply
(in: ci16, out: ci16)

Matrix

Matrix Multiply

resolution and accuracy. It
means the overall control of
the torque and speed is
accurate. The development
and the maintenance of
the embedded software is

g becomingeasier. Furthermore,
‘é the variables used in the
o firmware are directly
i::' representing the real units
- in Ampere, in Volt, in Hertz,

in Weber and in Henry, etc.

As you can observe above, for each filtering operations
using Fast Fourier Transform (FFT), for the Infinite Impulse
Response (lIR) and the Matrix multiplication, the newest
core RX v2 is minimum two times faster. The graph is
normalized compared to the RX V1 core, the data are
relative to the RXv 1 core. There is no timing unit.

In case of the second order filter (IR Biquad), the RX v2
core is three times faster than the RX v1 core thanks to the
new instructions, at the same clock frequency.

Up to now, it was presented the reasons to embed a
Floating Point Unit module and the results in terms of
performance, code size and overall code efficiency.

How can | move from fixed arithmetic to float?

The first step is to start by evaluating available 3-phase
inverter reference platform driving already Permanent Magnet
Motors. The kit based on RX23T (e.g. YROTATE-IT-RX23T)
enables any developer to quickly experiment the usage of
float variables.

|J]// floating point nuwerical constants

Fl#ifndef F_CONST

fidefine F_CONST
#idefine PI

#define PISIXTH
#define PIFOURTHS
#define PITHIRDS
#define PIHALVES
#define TWOPITHIRDS
#define THREEPIFOURTHS
#define FIVEPISIXTH
#define SEVENPISIXTH
#define FIVEPIFOURTHS
#define FOURPITHIRDS

#define THREEPIHALVES
#define FIVEPITHIRDS

12
124
124
124
124
124
124
124
124
124
124
/7
/7

180
030
045
060
090
120
135
is0
210
225
240
270
300

fi 5%
(PI
(PI
(PI
(PI
(PI
(PI
(PI
(PI
(PI
(PI
(PI
(PI

41592654)

6.0)
.0)
L0)
.0)
0 0)
0
0
0)
0)
0
.0)
.0)

R S T T Ty
2R SR S 7 ST I SO SRS
[= 1= == = =

N T
N -

Using Float variables is a

way to represent real numbers on a Microcontroller.

float32_t
ium off,
ivm off,
iwm_off,
r_sta,
1_syn,
pm_flx,
fb_gain,
£f1x_lpco_hz,
c_poli,
i_start,
is_rdw,
vbus,
vbus_minf,
i_max,
id_max,
igmax,
IBH;
rpmrif x,
rpmrif y,
r_acc,
r_dec,
rpm max,
rpm min,
min_speed,
max_speed,
omegae,
omf,
maxerr,

IU anpalieq channel offset

IV analeg channel offset

IW z2pakeqg channel offset

stator resistance

synchronous inductance

permanent magnets flux

flux amplitude feedback gain

approx. flux estimation filter guieff frequency
number of polar couples

3kaxkur current (peak)

gkaxkur current decreasing rate

bus voltage

filtered available bus voltage (minimum value)
maximum total current

maximum d current

maximum g current

beta current reference

reference speed (ramp input) [xom]
reference speed (ramp output) [zrm]
acceleration ramp [;Qm/main_loop_duration]
deceleration ramp [;Qm/main_loop_duration]
maximum speed [xpm]

minimum speed [ZRm]

minimum speed [rad/s)

maximum speed [rad/s])

electrical angular speed

electrical angular speed (filtered)
maximum speed error [rad/s]

All the internal representation of physical quantities of the
system of the 3-phase inverter is very simple using floating
point. There is no need to normalize the variables or scale
them. Thanks to these the code is becoming easy to
manage and read. The motor model can be easily worked
out without scaling efforts on each intrinsic.

Furthermore, let's have alook at the “Flux Phase Estimation”
block as shown on the next page.

www.renesas.eu

RX23T Inverter Kit - What enables you to use Float in your motion control algorithm?

0[1dd] £ 4Pl | vd (‘;&qé? va | ©p) > Mu:':f:?iun i 7iotar Finally the trigonometric
N7y va d VR | www " "\ functions are the real
one using real value,

h Speed Plliqu Iq Pl Current i

o) no tables or else, so it

M i f} > z z z z! Reading (z') .

b) ensures high accuracy.

L Please find below the

= Speed S software source code

Dy estimation Bull estimation used for the Park and

Clarke transformations.

L R ER LT Each transformation is

1qmes (d, q) ‘_“;m_.. (o, B) Wmes using maximum two

IBmes

The implementation of the Flux Phase estimation method
is shown above The implementations of three major low
pass filters are using only three lines of code and a few
clock cycles.

Using the FPU wiill strongly decrease the risk of errors and
variables overflow compared to a fixed arithmetic.

The development time and test procedure are also shorter.

©void McrpLibf_ FluxEstA(float32_t va, float32_t vb, float32_t ia, float32_t ib)
®Description:

{
float32_t f32a;
f32a = FA_uh * ((va - (FA_rs * ia)) - FA_fa[e@]);
FA_fa[@] = FA_fa[e] + f32a;
FA fa[1] = FA_fa[1] + (FA_uh * ((FA_tk * f32a) - FA fa[1]));
f32a = FA_uh * ((vb - (FA_rs * ib)) - FA _fb[e]);
FA_fb[e] = FA_fb[e] + f32a;
FA_fb[1] = FA_fb[1] + (FA_uh * ((FA_tk * f32a) - FA_fb[1]));
FA_ma = FA_fa[1] - (FA_ls * ia);
FA_mb = FA_fb[1] - (FA_ls * ib);
McrpLibf_xy_rt(FA_ma, FA mb, &FA_me, &FA_ph);
FA_v@ = FA_sf * McrpLibf_AngleNrm(FA_ph - FA pm); // speed as phase derivative
FA_pm = FA_ph; // phase memory update
FA_vl = FA vl + ((FA_v@ - FA_vl) * FA_uk); // 1st lowpass
FA v2 = FA v2 + ((FA_vl - FA v2) * FA_uk); // 2nd)lowpass
FA_v3 = FA_v3 + ((FA_v2 - FA_v3) * FA_uk); // 3rd lowpass
FA_av = FA_v3;
¥

= void McrpLibf_uv_alphabeta(float32_t u, float32_t v,
float32_t *a, float32_t *b)

@ Description: unitary gain transformation (u, v, (w))->(alpha, beta):[]
(*a) = u; // alpha
(*b) = (u + (v * 2.ef)) * FSQRT3D3; // beta

¥

= void McrpLibf_uwvw_alphabeta(fleat32_t u, float32_t v, float32 t w,
float32_t *a, float32_t *b)

@ Description: unitary gain transformation (u, v, w)->(alpha, beta):[]

(*a)

(*b)

((u * 2.0f) - v - w) * FONETHIRD;
(v - w) * FSQRT3D3;

¥

= void McrpLibf_alphabeta_uv(float32_t a, float32_t b,
float32_t *u, float32_t *v)

@ Description: unitary gain transformation (alpha, beta)->(u, v, (w)):[]

(*u)

= a;
(V) =

H // u
((FSQRT3 * b) - a) * @.5f;

/] v
}

= void McrpLibf_alphabeta_dq(float32_t a, float32 t b,
float32_t *d, float32_t *q)

@ Description: unitary gain transformation (alpha, beta)->(d, q):[J

ENESAS

lines of codes and no
tables are used to
manage the Cos and Sin. Compared to any implementation
using the integer arithmetic, the Cos table is using 256 bytes,
the Sin table also and the Arctangent.

Finally, the overall implementation is strongly reduced in
terms of code size, the code is becoming easy to maintain.
By using Simulink, or Scilab or any modelling tools, the output
models is using Float which can be reused directly into the
e?studio project used by the RX23T inverter kit.

Which are the concrete FPU benefits for 3-phase
inverter?

The FPU enables an efficient implementation of the
sensorless vector control algorithm as the control
loops and the transformations are executed very
quickly, which speed-up the overall rotor position
estimation.

Finally, it guarantee high dynamics algorithm which
can run at the same speed at the Pulse Width
Modulation frequency. In case of the RX23T, the
implementation ensure efficient control up to 22 KHz
control frequency (the complete algorithm uses 40 ps).
It means that for each PWM cycles up to 22KHz, the
control algorithm can react and adjust the torque and
current under high load variations.

Within the RX23T kit, the complete software package is
delivered including the following blocks.

RX23T Inverter Kit - What enables you to use Float in your motion control algorithm?

PI control
Current &
Speed

Auto-tuning
Current PI automatic calibration

Parameters self-identification

Stator resistance compensation

Bus Voltage automatic compensation

Position control/torque control/ speed control

Anti-windup

Modulation

Dead-time compensation
Sensorless drive at low-speed

Sensorless estimation

Clamped
Modulation

Centred
Modulation

Method using Model using

Integral estimation Direct
Integration

By setting up the RX compiler optimization level to “Max",
the performances below are reached.

Memory footprint
RX23T \ P ————SSSE
32-bit @ 40MHz (IR

RX200

80 DMIPS with FPU

Control
Timing
The resources used by the software running on the RX23T \ Y
are very limited: 20 KB flash and 2 KB RAM, so it means, ‘ RX
up to 108 KB free for the application on the RX23T with 128 KB Genaal
flash. Registers
Conclusion
This paper is describing in details how much the
performance of the inverter algorithm are improved using
the RX23T Floating Point Unit. L
The overall code is reduced, the overall software 32-bit Single-Precision
implementations are executed much faster as no scaling or IEEE-754 compliant

saturation occurred. Furthermore, it offers a higher accuracy

than the integer implementation as the real physical units and estimators. So, stop waiting and download the latest
are used in the embedded software. Finally, the FPU material on www.renesas.eu/motorcontrol to evaluate
guarantees a faster computation time for Pl controllers by yourself the source code delivered royalty-free.

Before purchasing or using any Renesas Electronics products listed herein, please refer to the latest product manual and/or data sheet in advance.

© 2015 Renesas Electronics Europe.
. All rights reserved. Printed in Germany.
Renesas Electronics Europe Document No. ROTPFO103ED0100

4 www.renesas.eu

