LENESANS User Guide

Renesas Synergy™ Platform r11an0188eu0130

. . .) Rev. 1.3
S3 Series MCU Diagnostic Software User Guide Sep 27, 2018
Introduction

IEC 61508 is an international standard governing a range of electrical, electromechanical and electronic safety related
systems. It defines the requirements needed to ensure that systems are designed, implemented, operated and maintained
at the required Safety Integrity Level (SIL). Four SIL levels have been defined to indicate the risks involved in any
particular system, with SIL4 being the highest risk level.

At the heart of the majority of safety related systems nowadays is a sophisticated and often highly integrated
Microcontroller (MCU). An integral part of meeting the requirements of IEC61508 is the ability to verify the correct
operation of critical areas of the MCU.

The Renesas Diagnostics Software is designed for use with the Synergy S3 Microcontroller Family. Tests are provided
for coverage of the following critical areas of the MCU’s operation: The Central Processing Unit (CPU), the Embedded
Flash ROM memory, the Embedded RAM memory, the main clock structure (Main clock oscillator, PLL, MUX
generating ICLK), and VVcc power supply.

The code was developed using the functional safety version 8.23.1.17132 of the IAR Embedded Workbench for ARM,
which is certified by the TUV SUD certification body, and in accordance with IEC61508:2010 for use in safety related
applications up to SIL3 level. This is also the systematic capability for the Renesas Diagnostics Software described in
this document.

Please note that in the code some pragmas have been added in the shape of comments (e.g. “/*LDRA INSPECTED 90
S Basic type declaration used. */””) which have been used to mark code lines flagged to potentially violate a specific
MISRA rule but judged as safe. See Annex C for details about the pragmas inserted.

Target Device
Synergy S3 Series MCU

Contents
1. Common TerMINOIOGYccoiiiiiiiiiiiii 5
IR R ol {0 1Y/ 0 F P SUPPPPPRTTN 5
2. COMPIIEN ENVIFONMMIENT ...ttt 5
P R O Y/ o T (10T o] (=T o g 1=T0] = L1 o] o [P PRSP PR TSR 5
2.2 JTAR ENVIrONMENT SELHNQGS ...uuuuiiiiiiiiiiiiiiiiiiii s 5
3. CPU SOMWAIE TEST...uuuuttttittiiiiiiiiiittietieeeebebe e 6
I R =T A @ o =Tt 1)Y= PSRRI 6
3.2 SOFIWAIE SEIUCTUIEeeeiieiie ettt et e oottt e e e e oo e bbb ettt e e e e e o e abebe e e e e e e e e s e nbnbeeeeeaeeeeannabneeeaaaaeas 6
3.2.1 API and CPU TeSt ENVIFONMENT.....ccciiiiiiiiiiiiiie ettt ettt e e e ettt e e e e e s e bebe e e e e e e e e s anbnbbeeeeaaaeas 8
3.3 Software INtegration RUIESuiiiiiiii et e e ettt e e e e e s e beb b e e e e e e e e e s nbbbreeeaaeaeas 9
I 25 R O To (=3 01 (=T o = LT PR PR PSR 9
I 0 O] o o1 L= V= Vg g 1T o £ PSP PUPRPRPTPRRN 11
I 0 T U LT Vo I 0 o] o To 11T L OSSPSR 11
3.4 Define Directives for Software COoNfIQUIationueiiiiiiiiiiiii e 11
3.5 Software Package DESCHPLIONciiii ittt e et e e e e e e s s aab b e e e e e e e e s s annbbeeeaaeaeas 11
3.5.1 Identification and Contents Of PACKAGEccuiiiiiiiiiiiiiie et 11
3.5.2 DesSCription Of DESIGN FlES......uuiiiiiiiei i s e e e e e e s e s ee e e e e e s e st e e e e e e s annntanneeaeeen 12
ri11an0188eu0130 Rev. 1.3 Page 1 of 53

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

G T T LT 1H] oL U L= T T 13
3.7 Requirements for Safety Relevant APPIICALIONSc.uviiiiiiiiei i 15
3.8 Diagnostic Fault Coverage and WatCh DOg USAJE........cccoiuuiiiiiiiiieeiiiiee ettt 15
A, RAM SOOI TSt it iiiiiee e 16
o =2 A @ o] [=Tod 1)Y= PO PO TOPPRPPPI 16
4.2 APl and RAM TeSt ENVIFONMENTuuiiiiiieiiiiiiiiiit ettt e e e ettt e e e e e e s st e e e e e e e e s snbbeeeeeaaesesanneneees 16
R T =L A 1 £ (=T o | PP PP RP PP PPPP 17
4.4 Software INtegration RUIESccuiiiiiiii e e e e e e e e e e s st e e e e e s s s aareaaeereeeessanneneeees 19
T @ o To [T [o1 (Yo - o o SRRSO 19
N U Y- Vo [3 @101 oo 110 SRRSO 21
4.5 Define Directives for Software ConfIQUIAtioNcooiiuiiiiiiiiiie e 22
4.6 Software Package DESCIIPIONuiiiiiiiiie ittt sttt e st e e s ssbe e e s snbn e e e s snneeens 22
4.6.1 Identification and CoNteNtS Of PACKAGEuuiiiiiiiie ittt 22
T =T] o [I 1= o o I 1 = 23
4.7 RESOUICES USAQE ..uuuiiiiiiiiiiiiiie e e ettt e e e s e et et b s s s e e et e e e te b s e e e e e e eee bt e s e e et e e e te bt e e e e e e eesban e e e e e e eeeenban s 23
4.8 Requirements for Safety Relevant APPlICatIONScccoooeiiiiiiece e 24
T O 11 S0 17T I 24
Bl T ESE ODJECHVES .. .uuuutiiiiiiitiiiiiiii e s 24
LT TS] (= 1 =T 0 Y PSSP 24
5.2.1 Checksum Generation using the TAR TINKEEcooiiiiiiii e 24
5.2.2 MCU CRC PEIIPRNEIAL ...ttt et e et e e e s bt e e e s bbe e e e abbeeeeaae 24
5.3 TOP LeVel SOMWAIE SIUCTUIEeeiiiiiiiee ittt ettt e e et e e e e bt ee e s bbe e e e sbbeeeeaae 25
B5.3.1 ROM TS APIS. ...ttt ettt h btttk et e sttt e sb bt e eh bt e ek bt e sabe e e be e e abne e e beeennneeaa 25
5.3.2 Incremental Mode CalCUIALIONuuiiiiiiiiee et e e e e e s e e e 25
5.4 Software INtegration RUIESuuuiuiiiii s 26
o R o To (=R 191 (=T o = LT TP PUPPPTPPPRRN 26
5.4.2 Test Flow and Test RESUILS ChECK..........uuuiiiiiiiii et e e e e e e e e e as 26
B5.4.3 USAQGE CONUILIONSeviiiiiiiiiiie ittt e ettt e et e e e sttt e e e oaba e e e e aabbe e e e abbeeeesbbeeeeabbeeeeaaes 28
5.5 Checksum Generation USING IAR TOOIS.........uuuuuuiiiiii s 28
5.5.1 Example Checksum Generation With JAR TOOISuuuuuiiii s 29
5.6 Software Package DESCHPLIONciiiiiiiiiiiiiie ettt ettt e et e e e e e e s s aaab e et e e e e e s annbbeeeaaaeeas 30
5.6.1 Identification and Contents Of PACKAJE........ccoiuiiiiiiiiiiiiiiie e 30
5.6.2 Description Of DESIGN FlES........uuiiiiiiiiii ittt et e e et e e et e e e abaeeeeane 30
5.7 RESOUIMCES USAJEuuuuuiririniniiiniiiiieii s 30
5.8 Requirements for Safety Relevant APPlICAtIONSeeiiiiiiiiiiiiiieie e 31
6. CAC CONfIQUrAtioN SOMWEIEuuuitiiiiiiiiiiiiiiiiiiiiiie bbb bebbasaeeseesnnnes 31
L R =T A @ o =Tt 1)Y= O PUPRPRTPRRN 31
6.2 TOSE SEIALEQY ..etutuuutuuttutititititeitett e s 32
6.3 CAC Configuration SOIWEAIE AP ...t e et e e e e e e s s enb e eeaaeaeas 32
ri1an0188eu00130 Rev. 1.3 Page 2 of 53

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

6.4 Software INtegration RUIESoeiiii i e e e e s e e e e e e s e s er e e e e e s sasntanneeeeeen 33
L o R o To (=R 41 =T o | £= 11T o O PO PP PP PUPPPPPPPPPTN 33
6.4.2 USAQGE CONAILIONSutieeeiiiiiiie ettt ettt e e ettt e e st et e e e sab e e e e e sa b et e e e aabb e e e e abbe e e e abbeeeeabneeeeaans 33
6.5 Define Directives for Software CONfIQUIALIONocuiiiiiiiiie e 35
6.6 Software Package DESCHPLIONuiiiiiiiiiiiieiiie s s et e e e e s s s e e e e e s s s e e e e e e s s aanraeeeeeeeessnnntanneeaeeeas 35
6.6.1 Identification and CoNteNtS Of PACKAGE.......uuiiiiiiiiiiiiiiii et s e e e e e s s rnnraeeeaae e 35
6.6.2 DeSCription Of DESIGN FlES......uuuiiiiie et e e e e e e s s s e e e e e e s e e e e e e e e e e s snnnraneeaeeeen 35
6.7 RESOUICES USAJEeiieiiiiieiiiitire it e e sttt e e e s e sttt e e e 4 e s ettt e e e 1 e s b b e e et e e e e e s s e bbb e e et e e e e et annrreeeeeeeeas 35
6.8 Requirements for Safety Relevant APPIICALIONScuuiiiiiiiiiei i 36
7. IWDT Management SOfWAIE..........ccuuiiiiiii e e e e e e e e eaa e 36
T 1 TESEODJECUVESeeieiiiiiie ettt ettt e e sttt e e st bt e e e aa b et e e e e bbe e e e abb e e e e abbeeeeabreeeeaae 36
A =T RS = L=l PP PP PPPPPPPRP 36
7.3 IWDT Management SOFIWAIE APISoooi ittt ettt e e e nbb e e e sbreee e e 36
7.4 Software INtegration RUIESuuuiuiiii s 37
5t R o T L= 1) (=0 = o) o 37
52 O 17 To T TN O o) o 110) 1 37
7.5 Define Directives for Software CONfIQUIALIONooouiiiiiiiiie e 39
7.6 Software Package DESCHPLIONcciiiiiieii ittt ettt et bt e e st b e e e s bb e e e e aabbeeeesabbeeeeae 39
7.6.1 Identification and Contents Of PACKAJE........c.oiuiiiiiiiiii ittt 39
7.6.2 DesCription Of DESIGN FIlES......uuuiiiiiiiiiiiii s 39
O B =10 10 ol 2SR U ET= Vo [S PTPPT 40
7.8 Requirements for Safety Relevant APPlICAtIONSuuuueii s 40
8. LVD Configuration SOfIWEAIEcoooiiiiiiiii i e e e e e e e e 40
8.1 TSt ODJECHIVES .. uuuuuuiiiiiiitiiiiiit s 40
T TS] (= 1 =0 Y SRR 40
8.3 LVD Configuration SOWAIE APISoiiiiiiiii ittt ettt e e e bbeee e s nbbe e e e abbeeeeees 41
8.4 Software INtegration RUIESuiiiiiiiiee ettt et e e e bt e e e s bbe e e e abbeeeeaaes 41
S R o To (=R 191 (=T o = LT RO PUPPPTPPPRPN 41
8.4.2 USAQE CONUITIONS ...uuuiitiiiiiiiiiiiiiiiiii s 41
8.5 Define Directives for Software ConfigUIationu s 41
8.6 Software Package DESCHPLIONiiii ittt ettt e et e e e e e e e s abb e et e e e e e e s annbbeeeaaaaeas 41
8.6.1 Identification and Contents Of PACKAJE........ccoiuiiiiiiiiiiii e 41
8.6.2 Description Of DESIGN FlES........ueiiiiiiiiii ettt e e st e e e bbe e e e sbbeeeeane 42
8.7 RESOUICES USAQEueiteiiieieei ittt e e e e ettt e e e s et ettt e e e e e s b e ettt e e o4 e e b b e e et e e e e e s e e s bbb e et e e e e e s s nnbnneeaeeneas 42
8.8 Requirements for Safety Relevant APPlICAtIONSeiiiiiiiiiiiiiieie e 42
9. AppendiXx A — RAM TeSt AlQOMThMSuuuiiiiiiiiiiiiiiiiiiiiiiiiii bbb aeeeeenaeee 42
LS 0 A et 1= o 1o [= T o o T SRR 43
VT Y I L PSP OU R UPPTSUPPTOUPTRPRO 43
9.3 WOrd-0riented MEMOIY TEST......uuuiiiiiieii ittt e ettt et e e e e e st b e et e e e e e s s aaabb e et e e e e e e aanbnbbeeeaaaaeas 43
ri1an0188eu00130 Rev. 1.3 Page 3 of 53

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

10. Appendix B — CPU TSt EXAMPIEcooiiieeeie et e e e 45
A o] o =T o o [Gl o = To [4 T= TSl =] 0 [0 1 SO 46
DOCUMENE REFEIENCES ... 53
ViYL= 2T L CSTE= T Lo BT 0T o] o L] o (USSP 54
LAY] o] T 151 (o] Y2 PSR 1
ri1an0188eu00130 Rev. 1.3 Page 4 of 53

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

1. Common Terminology

This section defines some common terms and acronyms used throughout the document and provides references to other
relevant Renesas documentation.

1.1 Acronyms
Table 1.1 Terminology and acronyms

Acronym Description

CRC Cyclic Redundancy Check
LUT Look Up Table

TS Test Segment

TS_ID Test Segment Identifier
WD Watch Dog

2. Compiler Environment

The Diagnostic Software code was developed using the functional safety version 8.23.1.17132 IAR Embedded
Workbench for ARM, which is certified by the TUV SUD certification body, for use in safety related applications up to
level SIL3.

2.1 C Type Implementation

Integer C variables are assumed to be 32-bit implemented. Please, make sure that int type has to be represented in 32-bit
format on the target environment.

2.2 IAR Environment Settings
The IAR environment should be set up as specified in Table 2.1.

Table 2.1 IAR project options

ID Category Sub-category Setting description Comment
1 General Target e Device := Renesas R7TFS3A77C (S3A7)
Options Renesas R7FS3A678 (S3A6)
Renesas R7TFS3A37A (S3A3)
Renesas R7FS3A17C (S3A1)
e Floating-point, Size of type ‘double’ := 32bits
e Subnormal numbers := Treat as zero
e Int, Size of type ‘int‘ := 32bits
. Data model := Far
2 General Library e Library := Normal DLIB
Options Configuration
3 General Stack/Heap . Privileged mode stack size := 0x1000 Consider this setting as typical. The
Options stack size has to be greater than the
one specified in the Resources
Usage section.
4 C/C++ Languagel . Language :=C
Compiler . C dialect := C99
. Language conformance := Standard with IAR
extensions
5 C/C++ Language2 . Floating-point semantics := Strict conformance
Compiler
6 C/C++ Code e Align functions := 1 no alignment
Compiler
7 C/C++ Optimizations e Level :=None
Compiler
8 Assembler Language . User symbols are case sensitive
13 Linker Library e Automatic runtime library selection
14 Linker Others Sub- For RAM test specific testing see Section 4
category . . .
For ROM test specific testing See section 5.
15 Build For RAM test specific testing see Section 4
ri1an0188eu00130 Rev. 1.3 Page 5 of 53

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

‘ ‘ Actions ‘ For ROM test specific testing See section 5 ‘ |

3. CPU Software Test

3.1 Test Objectives

The objective of the CPU Software Test is to verify the correct functionality of the CPU by adopting a mainly
instruction based diagnosis, with the aim to detect permanent hardware failures of the CPU Core.

All instructions, with the only exceptions being the BKPT, SEV, WFE, WFI and DMB instructions, are used in the
CPU core testing scheme.

Please see Document Reference [1] for the complete list of instructions. However, please note the primary aim is not to
test individual instructions but to detect a hardware failure of the CPU core.

3.2 Software Structure

The software structure provides for two different levels of functions calls
a. The first level is the user interface function named coreTest.
b. The second lower level functions are named testSegment that are called by coreTest.

The testSegment functions execute the actual diagnostic of the core, whilst the coreTest allows the user to select and run
of one or more of the testSegment functions in sequence and to collect the diagnostic results.

Up to 20 testSegment functions are available; from testSegment0 to testSegmentl19. Table 3.1 below provides an
overview of the testSegment functions.

Two types of testSegment functions are defined.
e testSegment of type “Fixed”:
o operand data necessary to stimulate the core and run these functions is embedded in the code.
e testSegment of type “LUT”:
o these functions can be called with different operand data taken from a Look Up Table.

Table 3.1 Test Segment Overview

TS_ID Function Name Objective of the Test Test Segment Type

TS00 testSegment00 Testing of Jump instructions (using control flow) Fixed

TS01 testSegment01 Logical instructions as AND, EOR, NOT, BIC Fixed

TS02 testSegment02 Bit-level manipulation and test instructions as REVERSE, Fixed
TEQ

TS03 testSegment03 Floating point multiply instructions LUT

TS04 testSegment04 Floating point addition/subtractions instructions plus LUT
additional floating points conversion instructions as VCVT
and VCVTB

TS05 testSegment05 Floating point division instructions plus additional floating LUT
point instruction as VABS, VNEG and VCVT

TS06 testSegment06 Saturating instructions plus additional floating points Fixed
conversion instructions as VCVT

TS07 testSegment07 CPU Control Registers Fixed

TS08 testSegment08 Integer multiply instructions using LUT data with MULS. LUT
(32bit results)

TS09 testSegment09 Divide instructions LUT

TS10 testSegment10 Load and store using GPR only Fixed

TS11 testSegment11 Floating point normalize and denormalized tests Fixed

TS12 testSegment12 Load and store using floating point data registers plus Fixed

floating point read port 0 and 1 tests

TS13 testSegment13 Integer multiply using LUT data with UMUL and SMUL LUT
instruction. (64bit result)

TS14 testSegment14 FPU control register plus FPU extension registers and VSUB | Fixed
and conversion instruction

ri1an0188eu00130 Rev. 1.3 Page 6 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

TS_ID Function Name Obijective of the Test Test Segment Type
TS15 testSegment15 Shift and rotate instructions Fixed
TS16 testSegment16 Integer addition and subtract instructions LUT
TS17 testSegment17 Bit field instructions plus internal core register tests Fixed
TS18 testSegment18 Packing and unpacking instructions Fixed
TS19 testSegment19 Floating point square root plus internal core register tests. LUT

Table 3.2 reports the association of the execution progress versus the testSegment to be executed and the related data set
for LUT testSegment.

The execution order of the Test Segments (TSs) follows the order defined in Table 3.2 and the coreTestInit function is
used to initialize the sequence.

The concept is to allow the user to select how many steps shall be performed by the coreTest function, so that the user is
able to control the execution progress of the CPU core test. In this way, in case the user has specific execution time
constraints, he can decide how many steps execute in order to fulfil the execution time constraints

Table 3.2 Execution steps association w.r.t. testSegment

Execution progress Test Segment Dataset (if applicable)
0 testSegment00 NA

1 testSegment01 NA

2 testSegment02 NA

3 testSegment03 Float32_MUL_set0
4 testSegment04 Float32_ADD_set0
5 testSegment05 Float32_DIV_set0

6 testSegment06 NA

7 testSegment07 NA

8 testSegment08 Int32_MUL_set0

9 testSegment09 Int32_DIV_set0

10 testSegment10 NA

11 testSegment11 NA

12 testSegment12 NA

13 testSegment13 Int32_UMUL_set0
14 testSegment14 NA

15 testSegment15 NA

16 testSegment16 Int32_ADD_set0

17 testSegment17 NA

18 testSegment18 NA

19 testSegment19 Float32_SQRT_set0
20 testSegment08 Int32_MUL_setl

21 testSegment08 Int32_MUL_set2

22 testSegment09 Int32_DIV_setl

23 testSegment09 Int32_DIV_set2

24 testSegment16 Int32_ADD_setl

25 testSegment16 Int32_ADD_set2

26 testSegment03 Int32_MUL_set0

27 testSegment03 Int32_MUL_setl
r11an0188eu00130 Rev. 1.3 Page 7 of 53

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

28 testSegment03 Int32_MUL_set2
29 testSegment04 Int32_ADD_set0
30 testSegment04 Int32_ADD_setl
31 testSegment04 Int32_ADD_set2

3.21 APl and CPU Test Environment
All the testSegment functions are called through a main interface function named coreTest.

The coreTest function signature is defined as follows:
void coreTest(uint8_t steps, const uint8_t forceFail, uint32_t *result);
Table 4 describes in more detail the input and output of each function.

Please note by using the forceFail input it is possible to force the function to fail that is to return an error value. This
type of software fault injection feature allows for testing of higher level fault handling mechanisms, specified at the
application level.

Table 3.3 coreTest Interface

Table | Parameter C type Name Description
ID type
1 Input unsigned int 8 bit | steps Specify how many execution progresses have to be executed. Note that

each execution of a LUT TS with a specific dataset count for 1 step (see
Table 3.2 for details about association of testSegment to execution
progress). Valid range of steps parameter is: 0 < steps <
TOT_TESTSEGMENTS, where TOT_TESTSEGMENTS is the maximum
number of execution progresses that could be performed in one run.

2 Input const unsigned int | forceFail When set to 0 forces the function to fail generating a failure signature that
8 bit is the inverted value of the correct expected signature.

All other values do not have any effect on the function behavior.

3 Output *unsigned int 32 | result Global pass/fail result of all executed TSs:
bit
- 0 If at least one executed testSegment failed

- 1 If all executed testSegments passed.

- 2 If steps input parameter is out-of-range (see Table 3.2 for
details about the valid range).

In order to correctly use coreTest function two other functions are given: “coreTestInit” function and “getcoreTestStatus”
function.

The first one is the initialization function, written in C programming language, whose signature is defined as follows.
void coreTestInit(void)

The function has no input or output parameters, since it just initializes the different data structures needed for the
correct execution of coreTest; in particular it resets the pointer to the next execution progress to be executed. As a
consequence, after coreTestlnit is called, the next TS to be executed will be the testSegment00 (see Table 3.2).

The second function offers to the user the possibility to get the next execution progress which will be executed in the
next call of coreTest function.

The function is written in C programming language and its signature is defined as follows.
uint8_t getcoreTestStatus(void)

Table 3.4 describes in more details the output of the function.

Table 3.4 getcoreTestStatus Interface

Table | Parameter C type Name Description
ID type
ri1an0188eu00130 Rev. 1.3 Page 8 of 53

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Table | Parameter C type Name Description

ID type

1 Output *unsigned int 8 n.a. It indicates the next execution step that will be executed.
bit

test Segments functions are implemented with ARM Cortex-M4 assembly code with a C code interface.

Note that the need for an HW low level control makes the use of assembler necessary, for instance when calling specific
assembly instructions with specific parameters.

Since it is possible to have two types of testSegments (Fixed or LUT) then we have the two following types of function
signatures:

a. “Fixed”
o void testSegmenty (const uint8_t forceFail, uint32_t *result) with y=00, 01, 02, 06, 07, 10, 11, 12,
14,15, 17, 18.
b. “LUT”
e void testSegmentx (const uint8_t forceFail, uint32_t *result, const uint32_t *StartDataSet, const
uint32_t GoldSign) with x= 03, 04, 05, 08, 09, 13, 16, 19.

Table 3.5 describes in more details input and output of the functions.

Table 3.5 testSegment Interface

Table ID testSegment type | Parameter type C type Name Description

When set to 0 force the TS to fail
generating a failure signature that is
a NOT-inverted value of the proper
signature.

1 LUT or Fixed input const unsigned int 8 bit forceFail

All other values do not have any
effect on the function behavior.

2 LUT

input

const unsigned int 32 bit
*

StartDataSet

Start address of the Look Up Table
for the selected dataSet.

3 LUT or Fixed

output

const unsigned int 32 bit

GoldSign

Result of signature value.

4 LUT or Fixed

output

unsigned int 32 bit *

result

Pass/fail result of TS execution

0 If TS failed
1 If TS passed.

3.3 Software Integration Rules
This section provides guidelines for how to integrate the CPU test software within the user’s own project.

3.3.1 Code Integration

3.3.1.1 Environment for coreTest call
Follow the instructions below to call the coreTest function.

1. Include coreTest.h
2. Create a variable to hold the result of the test as uint32_t result. Then the address of the variable is passed to
coreTest function (see the example below).
3. Define input variables to pass to coreTest
a. uint8 tsteps
b. uint8_t forceFail
C. uint32_t *result

Example

r11an0188eu00130 Rev. 1.3
Sep 27, 2018

Page 9 of 53
RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

#include "coreTest.h"

uint8_t steps=1;
uint32_t result=0;
uint8_t forceFail = 11;

void main
coreTestlInit(); //init index

/* Launch the core test function in order to perform Diagnosis SW*/
coreTest(steps, forceFail, &result);
if(result 1= 1) {

errorHandler(); /*Fault handling*/

After coreTest function returns, fault detection can be done by checking the result output value as shown in the example
above.

A complete example of the coreTest function, which calls all testSegment is provided in

r11an0188eu00130 Rev. 1.3

Page 10 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Appendix B — CPU Test Example.

3.3.2 Compiler Warnings

Please note that in Test Segment 17 two warnings are raised by the compiler respectively at rows 278 and 286. They are
related to the utilization of the stack pointer as source register. The warnings come from the fact that the SP cannot
assume an a-priori well known value, since it strongly depends on the application. Therefore its utilization could lead to
unpredictable behaviors.

Anyway this is not the case of this SW, because only the offset of the SP between two pre-defined assembly instruction
blocks is used (accumulated in the signature). Since the offset value is fixed (this part of code is critical, then exceptions
are disabled in it), the SW behavior is completely predictable.

3.3.3 Usage Conditions
Table 3.6 summarises usage conditions.

Table 3.6 Conditions of use

ID | Topic Constraint Description
1 | Interrupt Avoid corruption of function When interrupting the Diagnostic SW the context of all General Purpose Registers, system
context. register, including APSR and FPSCR, have to be saved and restored once returning from

interrupt handling.

See Document Reference [1] for details of the CPU register definitions.

2 | CPU mode Correct execution of the SW. Launch Diagnostic SW in privileged mode
3 | Stack Correct execution of the SW. Use Main Stack Pointer as stack pointer for the function call.
4 | Diagnostic If a subset of coreTest steps are executed from the CPU Test the overall diagnostic

coverage Execute all the coreTest steps coverage of the CPU Test will be lower than the value achieved with the full CPU Test.

during application SW execution.

5 | Interrupt Avoid corruption of function The following condition applies if there is an Interrupt Service Routine making use of

floating point instructions.
context.

Inside the application code isolate in a critical section with interrupt disabled the part of the
code making use of floating point instructions.

3.4 Define Directives for Software Configuration
No specific define directives are needed.

3.5 Software Package Description

This section details how to identify the supplied software package and also provides a description in tabular format for
each design file type.

3.5.1 Identification and Contents of Package
The Software package version is identified as follows:

e Revision 1.0.2
e File list

Table 3.7 CPU Software Test Package and related MD5 signatures.

Nome File MDS5 Signature

closeTest.asm 50c2d658a53chd2cc01dd65¢96060b81

coreTest.c d73b1c130c736f21b365fe82bf4a49cc

coreTesth 354338ad61d60344ad4226582b46454¢

globvarh Oeec1261c9ba66h25214ebd3b5729b13

nitTest asm 8605280427395364b9d071b3991abad7

ri1an0188eu00130 Rev. 1.3 Page 11 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

testSegment00.asm

ffa26ea3e0695a1737c81167ab95¢c140

testSegment00.h

e7a098b362787264230173ab43907ab6

testSegment01.asm

828822cd7a811b3701ff7722053aale6

testSegment01.h

4e0d0de4d40176a2747de0217ad0d2d8

testSegment02.asm

718e51540781736c882ca29ee847a785

testSegment02.h

65884aca0f87bfbla23f0f2a29ba886

testSegment03.asm

64fadf7d06a0acf9c030e19d734c0bd9

testSegment03.h

7e406791d29fe3289887ed60af5fc1f8

testSegment04.asm

4e1e681a7d77b6c080b125de333e3f7c

testSegment04.h

8825h9d1ca2bd456¢34d8523899f73db

testSegment05.asm

354a456ce9e98ca5cd5b52¢280b17745

testSegment05.h

8a97222eec7fae0a2594514df8d4ad2b

testSegment06.asm

€172¢5123942a5c3c7a4db0741676afa

testSegment06.h

36efb828af9h33ef3ef360efd717b510

testSegment07.asm

df3a697e716e3dbdb82a5f4a40d924a4

testSegment07.h

688ech7e16f64129b35f7696alad7c5d

testSegment08.asm

1a2fh67f94d0bc36¢ce923c064e7cc86a

testSegment08.h

fa8e2c6904513¢c6067d58011292bb297

testSegment09.asm

2187925108eeea813h93076dc4d64d4a

testSegment09.h

2b0056h7fd5917187ec99846d3503f9c

testSegment10.asm

fb8018e88175106feab08d2d198d4ca8

testSegment10.h

€61233702c83f65h3346a766513053b1

testSegmentll.asm

6c314801590bad445abbe0503b3485al

testSegmentl11.h

22c072c0375dd92a7dd002c4af1378f0

testSegment12.asm

313194fda5acf288922b9d54c6f21702

testSegment12.h

9d01d6dla7c2ebadbc6abl4c169f4315

testSegment13.asm

40ee680270a3a486bbab1810b8723aea

testSegment13.h

76c207764c711ee676ec70efa063bffd

testSegment14.asm

36a61640cflcad6a46a842b9c63a42eb

testSegment14.h

663e49cef53ab71bcc5036f50e3b3587

testSegment15.asm

1dfe95ffbcfo1bfafc0941a668160836

testSegment15.h

8a96899cecdbd157494d23105988da29

testSegment16.asm

0a9753495c4ae7f9724f024012ba8604

testSegment16.h

27a814c49a3d3de951eebf3b44d0646e

testSegmentl7.asm

5644dc9a9f6ald1640ae4eb3a063c4dd

testSegment17.h

7fd2d0b9359f06ee69f910082943846f

testSegment18.asm

fldac4d00c4172439b02ad3d4aebb88b

testSegment18.h

30bfeb664848f071c8afe6bedc7495a6

testSegment19.asm

dd61f120b9e697b22f1ca723e710615d

testSegment19.h

8d88h5d41646c51b072e29cfad723923

testSegmentMgm.c

9024072e409bb0f57ce385324550c77f

testSegmentMgm.h

0f5334d44e33cabd734a609410c3da25

3.5.2 Description of Design Files

Table 3.8 Design files

r11an0188eu00130 Rev. 1.3

Sep 27, 2018

RENESAS

S3 Series MCU Diagnostic Software User Guide

Page 12 of 53

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Table ID File Name Description
1 globVar.h This file contains the compile option definitions, through which it is possible to select which
TSs have to be included in the SW. This file also contains the definition of the LUT, signature
vector sizes and other constants.
3 coreTest.h This file contains the AP of the diagnostic SW. In particular contains the coreTest function
declaration to be called by the application SW.
4 coreTest.c This file contains the definition of coreTest function.
testSegmentMgm.h This file contains the AP of the TS execution progress management. In particular contains the
testSegmentMgm function declaration to be called by the coreTest function.
testSegmentMgm.c This file contains the definition of testSegmentMgm function.
5 testSegmentxx.h with This file contains the declaration of the testSegment functions.
xx=0,..,19.
7 testSegmentxx.asm with This file contains the assembler definition of the testSegment function.
xx=0,..,19.
8 initTest.asm This file contains the TS signature accumulation register initialization.
9 closTest.asm This file finalize the TS and state whether it is passed or not.
Table 3.9 - Design files
3.6 Resources Usage

Table 3.10 provides an overview of the memory resources used by the code.

Take care that resources related to the main file are not part of the coreTest function and then not included.

Maximum stack usage is 0 bytes.

Note that no dynamic memory allocation is implemented.

Table 3.10 Memory resources

Module ROM RAM
Code (bytes) Data (bytes) rw data (bytes)
coreTest.o 960 6704 0
testSegmentMgm.o 36 0 1
initTest.o 278 0 0
closeTest.o 28 0 0
testSegment00.0 1044 9 0
testSegment01.0 1962 0 0
testSegment02.0 844 0 0
testSegment03.0 2120 0 0
testSegment04.0 1838 0 0
testSegment05.0 1656 0 0
testSegment06.0 1908 0 0
testSegment07.0 604 0 0
testSegment08.0 2398 0 0
testSegment09.0 188 0 0
testSegment10.0 1340 0 0
testSegmentl1l.o 2136 0 0
ri1an0188eu00130 Rev. 1.3 Page 13 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Module ROM RAM
Code (bytes) Data (bytes) rw data (bytes)
testSegment12.0 6320 0 0
testSegment13.0 976 0 0
testSegmentl14.o0 2056 0 0
testSegment15.0 1642 0 0
testSegment16.0 3908 0 0
testSegmentl17.0 9254 0 0
testSegment18.0 1266 0 0
testSegment19.0 1578 0 0
TOTAL (bytes) 46340 6713 1

Table 3.11 details the execution time for each testSegment for all valid values of dataSet. Interrupt disable time is also
reported when applicable.

Table 3.11 Execution time

testSegment dataSet Execution Execution Maximum Maximum
time [clock | time@48Mhz | interrupt Disable | interrupt Disable
cycles] clock [us] Time [clock Time @48Mhz
cycles] clock [us]
testSegment00 679 14,15 0 0
testSegment01 801 16,69 0 0
testSegment02 499 10,40 0 0
testSegment03 | Float32_MUL_set0 3129 65,19 47 0,98
testSegment03 Int32_MUL_set0 3087 64,31 47 0,98
testSegment03 Int32_MUL_setl 3143 65,48 47 0,98
testSegment03 Int32_MUL_set2 2987 62,23 47 0,98
testSegment04 | Float32_ADD_set0 4833 100,69 48 1
testSegment04 Int32_ADD_set0 2225 46,35 48 1
testSegment04 Int32_ADD_setl 2223 46,31 48 1
testSegment04 Int32_ADD_set2 2231 46,48 48 1
testSegment05 Float32_DIV_set0 2717 56,60 62 1,29
testSegment06 757 15,77 35 0,73
testSegment07 479 9,98 23 0,48
testSegment08 Int32_MUL_set0 1757 36,60 0 0
testSegment08 Int32_MUL_setl 1799 37,48 0 0
testSegment08 Int32_MUL_set2 1739 36,23 0 0
testSegment09 Int32_DIV_set0 1443 30,06 0 0
ri1an0188eu00130 Rev. 1.3 Page 14 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

testSegment dataSet Execution Execution Maximum Maximum
time [clock | time@48Mhz | interrupt Disable | interrupt Disable
cycles] clock [us] Time [clock Time @48Mhz
cycles] clock [us]

testSegment09 Int32_DIV_setl 1147 23,90 0 0
testSegment09 Int32_DIV_set2 1289 26,85 0 0
testSegment10 813 16,94 0 0
testSegment11 1097 22,85 50 1,04
testSegment12 4433 92,35 56 1,165
testSegment13 Int32_UMUL_set0 1517 31,60 0 0
testSegment14 996 20,75 43 0
testSegment15 727 15,15 0 0
testSegment16 Int32_ADD_set0 2353 49,02 0 0
testSegment16 Int32_ADD_setl 2375 49,48 0 0
testSegment16 Int32_ADD_set2 2123 44,23 0 0
testSegment17 3059 63,73 27 0,56
testSegment18 621 12,94 0 0
testSegment19 | Float32_SQRT _set0 3609 75,19 46 0,955

Total 62687 1305,98 722 15,05

3.7 Requirements for Safety Relevant Applications

Table 3.12 lists requirements for usage in safety relevant applications.

Table 3.12 Safety relevant requirements

ID Topic Sub-topic Description

SW_1 | SW integration Function return On the return of coreTest evaluate the correctness of the execution by checking the value of
“result”.

SW_2 | SW integration Function call When calling the coreTest function more than once take care to use different variables to
store the outcome of the function, specifically the test result. In case the same variable is
used consider to initialize it to zero before executing subsequent runs of the function.

SW_3 | SW integration Function environment | Before calling coreTest initialize to 0 the variable used by the function to return the result
value.

PR_1 | Project User expertise User has to have good expertise on embedded programming on the target MCU HW

management Synergy S3 series. Expertise on assembly programming and C level/assembly interface is
requested.
3.8 Diagnostic Fault Coverage and Watch Dog Usage

The Diagnostic coverage provided by the CPU Software Test considers that all testSegments of type Fixed are launched
together with all testSegments of type LUT, each one called with all the supported values of the parameter dataSet, as
detailed in Table 3.2.

In addition the coverage considers the contribution of a Watchdog. Indeed the use of the CPU Software Test has to be
integrated with the use of a Watchdog and Table 3.13 outlines recommendations for its usage.

r11an0188eu00130 Rev. 1.3

Sep 27, 2018

RENESAS

Page 15 of 53

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

The necessity of integrating a Watchdog is related to the fact that some hardware faults will make the control flow of
the software not to be followed and, in such conditions, the presence of a Watchdog will effectively detect such
deviations.

Note also that the CPU Software Test embeds some control flow mechanisms which are required to trigger the
activation of such faults. However, as stated above, the fault detection has to be completed by the presence of a
Watchdog.

Table 3.13 Recommendations on Watchdog usage

1D Topic Description Comment

1 WD refresh | Consider a control flow monitoring for the WD refresh function: the
refresh is done only if the control flow mechanism (e.g. proper value of
global variable) is not respected.

2 WD refresh | Consider a strategy as the following: activate the WD refresh only if all
the main tasks having a predictable and periodic timing schedule of the
application SW are called in the proper order.

4. RAM Software Test

4.1 Test Objectives
The objective of the RAM Software Test is to verify the embedded RAM memory of the MCU.

The main features of the software tests are as follows.

a. Whole memory check including stack(s).
o Memory size programmable at compile time
b. Block-wise implementation of the test.
o Size of the block programmable at compile time
c. Supports of two test algorithms
o Extended March C-
o WALPAT.
d. Word-wise implementation of the test algorithms where the elementary cell under test is considered to be made

up by 32 bits width.
e. Support for destructive and non-destructive memory testing.

Please note that information regarding the test algorithms is provided in Appendix B — CPU Test Example.

4.2 APl and RAM Test Environment

A RAM block test is called through a main interface function named testRAM. The testRAM function signature is
defined as follows:

void testRAM(unsigned int index, unsigned int selectAlgorithm, unsigned int destructive)
Table 4.1 below describes in more detail the function interface.
Table 4.1 testRAM Interface

ri1an0188eu00130 Rev. 1.3 Page 16 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Table ID Parameter type C type Name Description

1 Input unsigned int index Specify RAM block under test: from 0 to
numberOfBUT-1.

2 Input unsigned int selectAlgorithm Specify algorithm to be run on the RAM block
under test:

- “0” runs Extended March C-
algorithm

- “1” runs WALPAT

- Other values will produce an error
return value (i.e. resultTestRaml =
resultTestRam2 = 0)

3 Input unsigned int destructive Specify the kind of test:

- “0” means non-destructive test is
run, RAM block content is saved in
the buffer;

- “1” means destructive test is run.
Once a memory block is tested with a
destructive procedure its content is initialized
with all zeros.

As specified in Table 4.1 index indicates the specific RAM block to be tested using the algorithm specified by
selectAlgorithm. Each RAM block has a size in terms of double words defined by BUTSize.

Valid values of index range between 0 and numberOfBUT-1.

numberOfBUT indicates the number of block in which the RAM is divided and it is derived by dividing the memory
size by the size of the block specified by the BUTSize parameter.

Calling the function with an invalid value of the block index, that is greater than (numberOfBUT-1), will result in the
return variables being set to 0 indicating a failed test.

4.3 Test Strategy

The scope of the RAM Software Test is to provide coverage across the whole embedded RAM, adopting a block-wise
strategy.

The memory size and the block size are parameters the user can select based on the device and its application needs.

o MUTSize

o This is the size of the memory under test expressed in number of double word.
e BUTSIze

o This is the size of the block under test in terms of number of double word
e numberOfBUT

o This is the number of blocks to which the memory is divided.

ri1an0188eu00130 Rev. 1.3 Page 17 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Block number 0 (BUTSize*4) bytes

Block number 1

resultTestRam1
Block number x //

(MUTSIize*4) bytes

Block number y \\

resultTestRam?2

Block number
(numberOfBUT-1)

Figure 4.1 RAM block division

Figure 4.1 shows how the memory is divided into a number of blocks equal to numberOfBUT.
Each block is then identified with an index ranging from 0 to (numberOfBUT-1).
Each block can be tested in a destructive or non-destructive manner.

In order to support non-destructive testing, one block of the RAM is used as a buffer to store the content of the block
under test.

The buffer can be tested as well and this can be done with a destructive strategy before testing the other blocks.

A memory reserved area has to be defined for the buffer in order to preserve the integrity of the application software
after running the test.

This can be obtained as follows

a. Define the start address of the buffer
i. This can be done by assigning the label addressBuffer inside the file testRAM.inc; see Section 4.3 for
an example of usage.
b. Define IAR linker commands to reserve the memory buffer locations
i. Example of linker commands are provided in see section 4.4

The code stores the result of the test in two unused RAM locations accessible from the application software by using
two variables: resultTestRam1 and resultTestRam?2 (see Figure 4.1).

The result variables are located at fixed absolute addresses and they have to be placed into two different blocks.

ri1an0188eu00130 Rev. 1.3 Page 18 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

This strategy has been selected to avoid the issue of not detecting a faulty block due to the fact that the result itself is
stored in the same faulty block.

It is worth noting that these two variables are initialized each time the RAM test function is called and the user shall
check their values only after having called RAM test function.

By allowing two copies of the test result to be stored into two different blocks, fault detection is still possible because at
least one variable won’t be stored inside a faulty block.

The location of the result variables can be fixed inside testRAM.h.
The application level user then has to check the values of the result variable after the test is completed.
Coding of the test result as follows

i resultTestRam1= resultTestRam2=1 implies the test is passed.
ii. any other combinations means the test failed.

An example of a test result check, in addition to definition of addresses for the result variables is provided in Section 4.3
4.4 Software Integration Rules
This section provides guidelines for how to integrate the RAM Test software within the user’s own project.

4.4.1 Code Integration

4411 Define Memory Size and Block Size
The user has to set the size of the RAM under test and the size of each of the blocks.

This information has to be provided by the directives present in testRAM.h.
BUTSize can have one of the values illustrated in Table 4.2 below.
Table 4.2 Relation between BUTSize and MUTSize

BUTSize Number of Blocks Index

MUTSize/4 4 0,1,2,3

MUTSize/8 8 0,1,23,4,56,7
MUTSize/16 16 0,1,2,3,4,..,15
MUTSize/32 32 0,1,2,3,4,..,31
MUTSize/64 64 0,1,23,4,..63
MUTSize/MUTSize MUTSize 0,1,2,3,4,.. MUTSize-1

Below is a worked example for a 192Kbyte RAM divided in blocks of 1Kbyte size each.

[Isize of the RAM Memory Under Test: 192KB =192 * 1024 bytes = 196608bytes = 49152double words
#define MUTSize 49152

IIsize of the Block of RAM Under Test of 1KB

#define BUTSize (MUTSIize/192)

4412 Reserve and Place Buffer
In case the user wants to perform non-destructive tests, it is needed a buffer memory area.

A buffer area can be reserved using the AR linker configuration file (.icf file) and defining a variable buffer in the
application code.

Assuming the buffer size has to be 1Kbyte (then specify 1024 bytes in hexadecimal format 0x400) and the starting
address of the buffer block is 0x2002FCQ0, then add the following two instructions:

1. //[RAM_TEST:BufferStorage definition
2. define block BufferStorage with alignment = 1, size = 0x400 { };

ri1an0188eu00130 Rev. 1.3 Page 19 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

3. place at address mem: 0x2002FCO00{ block BufferStorage };

In the file testRAM.inc make sure to align the labels addressBuffer_t and addressBuffer_w to the buffer address, in particular to the
most four significant address bytes and the least four significant address bytes.

addressBuffer w EQU 0xFC00
addressBuffer_t EQU 0x2002

Please note that the RAM buffer shall be stored within the SRAM memory dedicated address range which is specified in the HW
manual[2].

In addition, the user shall define a variable buffer in the application SW as a global variable and use it to force the linker to allocate it.
In particular, considering the above example the user shall insert the following declaration:

volatile unsigned int buffer[BUTSize]@ 0x2002FC00 = {0};

The user, in order to let the compiler allocate the buffer, shall use this variable, using for example the following
instruction:

buffer[0] = 0;

44.1.3 Place Result VVariables

The SW stores the result of the test in two unused RAM locations accessible from the application code by using two
variables (resultTestRam1l and resultTestRam2).

These two variables have to be placed at two absolute addresses of the RAM.

Declaration of these two variables is defined in testRAM.h file.

Considering the case of 192KB RAM divided in blocks of 1KB each, we have for example:
o resultTestRam1l is placed in the last double word location of the block 0;
o resultTestRam?2 is placed in the last double word location of the block 2.

Code in testRAM.c file then has to be as follows:
e unsigned int resultTestRaml @ 0x20000000 = (unsigned int) O;
e unsigned int resultTestRam2 @ 0x20000800 = (unsigned int) O;

4.4.1.4 Word Length
e The chosen RAM algorithm runs using a 32 bit word length.

44.15 Test Flow and Check Test Results

It is recommended to initially run a destructive test on the buffer. Note that the buffer test has the same result if it is run
as destructive or non- destructive; its content are lost.

A recommended flow for the RAM Test is as follows

1. run testRAM function on the buffer block;
2. run testRAM function on the other blocks of the RAM.

Consider the following instructions to effectively use the testRAM function.

1. Include testRAM.h

2. Define input variables for parameters to call testRAM
d. index
e. select Algorithm
f. destructive

3. Call testRAM

4, Check result variables

ri1an0188eu00130 Rev. 1.3 Page 20 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Worked Example:

#include " testRAM.h"

unsigned int index = 7%;
unsigned int selectAlgorithm = 0;
unsigned int destructive = 0;

testRAM(index, selectAlgorithm, destructive);

if(!(resultTestRam1&&resultTestRam?2)){ /*Fault detection*/
errorHandler();
}

After the testRAM function returns, a fault can be detected by checking the output value as shown in the example above.

Note that the output of testRAM is stored in two locations, so if resultTestRam1 and resultTestRam2 are both equal to 1
no faults are detected, otherwise fault handling management should start (calling of errorHandler() function in the
above example).

4.4.2 Usage Conditions
Table 4.3 summarises usage conditions.

! Not algorithm specific value, just used as example.

ri1an0188eu00130 Rev. 1.3 Page 21 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Table 4.3 Conditions of use

ID | Topic Constraint Description
1 Interrupt Avoid corruption of function | When interrupting the RAM Software Test the context of all General Purpose Registers,
context. system register, including PSR and FAULTMASK, have to be saved and restored once
returning from interrupt handling.
See Document Reference [1] for details of the CPU register definitions.
2 CPU mode Correct execution of the SW. | Launch RAM Software Test in Privileged mode.
3 Stack Avoid corruption of the stack. | Test RAM blocks corresponding to stack locations in a non-destructive way.
4 Environment Avoid corruption of variables | In any application code other than the SW test do not overwrite values of
used to check test results. resultTestRam1 and resultTestRam2 variables.
5 Environment Avoid data lost Keep in mind that that data saved by the application inside the buffer will be lost when
calling the RAM test.
6 Configuration Avoid data lost Do not place the result variables (resultTestRam1 and resultTestRam2) in the same
block as the buffer.
7 Configuration Compliance with SW test Minimum number of blocks in which RAM is divided has to be 4.
strategy
8 Configuration Compliance with SW test Range of addresses of the memory under test has to be double word aligned.
strategy
9 Configuration Compliance with SW test For BUTSize respect the following: BUTSize=MUTSize/2* with 1<x<=log,(MUTSize)
strategy
10 | Configuration Compliance with SW test Place resultTestRam1l and resultTestRam2 variables in two different blocks of the
strategy RAM.
11 | Diagnostic Use sufficient block size to Both RAM Tests are giving medium coverage (90%) for permanent faults. This
coverage guarantee diagnostic coverage | coverage value is valid under the condition that for both tests the minimum block size
value chosen for the test is not lower than 512 bytes.
4.5 Define Directives for Software Configuration

Before compiling the code it is necessary to define the size of the RAM under test, the size of the blocks into which the
memory is divided and the word length for the executed RAM test algorithm.

All this information is specified by the directives described in Table 4.4.
Table 4.4 Define directives

Directives

Description

MUTSize

double words.

Indicate the size of the RAM under test. Value associated to it expresses size of the RAM in terms of

This setting has to be in testRAM.h

BUTSize

Indicate the size of the blocks in which the RAM is divided. Value assigned to it has to be of this type:
MUTSize/4; MUTSize/8; MUTSize/16; MUTSize/32; ... ; MUTSize/MUTSize
This value is always in terms of double words.

This setting has to be in testRAM.h

4.6

4.6.1

Software Package Description

This section details how to identify the supplied software package, including its MD5 signature and also provides a
description in tabular format for each design file type.

Identification and Contents of Package
The Software package version is identified as follows:
Revision 1.0.1
o File list

r11an0188eu00130 Rev. 1.3
Sep 27, 2018

Page 22 of 53
RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Table 4.5 RAM Package and related MD5 signatures

Nome File MDS5 Signature

extendedMarchCminus.asm aeh6759009a900302e55015424d3a658

extendedMarchCminus.h eddc772135ebb62c03536ce7649b9b82

testRAM.c fd62c5f03c3980735ebebl 7e618fa0f8
testRAM. f161c9d0def145951ff3ea9a8e6230¢c8
testRAM.inc 393296054a1395d1664639a901ec2d0
walpat.asm 6219b823cdd280d1aae4f85d6che2ch5
walpat.n 7¢3¢9770144a6d0eeba3568fca019c07
4.6.2 Description of Design Files
Table 4.6 Design files
Table File Name Description
ID
1 testRAM.h This file contains the API of the RAM test. In particular contains the testRAM function declaration to be
called by the application SW. Also it contains declaration of the result variables placed at fixed absolute
addresses and define directives
2 testRAM.c This file contains the definition of testRAM function.
3 exteﬂdedMarchCmi This file contains the declaration of the Extended March C- algorithm function.
nus.
4 extendedMarchCmi | This file contains the definition of the Extended March C- algorithm function.
nus.asm
5 walpat.h This file contains the declaration of the WALPAT algorithm function.
6 walpat.asm This file contains the definition of the WALPAT algorithm function.
7 testRAM.inc This file contains the definition of the patterns for the test execution.
4.7 Resources Usage

Table 4.7 provides an overview of the memory resources used by the code.
The Maximum stack usage is Obytes.

Table 4.7 Memory resources

Module ROM RAM (bytes)
Code (bytes) Data (bytes)
extendedMarchCminus.o 468 0 0
testRAM.o 120 0 8
walpat.o 468 0 0
Total (bytes) 1056 0 8

The timing performance details in Table 4.8 below, are referenced to the test of one RAM block with a size of 1Kb.

Table 4.8 Execution time

Algorithm NON-Destructive

Execution time [clock

NON-Destructive
Execution time@48MHz

Destructive

Execution time [clock

Destructive

Execution time@48MHz

cycles] clock [us] cycles] clock [us]
Extended March C- 93476 1947 91176 1899,50
WALPAT 7911754 164828 7909448 164780,17
ri1an0188eu00130 Rev. 1.3 Page 23 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

4.8 Requirements for Safety Relevant Applications
Table 4.9 lists recommendations for usage in safety relevant applications.

Table 4.9 Safety relevant requirements

ID Topic Sub-topic Description

RAM_SW_1 | Test flow Buffer Before testing blocks other than buffer test the buffer with a destructive testing.

Rationale is to avoid corruption of the test result because of a faulty buffer.

RAM_SW_2 | Configuration Number of Consider to divide the memory under test into a minimum number of blocks, possibly equals to
blocks 4.

Rationale is to properly detect address faults mainly: the larger the block more efficient the
address fault detection.

5. ROM Software Test

5.1 Test Objectives

The objective of the ROM Software Test is to verify the embedded ROM memory of the MCU.
The main features of the software tests are as follows.

Whole memory check.

Possibility to test with a block-wise strategy, generating multiple CRC signatures.

Support of three CRC polynomials.

Support of incremental mode calculation: calculation of the CRC signature can be time-wise split.

5.2 Test Strategy

The scope of the ROM Software Test is to verify the embedded ROM using a CRC technique. Error detection is
achieved as follows:

1. Arange of ROM addresses is chosen; this step defines the block under test.

2. A reference checksum value is calculated using the IAR linker and saved inside the memory.

3. During the ROM Software Test execution, the hardware peripheral CRC Calculator (see Document Reference
[2] for the peripheral details) is used to produce an actual checksum value of the ROM under test in order to
check its integrity.

4. The calculated Checksum value is compared with that stored in memory and an error is detected if the two
values do not match.

5. The previous steps are repeated for a different block of memory until the whole ROM area is covered.

5.2.1 Checksum Generation using the IAR linker
Before compiling the ROM Software Test, checksum generation by the 1AR linker has to be enabled.

Furthermore, the following information has to be considered.

1. Place a checksum variable for each ROM addresses range under test

Start and End addresses of the ROM without considering the location in which checksum value is placed
Size and alignment of the checksum variable

Initial value of the checksum variable

The checksum algorithm used (chosen polynomial)

Checksum variable bit order

I

Further details are provided in Section 5.5

5.2.2 MCU CRC Peripheral

The CRC calculator (refer to Document Reference [2] for peripheral details) generates CRC codes for data blocks. It
provides the use of any of the three polynomials listed below.

e 8-bitCRC

ri1an0188eu00130 Rev. 1.3 Page 24 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

1 x3+x3+x+1

e 16-bitCRC
2. XB+xB+x2+1
3. XW+xl2+x5+1

5.3 Top Level Software Structure
Two functions are used to run the CRC calculator module and generate the checksum value

e crcHwSetup enables the CRC HW module and configures the control registers to select the selected CRC
polynomial to be used
e crcComputation calculates checksum on all the bytes of the selected ROM block.

53.1 ROM Test APIs
The function signatures are found below

void crcHwSetup(unsigned int crc)

uintl6_t crcComputation(unsigned int checksumBegin, unsigned int checksumEnd, unsigned int incrMode)

Table 5.1 describes more details of the interface to the functions.
Table 5.1 ROM test APIs

Table ID Function Parameter type C type Name Description
1 crcHwSetup input unsigned int cre Specify the kind of CRC generating
polynomial:

-0”: x8+x%x+1 (8-bit CRC)

=17 xM+x15+x%+1 (16-bit CRC)
=27 x¥+x12+x5+1 (16-hit CRC)
-other values: default is 16-bit CRC

XH+x+x2+1
2 crcComputation input unsigned int checksumBegin Specify ROM block start address.
3 crcComputation input unsigned int checksumEnd Specify ROM block end address.
4 crcComputation input unsigned int incrMode Specify the CRC calculation mode:

-“0”: incremental mode not active

- other values: incremental mode active

5 crcComputation output uint16_t - The return value of the function is the
computed checksum value.

Note that within the crcComputation function

e The CRC signature is initialized to Oxff in case of CRC_8 utilization or Oxffff in case of CRC_16 or
CRC_16_CCITT.

e The return value is the 1’s complement of the calculated checksum.

Note also that the block size of the memory for the CRC calculation is defined by the difference between the end and
the start addresses and it has to be a multiple of the CRC length.

5.3.2 Incremental Mode Calculation

The input parameter incrMode allows the user to split the calculation of the CRC signature for the same ROM block in
the best way depending on the requirements of its application.

The behaviour is summarized in Figure 5.1:

ri1an0188eu00130 Rev. 1.3 Page 25 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

e the ROM block for which the CRC is to be calculated is divided in sub-blocks identified by a given set of
addresses (3 group of addresses in the example);

e then crcComputation is run on each set of addresses;

o the first call of crcComputation is made with no incremental mode while the following calls need to have the
incremental mode active in order to “accumulate” previous partial results;

o after the last function call the total block CRC is returned.

OxfffcO6ef .) -
OxFTbb6er Run crcComputation on the first set of addresses with incrMode=0.
Result after this computation is an intermediate value but it is not yet
OxfffcObab the block CRC.
OxfffcO6ef
OxfabcO6ef } Run crcComputation on the second set of addresses with incrMode=1.
Result after this computation is another intermediate value considering also
Oxfffc0611
ROM < the elaboration on the first set of addresses but it is not yet the block CRC
block OxaafcO6ef
OxfffcO6ef
OxabccO6ef Run crcComputation on the third set of addresses with incrMode=1.
OXFFIc0612 Result after this computation is the Block CRC
0xfffcO6aa
Block CRC

Figure 5.1 Incremental mode calculation

5.4 Software Integration Rules

5.4.1 Code Integration
Follow the instructions below to call the ROM test functions:

1. Include crc.h
2. Define extern variables for each CRC signatures generated by the 1AR linker and placed in ROM.
3. Define variable for input parameter of crcHwSetup:
a. crcType
4. Define variables for input parameter of crcComputation:
a. checksumBegin
b. checksumEnd

c. incrMode
5. Define output variable in order to store the result of the crcComputation.

Refer to the example in Section 5.4.2.1 which explains a case in which two ROM addresses ranges are tested.

5.4.2 Test Flow and Test Results Check
The recommended test flow is as follows:

1. Initialize the peripheral using crcHwSetup.
2. Evaluate the checksum using crcComputation.
3. Compare with expected checksum for error detection

ri1an0188eu00130 Rev. 1.3 Page 26 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

5421 Worked Example

#include “crc.h"
extern const uintlé_t checksum;

unsigned int type = 1;
crcHwSetup(type);

unsigned int checksumStart = 0x00000000;
unsigned int checksumStop = 0x000FFFFB;
unsigned int crclncr = 0;
uintl6_t crcResult;
crcResult = crcComputation(checksumsStart, checksumStop, crclncr);
if(crcResult = checksum){
errorHandler();

}

After crcComputation function returns, a fault can be detected by checking the output value as shown in the example
above: crcResult achieved by the ROM Software Test is compared with __ checksum,that is the reference value
computed by the 1AR linker.

ri1an0188eu00130 Rev. 1.3 Page 27 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

5.4.2.2 Worked Example with Incremental Mode
#include “crc.h"

extern const uintl6_t checksum;

unsigned int type;

unsigned int checksumStart;
unsigned int checksumStop;
uint16_t crcResult;
unsigned int crcincr;

type =1,
crcHwSetup(type);

crciner = 0;

checksumStart = 0x00000000;

checksumStop = 0x0007FFFB; //512KB

crcResult = crcComputation(checksumStart, checksumStop, crcincr);

crciner =1;

checksumStart = 0x00080000;

checksumStop = OX000FFFFB; /1512KB

crcResult = crcComputation(checksumsStart, checksumStop, crclncr);

if(crcResult '= __ checksum){
errorHandler();

}

The above example shows how the CRC for a 1MB block can be calculated with 2 cumulated runs of the
crcComputation function.

Note that the crcResult is compared with the value computed by the IAR linker only after the last call of the
crcComputation function.

The above example also shows the 2 calls of the crcComputation function are sequential, however this is not a
definitive requirement. The calls can be executed in a different order as long as the usage conditions described in
section 5.4.3 are maintained.

5.4.3 Usage Conditions
Table 5.2 summarises usage conditions.

Table 5.2 Conditions of use

ID | Topic Constraint Description
1 | Interrupt Avoid corruption of function When interrupting the ROM Software Test the context of all General Purpose Registers,
context. system register, including PSR and FAULTMASK, have to be saved and restored once

returning from interrupt handling.

See Document Reference 1 for details of the CPU register definitions.

2 | Incremental | Avoid corruption of the calculated | When the incremental mode is used do not change the setting or neither use the HW
mode CRC value. peripheral CRC Calculator until the CRC calculation is completed. This is valid for any kind
of SW (e.g. application SW or any interrupt handlers).

5.5 Checksum Generation Using IAR Tools

The ROM Test requires a reference checksum for each addresses range under test. The reference checksum is necessary
for comparison with that computed by the CRC calculator.

To ensure accurate control of the error detection performance of the code, it may be necessary to generate multiple
checksums.

This section shows how to use the IAR Embedded Workbench for ARM version 8.23.1.17132 to generate the checksum.

ri1an0188eu00130 Rev. 1.3 Page 28 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

The process is outlined in the three steps below.

1. Provide information to the IAR linker as to where to place checksum values. Provide also information about
symbols for the start and end addresses of the ROM blocks under test.

2. Use the IAR graphic interface to perform the checksum calculation.

3. Inthe .icf file, define memory ranges where the checksum values should be placed.

A worked example is provided below, which gives additional clarification for how to use the IAR Tools to generate the
required CRCs.

55.1 Example Checksum Generation with IAR Tools
Assume the ROM Test addresses range is

e (0x00000000- OXO00FFFFB

and a checksum is required to be generated using the polynomial x*+x2+ x5+1 (16-bit CRC-16CCITT)
1. Go to “Project > Options... > Linker > Checksum” and set the following parameters:
a. Select “Fill unused code memory” option
b. File pattern = 0x00
c. Start Address = 0x00000000
d. End address = 0x0O00FFFFB

e. Select "Generate checksum" option

f. Checksum size = 2 bytes

g. Alignment=1

h. Algorithm = CRC polynomial, 0x1021

i. Bitorder=MSB
j. Initial value = OXFFFF

k. Checksum unit size = 8 bit.

2. Inthe .icf file, define memory ranges and locations of the checksums:

define symbol __ICFEDIT _region_ROMuT _start = 0x00000000;
define symbol __ ICFEDIT _region_ROMuT end__ = 0X000FFFFF;

define region CHECKSUM _region = mem:[from __ICFEDIT_region_ ROMuT _start__ to
__ICFEDIT region_ROMuT end__1];
place at end of CHECKSUM _region { ro section .checksum };

ri1an0188eu00130 Rev. 1.3 Page 29 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Options for node "Blinky_DK_53A7" X
Eategory: Factory Settings
General Options
Static Analysis
Runtime Checking

CfC++ Compiler OQutput List #define Diagnostics Checksum | Edra Options il i
Assembler
Output Converter Fill unused code memory
Custom Build Fill pattem: <00
Start address: | 0D End address: | (xDOOFFFFB
inker
Debugger Generate checksum
Simulator Checksum size: |2bytes | Alignment:
Angel
CMSIS DAP Agorithm: CRC polynomia ~ | |(x1021
GDB Server Resutt in full size nitial value
TAR ROM-monitor
Ljet/TTAGjet Complement: | 1%s complement ~ | [xFFFF
J"-i“k-‘fJ'T"aCE Bit order: MSB first | [Use asinput
Easu't::lg‘jaor:'s [Reverse byte order within word
PE micro Checksum unit size: Bbit ~
RDI
ST-LINK
Third-Party Driver
s Carcel

Figure 5.2 IAR Environment Options

For more information about these commands refer to Document Reference 3.

5.6 Software Package Description
This section details how to identify the supplied software package and also provides a description in tabular format for

each design file type.

5.6.1 Identification and Contents of Package
The Software package version is identified as follows:

e Revision 1.0.1
o File list

Table 5.3 ROM Package and related MD5 signatures.

Nome File MD?5 Signature
cre.c d9e82f13ce28208b4d1d2ae25314037d
crc.h al277077fe417c19f3a844eb747d67d5

S3AT7_registers.h

81c2f1f7d053743283aldebb70f5ecc4

5.6.2 Description of Design Files

Table 5.4 Design files

Table ID | File Name Description
1 crc.h .
This file contains the declaration of the two functions for the crc calculator:
e crcHwSetup: It initializes CRC module;
e crcComputation: It runs CRC on the specified ROM block.
2 cre.c This file contains the definition of the two functions declared in the file crc.h.
3 S3A7_registers.h | This file contains the definitions of the needed peripherals registers.

5.7 Resources Usage
Table 5.5 provides an overview of the memory resources used by the code.

r11an0188eu00130 Rev. 1.3

Sep 27, 2018

RENESAS

Page 30 of 53

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Maximum stack usage is 0 bytes.

Table 5.5 Memory resources

Module ROM RAM (bytes)
Code (bytes) Data (bytes)
crc.o 232 0 4
Total (bytes) 232 0 4

Table 5.6 illustrates the execution time for calculating a CRC using the polynomial x*6+x5+x2+1 with a block size of
4Kb.

Table 5.6 Execution time

Function Execution time for a ROM block size of 4Kb Execution time for a
[clock cycles] ROM block of 4Kb
y @48MHz clock [us]

crcComputation 49188 1024,7

5.8 Requirements for Safety Relevant Applications
Table 5.7 lists recommendations for usage in safety relevant applications.

Table 5.7 Safety relevant requirements

ID Topic Sub-topic Description

ROM_SW_1 | CRC type Adopt the following CRC16 polynomial x6+x%+x2+1

ROM_SW_2 | Block length

Use a block size of 4Kbytes

By following the above mentioned recommendations, it is possible to detect all single and double bit corruptions within
one block.

In addition, and regardless of the block size, the use of such a polynomial allows for the detection of an odd number of
single bit error, with the following performance in relation to burst error detection, where a burst of length k
corresponds to the presence of k consecutive corrupted bits:

o all bursts with length equal and less than 16 bits
e 99.997 percent of bursts of 17 bits
e 99.998 percent of bursts with length greater than 18 bits.

6. CAC Configuration Software

6.1 Test Objectives

The objective of the CAC Configuration Software is to configure the CAC. For safety applications this SW shall be
used to:

e Select PCLKB as measurement target clock for the CAC;
e Select Sub-clock oscillator as measurement reference clock for the CAC.

This configuration allows to detect deviations of the Main clock oscillator and PLL due to systematic or random
hardware failures.

The CAC Configuration Software also enable the Synergy S3 Oscillation Stop Detection Circuit functionality. This
circuit, in case the main clock stops, is in charge to switch to the Middle-Speed On-Chip oscillator and generate an NMI
interrupt.

ri1an0188eu00130 Rev. 1.3 Page 31 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

6.2 Test Strategy
The test strategy is to configure the CAC peripheral to monitor PCLKB clock using Sub-clock oscillator.

If the frequency of the monitored clock deviates during runtime from a configured range two types of interrupt can be
generated: frequency error interrupt or an overflow interrupt. The user of this module must enable these two kinds of
interrupt and handle them.

Note also that it is demanded to the user to enable the Sub-clock oscillator through the SOSCCR register (i.e.
SOSCCR.SOSTP = 0b, see User Manual [1]), otherwise the monitoring will not work.

The allowable frequency range is evaluated according to the following equations:

CAULVR (Upper Limit Value) can be computed by rounding down the result from the following equation and
converting it into a hexadecimal value:

PCLKB DC
cr—* (141 — o~
3 CLKTyy (100)
CAULVR = floor CLK.,
CLKR,,y
Equation 1

CALLVR (Lower Limit Value) can be computed by rounding up the result from the following equation and converting
it into a hexadecimal value:

PCLKB (ﬁ)
CLKTpy ~ \100
CLK, ¢
CLKRp,y,

Equation 2

CALLVR = ceil

With parameters having the meaning reported in Table 6.1.
Table 6.1 parameters description for CAULVR, CALLVR

Parameter Description Unit
PCLKB Frequency of the peripheral module clock B MHz
DC Target diagnostic coverage %
CLK(ef Frequency of the reference clock. This is based on the Sub- MHz

clock oscillator frequency (32.768 kHz) considering the
accuracy of the selected external crystal

CLKTow Division as per Measurement Target Clock Frequency -
Division Ration Select (TCSS) register

CLKRpiv Division as per Measurement Reference Clock Frequency -
Division Ration Select (RCDS) register

In addition to the CAC function the Synergy S3 has an Oscillation Stop Detection Circuit. If the main clock stops, the
Middle-Speed On-Chip oscillator will automatically be used instead and an NMI interrupt will be generated. The User
of this module must handle the NMI interrupt and check the NMISR.OSTST bit.

6.3 CAC Configuration Software API
The function signatures are found below

void ClockMonitor_Init(double target_clock_frequency, target _clk div_t target _clock_division,

ri1an0188eu00130 Rev. 1.3 Page 32 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

reference_clk_div_t reference_clock_division, double dc, CLOCK_MONITOR_ERROR_CALL_BACK CallBack);

Table 6.2 describes more details of the interface to the functions.

Table 6.2 CAC Configuration Software APIs

Table Function Paramete | C type Name Description

ID rtype

1 Cl'ockMonltor_ Input double target_clock_freque The target clock frequency in Hz
Init ncy

2 ClockMonitor_ | Input target_clk_div_t target_clock_divisio | The target clock division to be
Init n set.

3 ClockMonitor_ | Input reference_clk_div_t reference_clock_di | The reference clock division to
Init vision be set.

4 ClockMonitor_ | Input double dc The diagnostic coverage in
Init percentage.

5 ClockMonitor_ | Input CLOCK_MONITOR_ER | CallBack Function to be called if the main
Init ROR_CALL_BACK clock deviates from the

allowable range.

In particular, referring to formulas parameters described in Table 6.1, the function parameters are mapped as the

following:

e dc=DC.

6.4

target_clock_frequency = PCLKB;
target_clock_division = CLKTpyy;

reference_clock_division = CLKRpyy;

Software Integration Rules

This section provides guidelines for how to integrate the CAC Configuration Software within the user’s own project.

6.4.1

Code Integration

Follow the instructions below to call the CAC Configuration Software functions:

1. Include clock_monitor.h

2. Define variables for input parameters of ClockMonitor_Init:

target_clock_frequency

reference_clock_division

a.
b. target_clock_division
C.

d. dc

e. CallBack

Refer to the example in Section 6.4.2 which explains how to use the Diagnostic SW.

6.4.2

Usage Conditions

The monitoring of the PCLKB clock is set-up with a single function call to ClockMonitor_lInit.

For example:

r11an0188eu00130 Rev. 1.3
Sep 27, 2018

RENESAS

Page 33 of 53

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

#define TARGET CLOCK FREQUENCY HZ (3000000) // PCLKB: 3MHz (PLL
clock/16)

#define DC (90) // Diagnostic Coverage: 90%

target clk div_t target div = TAR NO DIVISION;
reference clk div t ref div REF DIV 32;

/*Enable Sub-Clock*/

PRCR reg->PRCR = 0xA501;
SOSCCR_reg->SOSCCR _b.SOSTP = O;
PRCR_reg->PRCR = 0xA500;

ClockMonitor Init (TARGET CLOCK FREQUENCY HZ, target div, ref div, DC,
CAC _Error Detected Loop);

The clock monitoring is then performed by hardware and so there is nothing that needs to be done by software during
the periodic tests.

In order to enable interrupt generation by the CAC, then both Interrupt Controller Unit (ICU) and Cortex-M4 Nested
Vectored Interrupt Controller (NVIC) shall be configured in order to handle it.

For configuring the ICU it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal humber
correspondent to the CAC frequency error interrupt (CAC_FERRI = 0x87) and CAC overflow (CAC_OVFI = 0x89). In
particular, it is necessary to configure one IELSR register so that it is linked to the aforementioned CAC events:

IELSRn.IELS = 0x87; // (CAC_FERRI)
IELSRn.IELS

0x89; // (CAC_OVFI)

In addition, in order to enable the Cortex-M4 NVIC to handle the CAC interrupts, the following instructions shall be
set:

NVIC EnableIRQ(CAC_ FREQUENCY ERROR IRQn);

NVIC EnableIRQ(CAC_OVERFLOW IRQn);

Where CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are the IRQ number that shall be defined
by the user?.

If oscillation stop is detected an NMI interrupt is generated. User code must handle this NMI interrupt and check the
NMISR.OSTST flag as shown in this example:

2 See Table 2-16 of “Cortex-M4 Devices: Generic User Guide”, first release, 16 December 2010 for more details about
IRQ numbers.

ri1an0188eu00130 Rev. 1.3 Page 34 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

if (1 == R_ICU->NMISR b.OSTST)
{
Clock Stop Detection();

/*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/
R_ICU->NMICLR b.OSTCLR = 1;
}

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock.

6.5 Define Directives for Software Configuration
No specific directive are present for CAC Configuration Software.

6.6 Software Package Description

This section details how to identify the supplied software package, including its MD5 signature and also provides a
description in tabular format for each design file type.

6.6.1 Identification and Contents of Package
The Software package version is identified as follows:

e Revision 1.0.2
e Filelist

Table 6.3 CAC Configuration Software Package and related MD5 signatures.

Nome File MD?5 Signature

clock_monitor.c f153ca66e616dfa2db8a8e120634f905
clock_monitor.h 430c7cae882468d4910h4921b18d568e
S3AT_registers.h 4954a0eacdc1b4401f7899735db230cc

6.6.2 Description of Design Files
Table 6.4 Design files

Table File Name Description
ID
1 clock_monitor.h | This file contains the declaration of the ClockMonitor_Init function for the monitoring
initialization.
2 clock_monitor.c | This file contains the definition of clock_monitor function.
3 S3A7_registers. | This file contains the definitions of the needed peripherals registers.
h

6.7 Resources Usage
Table 6.5 provides an overview of the memory resources used by the code.

Maximum stack usage is 120 bytes for both the versions.

ri1an0188eu00130 Rev. 1.3 Page 35 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Table 6.5 Memory resources

Module ROM RAM (bytes)
Code (bytes) Data (bytes)
clock_monitor.o 716 16 4
Total (bytes) 716 16 4

Table 6.6 illustrates the execution time.

Table 6.6 Execution time

Function Clock Cycle Count Time measured (us) @ 48MHz

Clock_monitor 2948 61,42

6.8 Requirements for Safety Relevant Applications
Please refer to the Safety Manual [4].

7. IWDT Management Software

7.1 Test Objectives

A watchdog is used to detect abnormal program execution. If a program is not running as expected the watchdog will
not be refreshed by software as it is required to be and will therefore detect an error.

7.2 Test Strategy

The Independent Watchdog Timer (iWDT) module of the Synergy S3 is used for this. It includes a windowing feature
so that the refresh must happen within a specified ‘window’ rather than just before a specified time. It can be configured
to generate an internal reset or a NMI interrupt if an error is detected. All the configurations for iWDT can be done
through OFSO register whose settings are demanded to the user (see Section 7.4.2 for an example of configuration). A
function is provided to be used after a reset to decide if the IWDT has caused the reset.

7.3 IWDT Management Software APIs
The function signatures are found below

void IWDT _Init (void)
void IWDT_Kick (void)
bool IWDT_DidReset (void)

Table 7.1 describes more details of the interface to the functions.
Table 7.1 IWDT Management Software APIs

Table ID | Function Parameter type C type Name Description

1 IWDT_DidReset | output Bool N/A Returns true if the iwDT has
timed out or not been refreshed
correctly. This can be called
after a reset to decide if the
watchdog caused the reset.

ri1an0188eu00130 Rev. 1.3 Page 36 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

7.4 Software Integration Rules

7.4.1 Code Integration
Follow the instructions below to call the IWDT Management Software functions:

1. Include iwdt.h
2. Define a boolean variable for output of IWDT_DidReset.

Refer to the example in Section 7.4.2 which explains how to use the Diagnostic SW.

7.4.2 Usage Conditions

In order to configure the Independent Watchdog it is necessary to set coherently the OFSO register. The following code
can be used to set the value that has to be stored at the OFSO memory allocation (OFS0 address = 0x00000400)

ri1an0188eu00130 Rev. 1.3 Page 37 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

/* IWDT Start Mode Select */

#define IWDTSTRT ENABLED

(0x00000000)

#define IWDTSTRT DISABLED (0x00000001)

/*Time-Out Period selection*/

#define
#define
#define
#define

/*Clock selection.

#define
#define
#define
#define
#define
#define

/*Window
#define
#define
#define
#define

/*Window
#define
#define
#define
#define

/*Action
#define
#define

IWDT TOP 128 (0x00000000)
IWDT TOP 512 (0x00000001)
IWDT TOP 1024 (0x00000002)
IWDT TOP 2048 (0x00000003)
(IWDTCLK/x) */
IWDT CKS DIV 1 (0x00000000) // 0b0000
IWDT CKS DIV 16 (0x00000002) // 0b0010
IWDT CKS DIV 32 (0x00000003) // 0b0011
IWDT CKS DIV 64 (0x00000004) // 0b0100

IWDT CKS DIV 128 (0x0000000F) // Obllll
IWDT CKS DIV 256 (0x00000005) // 0b0101

start Position*/

IWDT_WINDOW_START_ZS
IWDT_WINDOW_START_5O
IWDT_WINDOW_START_75

(0x00000000)
(0x00000001)
(0x00000002)

IWDT WINDOW START NO START (0x00000003)

end Position*/

IWDT WINDOW END 75
IWDT WINDOW END 50
IWDT WINDOW END 25

IWDT WINDOW END NO END

0x00000000
0x00000001
0x00000002

)
)
)
0x00000003)

— e~~~

/*0

when underflow or refresh error */

IWDT ACTION NMI
IWDT ACTION RESET

/*IWDT Stop Control*/
#define IWDTSTPCTL COUNTING CONTINUE (0x00000000)
#define IWDTSTPCTL COUNTING STOP (0x00000001)

#define BITO RESERVED
#define BIT13 RESERVED
#define BIT15 RESERVED

#define OFSO IWDT RESET MASK

/*This define is used to configure the iWDT peripheral*/

(0x00000000)
(0x00000001)

(0x00000001)
(BITO RESERVED << 13)
(BITO RESERVED << 15)

(OxFFFF0000)

/*100%*/

%

*/

#define OFSO_IWDT CFG (BIT15 RESERVED | BIT13 RESERVED | BITO RESERVED |
(IWDT _CKS DIV 1 << 4) |

(IWDTSTRT ENABLED << 1) |

(IWDT WINDOW END NO END << 8)

(IWDT ACTION RESET << 12) |

(IWDT_TOP_ 1024 << 2) |
| (IWDT _WINDOW START NO START << 10)
(IWDTSTPCTL _COUNTING CONTINUE << 14))

The value OFSO_IWDT__CFG shall be stored at the OFSO address at compile time in order to configure the Independent
Watchdog. In particular, the example enables the iWDT setting a time-out period of 1024 clock cycles at IWDTCLK/1
clock frequency and counting also during sleep mode of the microcontroller. The example does not set any start/end of
watchdog window and configure a reset in case of watchdog expiration.

The Independent Watchdog should be initialized as soon as possible following a reset with a call to IWDT _Init:

r11an0188eu00130 Rev. 1.3

Sep 27, 2018

RENESAS

Page 38 of 53

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

/*Setup the Independent WDT.*/
IWDT Init();

After this the watchdog must be refreshed regularly enough so as to stop the watchdog timing out and performing a
reset. Note, if using windowing the refresh must not just be regular enough but also timed to match the specified
window. A watchdog refresh is called by calling this:

/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT Kick();

If the watchdog has been configured to generate an NMI on error detection then the user must handle the resulting
interrupt.

If the watchdog has been configured to perform a reset on error detection then following a reset the code should check if
the IWDT caused the watchdog by calling IWDT_DidReset:

if (TRUE == IWDT DidReset())

{
/*todo: Handle a watchdog reset.*/
while (1) {
/*DO NOTHING*/
}

7.5 Define Directives for Software Configuration
No specific directive are present for IWDT Management Software.

7.6 Software Package Description

This section details how to identify the supplied software package and also provides a description in tabular format for
each design file type.

7.6.1 Identification and Contents of Package
The Software package version is identified as follows:

e Revision 1.0.1
e File list

Table 7.2 - iIWDT Package and related MD5 signatures

Nome File MD?5 Signature

iwdt.c 88269058ed774c81f570571alde1470
iwdt.h 16413964d46e91cc1ddb39c0724d9baa
S3AT_registers.h c14e2chb03e58dabbc2a0af960925265

7.6.2 Description of Design Files

ri1an0188eu00130 Rev. 1.3 Page 39 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Table 7.3 Design files
Table ID | File Name Description

1 iwdt.h This file contains the declaration of the functions:

e IWDT Init: Initialise the independent watchdog timer. After calling this the
IWDT _kick function must then be called at the correct time to prevent a watchdog
error. If configured to produce an interrupt then this will be the Non Maskable
Interrupt (NMI). This must be handled by user code which must check the
NMISR.IWDTST flag;

e |WDT_Kick: Refresh the watchdog count.

e |WDT_DidReset: Returns true if the iWDT has timed out or not been refreshed
correctly. This can be called after a reset to decide if the watchdog caused the reset.

2 iwdt.c This file contains the definition of the two functions declared in the file iwdt.h.

3 S3A7_registers.h | This file contains the definitions of the needed peripherals registers.

7.7 Resources Usage
Table 5.5 provides an overview of the memory resources used by the code.

Maximum stack usage is 0 bytes.

Table 7.4 Memory resources

Module ROM RAM (bytes)
Code (bytes) Data (bytes)
iwdt.o 124 0 0
Total (bytes) 124 0 0

Table 7.5 illustrates the execution time for the specific functions.

Table 7.5 Execution time

Function Clock Cycles Count Time measured (us) @
48MHz
IWDT_Init 26 0,54
IWDT_Kick 19 0,4
IWDT_DidReset 37 0,77

7.8 Requirements for Safety Relevant Applications
Please refer to the Safety Manual [4].

8. LVD Configuration Software

8.1 Test Objectives

The Synergy S3 has a Voltage Detection Circuit. This can be used to detect the power supply voltage (Vcc) falling
below a specified voltage.

8.2 Test Strategy

The supplied sample code demonstrates using Voltage Detection Circuit 1 to generate a NMI interrupt when Vcc drops
below a specified level. The hardware is also capable of generating a reset but this behavior is not supported in the
sample code.

ri1an0188eu00130 Rev. 1.3 Page 40 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

8.3 LVD Configuration Software APIs
The function signatures are found below
void VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL eVoltage)
Table 8.1 describes more details of the interface to the functions.
Table 8.1 LVD Configuration Software APIs

Table | Function Parameter | C type Name Description

ID type

1 VoltageMonitor_Init | input VOLTAGE_MONITOR_LEVEL | eVoltage The specified low voltage level.
See declaration of enumerated
type
VOLTAGE_MONITOR_LEVEL
in voltage.h for details.

8.4 Software Integration Rules

8.4.1 Code Integration
Follow the instructions below to call the LVD Configuration Software functions:

1. Include voltage.h
2. Define variable for input parameter of VoltageMonitor_lInit:
a. eVoltage

Refer to the example in Section 8.4.2 which explains how to use the Diagnostic SW.

8.4.2 Usage Conditions

The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the VoltageMonitor_Init
function. This should be setup as soon as possible following a power on reset.

Please note to set the LVD1SR.DET bit to 0 both before calling VoltageMonitor_init function and in NMI routine, see
Section 8.2.2 of 2 for further details.

Please note to set a voltage threshold eVoltage lower than the VVcc nominal value.
The following example sets up the voltage monitor to generate an NMI if the voltage drops below 2.99V.

VoltageMonitor Init (VOLTAGE MONITOR LEVEL 4 29);
If a low voltage condition is detected an NMI interrupt will be generated that the user must handle:

/*Low Voltage LVD1*/
if (1 == R _ICU->NMISR b.LVD1ST)
{

Voltage Test Failure();

/*Clear LVDIST bit by writing 1 to NMICLR.LVDICLR bit*/
R_ICU->NMICLR b.LVDICLR = 1;
}

8.5 Define Directives for Software Configuration
No specific directive are present for L\VD Configuration Software.

8.6 Software Package Description

This section details how to identify the supplied software package and also provides a description in tabular format for
each design file type.

8.6.1 Identification and Contents of Package

ri1an0188eu00130 Rev. 1.3 Page 41 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

The Software package version is identified as follows:

e Revision 1.0.1
e File list

Table 8.2 LVD Configuration SW Package and related MD5 signatures.

Nome File MDS5 Signature

S3A7_registers.h 782352821a80036€8935af878ca2c53
voltage.c 9e603c82f245436h6c5460776c5d422¢
voltage.h 216b85df72c30033091ace537404555a

8.6.2 Description of Design Files
Table 8.3 Design files

Table ID | File Name Description

1 voltage.h This file contains the declaration of the functions for voltage monitor:

e VoltageMonitor_Init: Initialise and start voltage monitoring. An NMI will be
generated if VVcc falls below the specified voltage.
2 voltage.c This file contains the definition of the two functions declared in the file voltage.h.

3 S3AT7_registers.h | This file contains the definitions of the needed peripherals registers.

8.7 Resources Usage
Table 8.4 provides an overview of the memory resources used by the code.

Maximum stack usage is 0 bytes.

Table 8.4 Memory resources

Module ROM RAM (bytes)
Code (bytes) Data (bytes)
voltage.o 188 0 0
Total (bytes) 188 0 0

Table 8.5 illustrates the execution time for the specific functions.

Table 8.5 Execution time

Function Clock Cycles Count Time measured (us) @
48MHz
VoltageMonitor_Init 25243 635

8.8 Requirements for Safety Relevant Applications
Please refer to the Safety Manual [4].

9. Appendix A - RAM Test Algorithms

The following algorithm descriptions are related to 1bit-word memory, but they can be applied to m-bit memories
(Word-oriented memory test). The extension to m-bit word is discussed in this Appendix.

ri1an0188eu00130 Rev. 1.3 Page 42 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

9.1 Extended March C-
A March Test consists of a finite sequence of elements called March Elements, delimited by a pair of curling brackets

c{ }’.
A March Element is a finite sequence of operations applied to a cell before moving to the next one.

March Elements are delimited by a pair of rounded brackets ‘(). The next cell is defined with respect to the addressing
order, which can be, ascending (1), descending (|) or independent (J) . An operation on a memory cell can be,
write 0 (w0), write 1 (wl), read and verify to have read 0 (r0), read and verify to have read 1 (r1).

Extended March C- is represented in Figure 9.1 adopting the notation described above.
¢ (w0): T (0. wl.r1): T (r1.w0):
U (r0.w1): ¥ (rL.w0):c (r0)}

Figure 9.1 Extended March C- Algorithm

The March C- algorithm detects address faults (AFs), stuck at faults (SAFs), transactional faults (TFs) and coupling
faults (CFs) and in addition the Extended March C- algorithm also detects stuck open faults (SOFs) and data retention
faults (DRF). Its complexity is equal to 11n where n is the number of addressing cells of the memory.

9.2 WALPAT
The WALPAT algorithm follows the process listed below

1. Write O inall cells;
2. Fori=0Oton-1
3. { complement cell[i];
a. Forj=0ton-1,jl=i
b. {read cell[j]; }
read cell[i];
complement cell[i]; }
Write 1 in all cells;
Fori=0to n-1
{ complement cell[i];
a. Forj=0Oton-1,j!'=i
b. {read cell[j]; }
9. read cell[i];
10. complement cell[i]; }

NG~

The algorithm allows for the detection and location of address faults (AFs), stuck-at faults (SAFs), transactional faults
(TFs), coupling faults (CFs) and sense amplifier recovery faults (SARF). Its complexity is equal to 2n2 where n is the
number of addressing cells of the memory.

9.3 Word-oriented Memory Test
m-bit memories can be dealt with by repeating each algorithm for a number of times given by:

[log, m] + 1

For every iteration w1 operation writes a pattern (for instance 00000000) and w0 operation writes the complemented
value with respect to that used for wl (11111111).

Taking into account that the code uses 32bits word access, the algorithm will be repeated 6 times and the following 6
different patterns have to be applied:

00000000000000000000000000000000
00000000000000001111111111111111
00000000111111110000000011111111
00001111000011110000111100001111
00110011001100110011001100110011
01010101010101010101010101010101

ri1an0188eu00130 Rev. 1.3 Page 43 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

ri1an0188eu00130 Rev. 1.3 Page 44 of 53
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

10. Appendix B — CPU Test Example

#include "coreTest.h"

uint8_t steps=1;
uint32_t result=0;
uint8_t forceFail = 11;

void errorHandler(void);
void main(void)

coreTestInit(); //init index
steps=36;
/* Launch the core test function in order to perform Diagnosis SW*/
coreTest(steps, forceFail, &result);
if(result 1= 1) {
errorHandler();

ri1an0188eu00130 Rev. 1.3 Page 45 of 53

Sep 27, 2018 RENESAS

LENESANS User Guide

11. Appendix C — Pragmas report

The following table reports the pragmas added in the source code to disable specific checks when using the LDRA tool.
Related violations have been reviewed in details and judged as not requiring a change to the code.

Table 6 Pragmas report.

Package |File Code Row Code (Pragma) |LDRA Rule |MISRA Rule
Version

18 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.c 1.0.1 used. */ 90S D.4.6

1.0.1 19 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.c used. */ 90S D.4.6

1.0.1 20 /*LDRA_INSPECT
ED 27 D
Variable
should be
declared

RAM testRAM.c static. */ 27D R.8.7,R.8.8

1.0.1 23 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.c used. */ 90S D.4.6

1.0.1 24 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.c used. */ 90S D.4.6

1.01 25 /*LDRA INSPECT
ED 27 D
Variable
should be
declared

RAM testRAM.c static. */ 27D R.8.7,R.8.8

1.01 28 /*LDRA INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.c used. */ 90S D.4.6

1.0.1 29 /*LDRA INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.c used. */ 90S D.4.6

1.0.1 30 /*LDRAﬁINSPECT
ED 90 S Basic
type
declaration

RAM testRAM.c used. */ 90S D.4.6

1.0.1 33 /*LDRAﬁINSPECT
ED 90 S Basic
type
declaration

RAM testRAM.c used. */ 90S D.4.6

R11an0188eu0130 Rev. 1.3 Sep 04, 2018
RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Package

File

Code
Version

Row

Code (Pragma)

LDRA Rule

MISRA Rule

RAM

testRAM.c

1.01

36

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

38

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

40

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

43

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

45

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

47

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

61

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

63

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

70

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.c

1.01

72

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.h

1.01

26

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

RAM

testRAM.h

1.01

28

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

r11an0188eu00130 Rev. 1.3 Sep 04, 2018

RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Package | File Code Row Code (Pragma) |LDRA Rule |MISRA Rule
Version

1.01 31 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.h used. */ 90S D.4.6

1.0.1 32 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.h used. */ 90S D.4.6

1.0.1 33 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

RAM testRAM.h used. */ 90S D.4.6

1.0.1 21 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

ROM crc.c used. */ 90S D.4.6

1.0.1 24 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

ROM crc.c used. */ 90S D.4.6

1.0.1 79 /*LDRA_INSPECT
ED 90 S Basic
type
declaration

ROM crc.c used. */ 90S D.4.6

1.01 80 /*LDRA INSPECT
ED 90 S Basic
type
declaration

ROM crc.c used. */ 90S D.4.6

1.01 81 /*LDRA INSPECT
ED 90 S Basic
type
declaration

ROM crc.c used. */ 90S D.4.6

1.01 85 /*LDRA INSPECT
ED 90 S Basic
type
declaration
ROM crc.c used. */ 90S D.4.6

1.01 90 /*LDRA_INSPECT
ED 90 S Basic
type
declaration
ROM crc.c used. */ 90S D.4.6

1.0.1 111 /*LDRAﬁINSPECT
ED 93 S Value

is not of
appropriate R101, R103,

type. V9.5.0 R.10.4, R.10.5,
ROM crc.c */ 93S R.11.1

1.01 21 /*LDRA INSPECT
ED 90 S Basic
type

ROM crc.h declaration 90S D.4.6

r11an0188eu00130 Rev. 1.3 Sep 04, 2018
RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Code
Version

Package | File

Row

Code (Pragma)

LDRA Rule

MISRA Rule

used. */

1.0.1

ROM crc.h

24

/*LDRA INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.1

ROM crc.h

25

/*LDRA INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.1

ROM crc.h

26

/*LDRA INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

66

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

67

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

81

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

83

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

85

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

88

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

90

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

92

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

clock_monito |1.0.2

CAC r.c

106

/*LDRA_INSPECT
ED 90 S Basic

90S

D.4.6

r11an0188eu00130 Rev. 1.3 Sep 04, 2018

RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Code
Version

Package | File

Row

Code (Pragma)

LDRA Rule

MISRA Rule

type
declaration
used. */

1.0.2

clock_monito
CAC r.c

107

/*LDRA INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

108

/*LDRA INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

109

/*LDRA_INSPECT
ED 93 S Value
is not of
appropriate
type. V9.5.0
*/

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

1.0.2

clock_monito
CAC r.c

110

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

111

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

116

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

117

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

118

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

119

/*LDRA_INSPECT
ED 93 S Value
is not of
appropriate
type. */

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

1.0.2

clock_monito
CAC r.c

122

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

123

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

r11an0188eu00130 Rev. 1.3 Sep 04, 2018

RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Code
Version

Package | File

Row

Code (Pragma)

LDRA Rule

MISRA Rule

1.0.2

clock_monito
CAC r.c

124

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

125

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

128

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

129

/*LDRA_INSPECT
ED 93 S Value
is not of
appropriate
type. V9.5.0
*/

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

1.0.2

clock_monito
CAC r.c

130

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

131

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

137

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

138

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

139

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

140

/*LDRA_INSPECT
ED 93 S Value
is not of
appropriate
type. */

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

1.0.2

clock_monito
CAC r.c

143

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

1.0.2

clock_monito
CAC r.c

144

/*LDRA_INSPECT
ED 90 S Basic
type
declaration

90S

D.4.6

r11an0188eu00130 Rev. 1.3 Sep 04, 2018

RENESAS

Renesas Synergy™ Platform

S3 Series MCU Diagnostic Software User Guide

Package

File

Code
Version

Row

Code (Pragma)

LDRA Rule

MISRA Rule

used. */

CAC

clock_monito
r.c

1.0.2

147

/*LDRA INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

CAC

clock_monito
r.c

1.0.2

148

/*LDRA INSPECT
ED 93 S Value
is not of
appropriate
type. V9.5.0
*/

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

CAC

clock_monito
r.c

1.0.2

149

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

CAC

clock_monito
r.c

1.0.2

150

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

CAC

clock_monito
r.c

1.0.2

176

/*LDRA_INSPECT
ED 93 S Value
is not of
appropriate
type. V9.5.0
*/

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

CAC

clock_monito
r.c

1.0.2

177

/*LDRA_INSPECT
ED 93 S Value
is not of
appropriate
type. */

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

CAC

clock_monito
r.c

1.0.2

179

/*LDRA_INSPECT
ED 93 S Value
is not of
appropriate
type. V9.5.0
*/

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

CAC

clock_monito
r.c

1.0.2

180

/*LDRA_INSPECT
ED 93 S Value
is not of
appropriate
type. */

93S

R.10.1, R.10.3,
R.10.4, R.10.5,
R.11.1

CAC

clock_monito
r.h

1.0.2

59

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

CAC

clock_monito
r.h

1.0.2

60

/*LDRA_INSPECT
ED 90 S Basic
type
declaration
used. */

90S

D.4.6

r11an0188eu00130 Rev. 1.3 Sep 04, 2018

RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Document References

1. Cortex-M4 Devices — Generic User Guide, first release, 16/12/2010.

2. Synergy S3 User’s Manual: Hardware, Rev. 1.30, February 2018 (Document Reference RO1IUMO002EU130).

3. IAR C/C++ Development Guide Compiling and linking for Advanced RISC Machines Ltd’s ARM Cores, Fifteenth
edition, March 2015.

4. Safety Manual, ID=SAF_005_PIA003_S3.

r11an0188eu00130 Rev. 1.3 Sep 04, 2018
RENESAS

Renesas Synergy™ Platform S3 Series MCU Diagnostic Software User Guide

Website and Support
Support: https://synergygallery.renesas.com/support

Technical Contact Details:

e America: https://renesas.zendesk.com/anonymous_requests/new
e Europe: https://www.renesas.com/en-eu/support/contact.html
e Japan: https://www.renesas.com/ja-jp/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.

r11an0188eu00130 Rev. 1.3 Sep 04, 2018
RENESAS

https://synergygallery.renesas.com/support
https://renesas.zendesk.com/anonymous_requests/new
https://www.renesas.com/en-eu/support/contact.html
https://www.renesas.com/ja-jp/support/contact.html

Revision History

Description
Rev. Date Page Summary
01 Dec 14, 2016 All ggsAt7v(e|;igr21;l)Portmg of SW User Guide of S7G2 (PA015) to
0.2 Jan 4, 2017 References Moved References section at the bottom. Updated
References format.
§4.4.1.2 Inserted usage condition to reserve buffer area for RAM non
0.3 Jan 26, 2017 destructive tests.
8.4.2 Added usage condition for LVD SW.
0.4 Feb 9, 2017 All Updated template.
8.4.2 Added usage condition for LVD SW regarding LVD1SR
0.5 Feb 23, 2017 register.
10.4.2 Added consideration about temperature sensor slope.
0.6 Mar 02, 2017 2.1 Updated C type implementation assumption
Updated MD5 signature for the final code version of each SW
0.7 Jun 09, 2017 All baseline.
Updated resource usage for each SW code.
1.0 Jun 14, 2017 All Internal approval
4757 Updated Walpat execution time and memory resources used
1.1 Mar 14, 2018 by the code crc.o
4.4.1 updated integration strategy of RAM test
References Removed revision information from documentation
1.2 Jul'17,2018 3.6,4.7,5.7, Corrected Resources usage
6.7,7.7,8.7
All Updated the functional safety version of the IAR Embedded
Workbench.
- Removed “ADC14 Comparator Software” and TSN
“Management Software” chapters.
1.3 Sep 27, 2018 - Updated latest release and MD5s of
CPU,RAM,ROM,CAC,IWDT and LVD tests.
All Replaced “S3A7” Synergy name with “S3”.

1. Descoiplions of circuits, software and other relsted information in this document sre provided only to illustrate the oper stion of semiconductor products and spplication exsmples. You are fully res ponsble for
the incorper sticn of these circuits, softwsre, and informaticn in the design of your equipment. Renesas Eledronics sssumes ne res pons bility for any losses incured by you o third perties srising from the e
of these circuits, software, or information.

pa

Renesss Electronics has used ressonsble cre in preparing the information included in this document, but Renesas Electronics doss notwarrant that s uch information is emor fee. Renesas Eledronics

=255 umes no liability whats oever for any dameges inarred by you res ulting from emars in or omissions from the information included herein.

3. Renesss Blectronics does not sssume any lisbility for infringement of patents, copyrights, or other intellectusl property rights of third parties by or arising from the s e of Renesas Eledronics products or
technical informaticn des cribed in this document. Mo license, express, implied or ctherwise, i granted hereby under any patents, copyrights or cther intellectusl property rights of Renes s Elect onics or
others.

4. Youshould not slter, modify, copy, or othenwise mis sppropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no respons ibility for any losses inoumred by youor

third parties arising from such alterstion, modification, copy or cthenwise mis appropristion of Renesss Eledronic product.

Renesss Electronics products sre clsssified according fo the following two quslity grades: “Standard™ and "High Quaslity”. The recommended spplicstions for each Renesss Eledronics product depends on

the produd's quslity grade, = indicated below.

"Standard™ Computers; office C test and measurement equipment; audio and vis ual equipment; home electronic appliances | machine tock; perscnal eledronic

o

equipment; and indus trial robots etc

"High Quality™ Trans portation equipment (sutomabiles, trains, ships, =tc.); traffic control systems; anti-dis aster systems; anti-gime systems; andsafety equipment etc.

Renesss Electronics products sre neither intended nor suthorized for use in products o systems that may pose a direct threat to human life or bodily injury {artificial life support devices or systems, surgicsl
implantstions etc), or may cause serious property damages {nucleer reactor control systems, military equipment ete.). You must chedk the quality grade of each Reneses Electronics produd before wsing it
in a particular application. You may not use any Renesas Electronics produd for any application for which it & not intended. Renesss Blectronics shall not be in any way lisble for any damages or losses
incurred by you or third parties arising fromthe use of any Renesas Electronics produd for which the product is not intended by Renesss Elecr onics.

€ Youshould Lsethe Renesas Elechonics products des oibed inthis document within the range s pedified by Renesss Elecironics, espedslly with res pect o the meximum rating, cperating supely voltage
range, movement power voltage range, hest radistion characteristis, installstion and other product charscteristics. Renesas Eledronics s hall have no lisbility for malfunctions or damages arising out of the
wse of Renes ss Electonics products beyend such s pecified ranges .

7. Although Renesas Electronics endeavors to improve the quality and reliability of is produck, semiconductor producks have specific charader istics such as the ccaurrence of failure st a certain rate and
malfunctions under certsin use conditions. Further, Renesas Electronics produds are not subject to radistion resistance design. Plesse be sure to implement s sfety measwres to guard them against the
possibility of physical injury, and injury o demage caused by fire in the event of the failure of a Renesss Elect onics product, such s safety design for hardwere and software including but nat limited 1o
redundancy, fire control and maffunction prevention, appropriste trestrment for aging degradation or any other sppropriste messwes. Becaus e the evalustion of microcomputer software sloneis very difficult,
plesse evaluaie the s afety of the final produck or systems manufactured by you.

8. Please contact 8 Renes as Electronics s sles office for detsils a5 to environmental matters such as the environmentsl compstibility of each Renesas Electronics product. Please use Renesas Eledronis
produds in compliance with all applicable laws and regulations that regulate theindusion or use of controlled substences. including without limitation, the EL) RoHS Directive. Renesas Eledronics assumes
no lisbility for dameges or losses cazurring &5 & res ult of your noncemplisnce with applicatle lews and regulations .

8 Renesss Blectronics products and technology may not be used for or incorporsted into any produds or systems whose manufacture, use, or sale s prohibited under any appliceble domesticor foreign laws or
regulations. “Youshould nct use Renesas Eleck onics products o technology des aibed in this document for any purpose relating to military applications or use by the military, including but not limited to the
development of weapons of mass destruction. When exparting the Renesas Electronics products or technology desoribed inthis docurment, yous hould comply with the applicable export controllaws and
regulstions and follow the procedures required by sudh laws and regulstions .

10. Itis the responsibility of the buyer or distibutor of Renesas Elect onics products, whe distributes, disposes of, or cthenwise places the produd with & third party, to natify such third party in sdvance of the
contents and conditions set forth in this document, Renesss Elecronics sssumes no res pensibility for any losses incured by you or third parties s 8 result of unauthorized use of Renesss Elecr onics
produds.

11. This document may not be reproduced o duplicsted in any form, inwhole or in part, without prior written consent of Reneses Electronics.

12 Please contact 8 Renesas Electronics s ales office if you have any questions regarding the information contsined in this document or Renesas Elecironics products, or if you have any other inguir
{Mote 1) "Renesss Elecronics™ s used in this document means Renesas Eledronics Corporation and also includes its majority-owned s ubs idiaries .
{Mote 2) "Renesss Electronics product(s)” means any product developed or manufadured by or for Renesas Electronics.

RENESAS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http:/Aww.renesas.com/” for the latest and detailed information.

Renes as Electronics America Inc
2801 Scott Boulevard Santa Clara, CA 95050 -2549, US. A
Tel: +1-408-588-6000, Fax: +1-408- 588 6130

Renesas Electronics Canada Limit:
9251 Yonge Street Sune 8309 R|chmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-20

Renes as Elec‘lronlcs Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, UK
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Disseldorf, German
Tel: +49-211-6503-0, Fax: +49-211-6503-132

Renes as Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-T679

Renes as Electronics (Shanghai) Co., Ltd
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renes as Electronics Hong Kong Limited
Unit 1601-1611, 16/F_. Tower 2, Grand Century Place, 193 Prince Edward Road West. Mongkok, Kowloon, Hong Kong
Tel- +852-2265 6688, Fax +852 2886-9022

Renes as Electronics Taiwan Co., Ltd.
13F, No_ 363, Fu Shing North Road, Taipei 10543, Tawan
Tel: +886-2-8175-9600, Fax +886 2-8175-9670

Renes as Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renes as Electronics Malaysia Sdn. Bhd
Unit 1207, Block B, Menara Amcor? ur{: Trade Centre, No. 18, JIn Persiaran Barat. 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax +60-3-7955-9510

Renes as Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax +91-80-67208777

Renes as Electronics Korea Co., Ltd.

12F.. 234 Teheran-ro, Gangnam—Gu Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-556-5141

