To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RE NESAS Application Notes

RX Family C/C++ Compiler Package
Application Notes: Sample Project RX Migration Guide, H8 Edition

This document explains how to migrate the sample project created in H8 to RX.

Table of contents

1. Overview of the H8 SAMPLE PLOJECEcceiiiiiiiiiieiii et eeeeae e e e e eereeee e e e e eeeaanneees 2
2. Migrating the H8 sample project t0 RXccovviiiiiiiieeee e e 3
2.1 Creating the RX PrOJECt......cooiiiiiiiiiie et e e e et e e e e e et ereeeeeeeenaenneees 3
2.2 Migrating source files for main ProCESSINGccoeivvrriiieeeeeeeeiiireee e e e eeeeccreeeeeeeeeeeeeitrreeeeeeeeeeeeennns 13
2.3 Building and checking H8 compatibilitycooeviiiriiiiiiiiiiiiiiiieeee et eeeeeareee e e e eeeennns 16
2.4 Handling compatibility check INStrUCEIONScooeiuviiiiiiei et eeeeearee e e e e eeannes 19
2.4.1 Specifying sign for the Char LY Pe........cooo e 19
2.4.2 Specifying sign for bit field mMembers.............ooiiiiiiiiiiiiieie e 20
2.4.3 Specifying bit field member alloCation............coocviviiiiiiieiieiiiireeeee e eeeeeere e e e e eeeannns 21
2.4.4 SPECIYING EIIALATL ...vvviiiiiiiieeiireeee e eeeeeee e e e e e e et et e e eeeeeeeeeeettareeeeeeeesenttnseraeeeeeeennenes 22
2.4.5 Specifying the size of double type variables.......ccccccoiiiiiiiiiiiiieeeee e 23
2.5 REDUILAIIG vt e e e et e e e e e e e ettt e e e e e e e e e eenarraaaaaeeeearrrraeens 24
2.6 Running the SIMULATOToooiiiiiiiiii ettt e e e e eeeeare e e e e e e eeeeaanereeeeeeeeennnns 24
2.7 Handling invalid eXeCUtion FESULES.......cccovvviiiiii it eeeeecae e e e e e e etareeeeeeeeeeeeannns 27
2.7.1 Specifying the size of Int tyPe VArIabLESooeiiiiiiiiiiiiiiee e 27
Web site and support <website and SUPPOITS.......cccuvviiiiiiiiiiiiiieeiee e e eeeeere e e e e eeeetrrreeeeeeeens 28

REJ06J0079-0100 /Rev.1.00 2009.10 Page 1 of 28

RE N ESAS Application Notes

This edition is a guide for migrating H8 sample projects for which operation can be confirmed in the simulator debugger, to RX.

1. Overview of the H8 sample project

The H8 sample project ‘H8_Sample’ can be broadly divided into pre- and post-processing such as for initialization, and main
processing to perform central processing. This edition shows how to migrate the main processing to perform central processing to an
RX project, and check its operation. The following table shows the files that comprise main processing.

Table 1-1 List of main processing files

No Processing File name Reference
1 Specifying sign for the char type H8_sign_char.c 241

2 Specifying sign for bit field members H8_sign_bit_field.c 2.4.2

3 Specifying bit field member allocation H8_bit_order.c 243

4 Specifying endian H8_endian.c 2.4.4

5 Specifying the size of double type variables H8_double_size.c 245

6 Specifying the size of int type variables H8_int_size.c 2.7.1

7 main function H8_Sample_main.c -

REJ06J0079-0100 /Rev.1.00 2009.10 Page 2 of 28

RE N ESAS Application Notes

2. Migrating the H8 sample project to RX

2.1 Creating the RX project

Create a new RX project workspace for the migration destination of the H8 sample project.

This section explains how to generate sample project in the project generator (launched from HEW by choosing the File menu and
then New workspace), according to the following procedures.

(1) Creating a new workspace

Select the “Application” project type.

Mew Project Workspace

Projects l
Project Types Wiorkzpace Mame:

@ fpplication |R}{-tESt|

Demaonstration Project Mame:

(7§ Empty Application |R}{ tot

o Library =
Directory:
|G:¥Wurkspace_Evaluatiu:un_H}{¥ R _test Browsze ...
CPL family:
R =]
Tool chain:
|Flenesas R Standard ﬂ

Properties..
(] 4 | Cancel
Figure 1-1

REJ06J0079-0100 /Rev.1.00 2009.10 Page 3 of 28

:{E N ESAS Application Notes

(2) Selecting a CPU

Leave this set to the default value, and proceed.

Mew Project—1/10-Select Tareet CPU.Toolchain version

Toolchain version :

T -

ihich GPLU do wou want to uze for this
project?

CPU Series:

If there iz no CPU tvpe to be selected, select
the "GP Type” that a similar to hardware
specification or select " Other” .

<Back [MNext> | Finish Cancel

Figure 1-2

REJ06J0079-0100 /Rev.1.00 2009.10 Page 4 of 28

:{E N ESAS Application Notes

(3) Setting options

Leave this set to the default value, and proceed.

New Project—2/10-0Option Setting

Specify global options.

Endian .
Found to INearest L!
Precizion of double : !Single precizion L’
Sien of char : Iunsigned :_I
Sien of bit field |unsigned x|
Bit field order |Lower bit x|
Width of divereence of function : I'24 bit "I

[]Denormalized number allower az a result ~

[Replace from int with short

[Jenum size iz made the smallest =

[(1Pack struct, union and clazss

[JUze try, throw and catch of G+t N

[£

[TUze dvnamic cast and tvoeid of G++

<Back |[MNext> | Finish Ganc|

Figure 1-3

Mew Project—3710-0Option Setting

Specify global options.

Fast interrupt vectar register :

MHore -

— Baze register
Rk

I Mone L‘
Fahd :
I MHone ;I

Address :
[x0000a000 | Nare =l

<Back |[Mext> | Finish Gancel

Figure 1-4

REJ06J0079-0100 /Rev.1.00 2009.10 Page 5 of 28

LENESAS

Application Notes

(4) Set up generated files

Select “Use 1/O library”.
Specify “20” for “1/O stream count”.

Mew Project—4/10-Setting the Contents of Files to be Generated

(?

?)X

What kind of initialization routine
would vaou like to create?

Mumber of LD Streams:

0 =

v Use Heap Memary

[

Generate main) Function

IG zource file _v_]

[T YO Reeister Definition Files

Heap Size:

Gienerate Hardware Setup
Function

Iflur-e - |

Finish |

Cance|

Figure 1-5

REJ06J0079-0100 /Rev.1.00

2009.10

Page 6 of 28

LENESAS

Application Notes

(5) Set up the standard library

Leave this set to the default value, and proceed.

Mew Project—5/10-Setting the Standard Library

Library configuration :

|cicas) il

— Library :

[Fruntime : runtime routines (always ens &
[Jctvpe h{CB2/C99) : Handles and check
[Imathh{Z89./099) : Performs numerica = |
[matht h{CE9599) : Performs numeric: |
[etdare W{CH2/C99) : Supports access -1l
[Wistdio W{C89599) : Performs input/fout
[w]=tdlib h{CB2599) : Performs G proera
[W=tring h{CE9/599) : Performs string cc)

C—— " - —

£ . 1111 | >

Erableall | Disable all |

| Mext > I

Firnizh | Cance|

Figure 1-6

REJ06J0079-0100 /Rev.1.00

2009.10

Page 7 of 28

:{E N ESAS Application Notes

(6) Set up the stack space

Leave this set to the default value, and proceed.

Mew Project—6510-Setting the Stack Area

What are the stack zettings?

— U=er Stack Painter :

Stack Size:

iEIxBEIEI

~Interrupt Stack Paointer :

Stack Size:
D100

{Back [Mext> | Finish Gancel

Figure 1-7

REJ06J0079-0100 /Rev.1.00 2009.10 Page 8 of 28

:{E N ESAS Application Notes

(7) Set up vectors

Leave this set to the default value, and proceed.

Mew Project—7/10-Setting the Yector

‘ihat supporting files would vou like
o create?

¥ MNector Definition Filesi

“ector Handlers:

Handler I Yector
PowerOM Reset .. Power On Reset PC

] TE—

[

<Back [MNext> | Finish Cancel

Figure 1-8

REJ06J0079-0100 /Rev.1.00 2009.10 Page 9 of 28

:{E N ESAS Application Notes

(8) Set up the debugger
Select “RX600 Simulator”.

MNew Project-8/10-Setting the Target System for Debugging

— Targets :

Tareet tvpe : IR}’{EE”:I __ﬂ
Target GPU: |All CFUs =

<Back |[MNext> | Finish Gancel |
Figure 1-9

REJ06J0079-0100 /Rev.1.00 2009.10 Page 10 of 28

LENESAS

Application Notes

(9) Set the debugger options

Select “Initial session”.

Mew Project—9/10-Setting the Debuzger Options

Target name :

| FHE00 Simulator
Core :

|<3ing|e corer

Configuration name :

|SimDebue_RxE00

~ Detail options :

Item | Setting !
Simulator IA0 enable
Simulatar I70 addr. Ox0
Buz mode 0
Endian Little
Todify
| Mext I Finizh Gancel

(10) Check the generated file names
Click “Finish”.

Figure 1-10

New Project—10510—CGhanzing the File Names to be Created

The followine zource files will be

generated:
File Na..J Ext. | Description

dbsct c Setting of B.R Section
tvpedefine h fliases of Integer Tvpe
ol | srC Program of Low level
lowwzre C Program of LAD Stream
zbrk, C Program of shrk

intpre C Interrupt Program

vectthbl s Ihitialize of Vector Table
wect h Definition of Wector
rezetprg © Rezet Program

Fitest . © Main Program

lowsre h Header file of 17D Stream f
zbrk. h Header file of sbrk file
ztacksct h Setting of Stack area

£ 1) | &
Mezt Finizh | Cancel

Figure 1-11
REJ06J0079-0100 /Rev.1.00 2009.10 Page 11 of 28

RE N ESAS Application Notes

(11) Set up the simulator

Click “OK”.

set Bimulator

GPU Gonfiguration l Peripheral Function Simulation

Endiar:

v
Simulation Mode:

GPU Frequency:

[100 MHz

[Don't ghow this dialog box] | Cance!

Figure 1-12

REJ06J0079-0100 /Rev.1.00 2009.10 Page 12 of 28

RE N ESAS Application Notes

2.2 Migrating source files for main processing

Copy, and register with the created RX project, the files comprising main processing for the H8 sample project, as explained in 1.
Overview of the H8 sample project.

(1)Copy files from the H8 sample project folder

Copy to the RX project the 10 files explained in 1. Overview of the H8 sample project.

[H8_Sample project] [RX project]
| Debue |3 Debue
Iy Release |y Release
Iy SimDebug_HBSHA [SimDebueg_RHE00
] dbscte c] dbscte
= DefaultSession hef DefaultSezzionhef
@ H& bit_orderc c] intpre o
@ lowuly | 2
dian o] lowsre
5] HE_int_size o b lowesre h
HE_Sample Fwp [Z] Readme txt
H3_Sample nawv [~ ﬂ resetprec
H3_Sample pes _test 001
HE Sample tps L—Tc] R teste
@ H3_Sample_mainc R _test bwp
(5] H3_sign _bit_field o R _testnay
[M}H2_zign_char o F¥_testips
c] intpre o] sbrk o
] indefine h] sbrkh
SimSessionPHE00 hef
] stacksct b
i] typedefine h
] vecth
c] vecttbl
@ H2_double_zize o
@ H2_endianc
ample_mainc
ign_bit_fieldc

Figure 1-13

REJ06J0079-0100 /Rev.1.00 2009.10 Page 13 of 28

LENESAS

Application Notes

(2)Register the copied files with the project

Register the copied files with the created RX project.
In HEW, choose Project and then Add files, and then select the following in the displayed dialog box.

Select the files to
be registered

Add files to project ‘R _test’

ample_mainc
1 bit_fields

2 =ign_charc

=] oF B
|] low bl zrc | 1] =hrk b
2] lowsre o |h] stackscth
|h] lowesre b |h] typedefine h
] resetpre o |h] vecth
2] R tests] vecttblc
1] shrk
| >
—

File name:

Files of type:

|"H2_endianc” "HE_int_sizec” “H3_Sample_mainc”

fidd

|F‘r-:ujeu:t Filez

[w Belative Path

[Hide Project Filez

ﬂ Cancel

Click the Add
button after
selection

Figure 1-14

REJ06J0079-0100 /Rev.1.00

2009.10

Page 14 of 28

LENESAS

(3)Unregister unnecessary files

Application Notes

Delete the ‘RX_test.c’ file generated by the project generator for the main function. It is no longer necessary, because the main
function file was copied from the H8 sample project.

In HEW, choose Project and then Delete files, and then select the following in the displayed dialog box.

Remove Project Files

Project files:

dbzcte [Cr¥Wiorkspace_E
H3 bit_order [CadWiorkzpace_Ex Cancel

HE double sizec

[C:4Wiorkspace_Es

H3_endianc ;C:?#"I.I'I.I'u:urkspa-:e:E\
HE_int_zizer [C-¥Wiorkspace_Ex
HE_Sample_mainz [C¥wWorkspace_Ey
HE zign_bit_fieldz [C-¥Wiorkspace_Ex
Select the fileto ~ [Fign_charc %iwﬂftspaﬂﬂ_gﬂ
be deleted b;;‘gwg:sz:E:'E: Click the Delete
[C:¥Work space_Es button after selection
[Cidworkspace Ex
|G work zpace Ex
Co¥miorkspace_Ey
[C¥workspace Es
< | >
Figure 1-15
REJ06J0079-0100 /Rev.1.00 2009.10

Page 15 of 28

RE N ESAS Application Notes

2.3 Building and checking H8 compatibility

Build the RX project for which the main processing file was copied and registered. When a build is performed in HEW, since the
H8 compatibility check functionality is enabled, option specifications and source code that may impact compatibility can be checked.
This section explains how to enable H8 compatibility check functionality and perform a build, and then check the displayed
compatibility confirmation messages.

(1) Set up H8 compatibility check functionality

In HEW, choose Build and then RX Standard Toolchain, and then select the following in the displayed dialog box.

M Select the Compiler tab

Cionfiguratian : F'usseml:uly] Link.#Library] Standard Library] CPU] Too j r

|Del:uug ﬂ Category |Snuru:e ﬂ
=3 Al Loaded Projects

Show entries for

.U-:-t
+-[_ C source file |S-:nurn::e file ﬂ
+ % ﬁ++ su:uslrce file ; Language -
+ szembly source file _ -
+-[_1 Linkage symbol file G |G(GEg) |
C++ (P |G++ ﬂ

Ihput character code :
55 -]

[Allow comment nest

Interchanseability check : Select NC compiler for

|HB T ﬂ Compatibility check

Mone /\ _—
(MG compiler

\H3 compiler

Options GAC+H

—cpu=rx600 -endian=big —dbl_size=8 -zigned_char -
zigned_bitfield -bit_order=left -int_to_short —check=ch3d -
output=obj=" SCONFISDIR)ES FILELEAF) ob]™ —debug —nologa

0] 4 | Cancel

Figure 1-16

REJ06J0079-0100 /Rev.1.00 2009.10 Page 16 of 28

LENESAS

Application Notes

(2) Building

In HEW, choose Build and then Build to start the build. A message is displayed during the build, in the output window.

R Standard Toolchain..

] 18 & %

JJE‘A e) “Dehug

| [SimsessionFixg0n

=[]

Cirl+F7

O E L e gl e SR PRE L B

BEEwOE |8 8a

f d
=
= @ Build All
=) @ RX_test Build Multiple..
=23 Assembly s Glean Gurrent Project
&4 Clean All Prajects

£ &3 © source filg)
B dhocte Update All Deperdencies
- [B] Mt o 2 Siop Tool Execution GirleBreak
- [2] He_doubl
(@ Heendial Include/Exclude Build
- Q HE_int _si;
2] H8Samp Build Phases
4] H8 sient
(4] He_sien Build Gonfigurations...
= Q intpre o
3] towsren | Linkaes Order
% ’F:;Et‘e"s'f Generate haksfile
- [4] sbrks
(3] vesttbls

= 423 Download modules
[Ritestabs - 000000C
=23 Dependencies
- lowsrch

sbrkh

stackscth
- typedefineh
o [2] vecth

<l | o

_@P... Hr.. | an. | Frest

Holotalar|218t|o B2l]|?

Connected
] 2T\ euld },pebug f FindinFies1 }, FindinFles2 } Macro), Test J, Wersion Contral [
Build out of date active project files and out of date dependent project files Defaultl desktop — NS
Figure 1-17
Holoralat (Rl |=@| 2

/M Ci¥llorkspace_Evaluat jon_RA¥RA_test¥RE_test¥vectthl.c(1) C1802 (W) Using “unsigned_char”™ function at influence the code generation of "HE™ 1A
A\ Ci¥Workspace_Evaluat ion_RE¥RN_test¥RY_test¥vecttbl.c(1) @ C1802 (W) Using “unsizned_hitfield™ function at influence the code generation of ™
A Cr¥llorkspace_Evaluat ion_RE¥RY _test¥R¥_test¥wectthl.c(1) : 1802 (W) Using "bit_order=right” function al influence the code zeneration of "HE
M Ci¥lorkspace_Evaluat on_RA¥RY _test¥RE_test¥wectthl.c(1) : 1802 (W) Using "endian=1ittle” function at influence the code zeneration of "H8"™ .
M Ci¥lorkspace_Evaluat on_RA¥RY test¥RE_test¥vectthl.c(1) 1802 (W) Using “dbl_size=4" function at influence the code generation of "HE&™ com

Phase R¥ C/C++ Compiler finished

Phase R Assembler starting

Ci¥larkspace_Evaluat ion_REX¥RX_test¥R¥_test¥lowlvl.src
Phase R Assembler finished

Phase OptLinker starting
Phase OptLinker finished

Build Finished
0 Errars, 72 Warnings

< |

A

¥

1| }I\ Build & Debug ,}\ Find in Files 1)\ Find in Files 2)\ Macro)\ Test ?\ Wersion Contral ,“

Figure 1-18

. . IR
LOutput window J

REJ06J0079-0100 /Rev.1.00 2009.10

Page 17 of 28

RE N ESAS Application Notes

(3) Checking compatibility check messages

The C1802 warning is displayed in the messages output to the output window, indicating that this area poses a compatibility
problem with H8.

F alat |18 & =M
-~
Generator finished
r starting
n_RX¥RY_test¥RE_test¥HE Sanple_main.c
ANn_AEERY test ¥RY test ¥HE Sanple_main.cil) C1802 (W) Using “unsigned_char™ function at influence the code generation of "HE” compiler
A n_AX¥RY test¥RY test¥HE Sample_main.cil) 1802 (W) Using “unsigned_hitfield” function at influence the code zeneration of "H&” compiler
An Ru¥Ry test ¥RN test¥HE Sanple nain.c(l) C1802 (W) Using “hit order=right™ function at influence the code generation of "HE™ compiler
ANn_REERY tect ¥RY test¥HE Sanple_main.c(l) C1802 W) Using “endian=litt|e™ function at influence the code generation of "HE” compiler
AN REYRY test¥RY test¥HE Sanple_main.c(1) C1802 (W) Using “dhl_size=4" function at influence the code generation of "HE” compiler
n_RE¥RA_test¥Ri_test¥HS double_size.c
n_RX¥AN_test¥RY_test¥H8 _double_size.c(1) C1802 W) Using “unsigned_char™ function at influence the code generation of "HE™ compiler
n_RE¥RE test¥RY test¥HE double size.cil) C1802 (W) Using “unsigned _hitfield” function at influence the code zeneration of "H3™ compiler
n_RE¥RE test¥RY test¥H8 double_size.ci1) C1802 (W) Using “bit_order=right”™ function at influence the code generation of "HE” conpiler
n R¥¥R¥ 1 Ast ¥RY teat ¥HA dnuble size.nill CIAN? (W) llsing “endian=litt 1e” functinn at influence the cade zenerat inn of “HR™ comoilar b
< >
% Build £ Debug J, FindinFiles 1 J, FndinFiles 2}y Macra }, Test } wersion Contral [

Figure 1-19

REJ06J0079-0100 /Rev.1.00 2009.10 Page 18 of 28

RE N ESAS Application Notes

2.4 Handling compatibility check instructions

The following explains how to check and deal with C1802 messages affecting compatibility, as given in 2.3 Building
and checking H8 compatibility. The target messages are as follows.

Table 1-2 List of C1802 messages

No Messages affecting compatibility Reference
1 Using "unsigned_char" function at influence the code generation of "H8" compiler 241
2 Using "unsigned_bitfield" function at influence the code generation of "H8" compiler 2.4.2
3 Using "bit_order=right" function at influence the code generation of "H8" compiler 2.4.3
4 Using "endian=little” function at influence the code generation of "H8" compiler 2.4.4
5 Using "dbl_size=4" function at influence the code generation of "H8" compiler 2.45

2.4.1 Specifying sign for the char type

The message ‘Using "unsigned_char" function at influence the code generation of "H8" compiler’ indicates that a compatibility
problem exists with the specified “unsigned_char” option. H8-family compilers treat char types with no sign specified as signed char
types, whereas RX-family compilers treat them as unsigned char types.

Since “H8_sign_char.c” in the sample program contains code based on the requirement that char types without a sign are signed
char types, if the “unsigned_char” option is specified, the operation results will differ from H8.

“H8_sign_char.c” in the sample program

Source code

struct S {
char a;

ys={-13%;

void sign_char(void)

{
printf(*"(1) sign char : ");

if (s.a<0){
printf('OK¥n™);

} else {
printf('NG¥n™);

}

To migrate to RX a program created in H8 based on the requirement that char types be signed char types, specify the
“signed_char” option. For details about how to specify this option, see compiler users manual. Also, change the options specified in
the created RX project.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 19 of 28

LENESAS

2.4.2 Specifying sign for bit field members

The message ‘Using "unsigned_bitfield" function at influence the code generation of "H8" compiler’ indicates that a compatibility
problem exists with the specified “ unsigned_bitfield” option. H8-family compilers treat bit field members with no sign specified as
signed types, whereas RX-family compilers treat them as unsigned types.

Since “H8_sign_bit_field.c” in the sample program contains code based on the requirement that bit field members with no sign
specified are signed, if the “ unsigned_bitfield” option is specified, the operation results will differ from H8.

Application Notes

“H8_sign_bit_field.c” in the sample program

Source code

struct S {
int a : 15;
} bit = { -13%};
void sign_bit_field(void)
{
printf(""(2) sign bit field : ");
if (bit.a <0) {
printf('OK¥n™);
} else {
printf('NG¥n™);
bs

To migrate to RX a program created in H8 based on the requirement that bit field members with no sign specification are signed

types, specify the “signed_bitfield” option. For details about how to specify this option, see compiler users manual. Also, change the
options specified in the created RX project.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 20 of 28

RE N ESAS Application Notes

2.4.3 Specifying bit field member allocation

The message ‘Using "bit_order=right” function at influence the code generation of "H8" compiler’ indicates that a compatibility
problem exists with the specified “bit_order=right” option. With H8-family compilers, bit field members are allocated from the most
significant bit, whereas with RX-family compilers, they are allocated from the least significant bit. Since “H8_bit_order.c” in the
sample program contains code based on the requirement that bit field members are allocated from the most significant bit, if the
“bit_order=right” option is specified, the operation results will differ from H8.

“H8_bit_order.c” in the sample program

Source code
H8 bit allocation (left)
union { . N
unsigned char cil; Most-significant bit
struct { 76543210 allocation allows the
unsigned char b0 : 1; |i|1|0|0|0|0|0 o |~ values set for b0 and
uns!gned char bl : 1; b1 to be referenced.
unsigned char b2 : 1; b0 bl b2 b3
unsigned char b3 : 1;
} b;
} un;
RX bit allocation (right)
void bit_order(void)
{
printf("(3) bit field order : "); 76543210 Ceastsignificant bit
un.cl = 0xcO: |1|1|0|0|0|0|0|0 allocation does not
if ((un.b.b0 == 1) && (un.b.bl == 1) && b3 b2 bl b0 allow the values set for
(un.b.b2 == 0) && (un.b.b3 == 0)) { b0 and b1 to be
printf('OK¥n™); referenced.
} else {
printf('NG¥n™);
ks

To migrate to RX a program created in H8 based on the requirement that bit field members are allocated from the most significant
bit, specify the “bit_order=left” option. For details about how to specify this option, see compiler users manual. Also, change the
options specified in the created RX project.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 21 of 28

LENESAS

2.4.4 Specifying endian

Application Notes

The message ‘Using "endian=little" function at influence the code generation of "H8" compiler’ indicates that a compatibility
problem exists with the specified “endian=little” option. With H8-family compilers, the data byte order is big-endian, whereas with
RX-family compilers, it is little-endian. Since “H8_endian.c” in the sample program contains code based on the requirement that the
data byte order is big-endian, if the “endian=little” option is specified, the operation results will differ from H8.

“H8_endian.c” in the sample program

Source code

typedef union{
short datal;
struct {
unsigned char upper;
unsigned char lower;
} dataz;
3 UN;

UN u = { OX7F6F };

void endian(void)

{
printf(""(3) endian : ");
if (u.data2.upper == Ox7f && u.data2.lower == Ox6F) {
printf(*'OK¥n™);
} else {
printf('NG¥n™);
bs

To migrate to RX a program created in H8 based on the requirement that the data byte order is big-endian, specify the

“endian=little” option. For details about how to specify this option, see compiler users manual. Also, change the options specified in
the created RX project.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 22 of 28

RE N ESAS Application Notes

2.4.5 Specifying the size of double type variables

The message ‘Using "dbl_size=4" function at influence the code generation of "H8" compiler’ indicates that a compatibility
problem exists with the specified “dbl_size=4" option. With H8-family compilers, the size of the double type is 8 bytes, whereas
with RX-family compilers, the size of the double type is 4 bytes. Since “H8_double_size.c” in the sample program contains code
based on the requirement that the size of the double type is 8 bytes, if the “ dbl_size=4" option is specified, the operation results will
differ from H8.

“H8_double_size.c” in the sample program

Source code
double dl1 = 1E30;
double d2 = 1E20;
void double_size(void)
{
dl = dl1 * di;
d2 = d2 * d2;
printf(*"(6) double type size : ");
if (d1 > d2) {
printf('OK¥n™);
} else {
printf('NG¥n™);
ks

To migrate to RX a program created in H8 based on the requirement that the size of the double type is 8 bytes, specify the

“dbl_size=8" option. For details about how to specify this option, see compiler users manual. Also, change the options specified in
the created RX project.

REJ06J0079-0100 /Rev.1.00 2009.10 Page 23 of 28

RE N ESAS Application Notes

2.5 Rebuilding

Once the specified options and source code causing compatibility problems have been changed as shown in 2.4
Handling compatibility check instructions, rebuild the project as shown in 2.3(2) Building. When the following dialog
box is displayed for a successful build, click Yes, and then download the load module.

Confirmation Request

1) QF to download module: C¥Workspace_Evaluation_FR¥RH_test HE¥RX test¥Debug¥FRi_test abs

[Don't azk this question again

Mo Yes to all Mo ta all Cancel

Figure 1-20

2.6 Running the simulator

Execute the rebuilt load module in the simulator.
(1) Setting session refresh

Since the endian option is used to change the endian from little to big, the endian also needs to be changed to big for
the simulator. In HEW, choose File and then Session, and then change the endian to big in the displayed dialog box for
simulator settings.

=et Simulator

GPU Gonfiguration l Peripheral Function Simulation |

Fndian:
ILittle |

Little

I J -]
CPU Frequency:
100 MHz

[~ Don't show this dialog box | (0]:% I Cancel

Figure 1-21

REJ06J0079-0100 /Rev.1.00 2009.10 Page 24 of 28

:{E N ESAS Application Notes

(2) Setting up I/O simulation

The program outputs the execution results to the standard output. The I/O Simulation window needs to be enabled to display the
standard output. From HEW, choose View, then CPU, and then 1/O simulation to display the I/0 Simulation window.

&% RX test — Hish—performance Embedded Workshop

File Edit View Project Build Debug Setys Toole Test lUindow Help
Dedd |8+ m| 6 “% “lh & R JJ;E & 8 B % |[Detun | |[smsessionricem0 =] | 74 ‘

CFELEzEY EN E (ANl wRe0. w B FE B DB 858
| x|

=3 Reltest
= RX test
=23 Aesembly source file
H lowlv sre
=23 © source file
[3] dbsete
HE bit_orderc
HB_double_size o
HB_endian
HA_int sizec
HB_Sample_mainc
it fieldc
HB_sign_char ¢
intprec
lowsre:

vecttble

=3 Downlosd modules

[7 R¥_testabs - 000000
=423 Dependenciss

lowsrch

sbrkh

stackscth
typedefine h

wecth

1/0 Simulation window

< [5]
e [ErT | Qn | [Hes
Hoiorarar 22| |B2d|? 2l

Mothing to do - skipping
Phase R¥ G/G++ Library Generator finished b |

Phase RX G/C++ Compiler starting
Hothing to do - skipping
Phase RX C/C++ Compiler finished

Phaze RX Assembler starting
Hothing to do - skipping
Phaze R¥ Assembler finished

Phase OptLinker starting
Phase OptLinker finished

Build Finished
U Errars, 0 Yarnings

<l il bl
4 Build # Debug Find in Files 1)\ Find in Files 2 Macro A Test “ersion Control ,’

Ready =

cfault] deskion — ms | [A

Figure 1-22

REJ06J0079-0100 /Rev.1.00 2009.10 Page 25 of 28

RE N ESAS Application Notes

(3) Running the simulator
From HEW, choose Debug and then Run after reset to run the program in the simulator, and display the program standard output
in the 1/0 Simulation window. Once the results are displayed, (4) can be checked to see whether the value is invalid.

f}[lﬁ sign char : CK

(2} sign hit feild : COK
[3) endian : QK
“4) int type size : HG|
[5) doukle type size @ OK

Invalid execution results

REJ06J0079-0100 /Rev.1.00 2009.10 Page 26 of 28

LENESAS

Application Notes

2.7

Handling invalid execution results

2.7.1 Specifying the size of int type variables

With H8-family compilers, the size of the int type is 2 bytes, whereas with RX-family compilers, the size of the int type is 4 bytes.
Since “H8_int_size.c” in the sample program contains code based on the requirement that the size of the int type is 2 bytes, the
results operation of operation will differ from H8.

“H8_

int_size.c” in the sample program

Source code

typedef union{
long data;
struct {
int dataH;
int datal;
1 s;
3 UN;

void int_size(void)
{
UN u;
u.data = Ox7F6F5F4T;

printf(*"(4) int type size :

");

if (u.s.dataH == Ox7f6f && u.s.dataL == Ox5F4F) {

printf("'OK¥n™);
} else {
printf("'NG¥n™);

1

To migrate to RX programs created based on the requirement that the size of the int type is 2 bytes, specify the “int_to_short”
option. For details about how to specify this option, see compiler users manual. Also, change the options specified in the created RX

project.

After changing the options and code, perform rebuild as shown in 2.3(2) Building, and run the simulator as shown in 2.6 Running

the simulator to get the following execution results, and complete migration to the RX project.

ij[lj sign char @ OK

(2] =ign hit feild @ OK
[3) endian : QK

(47 int type =ize : NG
[5) double type size oK
(1) =sign char : COK

[Z2) =sign bit feild : OK
(3} endian : QK

[4) int type =ize @ OK
[5) double type =size oK

REJ06J0079-0100 /Rev.1.00

2009.10

Page 27 of 28

LENESAS

Application Notes

Web site and support <website and support>

Web site for Renesas Technology

http://japan.renesas.com/

Contact information

http://japan.renesas.com/inquiry

csc@renesas.com

Revision history<revision history,rh>

Contents changed

Rev. Date issued Page Details
1.00 2009.10.1 -- Initial edition
REJ06J0079-0100 /Rev.1.00 2009.10 Page 28 of 28

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

	1. Overview of the H8 sample project
	2.1 Creating the RX project
	2.4.1 Specifying sign for the char type
	2.6 Running the simulator
	2.7.1 Specifying the size of int type variables

