

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 Application Notes

REJ06J0079-0100 /Rev.1.00 2009.10 Page 1 of 28

RX Family C/C++ Compiler Package
Application Notes: Sample Project RX Migration Guide, H8 Edition

This document explains how to migrate the sample project created in H8 to RX.

Table of contents

1. Overview of the H8 sample project ..2

2. Migrating the H8 sample project to RX...3
2.1 Creating the RX project...3
2.2 Migrating source files for main processing ..13
2.3 Building and checking H8 compatibility..16
2.4 Handling compatibility check instructions ..19
2.4.1 Specifying sign for the char type...19
2.4.2 Specifying sign for bit field members..20
2.4.3 Specifying bit field member allocation..21
2.4.4 Specifying endian ...22
2.4.5 Specifying the size of double type variables ...23
2.5 Rebuilding ..24
2.6 Running the simulator ..24
2.7 Handling invalid execution results...27
2.7.1 Specifying the size of int type variables ...27
Web site and support <website and support>...28

 Application Notes

REJ06J0079-0100 /Rev.1.00 2009.10 Page 2 of 28

This edition is a guide for migrating H8 sample projects for which operation can be confirmed in the simulator debugger, to RX.

1. Overview of the H8 sample project
The H8 sample project ‘H8_Sample’ can be broadly divided into pre- and post-processing such as for initialization, and main

processing to perform central processing. This edition shows how to migrate the main processing to perform central processing to an
RX project, and check its operation. The following table shows the files that comprise main processing.

Table 1-1 List of main processing files
No Processing File name Reference
1 Specifying sign for the char type H8_sign_char.c 2.4.1
2 Specifying sign for bit field members H8_sign_bit_field.c 2.4.2
3 Specifying bit field member allocation H8_bit_order.c 2.4.3

4 Specifying endian H8_endian.c 2.4.4
5 Specifying the size of double type variables H8_double_size.c 2.4.5
6 Specifying the size of int type variables H8_int_size.c 2.7.1
7 main function H8_Sample_main.c ‐

 Application Notes

2. Migrating the H8 sample project to RX

2.1 Creating the RX project
Create a new RX project workspace for the migration destination of the H8 sample project.
This section explains how to generate sample project in the project generator (launched from HEW by choosing the File menu and

then New workspace), according to the following procedures.

(1) Creating a new workspace

Select the “Application” project type.

Figure 1-1

REJ06J0079-0100 /Rev.1.00 2009.10 Page 3 of 28

 Application Notes
(2) Selecting a CPU

Leave this set to the default value, and proceed.

Figure 1-2

REJ06J0079-0100 /Rev.1.00 2009.10 Page 4 of 28

 Application Notes
(3) Setting options

Leave this set to the default value, and proceed.

Figure 1-3

Figure 1-4

REJ06J0079-0100 /Rev.1.00 2009.10 Page 5 of 28

 Application Notes
(4) Set up generated files

 Select “Use I/O library”.
 Specify “20” for “I/O stream count”.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 6 of 28

Figure 1-5

 Application Notes
(5) Set up the standard library

Leave this set to the default value, and proceed.

Figure 1-6

REJ06J0079-0100 /Rev.1.00 2009.10 Page 7 of 28

 Application Notes
(6) Set up the stack space

Leave this set to the default value, and proceed.

Figure 1-7

REJ06J0079-0100 /Rev.1.00 2009.10 Page 8 of 28

 Application Notes
(7) Set up vectors

Leave this set to the default value, and proceed.

Figure 1-8

REJ06J0079-0100 /Rev.1.00 2009.10 Page 9 of 28

 Application Notes
(8) Set up the debugger

Select “RX600 Simulator”.

Figure 1-9

REJ06J0079-0100 /Rev.1.00 2009.10 Page 10 of 28

 Application Notes
(9) Set the debugger options

Select “Initial session”.

Figure 1-10

(10) Check the generated file names

Click “Finish”.

Figure 1-11

REJ06J0079-0100 /Rev.1.00 2009.10 Page 11 of 28

 Application Notes
(11) Set up the simulator

Click “OK”.

Figure 1-12

REJ06J0079-0100 /Rev.1.00 2009.10 Page 12 of 28

 Application Notes

2.2 Migrating source files for main processing
Copy, and register with the created RX project, the files comprising main processing for the H8 sample project, as explained in 1.

Overview of the H8 sample project.

(1)Copy files from the H8 sample project folder

Copy to the RX project the 10 files explained in 1. Overview of the H8 sample project.

[H8_Sample project] [RX project]

REJ06J0079-0100 /Rev.1.00 2009.10 Page 13 of 28

Figure 1-13

 Application Notes
(2)Register the copied files with the project

Register the copied files with the created RX project.
In HEW, choose Project and then Add files, and then select the following in the displayed dialog box.

Click the Add
button after
selection

Select the files to
be registered

Figure 1-14

REJ06J0079-0100 /Rev.1.00 2009.10 Page 14 of 28

 Application Notes
(3)Unregister unnecessary files
Delete the ‘RX_test.c’ file generated by the project generator for the main function. It is no longer necessary, because the main

function file was copied from the H8 sample project.
In HEW, choose Project and then Delete files, and then select the following in the displayed dialog box.

Click the Delete
button after selection

Select the file to
be deleted

Figure 1-15

REJ06J0079-0100 /Rev.1.00 2009.10 Page 15 of 28

 Application Notes

2.3 Building and checking H8 compatibility
Build the RX project for which the main processing file was copied and registered. When a build is performed in HEW, since the

H8 compatibility check functionality is enabled, option specifications and source code that may impact compatibility can be checked.
This section explains how to enable H8 compatibility check functionality and perform a build, and then check the displayed
compatibility confirmation messages.

(1) Set up H8 compatibility check functionality

In HEW, choose Build and then RX Standard Toolchain, and then select the following in the displayed dialog box.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 16 of 28

Select the Compiler tab

Select NC compiler for
Compatibility check

Figure 1-16

 Application Notes
(2) Building

In HEW, choose Build and then Build to start the build. A message is displayed during the build, in the output window.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 17 of 28

Figure 1-17

 Output window

Figure 1-18

 Application Notes
(3) Checking compatibility check messages

The C1802 warning is displayed in the messages output to the output window, indicating that this area poses a compatibility
problem with H8.

Figure 1-19

REJ06J0079-0100 /Rev.1.00 2009.10 Page 18 of 28

 Application Notes

REJ06J0079-0100 /Rev.1.00 2009.10 Page 19 of 28

2.4 Handling compatibility check instructions
The following explains how to check and deal with C1802 messages affecting compatibility, as given in 2.3 Building

and checking H8 compatibility. The target messages are as follows.

Table 1-2 List of C1802 messages
No Messages affecting compatibility Reference
1 Using "unsigned_char" function at influence the code generation of "H8" compiler 2.4.1
2 Using "unsigned_bitfield" function at influence the code generation of "H8" compiler 2.4.2
3 Using "bit_order=right" function at influence the code generation of "H8" compiler 2.4.3
4 Using "endian=little" function at influence the code generation of "H8" compiler 2.4.4
5 Using "dbl_size=4" function at influence the code generation of "H8" compiler 2.4.5

2.4.1 Specifying sign for the char type
The message ‘Using "unsigned_char" function at influence the code generation of "H8" compiler’ indicates that a compatibility

problem exists with the specified “unsigned_char” option. H8-family compilers treat char types with no sign specified as signed char
types, whereas RX-family compilers treat them as unsigned char types.

Since “H8_sign_char.c” in the sample program contains code based on the requirement that char types without a sign are signed
char types, if the “unsigned_char” option is specified, the operation results will differ from H8.

“H8_sign_char.c” in the sample program
Source code

struct S {
 char a;
} s = { -1 };

void sign_char(void)
{
 printf("(1) sign char : ");

 if (s.a < 0) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

To migrate to RX a program created in H8 based on the requirement that char types be signed char types, specify the

“signed_char” option. For details about how to specify this option, see compiler users manual. Also, change the options specified in
the created RX project.

 Application Notes

REJ06J0079-0100 /Rev.1.00 2009.10 Page 20 of 28

2.4.2 Specifying sign for bit field members
The message ‘Using "unsigned_bitfield" function at influence the code generation of "H8" compiler’ indicates that a compatibility

problem exists with the specified “ unsigned_bitfield” option. H8-family compilers treat bit field members with no sign specified as
signed types, whereas RX-family compilers treat them as unsigned types.

Since “H8_sign_bit_field.c” in the sample program contains code based on the requirement that bit field members with no sign
specified are signed, if the “ unsigned_bitfield” option is specified, the operation results will differ from H8.

“H8_sign_bit_field.c” in the sample program
Source code

struct S {
 int a : 15;
} bit = { -1 };

void sign_bit_field(void)
{
 printf("(2) sign bit field : ");

 if (bit.a < 0) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

To migrate to RX a program created in H8 based on the requirement that bit field members with no sign specification are signed

types, specify the “signed_bitfield” option. For details about how to specify this option, see compiler users manual. Also, change the
options specified in the created RX project.

 Application Notes

2.4.3 Specifying bit field member allocation
The message ‘Using "bit_order=right" function at influence the code generation of "H8" compiler’ indicates that a compatibility

problem exists with the specified “bit_order=right” option. With H8-family compilers, bit field members are allocated from the most
significant bit, whereas with RX-family compilers, they are allocated from the least significant bit. Since “H8_bit_order.c” in the
sample program contains code based on the requirement that bit field members are allocated from the most significant bit, if the
“bit_order=right” option is specified, the operation results will differ from H8.

“H8_bit_order.c” in the sample program
Source code
 H8 bit allocation (left)
union {
 unsigned char c1;
 struct {
 unsigned char b0 : 1;
 unsigned char b1 : 1;
 unsigned char b2 : 1;
 unsigned char b3 : 1;
 } b;
} un;

REJ06J0079-0100 /Rev.1.00 2009.10 Page 21 of 28

 RX bit allocation (right)
void bit_order(void)
{
 printf("(3) bit field order : ");

 un.c1 = 0xc0;
 if ((un.b.b0 == 1) && (un.b.b1 == 1) &&
 (un.b.b2 == 0) && (un.b.b3 == 0)) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

To migrate to RX a program created in H8 based on the requirement that bit field members are allocated from the most significant

bit, specify the “bit_order=left” option. For details about how to specify this option, see compiler users manual. Also, change the
options specified in the created RX project.

Most-significant bit
allocation allows the
values set for b0 and
b1 to be referenced.

Least-significant bit
allocation does not
allow the values set for
b0 and b1 to be
referenced.

1 1 0 0 0 0 0 0

2 1 0

b0b1

b0 b1 b2 b3

7 6 5 4 3

b2b3

0 0 0 01 1

7 6 5 4 3 2 1 0

00

 Application Notes

REJ06J0079-0100 /Rev.1.00 2009.10 Page 22 of 28

2.4.4 Specifying endian
The message ‘Using "endian=little" function at influence the code generation of "H8" compiler’ indicates that a compatibility

problem exists with the specified “endian=little” option. With H8-family compilers, the data byte order is big-endian, whereas with
RX-family compilers, it is little-endian. Since “H8_endian.c” in the sample program contains code based on the requirement that the
data byte order is big-endian, if the “endian=little” option is specified, the operation results will differ from H8.

“H8_endian.c” in the sample program
Source code

typedef union{
 short data1;
 struct {
 unsigned char upper;
 unsigned char lower;
 } data2;
} UN;

UN u = { 0x7f6f };

void endian(void)
{
 printf("(3) endian : ");

 if (u.data2.upper == 0x7f && u.data2.lower == 0x6f) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

To migrate to RX a program created in H8 based on the requirement that the data byte order is big-endian, specify the

“endian=little” option. For details about how to specify this option, see compiler users manual. Also, change the options specified in
the created RX project.

 Application Notes

REJ06J0079-0100 /Rev.1.00 2009.10 Page 23 of 28

2.4.5 Specifying the size of double type variables
The message ‘Using "dbl_size=4" function at influence the code generation of "H8" compiler’ indicates that a compatibility

problem exists with the specified “dbl_size=4” option. With H8-family compilers, the size of the double type is 8 bytes, whereas
with RX-family compilers, the size of the double type is 4 bytes. Since “H8_double_size.c” in the sample program contains code
based on the requirement that the size of the double type is 8 bytes, if the “ dbl_size=4” option is specified, the operation results will
differ from H8.

“H8_double_size.c” in the sample program
Source code

double d1 = 1E30;
double d2 = 1E20;

void double_size(void)
{
 d1 = d1 * d1;
 d2 = d2 * d2;

 printf("(5) double type size : ");

 if (d1 > d2) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

To migrate to RX a program created in H8 based on the requirement that the size of the double type is 8 bytes, specify the

“dbl_size=8” option. For details about how to specify this option, see compiler users manual. Also, change the options specified in
the created RX project.

 Application Notes

2.5 Rebuilding
Once the specified options and source code causing compatibility problems have been changed as shown in 2.4

Handling compatibility check instructions, rebuild the project as shown in 2.3(2) Building. When the following dialog
box is displayed for a successful build, click Yes, and then download the load module.

Figure 1-20

2.6 Running the simulator
Execute the rebuilt load module in the simulator.

(1) Setting session refresh
Since the endian option is used to change the endian from little to big, the endian also needs to be changed to big for

the simulator. In HEW, choose File and then Session, and then change the endian to big in the displayed dialog box for
simulator settings.

Figure 1-21

REJ06J0079-0100 /Rev.1.00 2009.10 Page 24 of 28

 Application Notes
(2) Setting up I/O simulation

The program outputs the execution results to the standard output. The I/O Simulation window needs to be enabled to display the
standard output. From HEW, choose View, then CPU, and then I/O simulation to display the I/O Simulation window.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 25 of 28

I/O Simulation window

Figure 1-22

 Application Notes
(3) Running the simulator

From HEW, choose Debug and then Run after reset to run the program in the simulator, and display the program standard output
in the I/O Simulation window. Once the results are displayed, (4) can be checked to see whether the value is invalid.

Invalid execution results

REJ06J0079-0100 /Rev.1.00 2009.10 Page 26 of 28

 Application Notes

2.7 Handling invalid execution results

2.7.1 Specifying the size of int type variables
With H8-family compilers, the size of the int type is 2 bytes, whereas with RX-family compilers, the size of the int type is 4 bytes.

Since “H8_int_size.c” in the sample program contains code based on the requirement that the size of the int type is 2 bytes, the
results operation of operation will differ from H8.

“H8_int_size.c” in the sample program
Source code

typedef union{
 long data;
 struct {
 int dataH;
 int dataL;
 } s;
} UN;

void int_size(void)
{
 UN u;
 u.data = 0x7f6f5f4f;

 printf("(4) int type size : ");

 if (u.s.dataH == 0x7f6f && u.s.dataL == 0x5f4f) {
 printf("OK¥n");
 } else {
 printf("NG¥n");
 }
}

To migrate to RX programs created based on the requirement that the size of the int type is 2 bytes, specify the “int_to_short”

option. For details about how to specify this option, see compiler users manual. Also, change the options specified in the created RX
project.

After changing the options and code, perform rebuild as shown in 2.3(2) Building, and run the simulator as shown in 2.6 Running

the simulator to get the following execution results, and complete migration to the RX project.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 27 of 28

 Application Notes

REJ06J0079-0100 /Rev.1.00 2009.10 Page 28 of 28

Web site and support <website and support>
Web site for Renesas Technology

http://japan.renesas.com/

Contact information

http://japan.renesas.com/inquiry

csc@renesas.com

Revision history<revision history,rh>
Contents changed

Rev.

Date issued Page Details
1.00 2009.10.1 -- Initial edition

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

	1. Overview of the H8 sample project
	2.1 Creating the RX project
	2.4.1 Specifying sign for the char type
	2.6 Running the simulator
	2.7.1 Specifying the size of int type variables

