

RX Family and M16C Family

Guide for Migration from the M16C to the RX: Asynchronous Serial Communications (UART)

Abstract

This document describes migration from the serial I/O UART mode in the M16C Family to the SCI asynchronous mode in the RX Family.

Products

RX Family

M16C Family

When this document explains migration from the M16C Family to the RX Family, the M16C/65C Group MCU is used as an example of the M16C Family MCU, and the RX261 Group and RX660 Group MCUs are used as examples of the RX Family MCU. When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Differences in Terminology Between the RX Family and M16C Family MCUs

Item	M16C Family	RX Family
Abbreviated name of the serial	Serial I/O	SCI
communication interface		
(SCI)		
Asynchronous serial communications	UART mode	Asynchronous mode
mode	(Clock asynchronous serial I/O mode)	
SCI operating clock	Count source	Clock source
(clock source)		
Peripheral function operating clock	Peripheral function clocks:	Peripheral module clocks:
	f1, fOCO40M, fOCO-F, fOCO-S, fC32	PCLKA, PCLKB, PCLKD
Transmit buffer	UiTB register	TDR registers:
	(transmit buffer)	TDRH, TDRL, TDRHL
Transmit shift register	UART transmit shift register	TSR register
Receive buffer	UiRB register	RDR registers:
		RDRH, RDRL, RDRHL
Transmit interrupt	UARTi transmit interrupt	TXI interrupt
	(transmit buffer empty)	
Transmit complete interrupt (M16C)	UARTi transmit interrupt	TEI interrupt
Transmit end interrupt (RX)	(transmission completed)	
Receive interrupt	UARTi receive interrupt	RXI interrupt
Function to select I/O of peripheral	Function select registers and	MPC *1
functions for pins	input function select registers *2	

Notes: 1. The MPC is not available in some groups.

2. Only available in the M32C Series and R32C Series.

RX Family and M16C Family

Guide for Migration from the M16C to the RX: Asynchronous Serial Communications (UART)

Contents

1.	General Differences in Asynchronous Serial Communications	4
2.	Peripheral Functions Used	5
3.	Differences in Asynchronous Serial Communications	5
3.1	Transmit/Receive Timing	6
3.1.1	1 Differences in Transmitting	6
3.1.2	2 Differences in Receiving	8
3.2	Calculating the Bit Rate	10
4.	Appendix	11
4.1	Points on Migration From the M16C Family to the RX Family	11
4.1.1	1 Interrupts	11
4.1.2	2 I/O ports	12
4.1.3	3 Module Stop Function	12
4.2	I/O Register Macros	13
4.3	Intrinsic Functions	13
5	Reference Documents	1./

1. General Differences in Asynchronous Serial Communications

Table 1.1 shows Differences in Asynchronous Serial Communications.

Table 1.1 Differences in Asynchronous Serial Communications

Item	M16C (M16C/65C)	RX (RX261)	RX (RX660)
Operation clock	f1, fOCO40M, fOCO-F,	PCLKB	PCLKB
source	fOCO-S, or fC32		
Data length	7 bits, 8 bits or 9bits	7 bits, 8 bits or 9bits	7 bits, 8 bits or 9bits
Parity bit	Selectable from even, odd, or no parity	Selectable from even, odd, or no parity	Selectable from even, odd, or no parity
Stop bits	Selectable from 1 bit or 2 bits	Selectable from 1 bit or 2 bits	Selectable from 1 bit or 2 bits
Data format	Selectable from LSB first or MSB first	Selectable from LSB first or MSB first	Selectable from LSB first or MSB first
Hardware flow control	Available (selectable)	Available (selectable)	Available (selectable)
Separate CTS/RTS pins	Available (UART0)	Not available	Not available
Data match detection	Not available	Available	Available
Start bit detection	Falling edge	Low level or falling edge can be selected.	Low level or falling edge can be selected.
Receive data sampling timing adjustment	Not available	Available	Available
Transmit signal change timing adjustment	Not available	Available	Available
Interrupt sources	Transmit interrupt	Transmit data empty (TXI) interrupt Transmit end (TEI) interrupt	Transmit data empty (TXI) interrupt Transmit end (TEI) interrupt
	Receive interrupt	Receive data full (RXI) interrupt Receive error (TRI) interrupt	Receive data full (RXI) interrupt Receive error (TRI) interrupt
Error detection	Overrun error	Overrun error	Overrun error
	Framing error	Framing error	Framing error
	Parity error	Parity error	Parity error
Double-speed mode	Not available	Available	Available
Multi-processor function	Not available	Available	Available
Noise cancellation	Not available	On-chip digital noise filter on the RXDn pin input route	On-chip digital noise filter on the RXDn pin input route
Data logic switch	Available	Available	Available
TXD, RXD I/O polarity switch	Available	Available	Available

2. Peripheral Functions Used

Table 2.1 shows Peripheral Functions and Modes Used When Performing Asynchronous Communications.

Table 2.1 Peripheral Functions and Modes Used When Performing Asynchronous Communications

No.	Operating Example	M16C		RX	
		Peripheral Function	Mode	Peripheral Function	Mode
1	Asynchronous serial communications (transmit/receive operations)	Serial I/O	UART mode	SCI	Asynchronous mode

3. Differences in Asynchronous Serial Communications

This section explains the functional differences in asynchronous serial communications between the RX and M16C under the example conditions shown in Table 3.1 Conditions for Asynchronous Serial Communications.

Table 3.1 Conditions for Asynchronous Serial Communications

Item	Conditions for Transmission and Reception
Peripheral function operating clock	16 MHz
Transfer rate	9600 bps
Data length	8 bits
Stop bits	1 stop bit
Parity	None
Data format	LSB first
Hardware flow control	None
Channels used	RX Family: SCI0
	M16C Family: UART0
Pin processing	Pull-up resistors are connected to the TXD and RXD pins. *1

Note: 1. In the RX Family, when the SCR.TE bit is 0 (serial transmission is disabled), the TXD pin is in the Hi-Z state. When a pull-up resistor is not connected, while serial transmission is disabled, switch the pin function to the output state of general I/O ports.

3.1 Transmit/Receive Timing

3.1.1 Differences in Transmitting

Figure 3.1 shows Differences in Timing Between the RX and the M16C (When Transmitting 3 Bytes). Table 3.2 shows Differences in Operation and Processing at Various Timings Between the RX and the M16C (When Transmitting 3 Bytes).

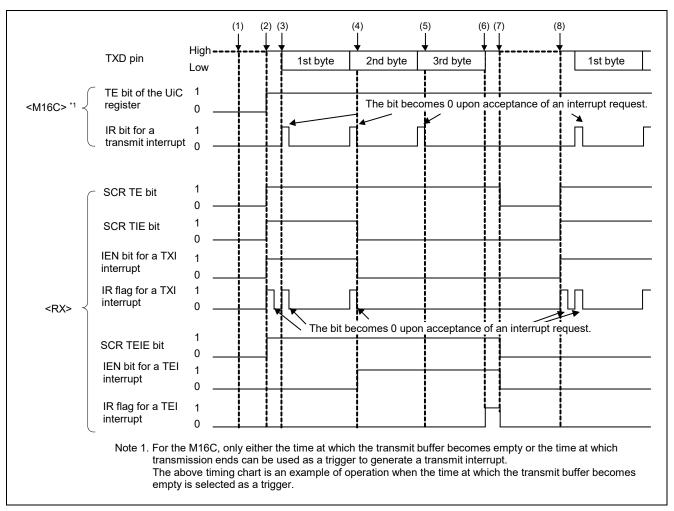


Figure 3.1 Differences in Timing Between the RX and the M16C (When Transmitting 3 Bytes)

Table 3.2 Differences in Operation and Processing at Various Timings Between the RX and the M16C (When Transmitting 3 Bytes)

Tim	ing	M16C (M16C/65C)	RX (RX261/RX660)
(1)	Before transmission starts	The pin status is determined when serial I/O mode is selected.	The TXD pin is in the Hi-Z until the SCR.TE bit is set to 1 (serial transmission is enabled).
(2)	When transmission starts	The TE bit is set to 1 (transmission is enabled). The transmit interrupt is not generated even if the TE bit is 1. The first byte of data is written in the main processing, etc.	Set the SCR.TE bit to 1, set the TIE bit to 1 (a TXI interrupt request is enabled), set the TEIE bit to 1 (a TEI interrupt request is enabled), and set the IEN bit for the TXI interrupt to 1 (TXI interrupt request enabled). When the SCR.TE bit is set to 1, the IR flag for the transmit interrupt (TXI interrupt) becomes 1, and the transmit interrupt is generated. Write the first byte of transmit data in the transmit interrupt handling.
(3)	When transmit data is transferred to the transmit shift register	The IR flag (IR bit) for the transmit interrupt becomes 1, and the transmit interrupt is generated. The second byte of data is written in the transmit interrupt handling.	
(4)	Transmit interrupt when writing the last data		Set the IEN bit for the TEI interrupt to 1 (TEI interrupt enabled), set the SCR.TIE bit to 0 (a TXI interrupt request is disabled), and set the IEN bit for the TXI interrupt to 0 (TXI interrupt disabled).
(5)	Transmit interrupt after writing the last data	Interrupt handling is completed without transmit data being written.	(The transmit interrupt is not generated.)
(6)	After outputting the last data	_	The transmit end interrupt is generated.
(7)	When transmission is complete		In the transmit end interrupt processing, set the SCR.TE bit to 0 (serial transmission is disabled), set the TEIE bit to 0 (a TEI interrupt request is disabled), and set the IEN bit for the TEI interrupt to 0 (TEI interrupt disabled) to disable transmission. When transmission is disabled, the IR flag for the transmit end interrupt becomes 0, and the TXD pin becomes Hi-Z.
(8)	When transmission restarts	The next data is written in the main processing, etc.	The same processing as in "(2) When transmission starts" occurs.

3.1.2 Differences in Receiving

Figure 3.2 shows Differences in Timing Between the RX and the M16C (During Reception). Table 3.3 shows Differences in Operation and Processing at Various Timings Between the RX and the M16C (During Reception).

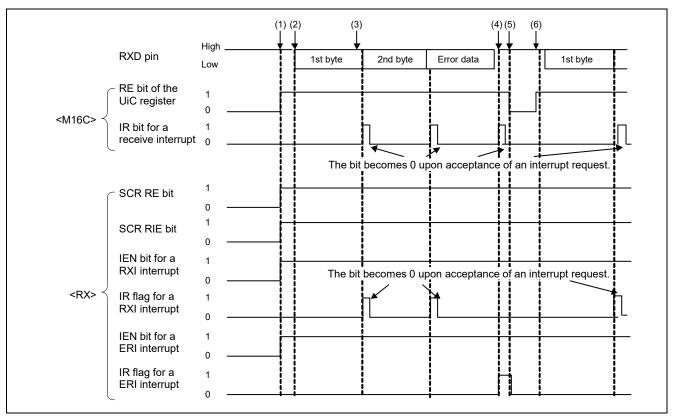


Figure 3.2 Differences in Timing Between the RX and the M16C (During Reception)

Table 3.3 Differences in Operation and Processing at Various Timings Between the RX and the M16C (During Reception)

Tim	ing	M16C (M16C/65C)	RX (RX261, RX660)
(1)	When reception is enabled	Set the RE bit to 1 (reception is enabled) to enable reception.	Set the SCR.RE bit to 1 (serial reception is enabled), the RIE bit to 1 (RXI interrupt request is enabled), the IEN bit for the RXI interrupt to 1 (RXI interrupt request enabled), and the IEN bit for the ERI interrupt to 1 (ERI interrupt request enabled) to enable reception.
(2)	When reception starts	Receive operation starts when the start bit i	s input to the RXD pin.
(3)	When reception is completed	When 1 byte of data is received, the received data is stored in the receive buffer, the IR flag (IR bit) for the receive interrupt (RXI interrupt) becomes 1, and the receive interrupt is generated. The value from the receive buffer is read in the receive interrupt handling.	
(4)	When a receive error occurs	A receive interrupt occurs. In the receive interrupt handling, read the error flag for the receive buffer register, and check to see if a receive error occurred.	The ERI interrupt is generated. Receive error processing is performed in the ERI interrupt handling.
(5)	Clear the receive error flag	Set the RE bit to 0 (reception disabled), and set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).	After reading the error flags in the SSR register, set the flags to 0 to clear them. After all error flags have been cleared, the
(6)	When reception is restarted	When bits SMD2 to SMD0 in the UiMR register are set to 101b (UART mode character length is 8 bits), and the RE bit is set to 1, reception is enabled.	IR flag for the ERI interrupt becomes 0, and reception is enabled.

3.2 Calculating the Bit Rate

There are differences in calculating the bit rate between the RX Family and M16C Family. Table 3.4 shows Differences in Calculating the Bit Rate.

Table 3.4 Differences in Calculating the Bit Rate

Item	M16C (M16C/65C)	RX (RX261)	RX (RX660)
Calculating the bit rate using the	Clock source / 16 (<i>m</i> + 1)	In the case where BGDM = 0 and ABCS = 0:	In the case where BGDM = 0 and ABCS = 0:
internal clock	Clock source: f1SIO, f2SIO, f8SIO, or f32SIO	Clock source / 32 (N + 1) *1	Clock source / 32 (N + 1) *1
	<i>m</i> : Value set in the UiBRG register	In the case where BGDM = 1 and ABCS = 0, or where	In the case where BGDM = 1 and ABCS = 0, or where
		BGDM = 0 and ABCS = 1: Clock source / 16 (N + 1) *1	BGDM = 0 and ABCS = 1: Clock source / 16 (N + 1) *1
		In the case where BGDM = 1 and ABCS = 1:	In the case where BGDM = 1 and ABCS = 1:
		Clock source / 8 (<i>N</i> + 1) *1	Clock source / 8 (<i>N</i> + 1) *1
		In the case where ABCSE = 1: Clock source / 6 (N + 1) *1	In the case where ABCSE = 1: Clock source / 6 (N + 1) *1
		Clock source: PCLK, PCLK/4, PCLK/16, or PCLK/64	Clock source: PCLK, PCLK/4, PCLK/16, or PCLK/64
		N: Value set in the BRR register	N: Value set in the BRR register
Calculating the bit rate using the	fEXT/16 (m + 1)	fEXT/16 (when ABCS = 0)	fEXT/16 (when ABCS = 0)
external clock		fEXT/8 (when ABCS = 0)	fEXT/8 (when ABCS = 0)
	fEXT: Input from the CLKi pin	fEXT: Input from the CLKi pin	fEXT: Input from the CLKi pin
	m: Value set in the UiBRG register		
Calculating the bit rate when the	_	Only when using SCI5, SCI6, and SCI12:	Only when using SCI5, SCI6, and SCI12:
reference clock is generated by		The clock can be input from the TMR.	The clock can be input from the TMR.
the TMR		(For details, refer to the User's Manual: Hardware).	(For details, refer to the User's Manual: Hardware).

Note: 1. Based on the "Relationships between N Setting in BRR and Bit Rate B" in the User's Manual: Hardware (in the case where BGDM = 0 and ABCS = 0):

 $B = PCLK / (64 \times 2^{2n-1} \times (N + 1))$

- $= PCLK / (32 \times 2^{2n} \times (N + 1))$
- $= (PCLK / 2^{2n}) / (32 \times (N + 1))$
- = Clock source / $(32 \times (N + 1))$

4. Appendix

Points on Migration From the M16C Family to the RX Family

This chapter explains points on migration from the M16C Family to the RX Family.

4.1.1 Interrupts

For the RX Family, when an interrupt request is received while all of the following conditions are met, the interrupt occurs.

- The I flag (PSW.I bit) is 1.
- Registers IER and IPR in the ICU are set to enable interrupts.
- The interrupt request is enabled by the interrupt request enable bit for the peripheral function.

Table 4.1 shows Comparison of Conditions for Interrupt Generation Between the RX and the M16C.

Table 4.1 Comparison of Conditions for Interrupt Generation Between the RX and the M16C

Item	M16C	RX
I flag	When the I flag is set to 1 (enabled), the maskable interrupt request can be accepted.	
Interrupt request flag	When there is an interrupt request from a peripheral function, the interrupt request flag becomes 1 (interrupt requested).	
Interrupt priority level	Selected by setting bits ILVL2 to ILVL0. Selected by setting the IPR[3:0] bits.	
Interrupt request enable	_	Specified by setting the IER register.
Interrupt enable for peripheral functions	_	Interrupt enable or disable can be specified in each peripheral function.

For more information, refer to sections Interrupt Controller (ICU), CPU, and sections for other peripheral functions used in the User's Manual: Hardware.

4.1.2 I/O ports

In the RX Family, the MPC must be configured in order to assign I/O signals of peripheral functions to pins.

Before controlling the input and output pins in the RX Family, the following two items must be set.

- In the MPC.PFS register, select the peripheral functions that are assigned to the appropriate pins.
- In the PMR register for I/O ports, select the function for the pin to be used as a general I/O port or I/O port for a peripheral function.

Table 4.2 shows Comparison of I/O Settings for Peripheral Function Pins Between the RX and the M16C.

Table 4.2 Comparison of I/O Settings for Peripheral Function Pins Between the RX and the M16C

Function	M16C (in the case of the M16C/65C)	RX (in the case of the RX660/RX261)
Select the pin	These are not available in the M16C. *1	A pin to which a peripheral I/O is
function	When a mode of a peripheral function is	assigned can be selected from multiple
	selected, an appropriate pin is assigned	pins. The PFS register is used to select
	as an I/O pin for the peripheral function.	a peripheral function I/O that is assigned
		to a pin used.
Switch between		With the PMR register, the pin function
general I/O port and		can be selected as a general I/O port or
peripheral function		a peripheral function.

Note: 1. Register for similar functions are available in the M32C Series and R32C Series.

For more information, refer to the Multi-Function Pin Controller (MPC) and I/O port sections in the User's Manual: Hardware.

4.1.3 Module Stop Function

RX has the ability to stop each peripheral module individually.

By placing unused peripheral modules in the module stop state, power consumption can be reduced.

After a reset is released, all modules (with a few exceptions) are in the module stop state.

Registers for modules in the module stop state cannot be read or write accessed.

For more information, refer to the Low Power Consumption section in the User's Manual: Hardware.

4.2 I/O Register Macros

Macro definitions listed in Table 4.3 can be found in the RX I/O register definitions (iodefine.h).

The readability of programs can be achieved with these macro definitions.

Table 4.3 shows Macro Usage Examples.

Table 4.3 Macro Usage Examples

Macro	Usage Example
IR("module name", "bit name")	IR(MTU0, TGIA0) = 0;
	The IR bit corresponding to MTU0.TGIA0 is cleared to 0 (no interrupt
	request is generated).
DTCE("module name", "bit name")	DTCE (MTU0, TGIA0) = 1;
	The DTCE bit corresponding to MTU0.TGIA0 is set to 1 (DTC
	activation is enabled).
IEN("module name", "bit name")	IEN(MTU0, TGIA0) = 1 ;
	The IEN bit corresponding to MTU0.TGIA0 is set to 1 (interrupt
	enabled).
IPR("module name", "bit name")	IPR(MTU0, TGIA0) = 0x02 ;
	The IPR bit corresponding to MTU0.TGIA0 is set to 2 (interrupt priority
	level 2).
MSTP("module name")	MSTP(MTU) = 0;
	The MTU0 Module Stop bit is set to 0 (module stop state is canceled).
VECT("module name", "bit name")	#pragma interrupt (Excep_MTU0_TGIA0 (vect = VECT(MTU0 ,
	TGIA0))
	The interrupt function is declared for the corresponding MTU0.TGIA0
	register.

4.3 Intrinsic Functions

The RX Family has intrinsic functions for setting control registers and special instructions. When using intrinsic functions, include machine.h.

Table 4.4 shows Examples of Differences in the Settings of Control Registers and Descriptions of Special Instructions Between the RX and the M16C.

Table 4.4 Examples of Differences in the Settings of Control Registers and Descriptions of Special Instructions Between the RX and the M16C

Item	Description	Description	
	M16C	RX	
Set the I flag to 1	asm("fset i");	setpsw_i (); *1	
Set the I flag to 0	asm("fclr i");	clrpsw_i (); *1	
Expanded into the WAIT instruction	asm("wait");	wait(); *1	
Expanded into the NOP instruction	asm("nop");	nop(); *1	

Note: 1. The machine.h file must be included.

5. Reference Documents

User's Manual: Hardware

RX260/RX261 Group User's Manual: Hardware (R01UH1045EJ)

RX660 Group User's Manual: Hardware (R01UH0037EJ) M16C/65C Group User's Manual: Hardware (R01UH0093EJ)

If you are using a product that does not belong to the RX261, RX660, or M16C/65C group, refer to the

applicable user's manual for hardware.

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

RX Family CC-RX Compiler User's Manual (R20UT3248)

M16C Series, R8C Family C Compiler Package (M3T-NC30WA)

The latest versions can be downloaded from the Renesas Electronics website.

REVISION HISTORY

		Description	
Rev.	Date	Page	Summary
1.00	May.03.14	_	First edition issued
2.00	Jun.12.23	_	The product model of the target device for the RX MCU was changed: From RX210 to RX231/RX660
3.00	March.25.25	_	The product model of the target device for the RX MCU was changed: From RX231 to RX261

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not quaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.