
 Application Note

R11AN0081EU0107 Rev. 1.07 Page 1 of 51

Sep 27, 2018

Renesas Synergy™ Platform

S7 Series MCU Diagnostic Software User Guide

Introduction

IEC 61508 is an international standard governing a range of electrical, electromechanical, and electronic safety related

systems. It defines the requirements needed to ensure that systems are designed, implemented, operated, and maintained

at the required Safety Integrity Level (SIL). Four SIL levels have been defined to indicate the risks involved in any

particular system, with SIL4 being the highest risk level.

At the heart of the majority of safety related systems nowadays is a sophisticated and often highly integrated

Microcontroller (MCU). An integral part of meeting the requirements of IEC61508 is the ability to verify the correct

operation of the critical areas of the MCU.

The Renesas Diagnostics Software is designed for use with the Synergy S7 Microcontroller Family. Tests are provided

for coverage of the following critical areas of MCU operation: the Central Processing Unit (CPU), embedded flash

ROM memory, embedded RAM memory, the main clock structure (main clock oscillator, PLL, MUX generating ICLK),

and Vcc power supply

The code was developed using the functional safety version 8.23.17132 of the IAR Embedded Workbench for ARM,

which is certified by the TÜV SÜD certification body, and in accordance with IEC61508:2010 for use in safety related

applications up to SIL3 level. This is also the systematic capability for the Renesas Diagnostics Software described in

this document.

Note: In the code, some pragmas have been added in the form of comments, for example, “/*LDRA_INSPECTED

90 S Basic type declaration used. */”, which have been used to mark code lines flagged to

potentially violate a specific MISRA rule, but judged as safe. See Appendix C – Pragmas report for details of

the pragmas inserted.

Target Device

Synergy S7 Series MCU

Contents

1. Common Terminology ... 5

1.1 Acronyms ... 5

2. Compiler Environment ... 5

2.1 C Type Implementation ... 5

2.2 IAR Environment Settings ... 5

3. CPU Software Test .. 6

3.1 Test Objectives .. 6

3.2 Software Structure ... 6

3.2.1 API and CPU Test Environment .. 8

3.3 Software Integration Rules .. 10

3.3.1 Code Integration .. 10

3.3.2 Compiler Warnings .. 11

3.3.3 Usage Conditions .. 12

3.4 Define Directives for Software Configuration .. 12

3.5 Software Package Description .. 12

3.5.1 Identification and Contents of Package ... 12

R11AN0081EU0107
Rev. 1.07

Sep 27, 2018

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 2 of 51

Sep 27, 2018

3.5.2 Description of design files ... 14

3.6 Resources Usage .. 15

3.7 Requirements for Safety Relevant Applications .. 17

3.8 Diagnostic Fault Coverage and Watch Dog Usage ... 17

4. RAM Software Test.. 17

4.1 Test Objectives .. 17

4.2 Test Strategy ... 18

4.3 API and RAM Test Environment ... 19

4.4 Software Integration Rules .. 20

4.4.1 Code integration .. 20

4.4.2 Usage Conditions .. 23

4.5 Define Directives for Software Configuration .. 23

4.6 Software Package Description .. 24

4.6.1 Identification and Contents of Package ... 24

4.6.2 Description of design files ... 24

4.7 Resources Usage .. 25

4.8 Requirements for Safety Relevant Applications .. 25

5. ROM Software Test ... 25

5.1 Test Objectives .. 25

5.2 Test Strategy ... 25

5.2.1 Checksum Generation using the IAR linker .. 26

5.2.2 MCU CRC Peripheral .. 26

5.3 Top Level Software Structure .. 26

5.3.1 ROM Test APIs.. 26

5.3.2 Incremental mode calculation .. 27

5.4 Software Integration Rules .. 28

5.4.1 Code integration .. 28

5.4.2 Test flow and test result check .. 28

5.4.3 Usage Conditions .. 30

5.5 Checksum Generation Using IAR Tools.. 30

5.5.1 Example Checksum Generation with IAR Tools ... 30

5.6 Software Package Description .. 31

5.6.1 Identification and contents of package .. 31

6.1.1 Description of Design Files .. 32

6.2 Resources Usage .. 32

6.3 Requirements for Safety Relevant Applications .. 32

7. CAC Configuration Software .. 33

7.1 Test Objectives .. 33

7.2 Test Strategy ... 33

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 3 of 51

Sep 27, 2018

7.3 CAC Configuration Software API .. 34

7.4 Software Integration Rules .. 34

7.4.1 Code integration .. 35

7.4.2 Usage Conditions .. 35

7.5 Define Directives for Software Configuration .. 36

7.6 Software Package Description .. 36

7.6.1 Identification and Contents of Package ... 36

7.6.2 Description of Design Files .. 36

7.7 Resource Usage .. 36

7.8 Requirements for Safety Relevant Applications .. 37

8. IWDT Management Software ... 37

8.1 Test Objectives .. 37

8.2 Test Strategy ... 37

8.3 IWDT Management Software APIs ... 37

8.4 Software Integration Rules .. 37

8.4.1 Code integration .. 37

8.4.2 Usage conditions ... 37

8.5 Define Directives for Software Configuration .. 39

8.6 Software Package Description .. 39

8.6.1 Identification and Contents of Package ... 39

8.6.2 Description of design files ... 40

8.7 Resources Usage .. 40

8.8 Requirements for Safety Relevant Applications .. 40

9. LVD Configuration Software .. 40

9.1 Test Objectives .. 40

9.2 Test Strategy ... 40

9.3 LVD Configuration Software APIs ... 41

9.4 Software Integration Rules .. 41

9.4.1 Code integration .. 41

9.4.2 Usage conditions ... 41

9.5 Define Directives for Software Configuration .. 41

9.6 Software Package Description .. 41

9.6.1 Identification and Contents of Package ... 42

9.6.2 Description of design files ... 42

9.7 Resource Usage .. 42

9.8 Requirements for Safety Relevant Applications .. 42

10. Requirements for Safety Relevant Applications ... 42

11. Appendix A - RAM Test Algorithms .. 42

11.1 Extended March C-.. 43

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 4 of 51

Sep 27, 2018

11.2 WALPAT .. 43

11.3 Word-oriented Memory Test .. 43

12. Appendix B - CPU Test Example ... 44

13. Appendix C – Pragmas report .. 44

14. Document References ... 50

Website and Support .. 51

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 5 of 51

Sep 27, 2018

1. Common Terminology

This section defines some common terms and acronyms used throughout the document and provides references to other

relevant Renesas documentation.

1.1 Acronyms

Table 1-1 Terminology and acronyms

Acronym Description

CRC Cyclic Redundancy Check

LUT Look Up Table

TS Test Segment

TS_ID Test Segment Identifier

WD Watch Dog

2. Compiler Environment

The diagnostic software code was developed using the functional safety version 8.23.1.17132 IAR Embedded

Workbench for ARM, certified by the TÜV SÜD certification body, for use in safety related applications up to level

SIL3.

2.1 C Type Implementation

Integer C variables are assumed to be 32-bit implemented. Please, make sure that int type is represented in 32-bit format

in the target environment.

2.2 IAR Environment Settings

The IAR environment should be set up as specified in Table 2-1.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 6 of 51

Sep 27, 2018

Table 2-1 IAR project options

Table ID Category Sub-category Setting description Comment

1 General

options

Target • Device := Renesas

R7FS7G27H

• Floating-point, Size of

type ‘double’ := 32bits

• Subnormal numbers :=

Treat as zero

• Int, Size of type ‘int‘ :=

32bits

• Data model := Far

2 General

options

Library

configuration
• Library := Normal DLIB

3 General

options

Stack/Heap • Privileged mode stack

size := 0x1000

Consider this

setting to be

typical. The stack

size has to be

greater than the

one specified in the

Resources Usage

section.

4 C/C++

Compiler

Language1 • Language := C

• C dialect := C99

• Language

conformance :=

Standard with IAR

extensions

5 C/C++

Compiler

Language2 • Floating-point

semantics := Strict

conformance

6 C/C++

Compiler

Code • Align functions := 1 no

alignment

7 C/C++

Compiler

Optimizations • Level := None

8 Assembler Language • User symbols are case

sensitive

13 Linker Library • Automatic runtime

library selection

14 Linker Others sub-

category

For RAM test specific testing see Section 4

For ROM test specific testing See section 5.

15 Build actions For RAM test specific testing see section 4

For ROM test specific testing see section 5.

3. CPU Software Test

3.1 Test Objectives

The objective of the CPU software test is to verify the correct functionality of the CPU by adopting a predominantly

instruction based diagnosis, with the aim of detecting permanent hardware failures of the CPU core.

All instructions, with the exceptions of BKPT, SEV, WFE, WFI, and DMB, are used in the CPU core testing scheme.

See reference document [REF.1] for the complete list of instructions. The primary aim is not to test individual

instructions, but to detect a hardware failure of the CPU core.

3.2 Software Structure

The software structure provides two different levels of functions calls:

A. The first level is the user interface function named coreTest.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 7 of 51

Sep 27, 2018

B. The second, lower level functions are named testSegment that are called by coreTest.

The testSegment functions execute the actual diagnostic of the core, while the coreTest allows the user to select

and run one or more of the testSegment functions in sequence and to collect the diagnostic results.

Up to 20 testSegment functions are available, from testSegment0 to testSegment19. Table 3-1 provides an

overview of the testSegment functions.

Two types of testSegment functions are defined as follows:

• testSegment of type “Fixed”:

 Operand data necessary to stimulate the core and run these functions is embedded in the code.

• testSegment of type “LUT”:

 These functions can be called with different operand data taken from a Look Up Table.

Table 3-1 Test segment overview

TS_ID Function Name Objective of the Test Test Segment Type

TS00 testSegment00 Testing of Jump instructions (using control flow) Fixed

TS01 testSegment01 Logical instructions as AND, EOR, NOT, BIC Fixed

TS02 testSegment02 Bit-level manipulation and test instructions as

REVERSE, TEQ

Fixed

TS03 testSegment03 Floating point multiply instructions LUT

TS04 testSegment04 Floating point addition/subtractions instructions plus

additional floating points conversion instructions as

VCVT and VCVTB

LUT

TS05 testSegment05 Floating point division instructions plus additional

floating point instruction as VABS, VNEG and VCVT

LUT

TS06 testSegment06 Saturating instructions plus additional floating points

conversion instructions as VCVT

Fixed

TS07 testSegment07 CPU Control Registers Fixed

TS08 testSegment08 Integer multiply instructions using LUT data with

MULS. (32bit results)

LUT

TS09 testSegment09 Divide instructions LUT

TS10 testSegment10 Load and store using GPR only Fixed

TS11 testSegment11 Floating point normalize and denormalized tests Fixed

TS12 testSegment12 Load and store using floating point data registers

plus floating point read port 0 and 1 tests

Fixed

TS13 testSegment13 Integer multiply using LUT data with UMUL and

SMUL instruction. (64bit result)

LUT

TS14 testSegment14 FPU control register plus FPU extension registers

and VSUB and conversion instruction

Fixed

TS15 testSegment15 Shift and rotate instructions Fixed

TS16 testSegment16 Integer addition and subtract instructions LUT

TS17 testSegment17 Bit field instructions plus internal core register tests Fixed

TS18 testSegment18 Packing and unpacking instructions Fixed

TS19 testSegment19 Floating point square root plus internal core register

tests

LUT

Table 3-2 reports the association of the execution progress versus the testSegment to be executed, and the related

data set for LUT testSegment.

The execution order of the Test Segments (TSs) follows the order defined in Table 3-2 and the coreTestInit

function is used to initialize the sequence.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 8 of 51

Sep 27, 2018

The concept is to allow the user to select the number of steps to be performed by the coreTest function, so that the

user can control the execution progress of the CPU core test. If the user has specific execution time constraints, the user

can decide how many steps execute for the execution time constraints to be fulfilled.

Table 3-2 Association of execution steps with respect to testSegment

Execution progress Test Segment Dataset (if applicable)

0 testSegment00 NA

1 testSegment01 NA

2 testSegment02 NA

3 testSegment03 Float32_MUL_set0

4 testSegment04 Float32_ADD_set0

5 testSegment05 Float32_DIV_set0

6 testSegment06 NA

7 testSegment07 NA

8 testSegment08 Int32_MUL_set0

9 testSegment09 Int32_DIV_set0

10 testSegment10 NA

11 testSegment11 NA

12 testSegment12 NA

13 testSegment13 Int32_UMUL_set0

14 testSegment14 NA

15 testSegment15 NA

16 testSegment16 Int32_ADD_set0

17 testSegment17 NA

18 testSegment18 NA

19 testSegment19 Float32_SQRT_set0

20 testSegment08 Int32_MUL_set1

21 testSegment08 Int32_MUL_set2

22 testSegment09 Int32_DIV_set1

23 testSegment09 Int32_DIV_set2

24 testSegment16 Int32_ADD_set1

25 testSegment16 Int32_ADD_set2

26 testSegment03 Int32_MUL_set0

27 testSegment03 Int32_MUL_set1

28 testSegment03 Int32_MUL_set2

29 testSegment04 Int32_ADD_set0

30 testSegment04 Int32_ADD_set1

31 testSegment04 Int32_ADD_set2

3.2.1 API and CPU Test Environment

All the testSegment functions are called through a main interface function named coreTest.

The coreTest function signature is defined as follows:

void coreTest(uint8_t steps, const uint8_t forceFail, uint32_t *result);

Table 3-3 describes the input and output of each function in more detail.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 9 of 51

Sep 27, 2018

Using the forceFail input makes it possible to force the function to fail, that is, to return an error value. This type of

software fault injection feature allows for testing of higher level fault handling mechanisms, specified at the application

level.

Table 3-3 coreTest interface

Table ID Parameter type C type Name Description

1 Input unsigned int 8

bit

steps Specifies how many execution progresses

have to be executed.

Each execution of a LUT TS with a specific

dataset counts for 1 step (see Table 3-2 for

details on the association of testSegment

to execution progress). Valid range of steps

parameter is: 0 < steps <

TOT_TESTSEGMENTS, where

TOT_TESTSEGMENTS is the maximum

number of execution progresses that could

be performed in one run.

2 Input const unsigned

int 8 bit

forceFail When set to 0, forces the function to fail,

generating a failure signature that is the

inverted value of the correct expected

signature.

All other values do not have any effect on the

function behaviour.

3 Output *unsigned int

32 bit

result Global pass/fail result of all executed TSs:

• 0 if at least one executed testSegment

failed

• 1 if all executed testSegments passed

• 2 if steps input parameter is out-of-range

(see Table 3-2 for the valid range

information).

In order to correctly use coreTest function, two other functions, coreTestInit and getcoreTestStatus are

provided.

The first one is the initialization function, written in C programming language, whose signature is defined as follows:

void coreTestInit(void)

The function has no input or output parameters, since it just initializes the different data structures needed for the

correct execution of coreTest. In particular, it resets the pointer to the next execution progress to be executed. As a

consequence, after coreTestInit is called, the next TS to be executed will be the testSegment00 (see Table

3-2).

The second function offers to the user the possibility to get the next execution progress, which will be executed in the

next call of coreTest function.

The function is written in C programming language and its signature is defined as follows:

uint8_t getcoreTestStatus(void).

Table 3-4 describes the output of the function in more detail.

Table 3-4 getcoreTestStatus interface

Table ID Parameter type C type Name Description

1 Output *unsigned int 8 bit N/A Indicates the next execution step to be

executed

testSegments functions are implemented using ARM Cortex-M4 assembly code, with a C code interface.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 10 of 51

Sep 27, 2018

Note that the need for a hardware low level control makes the use of an assembler necessary, for instance, when calling

specific assembly instructions with specific parameters.

Since it is possible to have two types of testSegments (Fixed or LUT), we have the following two types of function

signatures:

1. Fixed

 void testSegmenty (const uint8_t forceFail, uint32_t *result) with y=00,

01, 02, 06, 07, 10, 11, 12, 14, 15, 17, 18.

2. LUT

 void testSegmentx (const uint8_t forceFail, uint32_t *result, const

uint32_t *StartDataSet, const uint32_t GoldSign) with x= 03, 04, 05, 08,

09, 13, 16, 19.

Table 3-5 describes input and output of the functions in more detail.

Table 3-5 testSegment interface

Table

ID

testSegment

type

Parameter

type

C type Name Description

1 LUT or Fixed input const unsigned int 8 bit forceFail When set to 0, forces

the TS to fail,

generating a failure

signature that is a non-

inverted value of the

proper signature.

All other values do not

have any effect on the

function behavior.

2 LUT input const unsigned int 32 bit * StartData

Set

Start address of the

Look Up Table for the

selected dataset

3 LUT or Fixed output const unsigned int 32 bit GoldSign Result of signature

value

4 LUT or Fixed output unsigned int 32 bit * result Pass/fail result of TS

execution

• 0 if TS failed

• 1 if TS passed.

3.3 Software Integration Rules

This section provides guidelines for how to integrate the CPU test software within the user project.

3.3.1 Code Integration

Environment for coreTest call

To call the coreTest function:

1. Include coreTest.h.

2. Create a variable to hold the result of the test as uint32_t result. The address of the variable is then passed to

coreTest function (see the following example).

3. Define input variables to pass to coreTest:

A. uint8_t steps.

B. uint8_t forceFail.

C. uint32_t *result.

Example

#include "coreTest.h"

uint8_t steps=1;

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 11 of 51

Sep 27, 2018

uint32_t result=0;

uint8_t forceFail = 11;

void main

{

coreTestInit(); //init index

/* Launch the core test function in order to perform Diagnosis SW*/

coreTest(steps, forceFail, &result);

if(result != 1) {

 errorHandler(); /*Fault handling*/

}

After the coreTest function returns, fault detection can be done by checking the result output value, as shown in the

example above.

A complete example of the coreTest function, which calls all testSegment is provided in Appendix B - CPU

Test Example.

3.3.2 Compiler Warnings

In Test Segment 17, two warnings are raised by the compiler at rows 278 and 286. They are related to the utilization of

the stack pointer as the source register. The warnings come from the fact that the SP cannot assume an apriori well

known value, since it strongly depends on the application. Therefore, its utilization could lead to unpredictable behavior.

However, this is not the case in this software, because, only the offset of the SP between two pre-defined assembly

instruction blocks is used (accumulated in the signature). Since the offset value is fixed (this part of the code is critical,

and exceptions are disabled in it), the software behavior is completely predictable.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 12 of 51

Sep 27, 2018

3.3.3 Usage Conditions

The usage conditions are summarized in Table 3-6.

Table 3-6 Usage Conditions

ID Topic Constraint Description

1 Interrupt Avoid corruption of

function context

When interrupting the diagnostic software, the context of all

general purpose registers, system register, including APSR and

FPSCR, have to be saved and restored after returning from

interrupt handling.

See reference document [REF.1] for the CPU register definitions.

2 CPU mode Correct execution of

the software

Launch diagnostic software in privileged mode

3 Stack Correct execution of

the software

Use the main stack pointer as stack pointer for the function call

4 Environment Avoid corruption of

software flow by

corruption of a control

flow variable

Do not write to the testExcp variable

5 Diagnostic

coverage

Execute all the

coreTest steps

during application

software execution

If a subset of coreTest steps are executed from the CPU test,

the overall diagnostic coverage of the CPU test is lower than the

value achieved with the full CPU test

6 Interrupt Avoid corruption of

function context

The following condition applies if there is an Interrupt Service

Routine making use of floating point instructions.

Inside the application code, isolate in a critical section with

interrupt disabled, the part of the code making use of floating

point instructions.

3.4 Define Directives for Software Configuration

No specific define directives are needed.

3.5 Software Package Description

This section details how to identify the supplied software package, and also provides a description in a table format for

each design file type.

3.5.1 Identification and Contents of Package

The software package version is:

• Revision 1.0.3

• File list.

Table 3-7 CPU Software Test Package and related MD5 signatures

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 13 of 51

Sep 27, 2018

File Name MD5 Signature

closeTest.asm 1ceb60324c1b5653eddf9a0d25ef7732

coreTest.c 7b9bfb92fcf1b4d47c7ef21881e4bcc2

coreTest.h 647410b11f8c049c0a3c70341c75041f

globVar.h 61ebb216e6f98dc08c0fcbf906415b1e

initTest.asm d72749c9df087a65ecab81f1339cc0af

testSegment00.asm 301aa75e0285956f86aa410336dbeb19

testSegment00.h 557784953af6d2b43298ba6e5e45fcc0

testSegment01.asm 4d67ea08005e8286be2030411cfb3e04

testSegment01.h bd7f3370e24ff175e433e10d25d1df1d

testSegment02.asm ff4dda0f01b651ccab65e47bd4a559a6

testSegment02.h 27d1a1efd77de1f3a5eca69ba2fcd943

testSegment03.asm ee6fc066ca1c3bd8e46ba2c01e549474

testSegment03.h b296d52facc6efc77fa21cf3ff8119f8

testSegment04.asm 5699c6d06fee35740b667e06de127ba0

testSegment04.h 7b82f6dd015b353bcb8b4e588aa2d32f

testSegment05.asm 57e2b5f11f330cc665ce9e726400aad5

testSegment05.h e42445714f84d31fb8d4b514e4aa6261

testSegment06.asm 5f9466182f4a9584b287a7034b043b03

testSegment06.h 8ae790aa4e0683cc4cd669f619c4bb16

testSegment07.asm 8452bbb8cb22922495ca13dc4a24b06a

testSegment07.h c5f204de84871bf84f5e9b89ddf49756

testSegment08.asm a7e31d2abe88c211b48f012561d1585d

testSegment08.h 92604b9629d916e5f799629064e7a403

testSegment09.asm ea87df5e3c11901354ccc608d215e1c8

testSegment09.h 853ee64ad838c6b0113ef765bc0a6834

testSegment10.asm 12580630c8f898575f7f4e7e7aeb0b9c

testSegment10.h 26a3caeda6473948dd4dccf700f7dc48

testSegment11.asm c76a0b533e3ec1235106984ada374594

testSegment11.h 76525ecf711e921ab1aca21b0ba4a342

testSegment12.asm 8be38b28576b57b6db2f82ef7ff815a4

testSegment12.h 114f3bc90f5aefb4f7ae0d49201ce1e5

testSegment13.asm e2fef8bf9cedbdf5ec40672aaea7df40

testSegment13.h ebb9f7b5cfb596d6273235f4da271750

testSegment14.asm 1c3b02acef9a169bb9e1d79cd934e3d4

testSegment14.h b0fe14f8fb2b794133c5fc4ce1d81a39

testSegment15.asm 383d4795095c07580ea12c10866961ea

testSegment15.h 9c0c62fec8cdc65372f0a45df62e009b

testSegment16.asm 0db83e3d411022658d012372c05b5369

testSegment16.h 1cdade74f94167841af65c2a96e1fbff

testSegment17.asm 58b2c69f33c4ef4aa78c139c03db1861

testSegment17.h 767a83085c8bfafa2ccfb65f7f448e48

testSegment18.asm bd9f2f611659ab925a1e6f06a89bb0f5

testSegment18.h 7cdd0ed12725d2cf54623468629a54f0

testSegment19.asm df47f17dfe4bda9dfbf20c61830f1e89

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 14 of 51

Sep 27, 2018

testSegment19.h e0370a39dc267c37ccf1a0e58546d63c

testSegmentMgm.c 5e2072e0901c82b6fe5c0e856f1267ec

testSegmentMgm.h b26103e3c01e14593793d28e93de1e2d

3.5.2 Description of design files

Table 3-8 Design files

Table ID File Name Description

1 globVar.h This file contains the compile option definitions, through which it is

possible to select which TSs have to be included in the software. This

file also contains the definition of the LUT, signature vector sizes, and

other constants.

3 coreTest.h This file contains the API of the diagnostic software. In particular, it

contains the coreTest function declaration to be called by the

application software.

4 coreTest.c This file contains the definition of coreTest function

 testSegmentMgm.h This file contains the API of the TS execution progress management.

In particular, it contains the testSegmentMgm function declaration to

be called by the coreTest function.

 testSegmentMgm.c This file contains the definition of testSegmentMgm function

5 testSegmentxx.h

with xx=0,..,19

This file contains the declaration of the testSegment functions

7 testSegmentxx.as

m with

xx=0,..,19

This file contains the assembler definition of the testSegment

function

8 initTest.asm This file contains the TS signature accumulation register initialization

9 closTest.asm This file finalize the TS and state whether it is passed or not

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 15 of 51

Sep 27, 2018

3.6 Resources Usage

Resources related to the main file should not be part of the coreTest function, and should not be included.

The maximum stack usage is 212 bytes.

Note: No dynamic memory allocation is implemented.

Table 3-9 provides an overview of the memory resources used by the code.

Table 3-9 Memory resources

Module ROM RAM

Code

(bytes)

Data (bytes) rw data (bytes)

coreTest.o 960 6704 0

testSegmentMgm.o 36 0 1

initTest.o 278 0 0

closeTest.o 28 0 0

testSegment00.o 1044 9 0

testSegment01.o 1962 0 0

testSegment02.o 844 0 0

testSegment03.o 2120 0 0

testSegment04.o 1838 0 0

testSegment05.o 1656 0 0

testSegment06.o 1908 0 0

testSegment07.o 604 0 0

testSegment08.o 2398 0 0

testSegment09.o 188 0 0

testSegment10.o 1340 0 0

testSegment11.o 2136 0 0

testSegment12.o 6320 0 0

testSegment13.o 976 0 0

testSegment14.o 2056 0 0

testSegment15.o 1642 0 0

testSegment16.o 3908 0 0

testSegment17.o 9254 0 0

testSegment18.o 1266 0 0

testSegment19.o 1578 0 0

Total (bytes) 46340 6713 1

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 16 of 51

Sep 27, 2018

Table 3-10 details the execution time for each testSegment for all valid values of dataSet. Interrupt disable time

is also reported when applicable.

Table 3-10 Execution time

testSegment dataSet Execution

time

[clock

cycles]

Execution

time with 240

MHz clock

[μs]

Maximum

interrupt

Disable Time

[clock cycles]

Maximum

interrupt

Disable Time

with 240 MHz

clock [μs]

testSegment00 686 2,86 0 0

testSegment01 816 3,4 0 0

testSegment02 528 2,2 0 0

testSegment03 Float32_MUL_set0 2630 11,0 49 0,204

testSegment03 Int32_MUL_set0 2604 10,9 49 0,204

testSegment03 Int32_MUL_set1 2610 10,9 49 0,204

testSegment03 Int32_MUL_set2 2522 10,5 49 0,204

testSegment04 Float32_ADD_set0 4508 18,8 48 0,2

testSegment04 Int32_ADD_set0 2106 8,78 48 0,2

testSegment04 Int32_ADD_set1 2106 8,78 48 0,2

testSegment04 Int32_ADD_set2 2112 8,80 48 0,2

testSegment05 Float32_DIV_set0 2640 11 62 0,258

testSegment06 794 3,31 35 0,146

testSegment07 514 2,14 23 0,096

testSegment08 Int32_MUL_set0 1706 7,11 0 0

testSegment08 Int32_MUL_set1 1736 7,23 0 0

testSegment08 Int32_MUL_set2 1682 7,01 0 0

testSegment09 Int32_DIV_set0 1394 5,81 0 0

testSegment09 Int32_DIV_set1 1096 4,57 0 0

testSegment09 Int32_DIV_set2 1230 5,13 0 0

testSegment10 822 3,43 0 0

testSegment11 1086 4,52 52 0,216

testSegment12 4250 17,7 56 0,233

testSegment13 Int32_UMUL_set0 1494 6,23 0 0

testSegment14 1016 4,23 43

testSegment15 752 3,13 0 0

testSegment16 Int32_ADD_set0 2296 9,57 0 0

testSegment16 Int32_ADD_set1 2316 9,65 0 0

testSegment16 Int32_ADD_set2 2074 8,64 0 0

testSegment17 3020 12,6 27 0,112

testSegment18 652 2,72 0 0

testSegment19

Float32_SQRT_set0

3556

14,8

46 0,191

Total 59354 247,45 732 3,04

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 17 of 51

Sep 27, 2018

3.7 Requirements for Safety Relevant Applications

Table 3-11 lists requirements for usage in safety relevant applications.

Table 3-11 Safety relevant requirements

ID Topic Sub-topic Description

SW_1 SW

integration

Function return On the return of coreTest, evaluate the correctness of the

execution by checking the value of the “result”

SW_2 SW

integration

Function call When calling the coreTest function more than once, take care to

use different variables to store the outcome of the function,

specifically the test result. In case the same variable is used,

consider initializing it to zero before executing subsequent runs of

the function.

SW_3 SW

integration

Function

environment

Before calling coreTest, initialize to 0 the variable used by the

function to return the result value.

PR_1 Project

management

User expertise The user has to have good expertise in embedded programming

on the target MCU HW Synergy S7 series. Expertise on assembly

programming and C level/assembly interface is needed.

3.8 Diagnostic Fault Coverage and Watch Dog Usage

The diagnostic coverage provided by the CPU software test considers that all testSegments of type Fixed are

launched together with all testSegments of type LUT, each one called with all the supported values of the

parameter dataSet, as detailed in Table 3-2.

In addition, the coverage considers the contribution of a Watchdog. The use of the CPU software test should be

integrated with the use of a Watchdog. Table 3-12 outlines the recommendations for its usage.

A Watchdog needs to be integrated due to the fact that some hardware faults prevent following the control flow of the

software and, in such conditions, the presence of a Watchdog effectively detects such deviations.

Also, the CPU software test embeds some control flow mechanisms which are required to trigger the activation of such

faults. However, as stated above, the fault detection needs the presence of a Watchdog.

Table 3-12 Recommendations on Watchdog usage

ID Topic Description Comment

1 WD

refresh

Consider a control flow monitoring for the WD refresh

function. The refresh is done only if the control flow

mechanism, for example, proper value of the global

variable, is not respected.

2 WD

refresh

Consider the following strategy:

Activate the WD refresh only if all the main tasks of the

application software that have a predictable and periodic

timing schedule are called in the proper order.

4. RAM Software Test

4.1 Test Objectives

The objective of the RAM software test is to verify the embedded RAM memory of the MCU.

The main features of the software tests are as follows:

1. Whole memory check including stack(s).

 Memory size programmable at compile time.

2. Block-wise implementation of the test.

 Size of the block programmable at compile time.

3. Two test algorithm support

 Extended March C-

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 18 of 51

Sep 27, 2018

 WALPAT.

4. Word-wise implementation of the test algorithms, where the elementary cell under test is considered to be of 32-bit

width.

5. Support for destructive and non-destructive memory testing.

Information regarding test algorithms is provided in Appendix B - CPU Test Example.

4.2 Test Strategy

The scope of the RAM software test is to provide coverage across the whole embedded RAM, adopting a block-wise

strategy.

The memory size and the block size are parameters that the user can select based on the device and its

application needs, described as follows:

• MUTSize

This is the size of the memory under test, expressed in number of double words.

• BUTSize

This is the size of the block under test, in terms of number of double words.

• numberOfBUT

This is the number of blocks in to which the memory is divided.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Block number

(numberOfBUT-1)

Block number 1

Block number 0

Block number x

(BUTSize*4) bytes

resultTestRam1

resultTestRam2

(MUTSize*4) bytes

Block number y

Figure 4-1: RAM block division.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 19 of 51

Sep 27, 2018

Figure 4-1shows how the memory is divided into a number of blocks equal to numberOfBUT.

Each block is then identified with an index ranging from 0 to (numberOfBUT – 1).

Each block can be tested in a destructive or non-destructive manner.

In order to support non-destructive testing, one block of the RAM is used as a buffer to store the content of the block

under test. The buffer can be tested as well and this can be done with a destructive strategy before testing the other

blocks.

A memory reserved area has to be defined for the buffer in order to preserve the integrity of the application software

after running the test.

To do this:

1. Define the start address of the buffer.

This can be done by assigning the label addressBuffer inside the file testRAM.inc. See section 4.4 for a

usage example.

2. Define IAR linker commands to reserve the memory buffer locations.

Example of linker commands are provided in see section 4.4.

The code stores the result of the test in two unused RAM locations accessible from the application software by using

two variables: resultTestRam1 and resultTestRam2 (see Figure 4-1).

The result variables are located at fixed absolute addresses, and they have to be placed into two different blocks.

This strategy has been selected to avoid not detecting a faulty block because the result itself is stored in the same faulty

block.

Note: These two variables are initialized each time the RAM test function is called, and the user needs to check their

values only after having called the RAM test function.

Allowing two copies of the test result to be stored into two different blocks makes fault detection possible because at

least one variable is not stored inside a faulty block.

The location of the result variables can be fixed inside testRAM.h.

The application level user then has to check the values of the result variable after the test is completed.

Coding of the test result is as follows:

1. resultTestRam1= resultTestRam2=1 implies the test is passed.

2. any other combinations means the test failed.

An example of a test result check, in addition to definition of addresses for the result variables, is provided in section

4.4.

4.3 API and RAM Test Environment

A RAM block test is called through a main interface function, testRAM. The testRAM function signature is defined

as follows:

void testRAM(unsigned int index, unsigned int selectAlgorithm, unsigned int

destructive)

testRAM interface in Table 4-1 describes the function interface in more detail.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 20 of 51

Sep 27, 2018

Table 4-1 testRAM interface

Table ID Parameter

type

C type Name Description

1 Input unsigned int index Specify the RAM block under test,

from 0 to numberOfBUT-1

2 Input unsigned int selectAlgorithm Specify the algorithm to be run on

the RAM block under test:

• 0 runs Extended March C-

algorithm

• 1 runs WALPAT.

Other values produce an error

return value (that is,

resultTestRam1 =

resultTestRam2 = 0).

3 Input unsigned int destructive Specify the kind of test:

• 0 means non-destructive test

is run, and RAM block content

is saved in the buffer

• 1 means destructive test is

run.

Once a memory block is tested

with a destructive procedure, its

content is initialized with all zeros.

As specified in Table 4-1, index indicates the specific RAM block to be tested using the algorithm specified by

selectAlgorithm. Each RAM block has a size in terms of double words, defined by BUTSize.

Valid values of index range between 0 and numberOfBUT-1.

numberOfBUT indicates the number of blocks in which the RAM is divided, and it is obtained by dividing the

memory size by the size of the block specified by the BUTSize parameter.

Calling the function with an invalid value of the block index that is greater than (numberOfBUT-1), results in the

return variables being set to 0, indicating a failed test.

4.4 Software Integration Rules

This section provides guidelines for how to integrate the RAM test software within the user project.

4.4.1 Code integration

Defining memory size and block size

The user has to set the size of the RAM under test and the size of each of the blocks.

This information has to be provided by the directives present in testRAM.h.

BUTSize can have one of the values shown in Table 4-2.

Table 4-2 Relation between BUTSize and MUTSize

BUTSize Number of Blocks Index

MUTSize/4 4 0, 1, 2, 3

MUTSize/8 8 0, 1, 2, 3, 4, 5, 6, 7

MUTSize/16 16 0, 1, 2, 3, 4, …, 15

MUTSize/32 32 0, 1, 2, 3, 4, ..., 31

MUTSize/64 64 0, 1, 2, 3, 4, ..., 63

...

MUTSize/MUTSize MUTSize 0, 1, 2, 3, 4, ..., MUTSize-1

Following is a working example for a 640 KB RAM, divided in blocks of 64 KB size each.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 21 of 51

Sep 27, 2018

//size of the RAM Memory Under Test: 640KB = 640 * 1024 bytes = 655360 bytes =

163840double words

#define MUTSize 163840

//size of the Block of RAM Under Test of 64KB

#define BUTSize (MUTSize/10)

Reserving and placing the buffer

In case the user wants to perform non-destructive tests, it is needed a buffer memory area.

A buffer area can be reserved using the IAR linker configuration file (.icf file) and defining a variable buffer in the

application code.

Assuming that the buffer size has to be 64 KB (specify 1024 bytes in hexadecimal format 0x10000) and the starting

address of the buffer block is 0x20030000, add the following two instructions:

//RAM_TEST:BufferStorage definition

1. define block BufferStorage with alignment = 1, size = 0x10000 { };

2. place at address mem:0x20030000 { block BufferStorage };

In the file testRAM.inc make sure to align the labels addressBuffer_t and addressBuffer_w to the buffer address, in

particular to the most four significant address bytes and the least four significant address bytes.

addressBuffer_w EQU 0x0000

addressBuffer_t EQU 0x2003

Please note that the RAM buffer shall be stored within the SRAM memory dedicated address range which is specified in the HW

manual [REF.2]

In addition, in order to minimize possible interference with the application SW, it is recommended to define a variable

buffer in the application SW as a global variable and use it to force the allocation through the linker. Below is an

example for the case reported above:

volatile unsigned int buffer[BUTSize]@ 0x20030000 = {0};

The user could then instruct the compiler to allocate the buffer to this variable, using for example the following

instruction:

buffer[0] = 0;

Placing result variables

The software stores the result of the test in two unused RAM locations that are accessible from the application code by

using two variables (resultTestRam1 and resultTestRam2).

These two variables have to be placed at two absolute addresses of the RAM.

Declaration of these two variables is defined in testRAM.h file.

The following is an example with 640 KB RAM divided in blocks of 64 KB each:

• resultTestRam1 is placed in the last double word location of the block 3

• resultTestRam2 is placed in the last double word location of the block 4.

The code in testRAM.c file is:

• unsigned int resultTestRam1 @ 0x20000000 = (unsigned int) 0;

• unsigned int resultTestRam2 @ 0x20010000 = (unsigned int) 0;.

Word length

The chosen RAM algorithm runs using a 32-bit word length.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 22 of 51

Sep 27, 2018

Test flow and checking test results

It is recommended to initially run a destructive test on the buffer. The buffer test has the same result if it is run as

destructive or non- destructive, and its content are lost.

A recommended flow for the RAM test is as follows:

1. Run testRAM function on the buffer block.

2. Run testRAM function on the other blocks of the RAM.

Consider the following instructions to effectively use the testRAM function:

1. Include testRAM.h.

2. Define input variables for parameters to call testRAM:

A. index.

B. select Algorithm.

C. destructive.

3. Call testRAM.

4. Check result variables.

Working example

#include "testRAM”.h"

unsigned int index = 71 ;

unsigned int selectAlgorithm = 0;

unsigned int destructive = 0;

testRAM(index, selectAlgorithm, destructive);

 if(!(resultTestRam1&&resultTestRam2)){ /*Fault detection*/

 errorHandler();

 }

After the testRAM function returns, a fault can be detected by checking the output value, as shown in the example

above.

The output of testRAM is stored in two locations. So, if resultTestRam1 and resultTestRam2 are both equal

to 1, no faults are detected. Otherwise, the fault handling management should start (calling of errorHandler()

function in the above example).

1 Not algorithm specific value. Only used as an example.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 23 of 51

Sep 27, 2018

4.4.2 Usage Conditions

Table 4-3 summarizes usage conditions.

Table 4-3 Usage conditions

ID Topic Constraint Description

1 Interrupt Avoid corruption of

function context

When interrupting the RAM software test, the context of all

general purpose registers, system register, including PSR and

FAULTMASK, have to be saved and restored when returning

from interrupt handling.

See reference document [REF.1] for the detailed CPU register

definitions.

2 CPU mode Correct execution of

the SW

Launch RAM software test in privileged mode

3 Stack Avoid corruption of the

stack

Test RAM blocks corresponding to stack locations in a non-

destructive manner

4 Environment Avoid corruption of

variables used to

check test results

In any application code other than the software test, do not

overwrite values of resultTestRam1 and resultTestRam2

variables

5 Environment Avoid data lost The data saved by the application inside the buffer is lost when

calling the RAM test

6 Configuration Avoid data lost Do not place the result variables (resultTestRam1 and

resultTestRam2) in the same block as the buffer

7 Configuration Compliance with SW

test strategy

The minimum number of blocks into which the RAM is divided

has to be 4

8 Configuration Compliance with SW

test strategy

Range of addresses of the memory under test has to be double

word aligned

9 Configuration Compliance with SW

test strategy

For BUTSize, use the following formula:

BUTSize=MUTSize/2x with 1<x<=log2(MUTSize)

10 Configuration Compliance with SW

test strategy

Place resultTestRam1 and resultTestRam2 variables in

two different blocks of the RAM

11 Diagnostic

coverage

Use sufficient block

size to guarantee

diagnostic coverage

value

Both RAM tests give medium coverage (90%) for permanent

faults. This coverage value is valid under the condition that, for

both tests, the minimum block size chosen for the test is not

lower than 512 bytes.

4.5 Define Directives for Software Configuration

Before compiling the code, it is necessary to define the size of the RAM under test, the size of the blocks into which the

memory is divided, and the word length for the executed RAM test algorithm.

All this information is specified by the directives described in Table 4-4.

Table 4-4 Define directives

Directives Description

MUTSize Indicate the size of the RAM under test. The value associated with it expresses the

size of the RAM in terms of double words.

This setting has to be in testRAM.h.

BUTSize Indicate the size of the blocks in which the RAM is divided. Value assigned to it has to

be of the following type:

MUTSize/4; MUTSize/8; MUTSize/16; MUTSize/32; ... ;

MUTSize/MUTSize

This value is always in terms of double words.

This setting has to be in testRAM.h.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 24 of 51

Sep 27, 2018

4.6 Software Package Description

This section details how to identify the supplied software package, including its MD5 signature, and also provides a

description in table format for each design file type.

4.6.1 Identification and Contents of Package

The software package version is identified as follows:

• Revision 1.0.1

• File list.

Table 4-5 RAM package and related MD5 signatures

File Name MD5 Signature

extendedMarchCminus.asm 8d29d2c4ef1b516ace04e7403b986d5d

extendedMarchCminus.h cf8ad143080603ae2aed9beeec3dfb64

testRAM.c 242961ce5f3ca457811f9797d15dab02

testRAM.h 03afee8c63ff96e4d3a3c8acecb3f42d

testRAM.inc dc4cb561dc5fc9a154917b5d271ff418

walpat.asm 656312c044114043de5d6bf8904f8e0c

walpat.h caf2c03440ea9f2ce8d2be2b7cc7894c

4.6.2 Description of design files

Table 4-6 Design files

Table ID File Name Description

1 testRAM.h This file contains the API of the RAM test. In particular, it

contains the testRAM function declaration to be called by the

application software. It also contains the declaration of the result

variables placed at fixed absolute addresses, and define

directives.

2 testRAM.c This file contains the definition of the testRAM function

3 extendedMarchCminus.h This file contains the declaration of the Extended March C-

algorithm function

4 extendedMarchCminus.a

sm

This file contains the definition of the Extended March C-

algorithm function

5 walpat.h This file contains the declaration of the WALPAT algorithm

function

6 walpat.asm This file contains the definition of the WALPAT algorithm

function

7 testRAM.inc This file contains the definition of the patterns for the test

execution

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 25 of 51

Sep 27, 2018

4.7 Resources Usage

Table 4-7 provides an overview of the memory resources used by the code.

The maximum stack usage is 60 bytes.

Table 4-7 Memory resources

Module ROM RAM (bytes)

 Code (bytes) Data (bytes)

extendedMarchCminus.o 468 0 0

testRAM.o 124 0 8

walpat.o 468 0 0

Total (bytes) 1060 0 8

The timing performance details in Table 4-8, are referenced to the test of one 1 Kb RAM block.

Table 4-8 Execution time

Algorithm Non-destructive

execution time

[clock cycles]

Non-destructive

execution time

with 240 MHz

clock [μs]

Destructive

execution time

[clock cycles]

Destructive

execution time

with 240 MHz

clock [μs]

Extended March C- 104106 433 100524 418,85

WALPAT 8699562 36248 8695982 36233,26

4.8 Requirements for Safety Relevant Applications

Table 4-9 lists the recommendations for usage in safety relevant applications.

Table 4-9 Safety relevant requirements

ID Topic Sub-topic Description

RAM_SW_1 Test flow Buffer Before testing blocks other than the buffer, perform

destructive testing on the buffer. This should be done to

avoid corruption of the test result because of a faulty buffer.

RAM_SW_2 Configuration Number of

blocks

Consider dividing the memory under test into a minimum

number of blocks, possibly equal to 4.

This is to properly detect address faults. The larger the block,

more efficient the address fault detection.

5. ROM Software Test

5.1 Test Objectives

The objective of the ROM software test is to verify the embedded ROM memory of the MCU.

The main features of the software tests are as follows:

• Whole memory check

• Possibility to test with a block-wise strategy, generating multiple CRC signatures

• Support for three CRC polynomials

• Support for incremental mode calculation, that is, calculation of the CRC signature can be time-wise split.

5.2 Test Strategy

The scope of the ROM software test is to verify the embedded ROM using a CRC technique. Error detection is achieved

as follows:

1. A range of ROM addresses is chosen. This step defines the block under test.

2. A reference checksum value is calculated using the IAR linker and saved inside the memory.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 26 of 51

Sep 27, 2018

3. During the ROM software test execution, the hardware peripheral CRC calculator (see reference document [REF.2]

for the peripheral details) is used to produce an actual checksum value of the ROM under test in order to check its

integrity.

4. The calculated checksum value is compared with that stored in memory, and an error is detected if the two values

do not match.

5. The previous steps are repeated for a different block of memory until the whole ROM area is covered.

5.2.1 Checksum Generation using the IAR linker

Before compiling the ROM software test, checksum generation by the IAR linker has to be enabled.

In addition, use the following steps:

1. Place a checksum variable for each ROM addresses range under test.

2. Start and end addresses of the ROM without considering the location in which checksum value is placed.

3. Consider the size and alignment of the checksum variable.

4. Consider the initial value of the checksum variable.

5. Consider the checksum algorithm used (chosen polynomial).

6. Consider the checksum variable bit order.

Further details are provided in section 5.5.

5.2.2 MCU CRC Peripheral

The CRC calculator generates CRC codes for data blocks. For details on the peripherals, see document reference

[REF.2]. It provides the use of any of the three polynomials listed as follows:

• 8-bit CRC

 x8+x2+x+1

• 16-bit CRC

 x16+x15+x2+1

 x16+x12+x5+1.

5.3 Top Level Software Structure

The following two functions are used to run the CRC calculator module and generate the checksum value:

• crcHwSetup enables the CRC HW module and configures the control registers to select the selected CRC

polynomial to be used

• crcComputation calculates checksum on all the bytes of the selected ROM block.

5.3.1 ROM Test APIs

The function signatures are as follows:

void crcHwSetup(unsigned int crc)

uint16_t crcComputation(unsigned int checksumBegin, unsigned int checksumEnd,

unsigned int incrMode)

Table 5-1 describes more details of the interface to the functions.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 27 of 51

Sep 27, 2018

Table 5-1 ROM test APIs

Table

ID

Function Parameter

type

C type Name Description

1 crcHwSetup input unsigned int crc Specify the kind of CRC

generating polynomial:

-0: x8+x2+x+1 (8-bit CRC)

-1: x16+x15+x2+1 (16-bit

CRC)

-2: x16+x12+x5+1 (16-bit

CRC)

-Other values: default is

16-bit CRC x16+x15+x2+1

2 crcComputation input unsigned int checksumBegin Specify ROM block start

address

3 crcComputation input unsigned int checksumEnd Specify ROM block end

address

4 crcComputation input unsigned int incrMode Specify the CRC

calculation mode:

-0: incremental mode not

active

- Other values:

incremental mode active.

5 crcComputation output uint16_t - The return value of the

function is the computed

checksum value

Note: Within the crcComputation function:

• The CRC signature is initialized to 0xff in case of CRC_8 utilization or 0xffff in case of CRC_16, or

CRC_16_CCITT

• The return value is th’ 1's complement of the calculated checksum.

Note: The block size of the memory for the CRC calculation is defined by the difference between the end and the start

addresses, and it has to be a multiple of the CRC length.

5.3.2 Incremental mode calculation

The input parameter incrMode allows the user to split the calculation of the CRC signature for the same ROM block

as best suited to the requirements of its application.

The behavior, as summarized in Figure 5-1 is as follows:

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 28 of 51

Sep 27, 2018

• The ROM block for which the CRC is to be calculated is divided in sub-blocks identified by a given set of addresses

(3 groups of addresses in the example)

• The crcComputation is then run on each set of addresses

• The first call of crcComputation is made with no incremental mode while the following calls need to have the

incremental mode active in order to accumulate previous partial results

• After the last function call, the total block CRC is returned.

0xfffbb6ef

0xfffc06ab

0xfffc06ef

0xfabc06ef

0xfffc0611

0xfffc06ef

ROM

block
0xfffc06ef

0xabcc06ef

0xaafc06ef

0xfffc06aa

Block CRC

0xfffc0612

Run crcComputation on the first set of addresses with

incrMode=0. After this computation, the result is an intermediate value

but it is not the block CRC yet.

Run crcComputation on the second set of addresses with incrMode =

1. After this computation, the result is another intermediate value also

considering the elaboration on the first set of addresses, but it is not the

block CRC yet.

Run crcComputation on the third set of addresses with

incrMode=1. After this computation, the result is the block CRC.

Figure 5-1: Incremental mode calculation.

5.4 Software Integration Rules

5.4.1 Code integration

To call the ROM test functions, use the following steps:

1. Include crc.h.

2. Define external variables for each CRC signatures generated by the IAR linker and placed in ROM.

1. Define variable for input parameter of crcHwSetuA. crcType.

3. Define variables for input parameter of crcComputation:

A. checksumBegin.

B. checksumEnd.

C. incrMode.

4. Define output variable in order to store the result of the crcComputation.

Refer to the example in section 5.4.2, which explains a case in which two ROM address ranges are tested.

5.4.2 Test flow and test result check

The recommended test flow is as follows:

1. Initialize the peripheral using crcHwSetup.

2. Evaluate the checksum using crcComputation.

3. Compare with the expected checksum for error detection.

Working example

#include “crc.h"

extern const uint16_t __checksum;

 unsigned int type = 1;

 crcHwSetup(type);

 unsigned int checksumStart = 0x00000000;

 unsigned int checksumStop = 0x003FFFFB;

 unsigned int crcIncr = 0;

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 29 of 51

Sep 27, 2018

 uint16_t crcResult;

 crcResult = crcComputation(checksumStart, checksumStop, crcIncr);

 if(crcResult != __checksum){

 errorHandler();

 }

After the crcComputation function returns, a fault can be detected by checking the output value as shown in the

example above. The crcResult achieved by the ROM software test is compared with __checksum, which is the

reference value computed by the IAR linker.

Working example with incremental mode

#include “crc.h"

extern const uint16_t _checksum;

unsigned int type;

unsigned int checksumStart;

unsigned int checksumStop;

uint16_t crcResult;

unsigned int crcIncr;

 type = 1;

 crcHwSetup(type);

 crcIncr = 0;

 checksumStart = 0x00000000;

 checksumStop = 0x000FFFFB; //1MB

 crcResult = crcComputation(checksumStart, checksumStop, crcIncr);

 crcIncr = 1;

 checksumStart = 0x00100000;

 checksumStop = 0x001FFFFB; //1MB

 crcResult = crcComputation(checksumStart, checksumStop, crcIncr);

 crcIncr = 1;

 checksumStart = 0x00200000;

 checksumStop = 0x002FFFFB; //1MB

 crcResult = crcComputation(checksumStart, checksumStop, crcIncr);

 crcIncr = 1;

 checksumStart = 0x00300000;

 checksumStop = 0x003FFFFB; //1MB

 crcResult = crcComputation(checksumStart, checksumStop, crcIncr);

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 30 of 51

Sep 27, 2018

 if(crcResult != __checksum){

 errorHandler();

 }

The above example shows how the CRC for a 4 MB block can be calculated with 4 cumulated runs of the

crcComputation function.

Note: The crcResult is compared with the value computed by the IAR linker only after the last call of the

crcComputation function.

The above example also shows that the 4 calls of the crcComputation function are sequential. However, this is not

a definitive requirement. The calls can be executed in a different order as long as the usage conditions described in

section 5.4.3 are maintained.

5.4.3 Usage Conditions

Table 5-2 summarizes usage conditions.

Table 5-2 Usage conditions

ID Topic Constraint Description

1 Interrupt Avoid corruption of

function context

When interrupting the ROM software test, the context of all

general purpose registers, system register, including PSR and

FAULTMASK, have to be saved and restored after returning from

interrupt handling.

See reference document [REF.1] for the CPU register definitions.

2 Incremental

mode

Avoid corruption of the

calculated CRC value

When the incremental mode is used, do not change the setting or

use the HW peripheral CRC calculator until the CRC calculation

is completed. This is valid for any kind of software such as

application software or any interrupt handlers.

5.5 Checksum Generation Using IAR Tools

The ROM test requires a reference checksum for each address range under test. The reference checksum is necessary

for comparison with that computed by the CRC calculator.

To ensure accurate control of the error detection performance of the code, it may be necessary to generate multiple

checksums.

This section shows how to use the IAR Embedded Workbench for ARM version 8.23.1.17132 to generate the checksum.

The steps are as follows:

1. Provide information to the IAR linker as to where to place checksum values. Also, provide information about the

symbols for the start and end addresses of the ROM blocks under test.

2. Use the IAR graphic interface to perform the checksum calculation.

3. In the .icf file, define memory ranges where the checksum values should be placed.

The working example provided in the following section gives additional information on how to use the IAR tools to

generate the required CRCs.

5.5.1 Example Checksum Generation with IAR Tools

Assume that the ROM test address range is 0x00000000 — 0x003FFFFF, and a checksum is required to be generated

using the polynomial x16+x12+ x5+1 (16-bit CRC-16CCITT).

Use the following steps:

1. Go to Project > OptiI... > Linker > Checksum and set the following parameters:

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 31 of 51

Sep 27, 2018

A. Select Fill unused code memory option.

B. File pattern = 0x00.

C. Start Address = 0x00000000.

D. End address = 0x003FFFFB.

E. Select Generate checksum option.

F. Checksum size = 2 bytes.

G. Alignment = 1.

H. Algorithm = CRC polynomial, 0x1021.

I. Bit order = MSB.

J. Initial value = 0xFFFF.

K. Checksum unit size = 8 bit.

2. In the .icf file, define memory ranges and locations of the checksums.

define symbol __ICFEDIT_region_ROMuT_start__ = 0x00000000;

define symbol __ICFEDIT_region_ROMuT_end__ = 0x003FFFFF;

define region CHECKSUM_region = mem:[from __ICFEDIT_region_ROMuT_start__ to

__ICFEDIT_region_ROMuT_end__];

place at end of CHECKSUM_region { ro section .checksum };

Figure 5-2: IAR environment options.

For more information about these commands, refer to reference document [REF.3].

5.6 Software Package Description

This section details how to identify the supplied software package, and also provides a description in table format for

each design file type.

5.6.1 Identification and contents of package

The software package version is as follows:

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 32 of 51

Sep 27, 2018

• Revision 1.0.1

• File list.

Table 5-3 ROM Package and related MD5 signatures

File Name MD5 Signature

6. crc.c 66d4c9c03eb5906ce5364f5d8b804858

crc.h 2d5cdb92e1acaf76bb3d5dd5f4c90c48

S7G2_registers.h 4a2dfba75ed595991e87d34b4fb4db74

6.1.1 Description of Design Files

Table 5-4 Design files

Table ID File Name Description

1

crc.h This file contains the declaration of the two functions for the crc

calculator:

• crcHwSetup: Initializes CRC module

• crcComputation: Runs CRC on the specified ROM block.

2

crc.c This file contains the definition of the two functions declared in the file

crc.h.

3 S7G2_registers.h This file contains the definitions of the needed peripheral registers.

6.2 Resources Usage

Table 5-5 provides an overview of the memory resources used by the code.

The maximum stack usage is 0 bytes.

Table 5-5 Memory resources

Module ROM RAM (bytes)

Code (bytes) Data (bytes)

crc.o 232 0 4

Total (bytes) 232 0 4

Table 5-6 shows the execution time for calculating a CRC using the polynomial x16+x15+x2+1 with a block size of 4 Kb.

Table 5-6 Execution time

6.3 Requirements for Safety Relevant Applications

Table 5-7 lists recommendations for usage in safety relevant applications.

Table 5-7 Safety relevant requirements

ID Topic Sub-topic Description

ROM_SW_1 CRC type - Adopt the following CRC16 polynomial x16+x15+x2+1

ROM_SW_2 Block length - Use a block size of 4 KB

Using the above mentioned recommendations, it is possible to detect all single-bit and double-bit corruptions within one

block.

Function Execution time for a

ROM block size of 4 Kb

(clock cycles)

Execution time for a

ROM block of 4 Kb at

240 MHz clock (μs)

crcComputation 57434 239

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 33 of 51

Sep 27, 2018

In addition, regardless of the block size, the use of such a polynomial allows for the detection of an odd number of

single bit errors, with the following performance in relation to burst error detection, where a burst of length k

corresponds to the presence of k consecutive corrupted bits:

• All bursts with length equal and less than 16 bits

• 99.997 percent of bursts of 17 bits

• 99.998 percent of bursts with length greater than 18 bits.

7. CAC Configuration Software

7.1 Test Objectives

The objective of the CAC configuration software is to configure the CAC. For safety applications, this software is used

to:

• Select PCLKB as the measurement target clock for the CAC

• Select the sub-clock oscillator as a measurement reference clock for the CAC.

This configuration allows the detection of deviations of the main clock oscillator and PLL due to systematic or random

hardware failures.

The CAC configuration software also enables the Synergy S7 oscillation stop detection circuit functionality. In case the

main clock stops, this circuit is in charge of switching to the middle-speed on-chip oscillator, and generating an NMI

interrupt.

7.2 Test Strategy

The test strategy is to configure the CAC peripheral to monitor the PCLKB clock using the sub-clock oscillator.

If the frequency of the monitored clock deviates from a configured range during runtime, two types of interrupts can be

generated, namely a frequency error interrupt, or an overflow interrupt. The user of this module must enable these two

kinds of interrupts and handle them.

Note: The user must enable the sub-clock oscillator through the SOSCCR register (that is, SOSCCR.SOSTP = 0b. See

document reference [REF.2]). Otherwise, the monitoring will not work.

The allowed frequency range is evaluated according to the following equations:

CAULVR (upper limit value) can be computed by rounding down the result from the following equation and

converting it into a hexadecimal value:

𝐶𝐴𝑈𝐿𝑉𝑅 = 𝑓𝑙𝑜𝑜𝑟 (

𝑃𝐶𝐿𝐾𝐵
𝐶𝐿𝐾𝑇𝐷𝐼𝑉

∗ (1 + 1 −
𝐷𝐶
100

)

𝐶𝐿𝐾𝑟𝑒𝑓
𝐶𝐿𝐾𝑅𝐷𝐼𝑉

)

CALLVR (lower limit value) can be computed by rounding up the result from the following equation and converting it

into a hexadecimal value:

𝐶𝐴𝐿𝐿𝑉𝑅 = 𝑐𝑒𝑖𝑙 (

𝑃𝐶𝐿𝐾𝐵
𝐶𝐿𝐾𝑇𝐷𝐼𝑉

∗ (
𝐷𝐶
100

)

𝐶𝐿𝐾𝑟𝑒𝑓
𝐶𝐿𝐾𝑅𝐷𝐼𝑉

)

The parameters are described in Table 7-1.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 34 of 51

Sep 27, 2018

Table 7-1 Parameter description for CAULVR, CALLVR

Parameter

Description Unit

PCLKB Frequency of the peripheral module clock B MHz

DC Target diagnostic coverage.

The user has to add a safety margin to the claimed DC, for

example, 90% + 1% margin

Renesas allows a DC range from, for example, 60 … 95%

%

CLKref Frequency of the reference clock.

This is based on the sub-clock oscillator frequency (32.768 kHz),

considering the accuracy of the selected external crystal

MHz

CLKTDIV Division according to the Measurement Target Clock Frequency

Division Ration Select (TCSS) register

-

CLKRDIV Division according to the Measurement Reference Clock

Frequency Division Ration Select (RCDS) register

-

In addition to the CAC function, the Synergy S7 has an oscillation stop detection circuit. If the main clock stops, the

middle-speed on-chip oscillator is automatically used instead, and an NMI interrupt is generated. The user of this

module must handle the NMI interrupt and check the NMISR.OSTST bit.

7.3 CAC Configuration Software API

The function signatures are as follows:

void ClockMonitor_Init(double target_clock_frequency, target_clk_div_t

target_clock_division,

reference_clk_div_t reference_clock_division, double dc,

CLOCK_MONITOR_ERROR_CALL_BACK CallBack);

Table 7-2 describes more details of the interface to the functions.

Table 7-2 CAC configuration software APIs

Table
ID

Function Parameter
type

C type Name Description

1 ClockMonitor_

Init

Input double target_clock_frequ

ency

The target clock frequency in
Hz

2 ClockMonitor_

Init

Input target_clk_div_t target_clock_divis

ion

The target clock division to
be set

3 ClockMonitor_

Init

Input reference_clk_div_t reference_clock_di

vision

The reference clock division
to be set

4 ClockMonitor_

Init

Input double dc The diagnostic coverage in
percentage

5 ClockMonitor_

Init

Input CLOCK_MONITOR_
ERROR_CALL_BAC
K

CallBack Function to be called if the
main clock deviates from the
allowable range

In reference to the formula parameters described in Table 7-1, the function parameters are mapped as follows:

• target_clock_frequency = PCLKB

• target_clock_division = CLKTDIV

• reference_clock_division = CLKRDIV

• dc = DC.

7.4 Software Integration Rules

This section provides guidelines on integrating the CAC configuration software within the user project.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 35 of 51

Sep 27, 2018

7.4.1 Code integration

Follow the instructions below to call the CAC configuration software functions:

1. Include clock_monitor.h.

2. Define variables for input parameters of ClockMonitor_Init:

A. target_clock_frequency.

B. target_clock_division.

C. reference_clock_division.

D. dc.

E. CallBack.

Refer to the example in section 7.4.2 on how to use the diagnostic software.

7.4.2 Usage Conditions

The monitoring of the PCLKB clock is set-up with a single function call to ClockMonitor_Init.

For example:

#define TARGET_CLOCK_FREQUENCY_HZ (60000000) // PCLKB: 60MHz

#define DC (90) // Diagnostic Coverage: 90%

target_clk_div_t target_div = TAR_DIV_4;

reference_clk_div_t ref_div = REF_DIV_32;

/*Enable Sub-Clock*/

PRCR_reg->PRCR = 0xA501;

SOSCCR_reg->SOSCCR_b.SOSTP = 0;

PRCR_reg->PRCR = 0xA500;

ClockMonitor_Init(TARGET_CLOCK_FREQUENCY_HZ, target_div, ref_div, DC,

CAC_Error_Detected_Loop);

The hardware performs the clock monitoring, and so the software does not need to do anything during the periodic tests.

In order to enable interrupt generation by the CAC, both the Interrupt Controller Unit (ICU) and Cortex-M4 Nested

Vectored Interrupt Controller (NVIC) should be configured.

For configuring the ICU, it is necessary to set the ICU Event Link Setting Register (IELSRn) to the event signal number

corresponding to the CAC frequency error interrupt (CAC_FERRI = 0x87) and CAC overflow (CAC_OVFI = 0x89). In

particular, it is necessary to configure one IELSR register so that it is linked to the previously mentioned CAC events:

IELSRn.IELS = 0x87; // (CAC_FERRI)

IELSRn.IELS = 0x89; // (CAC_OVFI)

In addition, in order to enable the Cortex-M4 NVIC to handle the CAC interrupts, the following instructions should be

set:

NVIC_EnableIRQ(CAC_FREQUENCY_ERROR_IRQn);

NVIC_EnableIRQ(CAC_OVERFLOW_IRQn);

where CAC_FREQUENCY_ERROR_IRQn and CAC_OVERFLOW_IRQn are the IRQ number defined by the user2.

If oscillation stop is detected, an NMI interrupt is generated. User code must handle this NMI interrupt and check the

NMISR.OSTST flag as shown in the following example:

2 See Table 2-16 in reference document [1] for more details about IRQ numbers

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 36 of 51

Sep 27, 2018

if(1 == R_ICU->NMISR_b.OSTST)

{

 Clock_Stop_Detection();

 /*Clear OSTST bit by writing 1 to NMICLR.OSTCLR bit*/

 R_ICU->NMICLR_b.OSTCLR = 1;

}

The OSTDCR.OSTDF status bit can then be read to determine the status of the main clock.

7.5 Define Directives for Software Configuration

No specific directives are present for CAC configuration software.

7.6 Software Package Description

This section details how to identify the supplied software package, including its MD5 signature, and also provides a

description in a table format for each design file type.

7.6.1 Identification and Contents of Package

The software package version is listed as follows:

• Revision 1.0.2

• File list.

Table 7-3 CAC configuration software package and related MD5 signatures

File Name MD5 Signature

clock_monitor.c 1bdc9c2713d2a51bfd38a9724bb0be85

clock_monitor.h 78f648e238cbbdbfeaefc94beaf5de89

S7G2_registers.h ac539ac998214ac9cba73eeef86985fd

7.6.2 Description of Design Files

Table 7-4 Design files

Table ID File Name Description

1 clock_monitor.h This file contains the declaration of the ClockMonitor_Init

function for monitoring initialization

2 clock_monitor.c This file contains the definition of clock monitor function

3 S7G2_registers.h This file contains the definitions of the needed peripheral

registers

7.7 Resource Usage

Table 7-5 provides an overview of the memory resources used by the code.

Maximum stack usage is 152 bytes for both versions.

Table 7-5 Memory resources

Module ROM RAM (bytes)

Code

(bytes)

Data (bytes)

clock_monitor.o 716 16 4

Total (bytes) 716 16 4

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 37 of 51

Sep 27, 2018

Table 7-6 illustrates the execution time.

Table 7-6 Execution time

7.8 Requirements for Safety Relevant Applications

Refer to the Safety Manual [REF.4].

8. IWDT Management Software

8.1 Test Objectives

A watchdog is used to detect abnormal program execution. If a program is not running as expected, the Watchdog is not

refreshed by software as required, and so, detects an error.

8.2 Test Strategy

The Independent Watchdog Timer (IWDT) module of the Synergy S7 is used for this purpose. The IWDT includes a

windowing feature where the refresh must happen within a specified window rather than just before a specified time. It

can be configured to generate an internal reset or a NMI interrupt if an error is detected. All the configurations for

IWDT can be done through the OFS0 register whose settings are controlled by the user (see section 8.4.2 for a

configuration example). A function is provided to be used after a reset, to decide if the IWDT has caused the reset.

8.3 IWDT Management Software APIs

The function signatures are as follows:

void IWDT_Init (void)

void IWDT_Kick (void)

bool IWDT_DidReset (void)

Table 8-1 describes more details of the interface to the functions.

Table 8-1 IWDT management software APIs

Table ID Function Parameter type C type Name Description

1 IWDT_DidReset output bool N/A Returns true if the IWDT times out

or is not refreshed correctly. This

can be called after a reset, to

decide if the Watchdog caused

the reset.

8.4 Software Integration Rules

8.4.1 Code integration

The instructions to call the IWDT management software function are as follows:

1. Include iwdt.h.

2. Define a boolean variable for output of IWDT_DidReset.

Refer to the example in section 8.4.2, which explains how to use the diagnostic software.

8.4.2 Usage conditions

In order to configure the IWDT, it is necessary to set the OFS0 register correctly. The following code can be used to set

the value that has to be stored at the OFS0 memory allocation (OFS0 address = 0x00000400).

Function Clock Cycle Count Time measured (μs) at

240 MHz

Clock_monitor 3105 12,94

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 38 of 51

Sep 27, 2018

/* IWDT Start Mode Select */

#define IWDTSTRT_ENABLED (0x00000000)

#define IWDTSTRT_DISABLED (0x00000001)

/*Time-Out Period selection*/

#define IWDT_TOP_128 (0x00000000)

#define IWDT_TOP_512 (0x00000001)

#define IWDT_TOP_1024 (0x00000002)

#define IWDT_TOP_2048 (0x00000003)

/*Clock selection. (IWDTCLK/x) */

#define IWDT_CKS_DIV_1 (0x00000000) // 0b0000

#define IWDT_CKS_DIV_16 (0x00000002) // 0b0010

#define IWDT_CKS_DIV_32 (0x00000003) // 0b0011

#define IWDT_CKS_DIV_64 (0x00000004) // 0b0100

#define IWDT_CKS_DIV_128 (0x0000000F) // 0b1111

#define IWDT_CKS_DIV_256 (0x00000005) // 0b0101

/*Window start Position*/

#define IWDT_WINDOW_START_25 (0x00000000)

#define IWDT_WINDOW_START_50 (0x00000001)

#define IWDT_WINDOW_START_75 (0x00000002)

#define IWDT_WINDOW_START_NO_START (0x00000003) /*100%*/

/*Window end Position*/

#define IWDT_WINDOW_END_75 (0x00000000)

#define IWDT_WINDOW_END_50 (0x00000001)

#define IWDT_WINDOW_END_25 (0x00000002)

#define IWDT_WINDOW_END_NO_END (0x00000003) /*0%*/

/*Action when underflow or refresh error */

#define IWDT_ACTION_NMI (0x00000000)

#define IWDT_ACTION_RESET (0x00000001)

/*IWDT Stop Control*/

#define IWDTSTPCTL_COUNTING_CONTINUE (0x00000000)

#define IWDTSTPCTL_COUNTING_STOP (0x00000001)

#define BIT0_RESERVED (0x00000001)

#define BIT13_RESERVED (BIT0_RESERVED << 13)

#define BIT15_RESERVED (BIT0_RESERVED << 15)

#define OFS0_IWDT_RESET_MASK (0xFFFF0000)

/*This define is used to configure the iWDT peripheral*/

#define OFS0_IWDT_CFG (BIT15_RESERVED | BIT13_RESERVED | BIT0_RESERVED |

(IWDTSTRT_ENABLED << 1) | (IWDT_TOP_1024 << 2) | (IWDT_CKS_DIV_1 << 4) |

(IWDT_WINDOW_END_NO_END << 8) | (IWDT_WINDOW_START_NO_START << 10) |

(IWDT_ACTION_RESET << 12) | (IWDTSTPCTL_COUNTING_CONTINUE << 14))

The value OFS0_IWDT__CFG is stored at the OFS0 address at compile time, in order to configure the IWDT. In

particular, the example enables the IWDT setting a time-out period of 1024 clock cycles at IWDTCLK/1 clock

frequency, also counting during the sleep mode of the microcontroller. The example does not set any start/end of the

Watchdog window, or configure a reset in case of Watchdog expiration.

The IWDT should be initialized as soon as possible, following a reset with a call to IWDT_Init:

/*Setup the Independent WDT.*/

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 39 of 51

Sep 27, 2018

IWDT_Init();

Then, the watchdog must be refreshed regularly to stop the Watchdog from timing out and performing a reset. If using

windowing, the refresh must not just be regular, but also timed to match the specified window. A Watchdog refresh is

called as follows:

/*Regularly kick the watchdog to prevent it performing a reset. */

IWDT_Kick();

If the Watchdog has been configured to generate an NMI on error detection, then the user must handle the resulting

interrupt.

If the Watchdog has been configured to perform a reset on error detection, then following a reset, the code should check

if the IWDT caused the Watchdog reset by calling IWDT_DidReset:

if(TRUE == IWDT_DidReset())

{

 /*todo: Handle a watchdog reset.*/

 while(1){

 /*DO NOTHING*/

 }

}

8.5 Define Directives for Software Configuration

No specific directive are present for IWDT management software.

8.6 Software Package Description

This section details how to identify the supplied software package and also provides a description in table format for

each design file type.

8.6.1 Identification and Contents of Package

The software package version is listed as follows:

• Revision 1.0.1

• File list.

Table 8-2 IWDT package and related MD5 signatures

File Name MD5 Signature

iwdt.c c1ff175e73414577ebed6545d137963f

iwdt.h 136b2dd867a8551137d6ab80a85f4230

S7G2_registers.h b64c20dfea0a3d0667d8fcf86e154b2e

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 40 of 51

Sep 27, 2018

8.6.2 Description of design files

Table 8-3 Design files

Table ID File Name Description

1 iwdt.h This file contains the declaration of the functions:

• IWDT_Init: Initializes the Independent Watchdog

Timer. After calling this, the IWDT kick function must

be called at the correct time to prevent a Watchdog

error. If configured to produce an interrupt, then this

will be the Non Maskable Interrupt (NMI). This must

be handled by user code which must check the

NMISR.IWDTST flag.

• IWDT_Kick: Refreshes the watchdog count

• IWDT_DidReset: Returns true if the IWDT has

timed out or not been refreshed correctly. This can

be called after a reset to decide if the Watchdog

caused the reset.

2 iwdt.c This file contains the definition of the two functions

declared in the file iwdt.h.

3 S7G2_registers.h This file contains the definitions of the needed peripheral

registers

8.7 Resources Usage

Table 8-4 provides an overview of the memory resources used by the code.

Maximum stack usage is 0 bytes.

Table 8-4 Memory resources

Module ROM RAM (bytes)

Code

(bytes)

Data (bytes)

iwdt.o 124 0 0

Total (bytes) 124 0 0

Table 8-5 illustrates the execution time for the specific functions.

Table 8-5 Execution time

Function Clock cycles

count

Time measured (μs)

at 240 MHz

IWDT_Init 86 0,3

IWDT_Kick 80 0,3

IWDT_DidReset 96 0,4

8.8 Requirements for Safety Relevant Applications

Refer to the Safety Manual [REF.4].

9. LVD Configuration Software

9.1 Test Objectives

The Synergy S7 has a voltage detection circuit. This can be used to detect when the power supply voltage (Vcc) falls

below a specified voltage.

9.2 Test Strategy

The supplied sample code demonstrates using Voltage Detection Circuit 1 to generate an NMI interrupt when Vcc falls

below a specified level. The hardware is also capable of generating a reset, but this behavior is not supported in the

sample code.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 41 of 51

Sep 27, 2018

9.3 LVD Configuration Software APIs

The function signatures are as follows:

void VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL eVoltage)

Table 9-1 describes more details of the interface to the functions.

Table 9-1 LVD configuration software APIs

Table ID Function Parameter

type

C type Name Description

1 VoltageMonitor

_Init

Input VOLTAGE_

MONITOR_

LEVEL

eVoltage The specified low voltage

level. See declaration of

enumerated type

VOLTAGE_MONITOR_LEVE

L in voltage.h for details.

9.4 Software Integration Rules

9.4.1 Code integration

To call the LVD configuration software functions, use the following steps:

1. Include voltage.h.

2. Define variable for input parameter of VoltageMonitor_t:

1. A. eVoltage

Refer to the example in section 9.4.2, which explains how to use the diagnostic software.

9.4.2 Usage conditions

The Voltage Detection Circuit is configured to monitor the main supply voltage with a call to the

VoltageMonitor_Init function. This should be setup as soon as possible following a power on reset.

Please note to set the LVD1SR.DET bit to 0 both before calling VoltageMonitor_init function and in NMI routine, see

Section 8.2.2 of [REF.2] for further details.

Please set a voltage threshold eVoltage lower than the Vcc nominal value.

The following example sets up the voltage monitor to generate an NMI if the voltage drops below 2.99V.

VoltageMonitor_Init(VOLTAGE_MONITOR_LEVEL_2_99);

If a low voltage condition is detected, an NMI interrupt is generated that the user must handle:

 /*Low Voltage LVD1*/

 if(1 == R_ICU->NMISR_b.LVD1ST)

 {

 Voltage_Test_Failure();

 /*Clear LVD1ST bit by writing 1 to NMICLR.LVD1CLR bit*/

 R_ICU->NMICLR_b.LVD1CLR = 1;

 }

9.5 Define Directives for Software Configuration

No specific directives are present for LVD configuration software.

9.6 Software Package Description

This section details how to identify the supplied software package and also provides a description in table format for

each design file type.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 42 of 51

Sep 27, 2018

9.6.1 Identification and Contents of Package

The software package version is listed as follows:

• Revision 1.0.1

• File list.

Table 9-2 LVD package and related MD5 signatures

File Name MD5 Signature

S7G2_registers.h b64c20dfea0a3d0667d8fcf86e154b2e

voltage.c 15e89e618e92fe6f2fb89bd995a820a8

voltage.h 072694c1d415b5bab51acc4464dff5b8

9.6.2 Description of design files

Table 9-3 Design files

Table ID File Name Description

1 voltage.h This file contains the declaration of the functions for voltage

monitor:

• Bullet list item <table 1 unordered,t1u>

2 voltage.c This file contains the definition of the two functions declared in

the file voltage.h.

3 S7G2_registers

.h

This file contains the definitions of the needed peripheral

registers.

9.7 Resource Usage

Table 9-4 provides an overview of the memory resources used by the code.

Maximum stack usage is 0 bytes.

Table 9-4 Memory resources

Module ROM RAM (bytes)

Code

(bytes)

Data (bytes)

voltage.o 188 0 0

Total (bytes) 188 0 0

Table 9-5 illustrates the execution time for the specific functions.

Table 9-5 Execution time

9.8 Requirements for Safety Relevant Applications

Refer to the Safety Manual [REF.4].

10. Requirements for Safety Relevant Applications

Refer to the Safety Manual [REF.4].

11. Appendix A - RAM Test Algorithms

The following algorithm descriptions are related to 1-bit word memory, but can be applied to m-bit memories (word-

oriented memory test). The extension to m-bit word is discussed in this appendix.

Function Clock Cycle

Count

Time measured (μs)

at 240 MHz

VoltageMonitor_Init 30504 127

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 43 of 51

Sep 27, 2018

11.1 Extended March C-

A March Test consists of a finite sequence of elements called March Elements, delimited by a pair of curly brackets

‘{ }’.

A March Element is a finite sequence of operations applied to a cell before moving to the next one.

March Elements are delimited by a pair of rounded brackets ‘()’. The next cell is defined with respect to the addressing

order, which can be, ascending (↑) , descending (↓), or independent (↕). An operation on a memory cell can be,

write 0 (w0), write 1 (w1), read and verify to have read 0 (r0), read and verify to have read 1 (r1).

Extended March C- is represented in Figure 11-1, using the preceding notation described in this section.

Figure 11-1: Extended March C- Algorithm.

The March C- algorithm detects address faults (AFs), stuck at faults (SAFs), transactional faults (TFs), and coupling

faults (CFs). In addition, the Extended March C- algorithm also detects stuck open faults (SOFs), and data retention

faults (DRF). Its complexity is equal to 11n, where n is the number of addressing cells of the memory.

11.2 WALPAT

The WALPAT algorithm follows the process shown below:

Write 0 in all cells;

For i=0 to n-1

{ complement cell[i];

For j=0 to n-1, j != i

{ read cell[j]; }

read cell[i];

complement cell[i]; }

Write 1 in all cells;

For i=0 to n-1

{ complement cell[i];

For j=0 to n-1, j != i

{ read cell[j]; }

read cell[i];

complement cell[i]; }

The algorithm allows for the detection and location of address faults (AFs), stuck-at faults (SAFs), transactional faults

(TFs), coupling faults (CFs), and sense amplifier recovery faults (SARF). Its complexity is equal to 2n2, where n is the

number of addressing cells of the memory.

11.3 Word-oriented Memory Test

m-bit memories can be dealt with by repeating each algorithm for a number of times given by:

⌈log2𝑚⌉ + 1

For every iteration, w1 operation writes a pattern (for instance, 00000000) and w0 operation writes the complemented

value with respect to that used for w1 (11111111).

Taking into account that the code uses 32-bit word access, the algorithm is repeated 6 times, and the following 6

different patterns have to be applied:

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 44 of 51

Sep 27, 2018

00000000000000000000000000000000

00000000000000001111111111111111

00000000111111110000000011111111

00001111000011110000111100001111

00110011001100110011001100110011

01010101010101010101010101010101

12. Appendix B - CPU Test Example

#include "coretest.h"

uint8_t s teps=1;

uint32_t re sult=0;

uint8_t forceFai l = 11;

void errorHandler(void);

void main(void)

{

 coreTestInit(); //init index

 steps=36;

 /* Launch the core test function in order to perform Diagnosis SW*/

 coreTest(steps, forceFail, &result);

 if(result != 1) {

 errorHandler();

 }

}

13. Appendix C – Pragmas report

Table 13-1 reports the pragmas added in the source code to disable specific checks when using the LDRA tool. Related

violations have been reviewed in details and judged as not requiring a change to the code.

Table 13-1 Pragma report

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 45 of 51

Sep 27, 2018

Package File Code

Version

Row Code (Pragma) LDRA

Rule

MISRA Rule

RAM testRAM.c 1.0.1 18

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

19

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

20

/*LDRA_INSPECTED 27 D

Variable should be

declared static. */ 27D R.8.7, R.8.8

RAM testRAM.c

1.0.1

23

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

24

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

25

/*LDRA_INSPECTED 27 D

Variable should be

declared static. */ 27D R.8.7, R.8.8

RAM testRAM.c

1.0.1

28

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

29

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

30

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

33

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

36

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

38

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

40

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

43

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

45

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

47

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

61

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 46 of 51

Sep 27, 2018

Package File Code

Version

Row Code (Pragma) LDRA

Rule

MISRA Rule

RAM testRAM.c

1.0.1

63

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

70

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.c

1.0.1

72

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.h

1.0.1

25

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.h

1.0.1

27

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.h

1.0.1

30

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.h

1.0.1

31

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

RAM testRAM.h

1.0.1

32

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.c

1.0.1

21

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.c

1.0.1

24

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.c

1.0.1

79

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.c

1.0.1

80

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.c

1.0.1

81

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.c

1.0.1

85

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.c

1.0.1

90

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.c

1.0.1

111

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type.

V9.5.0 */ 93S

R.10.1,

R.10.3,

R.10.4,

R.10.5,

R.11.1

ROM crc.h

1.0.1

21

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 47 of 51

Sep 27, 2018

Package File Code

Version

Row Code (Pragma) LDRA

Rule

MISRA Rule

ROM crc.h

1.0.1

24

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.h

1.0.1

25

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

ROM crc.h

1.0.1

26

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

67

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

68

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

82

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

84

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

86

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

89

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

91

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

93

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

107

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

108

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

109

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

110

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type.

V9.5.0 */ 93S

R.10.1,

R.10.3,

R.10.4,

R.10.5,

R.11.1

CAC

clock_monit

or.c

1.0.2

111

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

112

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 48 of 51

Sep 27, 2018

Package File Code

Version

Row Code (Pragma) LDRA

Rule

MISRA Rule

CAC

clock_monit

or.c

1.0.2

117

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

118

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

119

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

120

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type. */ 93S

R.10.1,
R.10.3,
R.10.4,
R.10.5,
R.11.1

CAC

clock_monit

or.c

1.0.2

123

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

124

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

125

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

126

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

129

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

130

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type.

V9.5.0 */ 93S

R.10.1,

R.10.3,

R.10.4,

R.10.5,

R.11.1

CAC

clock_monit

or.c

1.0.2

131

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

132

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

138

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

139

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

140

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

141

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type. */ 93S

R.10.1,
R.10.3,
R.10.4,
R.10.5,

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 49 of 51

Sep 27, 2018

Package File Code

Version

Row Code (Pragma) LDRA

Rule

MISRA Rule

R.11.1

CAC

clock_monit

or.c

1.0.2

144

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

145

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

148

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

149

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type.

V9.5.0 */ 93S

R.10.1,

R.10.3,

R.10.4,

R.10.5,

R.11.1

CAC

clock_monit

or.c

1.0.2

150

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

151

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.c

1.0.2

177

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type.

V9.5.0 */ 93S

R.10.1,

R.10.3,

R.10.4,

R.10.5,

R.11.1

CAC

clock_monit

or.c

178

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type. */ 93S

R.10.1,

R.10.3,

R.10.4,

R.10.5,

R.11.1

CAC

clock_monit

or.c

1.0.2

180

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type.

V9.5.0 */ 93S

R.10.1,

R.10.3,

R.10.4,

R.10.5,

R.11.1

CAC

clock_monit

or.c

181

/*LDRA_INSPECTED 93 S

Value is not of

appropriate type. */ 93S

R.10.1,

R.10.3,

R.10.4,

R.10.5,

R.11.1

CAC

clock_monit

or.h

1.0.2

58

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

CAC

clock_monit

or.h

1.0.2

59

/*LDRA_INSPECTED 90 S

Basic type declaration

used. */ 90S D.4.6

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 50 of 51

Sep 27, 2018

14. Document References

[REF.1] Cortex-M4 Devices – Generic User Guide, first release, 16/12/2010.

[REF.2] Synergy S7 User’s Manual: Hardware, Rev. 1.30, January 2018 (Document Reference R01UM0001EU0130).

[REF.3] IAR C/C++ Development Guide Compiling and linking for Advanced RISC Machines Ltd’s ARM Cores,

Fifteenth edition, March 2015.

[REF.4] Safety Manual, ID=SAF_005_PIA003_S7.

Renesas Synergy™ Platform S7 Series MCU Diagnostic Software User Guide

R11AN0081EU0107 Rev. 1.07 Page 51 of 51

Sep 27, 2018

Website and Support

Support: https://synergygallery.renesas.com/support

Technical Contact Details:

• America: https://renesas.zendesk.com/anonymous_requests/new

• Europe: https://www.renesas.com/en-eu/support/contact.html

• Japan: https://www.renesas.com/ja-jp/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.

https://synergygallery.renesas.com/support
https://renesas.zendesk.com/anonymous_requests/new
https://www.renesas.com/en-eu/support/contact.html
https://www.renesas.com/ja-jp/support/contact.html

Revision History

Rev. Date

Description

Page Summary

1.00 Feb 7, 2017 - Initial version

1.01 Feb 17, 2017 §4.4.1

§8.4.2

Inserted clarification in “Reserving and placing the buffer”

section.

Inserted an additional note on setting of “eVoltage” value.

1.02 Feb 23, 2017 §8.4.2 Inserted an additional note on LVD usage for LVD1SR

register

1.03 Mar 02, 2017 §2.1 Updated C type implementation assumption

1.04 Mar 09, 2017 §3.5.1

§3.6

Updated CPU latest release and MD5s.

Updated resource usage to align to “1.0.1”.

1.05 March 2018 §5.7

§4.4.1

§15

Updated memory resources used by the code crc.o

Inserted usage condition to reserve buffer area for RAM

non destructive tests.

Updated reference document for the User’s Manual

1.06 July 17, 2018 References

3.6,4.7,7.7,8.7

Removed revision information from documentation

Corrected Resources usage

1.07 Sep 27, 2018 All

-

-

All

Updated the functional safety version of the IAR

Embedded Workbench.

Removed “ADC12 Comparator Software” and TSN

“Management Software” chapters.

Updated latest release and MD5s of

CPU,RAM,ROM,CAC,IWDT and LVD tests.

Replaced “S7G2” Synergy name with “S7”.

