ENESAS Application Note

Renesas SynergyT"" Platform R11ANO0OS1EU0107

. . . ; Rev. 1.07
S7 Series MCU Diagnostic Software User Guide Sep 27, 2018
Introduction

IEC 61508 is an international standard governing a range of electrical, electromechanical, and electronic safety related
systems. It defines the requirements needed to ensure that systems are designed, implemented, operated, and maintained
at the required Safety Integrity Level (SIL). Four SIL levels have been defined to indicate the risks involved in any
particular system, with SIL4 being the highest risk level.

At the heart of the majority of safety related systems nowadays is a sophisticated and often highly integrated
Microcontroller (MCU). An integral part of meeting the requirements of IEC61508 is the ability to verify the correct
operation of the critical areas of the MCU.

The Renesas Diagnostics Software is designed for use with the Synergy S7 Microcontroller Family. Tests are provided
for coverage of the following critical areas of MCU operation: the Central Processing Unit (CPU), embedded flash

ROM memory, embedded RAM memory, the main clock structure (main clock oscillator, PLL, MUX generating ICLK),
and Vcc power supply

The code was developed using the functional safety version 8.23.17132 of the IAR Embedded Workbench for ARM,
which is certified by the TUV SUD certification body, and in accordance with IEC61508:2010 for use in safety related
applications up to SIL3 level. This is also the systematic capability for the Renesas Diagnostics Software described in
this document.

Note: In the code, some pragmas have been added in the form of comments, for example, “/*LDRA INSPECTED
90 S Basic type declaration used. */”, which have been used to mark code lines flagged to
potentially violate a specific MISRA rule, but judged as safe. See Appendix C — Pragmas report for details of
the pragmas inserted.

Target Device
Synergy S7 Series MCU

Contents

1. CommON TEIMUNOIOQY ...uieeeiiiiiiiiee et e e e e e e e e e e e e e ettt e e e e e e e e e e e sttt e e e e eaeesssrrennnnns 5
R R ol {0 1Y/ 0 E PSPPI 5
2. Compiler ENVIFONMENToiiiii e e e et e s e e e e e e e ettt e e e e e aeeeesabtaaeaeaeeerannnes 5
2.1 CTYPE IMPIEMENTALIONuuiiiiiiiiiiiiii s 5
2.2 JTAR ENVIrONMENT SELHNQGS ...uuuuiiniiiiieiiiiiiiiieii s 5
3. CPU SOMMWAIE TS ...iiiiiiiiiiiiitie ettt e e e et e e e e e e et r e e e e e e e e s bbnnreeeeeas 6
0 O =T A @] o] [T ox 1)Y= UT TP 6
3.2 SOFIWAIE SEIUCTUIEeeeiieiie ettt ettt ettt e e e e oo e bbbttt e e e e e o e abbbe et e e e e e e e e nbnbbeeeeaeeeeannnbbneeaaaaeas 6
3.2.1 APl and CPU TeSt ENVIFONMENT........uuiiiiiiiiee ittt ettt ettt e e e s snbbe e e s snbbe e e e anbee e e e snneeeesaneees 8
3.3 Software INtegration RUIESiiiiiiiiie ettt e et e e e s bt e e e sbbeeeeabbeeeeanes 10
I 25 R O To (=3 01 (=T o = LT ISP PPPRPPPPRRN 10
TR I O] 4o o1 (=T O AV =V 1 o To LS PUPT RPN 11
IR T B U 7= o T @] o To 11T o < PP RUTT TP PPRP 12
3.4 Define Directives for Software COonfIQUIationueiiiiiiiiiiiii e 12
3.5 Software Package DEeSCHPLONcciiiiiiii ettt ettt e e sttt e e e s rbbeee e snbbeeeesnrbeeeeaan 12
3.5.1 Identification and Contents Of PACKAJE........ccoiuiiiiiiiiiii e 12
R11ANO081EU0107 Rev. 1.07 Page 1 of 51

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

3.5.2 Description Of deSIGN filESuuiiiiiie e ea s 14
3.6 RESOUICES USAQJEeuieiiiiieiiiitite it e ettt e e e s ettt e e e e e s e ettt e e e 1 e s b b e et e e e e e s s s s b b e e et e e e e e s annrreeeaeeee s 15
3.7 Requirements for Safety Relevant APPlCAtiONSeeiiiiiiiiiiiiiee e 17
3.8 Diagnostic Fault Coverage and WatCh DOg USAJE.........ccocuuiiiiiiiiieeiiiiee ettt 17
4. RAM SOfWAIE TSt 17
o =2 A @ o] [=Tod 11V PO OO PPPPPPPI 17
A =L A 1 £ (=T o | OO PP P PP PPPP 18
4.3 APl and RAM TeSt ENVIFONMENTcocuiiiiiiiiiie ettt ne e e e s e nnn e s neeennnees 19
4.4 Software INtegration RUIESccuiiiiiii e e e e e e e e e s s e e e e e e s s anrraae e e e e e e s sannreneeees 20
T @Co To [T T) (=T [= L4 [I PSSRSO 20
o 3= o T @ o g To 11 To] o PO UO PP OPPRTPPP 23
4.5 Define Directives for Software ConfIQUIAtioNccouiuiiiiiiiiiiiii e 23
4.6 Software Package DESCHPLIONuiiiiiiiii ettt e ettt e s ssbe e e e s snbne e e e snnneeens 24
4.6.1 Identification and Contents Of PACKAQE........ccoooiiiiiiie s 24
4.6.2 Description Of deSIgN filES ... ie i ———————————— 24
4.7 RESOUICES USAQE ..uuuiiiiiiiiiiiiiie e et sttt e e et e e ettt s s s e e et e e e te bt e e e e e e e e et a e s e e et ee e te bt e e e e e e eesbaa e e e e e e eeaenban s 25
4.8 Requirements for Safety Relevant APPlICAtIONScoiuiiiiiiiiiieiiiee e 25
T O 11 S0 17T I 25
D1 TESE ODJECHIVES .. .uuuuiiiiiiiiiiiiiiiit s s 25
I T BT - 110 PP P TP PPPPPPPRP 25
5.2.1 Checksum Generation using the TAR TINKEEooiiiiiiiii e 26
5.2.2 MCU CRC PEIIPRNEIAL ...ttt ettt e et e e e st e e e s bbe e e e abbeeeeaae 26
5.3 TOP LeVEl SOftWAIrE SITUCTUIEuuieiiiiiiiiiiii s 26
B5.3.1 ROM TS APIS. ...ttt ettt a e b et ekt e s ettt e e bb e e eh b e e ek et e sabeeabeeenbbeesbeeennneean 26
5.3.2 Incremental Mode CAlCUIALION.uuiiiiiiiiie ettt e e s e e e s e e e 27
5.4 Software INtegration RUIESoiiiiiiie ettt e et e e bb e e e st e e e e abbeeeeaae 28
o R o To [0 (=T | = Vi o] o H RO PUPPPTPPPRRN 28
5.4.2 Testflow and test reSUIt CHECKooi i e e e e e 28
B5.4.3 USAQE CONUITIONS ...uuiiiiiiiiiiiiiiiiiiiiiii s 30
5.5 Checksum Generation USING IAR TOOIS.........uuuuuuiiiiii s 30
5.5.1 Example Checksum Generation With JAR TOOIScoiiiiiiiiiiiiiiie e 30
5.6 Software Package DESCHPLIONcciiiiiiiii ittt sttt et e e e st e e e s bt e e e e anbbeeeesanbeeeeaans 31
5.6.1 Identification and conNtents Of PACKAGEcooiiiiiiiiiiiii et e e 31
6.1.1 Description Of DESIGN FlES........uuiiiiiiiiei ettt e e st e e e st e e e abaeeeeaae 32
6.2 RESOUICES USBJE ...ttt s 32
6.3 Requirements for Safety Relevant APPlICAtIONSueiiiiiiiiiiiiiiieie e 32
7. CAC CONfIQUratioN SOMWEIEuuuitiiiiiiiiiiiiiiitiiiiiebibb bbb eaeebeebasaeeennsnnees 33
% R =TS A @]][Tox 1)Y= PP 33
T.2 TOSE SHALEQY ..ettuuuuuunntinitititieiieet e s 33
R11ANO081EU0107 Rev. 1.07 Page 2 of 51

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

7.3 CAC Configuration SOtWEAIE APcoo ittt e e s e e e e e e e s s e e e e e e e s ssnntanneeeeeen 34
7.4 Software INtegration RUIESii ittt e et e e e st e e e e sbreeeeaaes 34
A R o To (=011 (=T | = Ui o] o N O T PO PUPPPTPPPPPPTN 35
T.4.2 USAQE CONAILIONSetieeeiiiiiiee ettt ettt e e ettt e e et e e e e sab et e e e sab et e e e aabb e e e e aabbeeeeabbeeeeabbeeeeaans 35
7.5 Define Directives for Software Configurationcueeiieeiii i e e re e e 36
7.6 Software Package DESCHPLIONiiiiii it cee e s s s e e e e s s st e e e e e e s s aanbaeereeeeessnnnranneeaeees 36
7.6.1 Identification and ConNteNtS Of PACKAGEuuiiiiiiiiiiiiiiii e e e e e e e e e s e e e e e e 36
7.6.2 Description Of DESIGN FlES........ueiiiiiiiiiie ittt e et e e et e e b e e e aae 36
T.T RESOUICE USAQE ... eiiieiiieiei ittt ettt e e e e e sttt e e e s e s e ettt e e e 1 e s b e e et et e e e s a e s b b e e et e e e e e s s nnbreeeaeeee s 36
7.8 Requirements for Safety Relevant APPIICALIONSc.uviiiiiiiieiiiiiie e 37
8. IWDT ManNagEMENT SOMWEAIEuuuuttiiiiiiiiiiiiiteaiieebebbbee bbb bessnenennnnsnnnes 37
8.1 TSt ODJECHIVESeeieiiiiie ettt e ettt e e st e e e st et e e e ek be e e e e bb e e e e e bbe e e e abreeeeae 37
ST =T BT = 1 =Te PP PP PP PPPPPPPRPN 37
8.3 IWDT Management SOfIWAIE APISuuuiuiiiii s 37
8.4 Software INtegration RUIESuuuuiiiiiii s 37
S 0t R @0 T L= 1 (=T = L4 [0 37
8.4.2 USAQJE CONILIONS ...ttt ettt e ettt e e sttt e e aab bt e e e sa b et e e e sabb et e e abbeeeeabbeeeeabneeeeaans 37
8.5 Define Directives for Software CONfIGQUIALIONoouiiiiiiiiie e 39
8.6 Software Package DESCHPLIONccoiiiiiiii ittt et e e s bb e e e s bbeee e aabbeeeeaanbeeeeaae 39
8.6.1 Identification and Contents Of PACKAJE.........uuuuuuuiuiiiiii s 39
8.6.2 DescCription Of deSIQN fIlESuuuiiiiiiii 40
T Lo 10 | ol 2SR U LT= To [SRR 40
8.8 Requirements for Safety Relevant APPIICALIONScuuiiiiiiiiiii i 40
9. LVD Configuration SOfIWEAIEcooouiiiiiii i e e e e e e e e e e 40
0.1 TESE ODJECHIVES .. uuuuuiiiiiiiiiiiiiit s 40
S T BT = 110 PP PP PPPPPPPRPPN 40
9.3 LVD Configuration SOfIWAIE APISoiiiiiiiiiiitii ettt e e bb e e e s bbe e e e sbbeeeeae 41
9.4 Software INtegration RUIESeiii ittt ettt e e bb e e e st e e e e abbeeeeaae 41
9.4.1 COUE INLEGIALIONuuuuiiiiiiiiiiiitiii e s 41
9.4.2 USAQE CONAILIONSuuuuititiiiiiiiiiiiiitiiii s 41
9.5 Define Directives for Software CONfIQUIatioNueiiiiiiiiiiii e 41
9.6 Software Package DESCHPLIONccoiiiiieii ettt ettt e e sttt e e e sbbeeeeanbbeeeesnnbeeeenans 41
9.6.1 Identification and Contents Of PACKAJE........ccoiuiiiiiiiiiiii e 42
9.6.2 Description Of dESIGN fIlESccoiiiiiiiiiee ettt e e e et eeeaae 42
0.7 RESOUICE USAQE ... uuuuiuiiiiiiiiiiitiiititte e s 42
9.8 Requirements for Safety Relevant APPlICAtIONSueiiiiiiiiiiiiiiieie e 42
10. Requirements for Safety Relevant Applications ... 42
11. Appendix A - RAM Test Algorithms.........oooii 42
I A (=T T (=T 1Y o T o] P PP PP PP PR 43
R11ANO081EU0107 Rev. 1.07 Page 3 of 51

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

LL.2 WV AL P AT ittt oottt e oot e e e et e e e o e R e e et e e e e e e AR R ettt e e e e e e R e E e e et e e e e e e nrrreeeeeeaaanne 43
11.3 WOrd-0riented MEMOIY TEST......uuiiiiiiiiee ittt e st e e e et e e e et bt e e e et bt e e e anbr e e e s anbneeeeanrnas 43
12. Appendix B - CPU TeSt EXAMPIEccoiiiiiiie et e e e e e 44
13. Appendix C — Pragmas MEPONM.........ccoiiiiiiiiiii ettt 44
14. DOCUMENE REFEIENCES ..o 50
ViYL= 2T L CSTE= T Lo BT 0T o] o L] o (U 51
R11ANOO81EUO0107 Rev. 1.07 Page 4 of 51

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

1. Common Terminology

This section defines some common terms and acronyms used throughout the document and provides references to other
relevant Renesas documentation.

1.1 Acronyms
Table 1-1 Terminology and acronyms

Acronym Description

CRC Cyclic Redundancy Check
LUT Look Up Table

TS Test Segment

TS_ID Test Segment Identifier
WD Watch Dog

2. Compiler Environment

The diagnostic software code was developed using the functional safety version 8.23.1.17132 IAR Embedded
Workbench for ARM, certified by the TUV SUD certification body, for use in safety related applications up to level
SIL3.

2.1 C Type Implementation

Integer C variables are assumed to be 32-bit implemented. Please, make sure that int type is represented in 32-bit format
in the target environment.

2.2 IAR Environment Settings

The IAR environment should be set up as specified in Table 2-1.

R11AN0O081EU0107 Rev. 1.07 Page 5 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Table 2-1 IAR project options

Table ID Category Sub-category Setting description Comment
1 General Target e Device := Renesas
options R7FS7G27H

¢ Floating-point, Size of
type ‘double’ := 32bits

e Subnormal numbers :=
Treat as zero

e Int, Size of type ‘int* ;=

32bits
e Data model := Far
2 General Library e Library := Normal DLIB
options configuration
3 General Stack/Heap e Privileged mode stack Consider this
options size := 0x1000 setting to be
typical. The stack
size has to be
greater than the
one specified in the
Resources Usage
section.
4 C/C++ Languagel e Language :=C
Compiler e C dialect := C99
e Language
conformance :=
Standard with IAR
extensions
5 C/C++ Language?2 ¢ Floating-point
Compiler semantics := Strict
conformance
6 C/C++ Code e Align functions := 1 no
Compiler alignment
7 C/C++ Optimizations e Level := None
Compiler
8 Assembler Language e User symbols are case
sensitive
13 Linker Library e Automatic runtime
library selection
14 Linker Others sub- For RAM test specific testing see Section 4
category For ROM test specific testing See section 5.
15 Build actions For RAM test specific testing see section 4

For ROM test specific testing see section 5.

3. CPU Software Test

3.1 Test Objectives

The objective of the CPU software test is to verify the correct functionality of the CPU by adopting a predominantly
instruction based diagnosis, with the aim of detecting permanent hardware failures of the CPU core.

All instructions, with the exceptions of BKPT, SEV, WFE, WFI, and DMB, are used in the CPU core testing scheme.

See reference document [REF.1] for the complete list of instructions. The primary aim is not to test individual
instructions, but to detect a hardware failure of the CPU core.

3.2 Software Structure
The software structure provides two different levels of functions calls:

A. The first level is the user interface function named coreTest.

R11AN0O081EU0107 Rev. 1.07 Page 6 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

B. The second, lower level functions are named testSegment that are called by coreTest.

The testSegment functions execute the actual diagnostic of the core, while the coreTest allows the user to select
and run one or more of the testSegment functions in sequence and to collect the diagnostic results.

Up to 20 testSegment functions are available, from testSegment0 to testSegment19. Table 3-1 provides an
overview of the testSegment functions.

Two types of testSegment functions are defined as follows:

e testSegment oftype “Fixed”:
— Operand data necessary to stimulate the core and run these functions is embedded in the code.
e testSegment of type “LUT™:
— These functions can be called with different operand data taken from a Look Up Table.

Table 3-1 Test segment overview

TS_ID | Function Name Objective of the Test Test Segment Type

TS00 | testSegment00 | Testing of Jump instructions (using control flow) Fixed

TS0l | testSegment01 | Logical instructions as AND, EOR, NOT, BIC Fixed

TS02 | testSegment02 | Bit-level manipulation and test instructions as Fixed
REVERSE, TEQ

TS03 | testSegment03 | Floating point multiply instructions LUT

TS04 | testSegment04 | Floating point addition/subtractions instructions plus | LUT
additional floating points conversion instructions as
VCVT and VCVTB

TS05 | testSegment05 | Floating point division instructions plus additional LUT
floating point instruction as VABS, VNEG and VCVT

TS06 | testSegment06 | Saturating instructions plus additional floating points | Fixed
conversion instructions as VCVT

TSO07 | testSegment07 | CPU Control Registers Fixed

TS08 | testSegment08 | Integer multiply instructions using LUT data with LUT
MULS. (32bit results)

TS09 testSegment09 | Divide instructions LUT

TS10 | testSegmentl10 | Load and store using GPR only Fixed

TS11 | testSegmentll | Floating point normalize and denormalized tests Fixed

TS12 | testSegmentl2 | Load and store using floating point data registers Fixed
plus floating point read port 0 and 1 tests

TS13 | testSegmentl3 | Integer multiply using LUT data with UMUL and LUT
SMUL instruction. (64bit result)

TS14 | testSegmentl4 | FPU control register plus FPU extension registers Fixed
and VSUB and conversion instruction

TS15 | testSegmentl5 | Shift and rotate instructions Fixed

TS16 | testSegmentl6 | Integer addition and subtract instructions LUT

TS17 | testSegmentl7 | Bitfield instructions plus internal core register tests | Fixed

TS18 | testSegmentl18 | Packing and unpacking instructions Fixed

TS19 | testSegmentl9 | Floating point square root plus internal core register | LUT

tests

Table 3-2 reports the association of the execution progress versus the testSegment to be executed, and the related
data set for LUT testSegment.

The execution order of the Test Segments (TSs) follows the order defined in Table 3-2 and the coreTestInit
function is used to initialize the sequence.

R11ANO081EU0107 Rev. 1.07
Sep 27, 2018

RENESAS

Page 7 of 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

The concept is to allow the user to select the number of steps to be performed by the coreTest function, so that the
user can control the execution progress of the CPU core test. If the user has specific execution time constraints, the user
can decide how many steps execute for the execution time constraints to be fulfilled.

Table 3-2 Association of execution steps with respect to testSegment

Execution progress Test Segment Dataset (if applicable)
0 testSegment00 | NA

1 testSegment01 | NA

2 testSegment02 | NA

3 testSegment03 | Float32_MUL_set0
4 testSegment04 | Float32_ADD_set0
5 testSegment05 | Float32_DIV_set0
6 testSegment06 | NA

7 testSegment07 | NA

8 testSegment08 | Int32_MUL_set0

9 testSegment09 | Int32_DIV_set0
10 testSegment10 | NA

11 testSegmentll | NA

12 testSegmentl2 | NA

13 testSegmentl13 | Int32_UMUL_setO
14 testSegmentl14 | NA

15 testSegmentl5 | NA

16 testSegmentl6 | Int32_ADD_set0
17 testSegmentl7 | NA

18 testSegment18 | NA

19 testSegment19 | Float32_SQRT_set0
20 testSegment08 | Int32_MUL_setl
21 testSegment08 | Int32_MUL_set?
22 testSegment09 | Int32_DIV_setl
23 testSegment09 | Int32_DIV_set2
24 testSegmentl6 | Int32_ADD_setl
25 testSegmentl6 | Int32_ADD_set?
26 testSegment03 | Int32_MUL_set0
27 testSegment03 | Int32_MUL_setl
28 testSegment03 | Int32_MUL_set2
29 testSegment04 | Int32_ADD_set0
30 testSegment04 | Int32_ADD_setl
31 testSegment04 | Int32_ADD_set2

3.2.1 APl and CPU Test Environment

All the testSegment functions are called through a main interface function named coreTest.

The coreTest function signature is defined as follows:

void coreTest (uint8 t steps,

const uint8 t forceFail, uint32 t *result);

Table 3-3 describes the input and output of each function in more detail.

R11ANO0O81EU0107 Rev. 1.07

Sep 27, 2018

RENESAS

Page 8 of 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Using the forceFail input makes it possible to force the function to fail, that is, to return an error value. This type of
software fault injection feature allows for testing of higher level fault handling mechanisms, specified at the application
level.

Table 3-3 coreTest interface

Table ID | Parameter type | C type Name Description
1 Input unsigned int 8 steps Specifies how many execution progresses
bit have to be executed.

Each execution of a LUT TS with a specific
dataset counts for 1 step (see Table 3-2 for
details on the association of testSegment
to execution progress). Valid range of steps
parameter is: 0 < steps <

TOT TESTSEGMENTS, where

TOT TESTSEGMENTS is the maximum
number of execution progresses that could
be performed in one run.

2 Input const unsigned | forceFail | When set to O, forces the function to fail,
int 8 bit generating a failure signature that is the
inverted value of the correct expected
signature.

All other values do not have any effect on the
function behaviour.

3 Output *unsigned int result Global pass/fail result of all executed TSs:
32 bit e 0if at least one executed testSegment
failed

o 1 if all executed testSegments passed

e 2if steps input parameter is out-of-range
(see Table 3-2 for the valid range
information).

In order to correctly use coreTest function, two other functions, coreTestInit and getcoreTestStatus are
provided.

The first one is the initialization function, written in C programming language, whose signature is defined as follows:
vold coreTestInit (void)

The function has no input or output parameters, since it just initializes the different data structures needed for the
correct execution of coreTest. In particular, it resets the pointer to the next execution progress to be executed. As a
consequence, after coreTestInit is called, the next TS to be executed will be the testSegment00 (see Table
3-2).

The second function offers to the user the possibility to get the next execution progress, which will be executed in the
next call of coreTest function.

The function is written in C programming language and its signature is defined as follows:
uint8 t getcoreTestStatus(void).
Table 3-4 describes the output of the function in more detail.

Table 3-4 getcoreTestStatus interface

TableID Parameter type Ctype Name Description
1 Output *unsigned int 8 bit N/A Indicates the next execution step to be
executed

testSegments functions are implemented using ARM Cortex-M4 assembly code, with a C code interface.

R11AN0O081EU0107 Rev. 1.07 Page 9 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Note that the need for a hardware low level control makes the use of an assembler necessary, for instance, when calling
specific assembly instructions with specific parameters.

Since it is possible to have two types of testSegments (Fixed or LUT), we have the following two types of function
signatures:

1. Fixed
— void testSegmenty (const uint8 t forceFail, uint32 t *result) with y=00,
o1, 02, 06, 07, 10, 11, 12, 14, 15, 17, 18.
2. LUT
— void testSegmentx (const uint8 t forceFail, uint32 t *result, const
uint32 t *StartDataSet, const uint32 t GoldSign) with x= 03, 04, 05, 08,
09, 13, 16, 19.

Table 3-5 describes input and output of the functions in more detail.

Table 3-5 testSegment interface

Table testSegment Parameter Ctype Name Description

ID type type

1 LUT or Fixed input const unsigned int 8 bit forceFail When setto O, forces
the TS to fail,

generating a failure
signature that is a non-
inverted value of the
proper signature.

All other values do not
have any effect on the
function behavior.

2 LUT input const unsigned int 32 bit* StartbData Start address of the
Set Look Up Table for the

selected dataset

3 LUT or Fixed output const unsigned int 32 bit GoldSign Result of signature
value

4 LUT or Fixed output unsigned int 32 bit * result Pass/fail result of TS
execution
e 0if TS failed

e 1if TS passed.

3.3 Software Integration Rules
This section provides guidelines for how to integrate the CPU test software within the user project.

331 Code Integration
Environment for coreTest call

To call the coreTest function:

1. Include coreTest.h
2. Create a variable to hold the result of the testas uint32_t result. The address of the variable is then passed to
coreTest function (see the following example).
3. Define input variables to pass to coreTest:
A. uint8 t steps.
B. uint8 t forceFail.
C. uint32 t *result.

Example
#include "coreTest.h"

uint8 t steps=1;

R11AN0O081EU0107 Rev. 1.07 Page 10 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

uint32 t result=0;

uint8 t forceFail = 11;

void main

{

coreTestInit(); //init index

/* Launch the core test function in order to perform Diagnosis SW*/
coreTest (steps, forceFail, &result);
if(result != 1) {
errorHandler (); /*Fault handling*/
}

After the coreTest function returns, fault detection can be done by checking the result output value, as shown in the
example above.

A complete example of the coreTest function, which calls all testSegment is provided in Appendix B - CPU
Test Example.

3.3.2 Compiler Warnings

In Test Segment 17, two warnings are raised by the compiler at rows 278 and 286. They are related to the utilization of
the stack pointer as the source register. The warnings come from the fact that the SP cannot assume an apriori well
known value, since it strongly depends on the application. Therefore, its utilization could lead to unpredictable behavior.

However, this is not the case in this software, because, only the offset of the SP between two pre-defined assembly
instruction blocks is used (accumulated in the signature). Since the offset value is fixed (this part of the code is critical,
and exceptions are disabled in it), the software behavior is completely predictable.

R11AN0O081EU0107 Rev. 1.07 Page 11 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

3.3.3

Usage Conditions

The usage conditions are summarized in Table 3-6.

Table 3-6 Usage Conditions

ID Topic Constraint Description
1 Interrupt Avoid corruption of When interrupting the diagnostic software, the context of all
function context general purpose registers, system register, including APSR and
FPSCR, have to be saved and restored after returning from
interrupt handling.
See reference document [REF.1] for the CPU register definitions.
2 CPUmode Correct execution of Launch diagnostic software in privileged mode
the software
3 Stack Correct execution of Use the main stack pointer as stack pointer for the function call

the software

4 Environment

Avoid corruption of
software flow by
corruption of a control
flow variable

Do not write to the testExcp variable

5 Diagnostic Execute all the If a subset of coreTest steps are executed from the CPU test,
coverage coreTest steps the overall diagnostic coverage of the CPU test is lower than the
during application value achieved with the full CPU test
software execution
6 Interrupt Avoid corruption of The following condition applies if there is an Interrupt Service
function context Routine making use of floating point instructions.
Inside the application code, isolate in a critical section with
interrupt disabled, the part of the code making use of floating
point instructions.
3.4 Define Directives for Software Configuration

No specific define directives are needed.

3.5

Software Package Description

This section details how to identify the supplied software package, and also provides a description in a table format for
each design file type.

351

The software package version is:

e Revision 1.0.3
e File list.

Identification and Contents of Package

Table 3-7 CPU Software Test Package and related MD5 signatures

R11ANO0O81EU0107 Rev. 1.07

Sep 27, 2018

Page 12 of 51
RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

File Name

MD5 Signature

closeTest.asm

1ceb60324c1b5653eddf9a0d25ef7732

coreTest.c 7b9bfb92fcflbad47c7ef21881edbcc2

coreTest.h 647410b11f8c049c0a3c70341c75041f
globVar.h 61ebb216e6f98dc08c0fcbf906415ble
initTest.asm d72749c9df087a65ecab81f1339ccOaf

testSegment00.asm

301aa75e0285956f86aa410336dbeb19

testSegment00.h

557784953af6d2b43298babe5e45fccO

testSegment0l.asm

4d67ea08005e8286be2030411cfb3e04

testSegment01.h

bd7f3370e24ff175e433e10d25d1dfld

testSegment02.asm

ff4dda0f01b651ccabb65e47bd4a559a6

testSegment02.h

27dlalefd77delf3a5ecab9ba2fcd943

testSegment03.asm

eebfc066calc3bd8ed6ba2c01e549474

testSegment03.h

b296d52faccbefc77fa21cf3ff8119f8

testSegment04.asm

5699c6d06fee35740b667e06del27bal

testSegment04.h

7b82f6dd015b353bcb8b4e588aa2d32f

testSegment05.asm

57e2b5f11f330cc665ce9e726400aad5

testSegment05.h

e42445714f84d31fb8d4b514e4aab6261

testSegment06.asm

5f9466182f4a9584b287a7034b043b03

testSegment06.h

8ae790aa4e0683cc4cd669f619c4bb16

testSegment07.asm

8452bbb8cb22922495cal3dc4a24b06a

testSegment07.h

c5f204de84871bf84f5e9b89ddf49756

testSegment08.asm

a7e31d2abe88c211b48f012561d1585d

testSegment08.h

92604b9629d916e5f799629064e7a403

testSegment09.asm

ea87df5e3¢11901354ccc608d215e1c8

testSegment09.h

853ee64ad838c6b0113ef765bc0a6834

testSegment10.asm

12580630c8f898575f7f4e7e7aeb0b9c

testSegment10.h

26a3caeda6473948dd4dccf700f7dc48

testSegmentll.asm

c76a0b533e3ec1235106984ada374594

testSegment11.h

76525ecf711e921ablaca21b0bad4a342

testSegmentl12.asm

8be38b28576b57b6db2f82ef7ff815a4

testSegment12.h

114f3bc90f5aefb4f7ae0d49201cele5

testSegmentl13.asm

e2fef8bf9cedbdf5ec40672aaea7df40

testSegment13.h

ebb9f7b5cfb596d6273235f4da271750

testSegmentl4.asm

1c3b02acef9a169bb9e1d79cd934e3d4

testSegment14.h

b0fe14f8fb2b794133c5fc4celd81a39

testSegmentl15.asm

383d4795095c07580ea12¢c10866961ea

testSegment15.h

9c0c62fec8cdc65372f0a45df62e009b

testSegmentl16.asm

0db83e3d411022658d012372c05b5369

testSegment16.h

1cdade74f94167841af65c2a96e1fbff

testSegmentl7.asm

58b2c69f33c4efdaa78c139c03db1861

testSegment17.h

767a83085c8bfafa2ccfb65f7f448e48

testSegment18.asm

bd9f2f611659ab925a1e6f06a89bb0f5

testSegment18.h

7cdd0ed12725d2cf54623468629a54f0

testSegment19.asm

df47f17dfedbda9dfbf20c61830f1e89

R11ANO0O81EU0107 Rev. 1.07

Sep 27, 2018

Page 13 of 51
RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

testSegment19.h €0370a39dc267c37ccfla0e58546d63c
testSegmentMgm.c 5e2072e0901c82b6fe5c0e856f1267ec
testSegmentMgm.h b26103e3c01e14593793d28e93dele2d

3.5.2 Description of design files

Table 3-8 Design files

Table ID File Name

Description

1 globVar.h

This file contains the compile option definitions, through which it is
possible to select which TSs have to be included in the software. This
file also contains the definition of the LUT, signature vector sizes, and
other constants.

3 coreTest.h

This file contains the API of the diagnostic software. In particular, it
contains the coreTest function declaration to be called by the
application software.

4 coreTest.c

This file contains the definition of coreTest function

testSegmentMgm.h

This file contains the API of the TS execution progress management.
In particular, it contains the testSegmentMgm function declaration to
be called by the coreTest function.

testSegmentMgm.c

This file contains the definition of testSegmentMgm function

5 testSegmentxx.h This file contains the declaration of the testSegment functions
with xx=0,..,19
7 testSegmentxx.as This file contains the assembler definition of the testSegment
m with function
xx=0,..,19
8 initTest.asm This file contains the TS signature accumulation register initialization
9 closTest.asm This file finalize the TS and state whether it is passed or not

R11ANO081EU0107 Rev. 1.07
Sep 27, 2018

Page 14 of 51
RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

3.6 Resources Usage
Resources related to the main file should not be part of the coreTest function, and should not be included.

The maximum stack usage is 212 bytes.

Note: No dynamic memory allocation is implemented.
Table 3-9 provides an overview of the memory resources used by the code.

Table 3-9 Memory resources

Module ROM RAM
Code Data (bytes) rw data (bytes)
(bytes)
coreTest.o 960 6704 0
testSegmentMgm. o 36 0 1
initTest.o 278 0 0
closeTest.o 28 0 0
testSegment00. 1044 9 0
testSegment01. 1962 0 0
testSegment02. 844 0 0
testSegment03. 2120 0 0
testSegment04. 1838 0 0
testSegment05. 1656 0 0
testSegment06. 1908 0 0
testSegment07. 604 0 0
testSegment08. 2398 0 0
testSegment09. 188 0 0
testSegmentlO. 1340 0 0
testSegmentll. 2136 0 0
testSegmentl2. 6320 0 0
testSegmentl3. 976 0 0
testSegmentl4. 2056 0 0
testSegmentl5. 1642 0 0
testSegmentl6. 3908 0 0
testSegmentl7. 9254 0 0
testSegmentl18. 1266 0 0
testSegmentl19. 1578 0 0
Total (bytes) 46340 6713 1
R11ANOO81EUO0107 Rev. 1.07 Page 15 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

Table 3-10 details the execution time for each testSegment for all valid values of datasSet. Interrupt disable time
is also reported when applicable.

Table 3-10 Execution time

testSegment = dataSet Execution Execution Maximum Maximum
time time with 240 interrupt interrupt
[clock MHz clock Disable Time Disable Time
cycles] [ms] [clock cycles] with 240 MHz
clock [us]
testSegment00 686 2,86 0
testSegment01 816 3,4 0
testSegment02 528 22 0 0
testSegment03 Float32_MUL_set0 2630 11,0 49 0,204
testSegment03 Int32_MUL_set0 2604 10,9 49 0,204
testSegment03 Int32_MUL_setl 2610 10,9 49 0,204
testSegment03 Int32_MUL_set2 2522 10,5 49 0,204
testSegment04 Float32_ADD_set0 4508 18,8 48 0,2
testSegment04 Int32_ADD_setO 2106 8,78 48 0,2
testSegment04 Int32_ADD_setl 2106 8,78 48 0,2
testSegment04 Int32_ADD_set2 2112 8,80 48 0,2
testSegment05 Float32_DIV_setO 2640 11 62 0,258
testSegment06 794 3,31 35 0,146
testSegment07 514 2,14 23 0,096
testSegment08 Int32_MUL_set0 1706 7,11 0 0
testSegment08 Int32_MUL_setl 1736 7,23 0 0
testSegment08 Int32_MUL_set2 1682 7,01 0 0
testSegment09 Int32_DIV_setO 1394 5,81 0 0
testSegment09 Int32_DIV_setl 1096 4,57 0 0
testSegment09 Int32_DIV_set2 1230 513 0 0
testSegmentlO 822 3,43 0 0
testSegmentll 1086 4,52 52 0,216
testSegmentl2 4250 17,7 56 0,233
testSegmentl3 Int32_UMUL_set0 1494 6,23 0 0
testSegmentl4 1016 4,23 43
testSegmentl5 752 3,13 0 0
testSegmentl6 Int32_ADD_setO 2296 9,57 0
testSegmentl6 Int32_ADD_setl 2316 9,65 0
testSegmentl6 Int32_ADD_set2 2074 8,64 0
testSegmentl?’ 3020 12,6 27 0,112
testSegment18 652 2,72 0 0
testSegmentl19 3556 46 0,191
Float32_SQRT_set0 14,8
Total 59354 247 45 732 3,04
R11ANOO81EUO0107 Rev. 1.07 Page 16 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

3.7 Requirements for Safety Relevant Applications
Table 3-11 lists requirements for usage in safety relevant applications.

Table 3-11 Safety relevant requirements

ID Topic Sub-topic Description

SW_1 SwW Function return On the return of coreTest, evaluate the correctness of the
integration execution by checking the value of the “result”

SW_2 Sw Function call When calling the coreTest function more than once, take care to
integration use different variables to store the outcome of the function,

specifically the test result. In case the same variable is used,
consider initializing it to zero before executing subsequent runs of
the function.

SW_3 SwW Function Before calling coreTest, initialize to 0 the variable used by the
integration environment function to return the result value.

PR_1 Project User expertise The user has to have good expertise in embedded programming
management on the target MCU HW Synergy S7 series. Expertise on assembly

programming and C level/assembly interface is needed.

3.8 Diagnostic Fault Coverage and Watch Dog Usage

The diagnostic coverage provided by the CPU software test considers that all testSegments of type Fixed are
launched together with all testSegments of type LUT, each one called with all the supported values of the
parameter dataSet, as detailed in Table 3-2.

In addition, the coverage considers the contribution of a Watchdog. The use of the CPU software test should be
integrated with the use of a Watchdog. Table 3-12 outlines the recommendations for its usage.

A Watchdog needs to be integrated due to the fact that some hardware faults prevent following the control flow of the
software and, in such conditions, the presence of a Watchdog effectively detects such deviations.

Also, the CPU software test embeds some control flow mechanisms which are required to trigger the activation of such
faults. However, as stated above, the fault detection needs the presence of a Watchdog.

Table 3-12 Recommendations on Watchdog usage

ID Topic Description Comment
1 WD Consider a control flow monitoring for the WD refresh
refresh function. The refresh is done only if the control flow
mechanism, for example, proper value of the global
variable, is not respected.
2 WD Consider the following strategy:
refresh Activate the WD refresh only if all the main tasks of the
application software that have a predictable and periodic
timing schedule are called in the proper order.

4. RAM Software Test

4.1 Test Objectives
The objective of the RAM software test is to verify the embedded RAM memory of the MCU.

The main features of the software tests are as follows:

1. Whole memory check including stack(s).
— Memory size programmable at compile time.

2. Block-wise implementation of the test.

— Size of the block programmable at compile time.
3. Two test algorithm support

— Extended March C-

R11AN0O081EU0107 Rev. 1.07 Page 17 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

— WALPAT.

4. Word-wise implementation of the test algorithms, where the elementary cell under test is considered to be of 32-bit
width.

5. Support for destructive and non-destructive memory testing.
Information regarding test algorithms is provided in Appendix B - CPU Test Example.

4.2 Test Strategy

The scope of the RAM software test is to provide coverage across the whole embedded RAM, adopting a block-wise
strategy.

The memory size andtheblock size are parameters that the user can select based on the device and its
application needs, described as follows:

e MUTSize
This is the size of the memory under test, expressed in number of double words.

e BUTSize
This is the size of the block under test, in terms of number of double words.

e numberOfBUT
This is the number of blocks in to which the memory is divided.

Block number 0 (BUTSIize*4) bytes

Block number 1

resultTestRam1
Block number x /

(MUTSize*4) bytes <

Block numbery
resultTestRam?2

Block number
(numberOfBUT-1)

Figure 4-1: RAM block division.

R11AN0O081EU0107 Rev. 1.07 Page 18 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Figure 4-1shows how the memory is divided into a number of blocks equal to numberO£fBUT.
Each block is then identified with an index ranging from 0 to (numberOfBUT - 1).
Each block can be tested in a destructive or non-destructive manner.

In order to support non-destructive testing, one block of the RAM is used as a buffer to store the content of the block
under test. The buffer can be tested as well and this can be done with a destructive strategy before testing the other
blocks.

A memory reserved area has to be defined for the buffer in order to preserve the integrity of the application software
after running the test.

To do this:

1. Define the start address of the buffer.
This can be done by assigning the label addressBuf fer inside the file testRAM. inc. See section 4.4 for a
usage example.
2. Define IAR linker commands to reserve the memory buffer locations.
Example of linker commands are provided in see section 4.4.

The code stores the result of the test in two unused RAM locations accessible from the application software by using
two variables: resultTestRaml and resultTestRam?2 (see Figure 4-1).

The result variables are located at fixed absolute addresses, and they have to be placed into two different blocks.

This strategy has been selected to avoid not detecting a faulty block because the result itself is stored in the same faulty
block.

Note: These two variables are initialized each time the RAM test function is called, and the user needs to check their
values only after having called the RAM test function.

Allowing two copies of the test result to be stored into two different blocks makes fault detection possible because at
least one variable is not stored inside a faulty block.

The location of the result variables can be fixed inside testRAM. h.
The application level user then has to check the values of the result variable after the test is completed.
Coding of the test result is as follows:

1. resultTestRaml= resultTestRam2=1 implies the test is passed
2. any other combinations means the test failed

An example of a test result check, in addition to definition of addresses for the result variables, is provided in section
4.4,

4.3 APl and RAM Test Environment

A RAM block test is called through a main interface function, testRAM. The testRAM function signature is defined
as follows:

void testRAM (unsigned int index, unsigned int selectAlgorithm, unsigned int
destructive)

testRAM interface in Table 4-1 describes the function interface in more detail.

R11AN0O081EU0107 Rev. 1.07 Page 19 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

Table 4-1 testRAM interface

Table ID Parameter C type

type

Name

Description

1 Input unsigned int

index

Specify the RAM block under test,
from O to numberOfBUT-1

2 Input unsigned int

selectAlgorithm Specify the algorithm to be run on

the RAM block under test:

e 0 runs Extended March C-
algorithm

e 1runs WALPAT.

Other values produce an error

return value (that is,

resultTestRaml =

resultTestRam2 = 0).

3 Input unsigned int

destructive

Specify the kind of test:

¢ 0 means non-destructive test
is run, and RAM block content
is saved in the buffer

e 1 means destructive test is
run.

Once a memory block is tested

with a destructive procedure, its

content is initialized with all zeros.

As specified in Table 4-1, index indicates the specific RAM block to be tested using the algorithm specified by
selectAlgorithm. Each RAM block has a size in terms of double words, defined by BUTS1 ze.

Valid values of index range between 0 and numberOfBUT-1.

numberOfBUT indicates the number of blocks in which the RAM is divided, and it is obtained by dividing the

memory size by the size of the block specified by the BUTS1i ze parameter.

Calling the function with an invalid value of the block index that is greater than (numberOfBUT-1), results in the
return variables being set to 0, indicating a failed test.

4.4 Software Integration Rules

This section provides guidelines for how to integrate the RAM test software within the user project.

44.1 Code integration

Defining memory size and block size

The user has to set the size of the RAM under test and the size of each of the blocks.

This information has to be provided by the directives present in testRAM. h.

BUTS1ize can have one of the values shown in Table 4-2.

Table 4-2 Relation between BUTSize and MUTSize

BUTSize Number of Blocks Index

MUTSize/4 4 0,1,2,3

MUTSize/8 8 0,1,2,3,4,5,6,7
MUTSize/16 16 0,1,2,3,4,...,15
MUTSize/32 32 0,1,23,4,..31
MUTSize/64 64 0,1,2,3,4,..63
MUTSize/MUTSize MUTSize 0,1,23,4,.., MUTSize-1

Following is a working example for a 640 KB RAM, divided in blocks of 64 KB size each.

R11ANO081EU0107 Rev. 1.07
Sep 27, 2018

RENESAS

Page 20 of 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

//size of the RAM Memory Under Test: 640KB = 640 * 1024 bytes = 655360 bytes =
163840double words

#define MUTSize 163840

//size of the Block of RAM Under Test of 64KB

#define BUTSize (MUTSize/10)

Reserving and placing the buffer

In case the user wants to perform non-destructive tests, it is needed a buffer memory area.

A buffer area can be reserved using the IAR linker configuration file (. 1c £ file) and defining a variable buffer in the
application code.

Assuming that the buffer size has to be 64 KB (specify 1024 bytes in hexadecimal format 0x10000) and the starting
address of the buffer block is 0x20030000, add the following two instructions:

//RAM TEST:BufferStorage definition
1. define block BufferStorage with alignment = 1, size = 0x10000 { };
2. place at address mem:0x20030000 { block BufferStorage };

In the file testRAM.inc make sure to align the labels addressBuffer_t and addressBuffer_w to the buffer address, in
particular to the most four significant address bytes and the least four significant address bytes.

addressBuffer w EQU 0x0000
addressBuffer t EQU 0x2003

Please note that the RAM buffer shall be stored within the SRAM memory dedicated address range which is specified in the HW
manual [REF.2]

In addition, in order to minimize possible interference with the application SW, it is recommended to define a variable
buffer in the application SW as a global variable and use it to force the allocation through the linker. Below is an
example for the case reported above:

volatile unsigned int buffer[BUTSize]@ 0x20030000 = {0};

The user could then instruct the compiler to allocate the buffer to this variable, using for example the following
instruction:

buffer[0] = 0;
Placing result variables

The software stores the result of the test in two unused RAM locations that are accessible from the application code by
using two variables (resultTestRaml and resultTestRam?2).

These two variables have to be placed at two absolute addresses of the RAM.
Declaration of these two variables is defined in testRAM. h file.
The following is an example with 640 KB RAM divided in blocks of 64 KB each:

e resultTestRaml is placed in the last double word location of the block 3
e resultTestRam?2 is placed in the last double word location of the block 4.

The code in testRAM. c file is:

e unsigned int resultTestRam1 @ 0x20000000 = (unsigned int) O;
e unsigned int resultTestRam2 @ 0x20010000 = (unsigned int) O;.

Word length
The chosen RAM algorithm runs using a 32-bit word length.

R11AN0O081EU0107 Rev. 1.07 Page 21 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Test flow and checking test results

It is recommended to initially run a destructive test on the buffer. The buffer test has the same result if it is run as
destructive or non- destructive, and its content are lost.

A recommended flow for the RAM test is as follows:

1. Run testRAM function on the buffer block.
2. Run testRAM function on the other blocks of the RAM.

Consider the following instructions to effectively use the testRAM function:
1. Include testRAM.h.
2. Define input variables for parameters to call testRAM:

A. index.
B. select Algorithm.
C. destructive.

3. Call testRaM.

4. Check result variables.

Working example
#include "testRAM”.h"

unsigned int index = 7! ;
unsigned int selectAlgorithm = 0;
unsigned int destructive = 0;

testRAM(index, selectAlgorithm, destructive);

if (! (resultTestRaml&&resultTestRam?)) { /*Fault detection*/
errorHandler () ;
}

After the testRAM function returns, a fault can be detected by checking the output value, as shown in the example
above.

The output of testRAM is stored in two locations. So, if resultTestRaml and resultTestRam?2 are both equal
to 1, no faults are detected. Otherwise, the fault handling management should start (calling of errorHandler ()
function in the above example).

! Not algorithm specific value. Only used as an example.

R11ANO0O81EU0107 Rev. 1.07 Page 22 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

4.4.2 Usage Conditions
Table 4-3 summarizes usage conditions.

Table 4-3 Usage conditions

ID Topic Constraint Description
1 Interrupt Avoid corruption of When interrupting the RAM software test, the context of all
function context general purpose registers, system register, including PSR and

FAULTMASK, have to be saved and restored when returning
from interrupt handling.
See reference document [REF.1] for the detailed CPU register

definitions.
2 CPU mode Correct execution of ~ Launch RAM software test in privileged mode
the SW
3 Stack Avoid corruption of the Test RAM blocks corresponding to stack locations in a non-
stack destructive manner
4 Environment Avoid corruption of In any application code other than the software test, do not
variables used to overwrite values of resultTestRaml and resultTestRam?2
check test results variables
5 Environment Avoid data lost The data saved by the application inside the buffer is lost when
calling the RAM test
6 Configuration Avoid data lost Do not place the result variables (resultTestRaml and

resultTestRam?) in the same block as the buffer

7 Configuration Compliance with SW The minimum number of blocks into which the RAM is divided

test strategy has to be 4

8 Configuration Compliance with SW Range of addresses of the memory under test has to be double
test strategy word aligned

9 Configuration Compliance with SW For BUTSize, use the following formula:
test strategy BUTSize=MUTSize/2* with 1<x<=log, (MUTSize)

10 Configuration Compliance with SW Place resultTestRaml and resultTestRam?2 variables in
test strategy two different blocks of the RAM

11 Diagnostic Use sufficient block Both RAM tests give medium coverage (90%) for permanent

coverage size to guarantee faults. This coverage value is valid under the condition that, for

diagnostic coverage both tests, the minimum block size chosen for the test is not
value lower than 512 bytes.

4.5 Define Directives for Software Configuration

Before compiling the code, it is necessary to define the size of the RAM under test, the size of the blocks into which the
memory is divided, and the word length for the executed RAM test algorithm.

All this information is specified by the directives described in Table 4-4.

Table 4-4 Define directives

Directives Description

MUTSize Indicate the size of the RAM under test. The value associated with it expresses the
size of the RAM in terms of double words.
This setting has to be in testRAM.h.

BUTSize Indicate the size of the blocks in which the RAM is divided. Value assigned to it has to
be of the following type:
MUTSize/4; MUTSize/8; MUTSize/l6; MUTSize/32; ... ;
MUTSize/MUTSize

This value is always in terms of double words.
This setting has to be in testRAM.h.

R11ANO0O81EU0107 Rev. 1.07 Page 23 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

4.6 Software Package Description

This section details how to identify the supplied software package, including its MD5 signature, and also provides a
description in table format for each design file type.

4.6.1 Identification and Contents of Package

The software package version is identified as follows:

e Revision 1.0.1
e File list.

Table 4-5 RAM package and related MD5 signatures

File Name MD5 Signature

extendedMarchCminus.asm 8d29d2c4eflb516ace04e7403b986d5d

extendedMarchCminus.h cf8ad143080603ae2aed9beeec3dfbesd

testRAM.c 242961ce5f3cad57811f9797d15dab02
testRAM.h 03afee8c63ff96e4d3a3c8acecb3f42d
testRAM.inc dc4cb561dc5fc9a154917b5d271ff418
walpat.asm 656312c044114043de5d6bf8904f8e0c
walpat.h caf2c03440ea9f2ce8d2be2b7cc7894c

4.6.2 Description of design files
Table 4-6 Design files

Table ID File Name Description

1 testRAM.h This file contains the API of the RAM test. In particular, it
contains the testRAM function declaration to be called by the
application software. It also contains the declaration of the result
variables placed at fixed absolute addresses, and define

directives.

2 testRAM.c This file contains the definition of the testRAM function

3 extendedMarchCminus.h This file contains the declaration of the Extended March C-
algorithm function

4 extendedMarchCminus.a This file contains the definition of the Extended March C-

sm algorithm function

5 walpat.h This file contains the declaration of the WALPAT algorithm
function

6 walpat.asm This file contains the definition of the WALPAT algorithm
function

7 testRAM.inc This file contains the definition of the patterns for the test
execution

R11ANO081EU0107 Rev. 1.07 Page 24 of 51

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

4.7 Resources Usage
Table 4-7 provides an overview of the memory resources used by the code.

The maximum stack usage is 60 bytes.

Table 4-7 Memory resources

Module ROM RAM (bytes)
Code (bytes) Data (bytes)

extendedMarchCminus.o 468 0 0

testRAM.o 124 0 8

walpat.o 468 0 0

Total (bytes) 1060 0 8

The timing performance details in Table 4-8, are referenced to the test of one 1 Kb RAM block.

Table 4-8 Execution time

Algorithm Non-destructive Non-destructive Destructive Destructive
execution time execution time execution time execution time
[clock cycles] with 240 MHz [clock cycles] with 240 MHz
clock [ps] clock [us]
Extended March C- 104106 433 100524 418,85
WALPAT 8699562 36248 8695982 36233,26

4.8 Requirements for Safety Relevant Applications
Table 4-9 lists the recommendations for usage in safety relevant applications.

Table 4-9 Safety relevant requirements

ID Topic Sub-topic Description

RAM_SW_1 Test flow Buffer Before testing blocks other than the buffer, perform
destructive testing on the buffer. This should be done to
avoid corruption of the test result because of a faulty buffer.

RAM_SW_2 Configuration Number of Consider dividing the memory under test into a minimum
blocks number of blocks, possibly equal to 4.
This is to properly detect address faults. The larger the block,
more efficient the address fault detection.

5. ROM Software Test

5.1 Test Objectives
The objective of the ROM software test is to verify the embedded ROM memory of the MCU.

The main features of the software tests are as follows:

e Whole memory check

Possibility to test with a block-wise strategy, generating multiple CRC signatures

Support for three CRC polynomials

Support for incremental mode calculation, that is, calculation of the CRC signature can be time-wise split.

5.2 Test Strategy

The scope of the ROM software test is to verify the embedded ROM using a CRC technique. Error detection is achieved
as follows:

1. Arange of ROM addresses is chosen. This step defines the block under test.

2. Areference checksum value is calculated using the IAR linker and saved inside the memory.

R11AN0O081EU0107 Rev. 1.07 Page 25 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

3. During the ROM software test execution, the hardware peripheral CRC calculator (see reference document [REF.2]
for the peripheral details) is used to produce an actual checksum value of the ROM under test in order to check its
integrity.

4. The calculated checksum value is compared with that stored in memory, and an error is detected if the two values
do not match.
5. The previous steps are repeated for a different block of memory until the whole ROM area is covered.

521 Checksum Generation using the IAR linker
Before compiling the ROM software test, checksum generation by the IAR linker has to be enabled.

In addition, use the following steps:

Place a checksum variable for each ROM addresses range under test.

Start and end addresses of the ROM without considering the location in which checksum value is placed.
Consider the size and alignment of the checksum variable.

Consider the initial value of the checksum variable.

Consider the checksum algorithm used (chosen polynomial).

Consider the checksum variable bit order.

ok~ wdpE

Further details are provided in section 5.5.

5.2.2 MCU CRC Peripheral

The CRC calculator generates CRC codes for data blocks. For details on the peripherals, see document reference
[REF.2]. It provides the use of any of the three polynomials listed as follows:

e 8-bit CRC
— XX+l
e 16-bhitCRC
— xpy154y241
— XBx24x5+1,
5.3 Top Level Software Structure
The following two functions are used to run the CRC calculator module and generate the checksum value:

e crcHwSetup enables the CRC HW module and configures the control registers to select the selected CRC
polynomial to be used
e crcComputation calculates checksum on all the bytes of the selected ROM block.

5.3.1 ROM Test APIs
The function signatures are as follows:

void crcHwSetup (unsigned int crc)

uintl6é_ t crcComputation(unsigned int checksumBegin, unsigned int checksumEnd,
unsigned int incrMode)

Table 5-1 describes more details of the interface to the functions.

R11ANO0O81EU0107 Rev. 1.07 Page 26 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

Table 5-1 ROM test APIs

Table Function Parameter
ID type

C type

Name

Description

1 crcHwSetup input

unsigned int

crc

Specify the kind of CRC
generating polynomial:
-0: x8+x?+x+1 (8-bit CRC)
-1 x+x15+x2+1 (16-bit
CRC)

-2: x+x12+x5+1 (16-bit
CRC)

-Other values: default is
16-bit CRC x16+x15+x2+1

2 crcComputation input

unsigned int

checksumBegin

Specify ROM block start
address

3 crcComputation input

unsigned int

checksumEnd

Specify ROM block end
address

4 crcComputation input

unsigned int

incrMode

Specify the CRC
calculation mode:

-0: incremental mode not
active

- Other values:
incremental mode active.

5 crcComputation output

uintl6_t

The return value of the
function is the computed
checksum value

Note: Within the crcComputation function:

e The CRC signature is initialized to 0xff in case of CRC_8 utilization or Oxffff in case of CRC_16, or

CRC_16_CCITT

e The return value is th> 1's complement of the calculated checksum.
Note: The block size of the memory for the CRC calculation is defined by the difference between the end and the start
addresses, and it has to be a multiple of the CRC length.

5.3.2 Incremental mode calculation
The input parameter incrMode allows the user to split the calculation of the CRC signature for the same ROM block
as best suited to the requirements of its application.

The behavior, as summarized in Figure 5-1 is as follows:

R11ANO081EU0107 Rev. 1.07
Sep 27, 2018

RENESAS

Page 27 of 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

e The ROM block for which the CRC is to be calculated is divided in sub-blocks identified by a given set of addresses
(3 groups of addresses in the example)

e The crcComputation isthen run on each set of addresses

e The first call of crcComputation is made with no incremental mode while the following calls need to have the
incremental mode active in order to accumulate previous partial results

o After the last function call, the total block CRC is returned.

OxfffcO6ef))
OXTTfob6er Run crcComputation on the first set of addresses with
incrMode=0. After this computation, the result is an intermediate value
OxfffcO6ab but it is not the block CRC yet.
OxfffcO6ef
OxfabcO6ef Run crcComputation on the second set of addresses with incrMode =
1. After this computation, the result is another intermediate value also
ROM < DU considering the elaboration on the first set of addresses, but it is not the
block OxaafcO6ef block CRC yet.
OxfffcO6ef
OxabccO6ef Run crcComputation on the third set of addresses with
OXFFfc0612 incrMode=1. After this computation, the result is the block CRC.
OxfffcO6aa
Block CRC

Figure 5-1: Incremental mode calculation.

5.4 Software Integration Rules

54.1 Code integration
To call the ROM test functions, use the following steps:

1. Include crc.h.

2. Define external variables for each CRC signatures generated by the IAR linker and placed in ROM.
1. Define variable for input parameter of crcHwSetuA.crcType.

3. Define variables for input parameter of crcComputation:

A. checksumBegin.
B. checksumEnd.
C. incrMode.
4. Define output variable in order to store the result of the crcComputation.
Refer to the example in section 5.4.2, which explains a case in which two ROM address ranges are tested.

5.4.2 Test flow and test result check
The recommended test flow is as follows:

1. Initialize the peripheral using crcHwSetup.

2. Evaluate the checksum using crcComputation.
3. Compare with the expected checksum for error detection.

Working example

#include “crc.h"
extern const uintl6 t checksum;

unsigned int type = 1;
crcHwSetup (type) ;

unsigned int checksumStart = 0x00000000;
unsigned int checksumStop = O0x003FFFFB;
unsigned int crcIncr = 0;

R11ANO0O81EU0107 Rev. 1.07 Page 28 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

uintl6 t crcResult;
crcResult = crcComputation (checksumStart, checksumStop, crcIncr);
if (crcResult != checksum) {

errorHandler () ;

}

After the crcComputation function returns, a fault can be detected by checking the output value as shown in the
example above. The crcResult achieved by the ROM software test is compared with checksum, which is the
reference value computed by the IAR linker.

Working example with incremental mode

#include “crc.h"

extern const uintl6 t checksum;

unsigned int type;

unsigned int checksumStart;
unsigned int checksumStop;
uintl6é_t crcResult;

unsigned int crcIncr;

type = 1;
crcHwSetup (type) ;

crcIncr = 0;

checksumStart = 0x00000000;

checksumStop = 0x000FFFFB; //1MB
crcResult = crcComputation (checksumStart, checksumStop, crclncr);
crcIncr = 1;

checksumStart = 0x00100000;

checksumStop = 0x001FFFFB; //1MB
crcResult = crcComputation (checksumStart, checksumStop, crclncr);
crcIncr = 1;

checksumStart = 0x00200000;

checksumStop = 0x002FFFFB; //1MB
crcResult = crcComputation (checksumStart, checksumStop, crcIncr);
crcIncr = 1;

checksumStart = 0x00300000;

checksumStop = 0x003FFFFB; //1MB
crcResult = crcComputation (checksumStart, checksumStop, crclIncr);
R11ANOO81EU0107 Rev. 1.07 Page 29 of 51

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

if (crcResult != checksum) {
errorHandler () ;
}

The above example shows how the CRC for a 4 MB block can be calculated with 4 cumulated runs of the
crcComputation function.

Note: The crcResult is compared with the value computed by the IAR linker only after the last call of the
crcComputation function.

The above example also shows that the 4 calls of the crcComputation function are sequential. However, this is not
a definitive requirement. The calls can be executed in a different order as long as the usage conditions described in
section 5.4.3 are maintained.

5.4.3 Usage Conditions
Table 5-2 summarizes usage conditions.

Table 5-2 Usage conditions

ID Topic Constraint Description
1 Interrupt Avoid corruption of When interrupting the ROM software test, the context of all
function context general purpose registers, system register, including PSR and

FAULTMASK, have to be saved and restored after returning from
interrupt handling.
See reference document [REF.1] for the CPU register definitions.
2 Incremental Avoid corruption of the When the incremental mode is used, do not change the setting or
mode calculated CRC value use the HW peripheral CRC calculator until the CRC calculation
is completed. This is valid for any kind of software such as
application software or any interrupt handlers.

5.5 Checksum Generation Using IAR Tools

The ROM test requires a reference checksum for each address range under test. The reference checksum is necessary
for comparison with that computed by the CRC calculator.

To ensure accurate control of the error detection performance of the code, it may be necessary to generate multiple
checksums.

This section shows how to use the IAR Embedded Workbench for ARM version 8.23.1.17132 to generate the checksum.
The steps are as follows:

1. Provide information to the IAR linker as to where to place checksum values. Also, provide information about the
symbols for the start and end addresses of the ROM blocks under test.

2. Use the AR graphic interface to perform the checksum calculation.

3. Inthe . icf file, define memory ranges where the checksum values should be placed.

The working example provided in the following section gives additional information on how to use the IAR tools to
generate the required CRCs.

55.1 Example Checksum Generation with IAR Tools

Assume that the ROM test address range is 0x00000000 — 0x003FFFFF, and a checksum is required to be generated
using the polynomial x%6+x'?+ x5+1 (16-bit CRC-16CCITT).

Use the following steps:

1. Go to Project > Optil... > Linker > Checksum and set the following parameters:

R11ANO0O81EU0107 Rev. 1.07 Page 30 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

. Select Fill unused code memory option.

. File pattern = 0x00.

. Start Address = 0x00000000.

. End address = 0Ox003FFFFB.
Select Generate checksum option.
Checksum size = 2 bytes.

. Alignment = 1.

. Algorithm = CRC polynomial, 0x1021.
Bit order = MSB.

. Initial value = OXFFFF.

K. Checksum unit size = 8 bit.

ST IOmTMMmMmoOOmP

2. Inthe . icf file, define memory ranges and locations of the checksums.
define symbol ICFEDIT region ROMuT start

define symbol ICFEDIT region ROMuT end

0x00000000;
O0x003FFFFF;

define region CHECKSUM region = mem: [from ICFEDIT region ROMuT start to

__ _ICFEDIT region ROMuT end];

place at end of CHECKSUM region { ro section .checksum };

Options for node "S7_blink_e2s_connect_s7" e
Celcemmy Factary Settings
General Options
Static Analysis
Runtime Checking

CJC++ Compiler Corfig Lbrary Input Optimizations Advanced Output List [
Assembler
Output Converter
Custom Build Fill unused code memory
Build Actions Fill pattem: k00
Start address: (00000000 End address: | (<003FFFFB

Debugger

Simulator Generate checksum

Angel Checksum size: | 2bytes | Alignment:

CMSIS DAP

GDB Server Algorithm: CRC polyromia ~ | |X<1021

TAR ROM-manitor Result in full size Initial val

I-jet/TTAGjet nitial value

Mink/I-Trace Complement: | 1's complement | |OxFFFF

I Stellaris Bit order: MSB first ~ | [Use as input

Macraigor

PE mico [] Reverse byte order within word

RDI Checksum unit size: Bbit ~

STALINK

Third-Party Driver

Figure 5-2: 1AR environment options.

For more information about these commands, refer to reference document [REF.3].

5.6 Software Package Description

This section details how to identify the supplied software package, and also provides a description in table format for

each design file type.

5.6.1 Identification and contents of package
The software package version is as follows:

R11AN0O081EU0107 Rev. 1.07
Sep 27, 2018 RENESAS

Page 31 of 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

e Revision 1.0.1
e File list.

Table 5-3 ROM Package and related MD5 signatures

File Name MD5 Signhature
6. crc.c 66d4c9c03eb5906ce5364f5d8b804858
crc.h 2d5cdb92elacaf76bb3d5dd5f4c90c48

S7G2_registers.h 4a2dfba75ed595991e87d34b4fb4db74

6.1.1 Description of Design Files
Table 5-4 Design files

TableID File Name Description
crc.h This file contains the declaration of the two functions for the crc
calculator:
e crcHwSetup: Initializes CRC module
1 e crcComputation: Runs CRC on the specified ROM block.
crc.c This file contains the definition of the two functions declared in the file
2 crec.h.
3 S7G2_registers.h This file contains the definitions of the needed peripheral registers.

6.2 Resources Usage
Table 5-5 provides an overview of the memory resources used by the code.

The maximum stack usage is 0 bytes.

Table 5-5 Memory resources

Module ROM RAM (bytes)
Code (bytes) Data (bytes)

crc.o 232 0 4

Total (bytes) 232 0 4

Table 5-6 shows the execution time for calculating a CRC using the polynomial x*+x+x2+1 with a block size of 4 Kb.

Table 5-6 Execution time

Function Execution time for a Execution time for a
ROM block size of 4 Kb ROM block of 4 Kb at
(clock cycles) 240 MHz clock (us)

crcComputation 57434 239

6.3 Requirements for Safety Relevant Applications
Table 5-7 lists recommendations for usage in safety relevant applications.

Table 5-7 Safety relevant requirements

ID Topic Sub-topic Description
ROM_SW_1 CRC type - Adopt the following CRC16 polynomial x'6+x+x2+1
ROM_SW_2 Block length - Use a block size of 4 KB

Using the above mentioned recommendations, it is possible to detect all single-bit and double-bit corruptions within one
block.

R11ANO0O81EU0107 Rev. 1.07 Page 32 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

In addition, regardless of the block size, the use of such a polynomial allows for the detection of an odd number of
single bit errors, with the following performance in relation to burst error detection, where a burst of length k
corresponds to the presence of k consecutive corrupted bits:

All bursts with length equal and less than 16 bits
99.997 percent of bursts of 17 bits
99.998 percent of bursts with length greater than 18 bits.

7. CAC Configuration Software

7.1 Test Objectives

The objective of the CAC configuration software is to configure the CAC. For safety applications, this software is used
to:

o Select PCLKB as the measurement target clock for the CAC
e Select the sub-clock oscillator as a measurement reference clock for the CAC.

This configuration allows the detection of deviations of the main clock oscillator and PLL due to systematic or random
hardware failures.

The CAC configuration software also enables the Synergy S7 oscillation stop detection circuit functionality. In case the
main clock stops, this circuit is in charge of switching to the middle-speed on-chip oscillator, and generating an NMI
interrupt.

7.2 Test Strategy
The test strategy is to configure the CAC peripheral to monitor the PCLKB clock using the sub-clock oscillator.

If the frequency of the monitored clock deviates from a configured range during runtime, two types of interrupts can be
generated, namely a frequency error interrupt, or an overflow interrupt. The user of this module must enable these two
kinds of interrupts and handle them.

Note: The user must enable the sub-clock oscillator through the SOSCCR register (that is, SOSCCR.SOSTP = 0b. See
document reference [REF.2]). Otherwise, the monitoring will not work.

The allowed frequency range is evaluated according to the following equations:

CAULVR (upper limit value) can be computed by rounding down the result from the following equation and
converting it into a hexadecimal value:

PCLKB DC
o (141 — —)
3 CLKTpy (100
CAULVR = floor CLK.,
CLKRp,

CALLVR (lower limit value) can be computed by rounding up the result from the following equation and converting it
into a hexadecimal value:

PCLKB . (%)
CALLVR = ceit | LLKTpr 1100
CLK, of
CLKRpy
The parameters are described in Table 7-1.
R11ANO081EU0107 Rev. 1.07 Page 33 of 51

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Table 7-1 Parameter description for CAULVR, CALLVR

Parameter Description Unit
PCLKB Frequency of the peripheral module clock B MHz
DC Target diagnostic coverage. %

The user has to add a safety margin to the claimed DC, for
example, 90% + 1% margin
Renesas allows a DC range from, for example, 60 ... 95%

CLKret Frequency of the reference clock. MHz
This is based on the sub-clock oscillator frequency (32.768 kHz),
considering the accuracy of the selected external crystal

CLKTowv Division according to the Measurement Target Clock Frequency -
Division Ration Select (TCSS) register
CLKRDIv Division according to the Measurement Reference Clock -

Frequency Division Ration Select (RCDS) register

In addition to the CAC function, the Synergy S7 has an oscillation stop detection circuit. If the main clock stops, the
middle-speed on-chip oscillator is automatically used instead, and an NMI interrupt is generated. The user of this
module must handle the NMI interrupt and check the NMISR.OSTST bit.

7.3 CAC Configuration Software API
The function signatures are as follows:

void ClockMonitor Init (double target clock frequency, target clk div_t
target clock division,

reference clk div_t reference clock division, double dc,
CLOCK_MONITOR ERROR CALL BACK CallBack);

Table 7-2 describes more details of the interface to the functions.

Table 7-2 CAC configuration software APIs

Table Function Parameter Ctype Name Description

ID type

1 ClockMonitor_ Input double target_clock_frequ The target clock frequency in
Init ency Hz

2 ClockMonitor_ Input target_clk_div_t target_clock_divis The target clock division to
Init ion be set

3 ClockMonitor_ Input reference_clk_div_t reference_clock_di The reference clock division
Init vision to be set

4 ClockMonitor_ Input double dc The diagnostic coverage in
Init percentage

5 ClockMonitor_ Input CLOCK_MONITOR_ CallBack Function to be called if the
Init ERROR_CALL BAC main clock deviates from the

K allowable range

In reference to the formula parameters described in Table 7-1, the function parameters are mapped as follows:

e target clock frequency=PCLKB

e target clock division=CLKTpyv

e reference clock division =CLKRpy

e dc=DC.

7.4 Software Integration Rules

This section provides guidelines on integrating the CAC configuration software within the user project.

R11AN0O081EU0107 Rev. 1.07 Page 34 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

7.4.1 Code integration
Follow the instructions below to call the CAC configuration software functions:

1. Include clock monitor.h.
2. Define variables for input parameters of CLockMonitor Init:
target clock frequency

target clock division

reference clock division.

O o W

dc.
E. callBack.
Refer to the example in section 7.4.2 on how to use the diagnostic software.

7.4.2 Usage Conditions
The monitoring of the PCLKB clock is set-up with a single function call to ClockMonitor Init.

For example:

#define TARGET CLOCK_FREQUENCY HZ (60000000) // PCLKB: 60MHz
#define DC (90) // Diagnostic Coverage: 90%
target clk div_t target div = TAR DIV 4;

reference clk div_t ref div = REF DIV 32;

/*Enable Sub-Clock*/
PRCR reg->PRCR = 0xA501;
SOSCCR_reg—->SOSCCR_b.SOSTP = 0;

PRCR_reg->PRCR = 0xA500;

ClockMonitor Init (TARGET CLOCK FREQUENCY HZ, target div, ref div, DC,
CAC _Error Detected Loop);

The hardware performs the clock monitoring, and so the software does not need to do anything during the periodic tests.

In order to enable interrupt generation by the CAC, both the Interrupt Controller Unit (ICU) and Cortex-M4 Nested
Vectored Interrupt Controller (NVIC) should be configured.

For configuring the ICU, it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number
corresponding to the CAC frequency error interrupt (CAC_FERRI = 0x87) and CAC overflow (CAC_OVFI = 0x89). In
particular, it is necessary to configure one IELSR register so that it is linked to the previously mentioned CAC events:

TELSRn.IELS = 0x87; // (CAC_FERRI)
IELSRn.IELS = 0x89; // (CAC_OVFI)

In addition, in order to enable the Cortex-M4 NVIC to handle the CAC interrupts, the following instructions should be
set:

NVIC EnableIRQ(CAC_FREQUENCY ERROR IRQn);
NVIC EnableIRQ(CAC OVERFLOW_ IRQn);

where CAC_ FREQUENCY ERROR_IRQn and CAC_OVERFLOW IRQn are the IRQ number defined by the user?.

If oscillation stop is detected, an NMI interrupt is generated. User code must handle this NMI interrupt and check the
NMISR.OSTST flag as shown in the following example:

2 See Table 2-16 in reference document [1] for more details about IRQ numbers

R11AN0O081EU0107 Rev. 1.07 Page 35 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

if (1 == R_ICU->NMISR b.OSTST)
{
Clock Stop Detection();

/*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/
R ICU->NMICLR b.OSTCLR = 1;

}

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock.

7.5 Define Directives for Software Configuration
No specific directives are present for CAC configuration software.

7.6 Software Package Description

This section details how to identify the supplied software package, including its MD5 signature, and also provides a
description in a table format for each design file type.

7.6.1 Identification and Contents of Package
The software package version is listed as follows:

e Revision 1.0.2
e File list.

Table 7-3 CAC configuration software package and related MD5 signatures

File Name MD5 Sighature

clock monitor.c 1bdc9c2713d2a51bfd38a9724bb0be85

clock monitor.h 78f648e238cbbdbfeaefc94beaf5de89

S7G2_registers.h ac539ac998214ac9cba73eeef86985fd

7.6.2 Description of Design Files
Table 7-4 Design files

Table ID File Name Description

1 clock monitor.h This file contains the declaration of the ClockMonitor Init
function for monitoring initialization

2 clock monitor.c Thisfile contains the definition of clock monitor function

3 S7G2_registers.h This file contains the definitions of the needed peripheral
registers

7.7 Resource Usage
Table 7-5 provides an overview of the memory resources used by the code.

Maximum stack usage is 152 bytes for both versions.

Table 7-5 Memory resources

Module ROM RAM (bytes)
Code Data (bytes)
(bytes)
clock monitor.o 716 16 4
Total (bytes) 716 16 4
R11ANO081EU0107 Rev. 1.07 Page 36 of 51

Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Table 7-6 illustrates the execution time.

Table 7-6 Execution time

Function Clock Cycle Count Time measured (us) at
240 MHz
Clock_monitor 3105 12,94

7.8 Requirements for Safety Relevant Applications
Refer to the Safety Manual [REF.4].

8. IWDT Management Software

8.1 Test Objectives

A watchdog is used to detect abnormal program execution. If a program is not running as expected, the Watchdog is not
refreshed by software as required, and so, detects an error.

8.2 Test Strategy

The Independent Watchdog Timer (IWDT) module of the Synergy S7 is used for this purpose. The IWDT includes a
windowing feature where the refresh must happen within a specified window rather than just before a specified time. It
can be configured to generate an internal reset or a NMI interrupt if an error is detected. All the configurations for
IWDT can be done through the OFSO register whose settings are controlled by the user (see section 8.4.2 for a
configuration example). A function is provided to be used after a reset, to decide if the IWDT has caused the reset.

8.3 IWDT Management Software APIs

The function signatures are as follows:

void IWDT Init (void)

void IWDT Kick (void)

bool IWDT DidReset (void)

Table 8-1 describes more details of the interface to the functions.
Table 8-1 IWDT management software APls

Table ID Function Parameter type Ctype Name Description

1 IWDT DidReset output bool N/A Returns true if the IWDT times out
or is not refreshed correctly. This
can be called after a reset, to
decide if the Watchdog caused
the reset.

8.4 Software Integration Rules
8.4.1 Code integration

The instructions to call the IWDT management software function are as follows:
1. Include iwdt.h.

2. Define a boolean variable for output of IWDT DidReset.
Refer to the example in section 8.4.2, which explains how to use the diagnostic software.

8.4.2 Usage conditions

In order to configure the IWDT, it is necessary to set the OFSO0 register correctly. The following code can be used to set
the value that has to be stored at the OFSO memory allocation (OFS0 address = 0x00000400).

R11AN0O081EU0107 Rev. 1.07 Page 37 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

/* IWDT Start Mode Select */

#define IWDTSTRT ENABLED

(0x00000000)

#define IWDTSTRT DISABLED (0x00000001)

/*Time-Out Period selection*/

#define
#define
#define
#define

/*Clock selection.

#define
#define
#define
#define
#define
#define

/*Window
#define
#define
#define
#define

/*Window
#define
#define
#define
#define

/*Action
#define
#define

IWDT TOP 128 (0x00000000)
IWDT TOP 512 (0x00000001)
IWDT TOP 1024 (0x00000002)
IWDT TOP 2048 (0x00000003)
(IWDTCLK/x) */
IWDT CKS DIV 1 (0x00000000) // 0b0000
IWDT CKS DIV 16 (0x00000002) // 0b0010
IWDT CKS DIV 32 (0x00000003) // 0b0011
IWDT CKS DIV 64 (0x00000004) // 0b0100

IWDT CKS DIV 128 (0x0000000F) // Obllll
IWDT CKS DIV 256 (0x00000005) // 0b0101

start Position*/

IWDT_WINDOW_START_25
IWDT_WINDOW_START_5O
IWDT_WINDOW_START_75

(0x00000000)
(0x00000001)
(0x00000002)

IWDT WINDOW START NO START (0x00000003)

end Position*/

IWDT WINDOW END 75
IWDT WINDOW END 50
IWDT WINDOW END 25

IWDT WINDOW END NO END

0x00000000
0x00000001
0x00000002
0x00000003

— e~ o~ —~

)
)
)
) /*0

when underflow or refresh error */

IWDT ACTION NMI
IWDT ACTION RESET

/*IWDT Stop Control*/
#define IWDTSTPCTL COUNTING CONTINUE (0x00000000)
#define IWDTSTPCTL COUNTING STOP (0x00000001)

#define BITO RESERVED
#define BIT13 RESERVED
#define BIT15 RESERVED

#define OFSO IWDT RESET MASK

/*This define is used to configure the iWDT peripheral*/

(0x00000000)
(0x00000001)

(0x00000001)
(BITO RESERVED << 13)
(BITO RESERVED << 15)

(OxFFFF0000)

/*100%*/

%

*/

#define OFSO_IWDT CFG (BIT15 RESERVED | BIT13 RESERVED | BITO RESERVED |
(IWDT CKS DIV 1 << 4) |

(IWDTSTRT ENABLED << 1) |

(IWDT WINDOW END NO END << 8)

(IWDT ACTION RESET << 12) |

(IWDT_TOP_ 1024 << 2) |
| (IWDT _WINDOW START NO START << 10)
(IWDTSTPCTL _COUNTING CONTINUE << 14))

The value OFSO_IWDT _ CFG is stored at the OFSO address at compile time, in order to configure the IWDT. In
particular, the example enables the IWDT setting a time-out period of 1024 clock cycles at IWDTCLK/1 clock
frequency, also counting during the sleep mode of the microcontroller. The example does not set any start/end of the
Watchdog window, or configure a reset in case of Watchdog expiration.

The IWDT should be initialized as soon as possible, following a reset with a call to IWDT Init:

/*Setup the Independent WDT.*/

R11ANO0O81EU0107 Rev. 1.07

Sep 27, 2018

RENESAS

Page 38 of 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

IWDT Init();

Then, the watchdog must be refreshed regularly to stop the Watchdog from timing out and performing a reset. If using
windowing, the refresh must not just be regular, but also timed to match the specified window. A Watchdog refresh is
called as follows:

/*Regularly kick the watchdog to prevent it performing a reset. */
IWDT Kick();

If the Watchdog has been configured to generate an NMI on error detection, then the user must handle the resulting
interrupt.

If the Watchdog has been configured to perform a reset on error detection, then following a reset, the code should check
if the IWDT caused the Watchdog reset by calling IWDT DidReset:

if (TRUE == IWDT DidReset())
{
/*todo: Handle a watchdog reset.*/
while (1) {
/*DO NOTHING*/

}
8.5 Define Directives for Software Configuration

No specific directive are present for IWDT management software.

8.6 Software Package Description

This section details how to identify the supplied software package and also provides a description in table format for
each design file type.

8.6.1 Identification and Contents of Package
The software package version is listed as follows:

e Revision 1.0.1
e File list.

Table 8-2 IWDT package and related MD5 signatures

File Name MD?5 Signature
iwdt.c c1ff175e73414577ebed6545d137963f
iwdt.h 136b2dd867a8551137d6ab80a85f4230

S7G2 registers.h b64c20dfea0a3d0667d8fcf86el154b2e

R11ANO0O81EU0107 Rev. 1.07 Page 39 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

8.6.2 Description of design files
Table 8-3 Design files

TableID File Name Description

1 iwdt.h This file contains the declaration of the functions:

e IWDT Init: Initializes the Independent Watchdog
Timer. After calling this, the IWDT kick function must
be called at the correct time to prevent a Watchdog
error. If configured to produce an interrupt, then this
will be the Non Maskable Interrupt (NMI). This must
be handled by user code which must check the
NMISR.IWDTST flag.

e IWDT Kick: Refreshes the watchdog count

e IWDT DidReset: Returns true if the IWDT has
timed out or not been refreshed correctly. This can
be called after a reset to decide if the Watchdog
caused the reset.

2 iwdt.c This file contains the definition of the two functions
declared in the file iwdt.h.

3 S7G2_registers.h This file contains the definitions of the needed peripheral
registers

8.7 Resources Usage
Table 8-4 provides an overview of the memory resources used by the code.

Maximum stack usage is 0 bytes.

Table 8-4 Memory resources

Module ROM RAM (bytes)
Code Data (bytes)
(bytes)

iwdt.o 124 0 0

Total (bytes) 124 0 0

Table 8-5 illustrates the execution time for the specific functions.

Table 8-5 Execution time

Function Clock cycles Time measured (us)
count at 240 MHz

IWDT Init 86 0,3

IWDT Kick 80 0,3

IWDT DidReset 96 0,4

8.8 Requirements for Safety Relevant Applications
Refer to the Safety Manual [REF.4].

9. LVD Configuration Software

9.1 Test Objectives

The Synergy S7 has a voltage detection circuit. This can be used to detect when the power supply voltage (Vcc) falls
below a specified voltage.

9.2 Test Strategy

The supplied sample code demonstrates using Voltage Detection Circuit 1 to generate an NMI interrupt when Vcc falls
below a specified level. The hardware is also capable of generating a reset, but this behavior is not supported in the
sample code.

R11AN0O081EU0107 Rev. 1.07 Page 40 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

9.3 LVD Configuration Software APIs
The function signatures are as follows:
void VoltageMonitor Init (VOLTAGE MONITOR LEVEL eVoltage)

Table 9-1 describes more details of the interface to the functions.

Table 9-1 LVD configuration software APls

TableID Function Parameter Ctype Name Description
type
1 VoltageMonitor Input VOLTAGE_ evoltage The specified low voltage
Init MONITOR level. See declaration of
LEVEL enumerated type

VOLTAGE_MONITOR_LEVE
Lin voltage.h for details.

9.4 Software Integration Rules

94.1 Code integration
To call the LVD configuration software functions, use the following steps:

1. Include voltage.h
2. Define variable for input parameter of VoltageMonitor t:
1. A eVoltage

Refer to the example in section 9.4.2, which explains how to use the diagnostic software.

9.4.2 Usage conditions

The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the
VoltageMonitor Init function. This should be setup as soon as possible following a power on reset.

Please note to set the LVD1SR.DET bit to 0 both before calling VVoltageMonitor_init function and in NMI routine, see
Section 8.2.2 of [REF.2] for further details.

Please set a voltage threshold eVoltage lower than the Vcc nominal value.
The following example sets up the voltage monitor to generate an NMI if the voltage drops below 2.99V.
VoltageMonitor Init (VOLTAGE MONITOR LEVEL 2 99);
If a low voltage condition is detected, an NMI interrupt is generated that the user must handle:

/*Low Voltage LVD1*/

if(l == R _ICU->NMISR b.LVD1ST)

{

Voltage Test Failure();

/*Clear LVD1ST bit by writing 1 to NMICLR.LVDICLR bit*/
R ICU->NMICLR b.LVDICLR = 1;
}

9.5 Define Directives for Software Configuration
No specific directives are present for LVD configuration software.

9.6 Software Package Description

This section details how to identify the supplied software package and also provides a description in table format for
each design file type.

R11AN0O081EU0107 Rev. 1.07 Page 41 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

9.6.1 Identification and Contents of Package
The software package version is listed as follows:

e Revision 1.0.1
e File list.

Table 9-2 LVD package and related MD5 signatures

File Name MD5 Signhature

S7G2_registers.h b64c20dfea0a3d0667d8fcf86el154b2e

15e89e618e92fe6f2fb89bd995a820a8

voltage.c

voltage.h 072694c1d415b5bab51acc4464dff5b8

9.6.2 Description of design files

Table 9-3 Design files

Table ID File Name Description

1 voltage.h This file contains the declaration of the functions for voltage
monitor:
o Bullet list item <table 1 unordered,tlu>

2 voltage.c This file contains the definition of the two functions declared in
the file voltage.h.

3 S7G2_registers This file contains the definitions of the needed peripheral

.h registers.
9.7 Resource Usage

Table 9-4 provides an overview of the memory resources used by the code.
Maximum stack usage is 0 bytes.

Table 9-4 Memory resources

Module ROM RAM (bytes)
Code Data (bytes)
(bytes)

voltage.o 188 0 0

Total (bytes) 188 0 0

Table 9-5 illustrates the execution time for the specific functions.

Table 9-5 Execution time

Function Clock Cycle Time measured (ps)
Count at 240 MHz
VoltageMonitor Init 30504 127

9.8 Requirements for Safety Relevant Applications
Refer to the Safety Manual [REF.4].

10. Requirements for Safety Relevant Applications
Refer to the Safety Manual [REF.4].

11. Appendix A - RAM Test Algorithms

The following algorithm descriptions are related to 1-bit word memory, but can be applied to m-bit memories (word-
oriented memory test). The extension to m-bit word is discussed in this appendix.

R11ANO081EU0107 Rev. 1.07
Sep 27, 2018

Page 42 of 51
RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

11.1 Extended March C-

A March Test consists of a finite sequence of elements called March Elements, delimited by a pair of curly brackets
R

A March Element is a finite sequence of operations applied to a cell before moving to the next one.

March Elements are delimited by a pair of rounded brackets ‘(). The next cell is defined with respect to the addressing
order, which can be, ascending (T), descending (|), or independent ({). An operation on a memory cell can be,
write 0 (w0), write 1 (wl), read and verify to have read 0 (r0), read and verify to have read 1 (r1).

Extended March C- is represented in Figure 11-1, using the preceding notation described in this section.

(¢ (w0): 1 (0.9l r1): 11 (1. 0);
U (r0.w1): ¥ (rL.w0):c (0)}

Figure 11-1: Extended March C- Algorithm.

The March C- algorithm detects address faults (AFs), stuck at faults (SAFs), transactional faults (TFs), and coupling
faults (CFs). In addition, the Extended March C- algorithm also detects stuck open faults (SOFs), and data retention
faults (DRF). Its complexity is equal to 11n, where n is the number of addressing cells of the memory.

11.2 WALPAT

The WALPAT algorithm follows the process shown below:
Write 0 in all cells;
For i=0 to n-1

{ complement cell[i];
For 3=0 to n-1, j != 1
{ read cell[j]; }

read cell[i];
complement cell[i]; }
Write 1 in all cells;
For 1i=0 to n-1

{ complement cell[i];
For 3=0 to n-1, j != 1
{ read cell[j]; }

read cell[i];
complement cell[i]; }

The algorithm allows for the detection and location of address faults (AFs), stuck-at faults (SAFs), transactional faults
(TFs), coupling faults (CFs), and sense amplifier recovery faults (SARF). Its complexity is equal to 2n2, where n is the
number of addressing cells of the memory.

11.3 Word-oriented Memory Test
m-bit memories can be dealt with by repeating each algorithm for a number of times given by:
[log, m] +1

For every iteration, wl operation writes a pattern (for instance, 00000000) and w0 operation writes the complemented
value with respect to that used for wl (11111111).

Taking into account that the code uses 32-bit word access, the algorithm is repeated 6 times, and the following 6
different patterns have to be applied:

R11AN0O081EU0107 Rev. 1.07 Page 43 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

00000000000000000000000000000000
00000000000000001111111111111111
00000000111111110000000011111111
00001111000011110000111100001111
00110011001100110011001100110011
01010101010101010101010101010101

12. Appendix B - CPU Test Example

#include "coretest.h"

uint8 t s teps=1;
uint32 t re sult=0;
uint8 t forceFai 1 = 11;

void errorHandler (void) ;

void main (void)

{
coreTestInit(); //init index
steps=36;

/* Launch the core test function in order to perform Diagnosis SW*/

coreTest (steps, forceFail, &result);

if (result !'= 1) {
errorHandler () ;
}

}

13. Appendix C — Pragmas report

Table 13-1 reports the pragmas added in the source code to disable specific checks when using the LDRA tool. Related

violations have been reviewed in details and judged as not requiring a change to the code.

Table 13-1 Pragma report

R11ANO081EU0107 Rev. 1.07
Sep 27, 2018

RENESAS

Page 44 of 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Package File Code Row Code (Pragma) LDRA MISRA Rule
Version Rule

/*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 1.01 18 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 19 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 27 D
Variable should be

RAM testRAM. c 20 declared static. */ 27D R.8.7, R.8.8

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 23 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 90 S
Basic type declaration

RAM testRAM.c 24 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 27 D
Variable should be

RAM testRAM.c 25 declared static. */ 27D R.8.7,R.8.8

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 28 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 90 S
Basic type declaration

RAM testRAM.c 29 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 30 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 33 used. */ 90S D.4.6

1.0.1 /*LDRAfINSPECTED 90 S
Basic type declaration
RAM testRAM.c 36 used. */ 90S D.4.6

1.0.1 /*LDRAfINSPECTED 90 S
Basic type declaration
RAM testRAM.c 38 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 40 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 43 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 45 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 47 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 61 used. */ 90S D.4.6

R11AN0O081EU0107 Rev. 1.07 Page 45 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Package File Code Row Code (Pragma) LDRA MISRA Rule
Version Rule

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 63 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 70 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.c 72 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.h 25 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.h 27 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 90 S
Basic type declaration

RAM testRAM.h 30 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.h 31 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S
Basic type declaration
RAM testRAM.h 32 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 90 S
Basic type declaration

ROM crc.c 21 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 90 S

Basic type declaration
ROM crc.c 24 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 90 S

Basic type declaration
ROM crc.c 79 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S

Basic type declaration
ROM crc.c 80 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 90 S

Basic type declaration
ROM crc.c 81 used. */ 90S D.4.6

1.01 /*LDRA INSPECTED 90 S

Basic type declaration
ROM crc.c 85 used. */ 90S D.4.6

1.0.1 /*LDRA INSPECTED 90 S

Basic type declaration
ROM crc.c 90 used. */ 90S D.4.6

1.0.1 R.10.1,

/*LDRA INSPECTED 93 S R.10.3,

Value is not of R.10.4,

appropriate type. R.10.5,

ROM crc.c 111 V9.5.0 */ 93S R.11.1

1.01 /*LDRA INSPECTED 90 S

Basic type declaration
ROM crc.h 21 used. */ 90S D.4.6

R11AN0O081EU0107 Rev. 1.07 Page 46 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

Package File Code Row Code (Pragma) LDRA MISRA Rule
Version Rule
1.01 /*LDRA INSPECTED 90 S
Basic type declaration
ROM crc.h 24 used. */ 90S D.4.6
1.01 /*LDRA INSPECTED 90 S
Basic type declaration
ROM crc.h 25 used. */ 90S D.4.6
1.01 /*LDRA INSPECTED 90 S
Basic type declaration
ROM crc.h 26 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 67 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 68 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 82 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 84 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 86 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 89 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 91 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 93 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 107 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 108 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 109 used. */ 90S D.4.6
1.0.2 R.10.1,
/*LDRA INSPECTED 93 S R.10.3,
Value 1is not of R.10.4,
clock monit appropriate type. R.10.5,
CAC or.c 110 vV9.5.0 */ 93S R.11.1
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 111 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 112 used. */ 90S D.4.6

R11ANO081EU0107 Rev. 1.07
Sep 27, 2018

Page 47 of 51
RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

Package File Code Row Code (Pragma) LDRA MISRA Rule
Version Rule
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 117 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 118 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 119 used. */ 90S D.4.6
1.0.2 R.10.1,
R.10.3,
/*LDRA INSPECTED 93 S R.10.4,
clock monit Value is not of R.10.5,
CAC or.c 120 appropriate type. */ 93S R.11.1
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 123 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 124 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 125 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 126 used. */ 90S D.4.6
1.0.2 /*LDRAfINSPECTED 90 S
clock monit Basic type declaration
CAC or.c 129 used. */ 90S D.4.6
1.0.2 R.10.1,
/*LDRA INSPECTED 93 S R.10.3,
Value 1is not of R.10.4,
clock monit appropriate type. R.10.5,
CAC or.c 130 V9.5.0 */ 93S R.11.1
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 131 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 132 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 138 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 139 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 140 used. */ 90S D.4.6
1.0.2 R.10.1,
/*LDRA INSPECTED 93 S R.10.3,
clock monit Value is not of R.10.4,
CAC or.c 141 appropriate type. */ 93S R.10.5,

R11ANO081EU0107 Rev. 1.07
Sep 27, 2018

Page 48 of 51
RENESAS

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

Package File Code Row Code (Pragma) LDRA MISRA Rule
Version Rule
R.11.1
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 144 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 145 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 148 used. */ 90S D.4.6
1.0.2 R.10.1,
/*LDRA INSPECTED 93 S R.10.3,
Value is not of R.10.4,
clock monit appropriate type. R.10.5,
CAC or.c 149 V9.5.0 */ 93S R.11.1
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 150 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.c 151 used. */ 90S D.4.6
1.0.2 R.10.1,
/*LDRA INSPECTED 93 S R.10.3,
Value is not of R.10.4,
clock monit appropriate type. R.10.5,
CAC or.c 177 V9.5.0 */ 93S R.11.1
R.10.1,
R.10.3,
/*LDRA INSPECTED 93 S R.10.4,
clock monit Value 1is not of R.10.5,
CAC or.c 178 appropriate type. */ 93S R.11.1
1.0.2 R.10.1,
/*LDRA INSPECTED 93 S R.10.3,
Value 1is not of R.10.4,
clock monit appropriate type. R.10.5,
CAC or.c 180 V9.5.0 */ 93S R.11.1
R.10.1,
R.10.3,
/*LDRA INSPECTED 93 S R.10.4,
clock monit Value 1is not of R.10.5,
CAC or.c 181 appropriate type. */ 93S R.11.1
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.h 58 used. */ 90S D.4.6
1.0.2 /*LDRA INSPECTED 90 S
clock monit Basic type declaration
CAC or.h 59 used. */ 90S D.4.6

R11ANO0O81EU0107 Rev. 1.07

Sep 27, 2018 RENESAS

Page 49 of 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

14. Document References

[REF.1] Cortex-M4 Devices — Generic User Guide, first release, 16/12/2010.

[REF.2] Synergy S7 User’s Manual: Hardware, Rev. 1.30, January 2018 (Document Reference RO1IUMO001EU0130).

[REF.3] IAR C/C++ Development Guide Compiling and linking for Advanced RISC Machines Ltd’s ARM Cores,
Fifteenth edition, March 2015.

[REF.4] Safety Manual, ID=SAF_005_PIA003_S7.

R11AN0O081EU0107 Rev. 1.07 Page 50 of 51
Sep 27, 2018 RENESAS

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

Website and Support
Support: https://synergygallery.renesas.com/support

Technical Contact Details:

e America: https://renesas.zendesk.com/anonymous_requests/new
e Europe: https://www.renesas.com/en-eu/support/contact.html
e Japan: https://www.renesas.com/ja-jp/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.

R11AN0O081EU0107 Rev. 1.07 Page 51 of 51
Sep 27, 2018 RENESAS

https://synergygallery.renesas.com/support
https://renesas.zendesk.com/anonymous_requests/new
https://www.renesas.com/en-eu/support/contact.html
https://www.renesas.com/ja-jp/support/contact.html

Revision History

Description
Rev. Date Page Summary
1.00 Feb 7, 2017 - Initial version
1.01 Feb 17, 2017 §4.4.1 Inserted clarification in “Reserving and placing the buffer”
section.
§8.4.2 Inserted an additional note on setting of “eVoltage” value.
1.02 Feb 23, 2017 §8.4.2 Inserted an additional note on LVD usage for LVD1SR
register
1.03 Mar 02, 2017 §2.1 Updated C type implementation assumption
1.04 Mar 09, 2017 §3.5.1 Updated CPU latest release and MD5s.
83.6 Updated resource usage to align to “1.0.1”.
1.05 March 2018 85.7 Updated memory resources used by the code crc.o
84.4.1 Inserted usage condition to reserve buffer area for RAM
non destructive tests.
815 Updated reference document for the User’s Manual
1.06 July 17, 2018 References Removed revision information from documentation
3.6,4.7,7.7,8.7 Corrected Resources usage
1.07 Sep 27, 2018 All Updated the functional safety version of the IAR
Embedded Workbench.
- Removed “ADC12 Comparator Software” and TSN
“Management Software” chapters.
- Updated latest release and MD5s of
CPU,RAM,ROM,CAC,IWDT and LVD tests.
All Replaced “S7G2” Synergy name with “S7”.

10.

11.

12.

13.

Notes regarding these materials

This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of Renesas or any third party with respect to the information in
this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.
All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.
When using or otherwise relying on the information in this document, you should evaluate the information in
light of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.
With the exception of products specified by Renesas as suitable for automobile applications, Renesas
products are not designed, manufactured or tested for applications or otherwise in systems the failure or
malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
especially high quality and reliability such as safety systems, or equipment or systems for transportation and
traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
transmission. If you are considering the use of our products for such purposes, please contact a Renesas
sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(1) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
You should use the products described herein within the range specified by Renesas, especially with respect
to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.
Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other applicable measures. Among others, since the
evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
system manufactured by you.
In case Renesas products listed in this document are detached from the products to which the Renesas
products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
high. You should implement safety measures so that Renesas products may not be easily detached from your
products. Renesas shall have no liability for damages arising out of such detachment.
This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.
Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

