Intel® Atom CPUs are used in many embedded and industrial applications such as communications equipment, industrial control, automotive In-Vehicle Infotainment (IVI), and automation. IDT has the industry's broadest line of Atom support clocks allowing timing coverage for all applications. ## **KEY BENEFITS** - Industry's widest selection of Atom support clocks – one-stop-shop for any application - Industrial temperature grade parts available for systems that must function in demanding environments - Automotive AEC-Q100 level devices for use in automotive In-Vehicle Infotainment - Integrated series resistors and voltage regulators for differential outputs Minimal external component count with maximum performance - VDD_IO rail on many devices for maximum power savings - Available 1.5V core operation minimizes power consumption - Wide range of I/O configurations allows 'right-sizing' the clock to the design, resulting in the smallest footprint device for the application ## **TARGET MARKETS & APPLICATIONS** - POS terminals - Embedded CPU cards - Automotive IVI - Micro-servers - Industrial controllers - · Communication cards - Internet kiosks - Digital signage - Home energy management - Medical instrumentation ## **Typical Application Diagram** | Industrial
Computing | Atom 230/330
(Diamondville)
9UMS9001 (CK540)
9UMS9610 (CK610)
9UMS9633 (CK633)
9LPRS525 (CK505) | Atom D4xx, D5xx Series
(Tunnel Creek)
9LPRS436
(CK505 derivative)
9LPS525 (CK505) | Atom N26xx, N28xx
Series
(Cedarview)
9VRS4338 (CK-NET)
9VRS4339 (CK-NET | | |----------------------------|--|---|--|--| | | Atom N270/N280
(Diamondville)
9UMS9001 (CK540)
9UMS9610 (CK610)
9UMS9633 (CK633) | Atom D4xx, D5xx Series
(Tunnel Creek)
9LPRS436
(CK505 derivative)
9LPS525 (CK505) | derivative)
9LPRS525 (CK505)
9DBL411 (Optional
low power PCIe
fanout buffer) | | | Embedded | Atom N270/N280
(Diamondville)
9UMS9633 (CK633) | Atom E6xx Series
(Tunnel Creek, Stellarton)
9LPRS436
(CK505 derivative)
9LPS525 (CK505) | Atom N26xx, N28xx
Series
(Cedarview)
9VRS4338 (CK-NET)
9LPRS436 (CK505
derivative)
9LPRS525 (CK505)
9DBL411 (Optional
low-power PCle
fanout buffer) | | | Mobile Internet
Devices | AtomZ5xx,
Z6xx Series
(Silverthorn, Lincroft)
9UMS9001 (CK540)
9UMS9610 (CK610) | Moorsetown HE Smartphones Lindcroft SOC (45nm) Langwell I/O PCH (65nm) Custom PMIC/SOC | Medfield
Custom PMIC/SOC | | ## Timing for Intel Atom-Based Embedded Systems | Device | 9UMS9001 | 9UMS9610 | 9UMS9633 | 9LPRS525 | 9LPRS436 | 9VRS4338 | 9VRS4339 | |---|---|---|--|---|--|--|--------------------------------| | 56 MLF ²
Package (8x8mm Body, | 48 MLF ¹
(6x6mm Body, | 48 MLF ¹
(6x6mm Body,
0.4mm pin pitch) | 56SSOP²
(300 mil Body,
25 mil pin pitch) | 48 MLF¹
(6x6mm Body,
0.4mm pin pitch) | 48 MLF ¹
(6x6mm Body, | 56 MLF ¹
(7x7mm Body, | | | , sollege | 0.5mm pin pitch) | 0.4mm pin pitch) | 48SSOP ^{2,3}
(300 mil Body,
25 mil pin pitch) | 56 TSSOP²
(6.1mm Body,
0.5mm pin pitch) | 48TSSOP ²
(6.1mm Body,
0.5mm pin pitch) | 0.4mm pin pitch) | 0.4mm pin pitch) | | Core Voltage | 3.3V | 1.5V | 3.3V | 3.3V | 3.3V | 1.5V | 1.5V | | Separate VDD_IO rail for power savings | Yes (1.05 to 3.3 V) | Yes (1.5V) | Yes (1.5 to 3.3 V) | Yes (1.05 to 3.3 V) | No | Yes (1.05 to 1.5 V) | Yes (1.05 to 1.5 V) | | Fully integrated
Voltage Regulator
for VDD_IO | Yes | Integrated Series
Resistors on
Differential Outputs | Yes | Operating
Temperature Range | С | С | C, I, W3 | С, І | С, I | С | С | | Typical
Power Consumption | 190mW ⁴ | 100mW⁵ | 215mW ⁶ | 430mW ⁴ | 330mw ⁸ | 125mw ⁷ | 150mw ⁷ | | Target Applications | UMPC, Embedded,
Portable Internet
Devices | UMPC, Portable
Internet Devices | Embedded, Industrial,
Automotive | Embedded, Desktop,
Netbook | Embedded, µServers | Ultrabook, Netbook,
Desktop, Embedded,
Servers | Ultrabook, Netbook,
Desktop | | PCIe Phase
Noise Capability | Gen1 | Gen1 | Gen1 | Gen2 | Gen2 | Gen2 | Gen2 | | I/O Mix | | | | | | | | | | CK540 | CK610 | /CK633 | CK505 56-pin | CK505 Derivative | CK-NET | CK-NET Derivative | | CPU pairs | 2 | 3 | | 2 | 2 | 2 | 2 | | SRC pairs | 4 | 3 | | 5 | 2 | 3 | 5 | | ITP/SRC pair | 1 ITP | 0 | | 1 | 1 | 1 | 1 | | DOT96/SRC pair | 1 DOT96 | 1 DOT96 | | 1 | 1 D0T96 | 1 | 1 | | SATA/SRC pair | 0 | 0 | | 1 | 1 | 1 | 1 | | | | | , | · · | (SATA = 75 or 100 M) | ' | ' | | LCD/SRC pair | 1 LCD | 11 | CD | 1 | (SATA = 75 or 100 M)
0 | 1 LCD | 1 LCD | | LCD/SRC pair Single-ended Outputs/SRC pair | 1 LCD | | | | , | | | | Single-ended | | | CD | 1
1 muxed | 0 | 1 LCD | 1 LCD | | Single-ended
Outputs/SRC pair | 0 | | CD
O | 1 1 muxed (with LCD/SCR pair) | 0
12.288M, 25M | 1 LCD
1 PCI/25M output | 1 LCD
1 25M, 1 PCI/27M | | Single-ended
Outputs/SRC pair
PCI outputs | 0 3 | | CD
D | 1 1 muxed (with LCD/SCR pair) 6 | 0
12.288M, 25M
2
2
(1 selectable | 1 LCD 1 PCI/25M output 3 | 1 LCD
1 25M, 1 PCI/27M
3 | HDI PCB technology required HDI PCB technology NOT required 3. 48 SSOP is available in AECQ-100 Level 3 Grade for Automotive Applications VDD = 3.3V, VDD_10 = 1.05V ^{5.} VDD = 1.5V, VDDREF = 3.3 V, VDD_IO = 1.5V 6. VDD = 3.3V, VDDREF = 3.3 V, VDD_IO = 1.5V 7. VDD33 = 3.3V, VDD=1.5 V, VDD_IO = -1.05V ^{8.} VDD = 3.3V