
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

V850E2S

User’s Manual: Architecture

Rev.1.00 May, 2014

32

RENESAS MCU
V850E2S Microprocessor Core

www.renesas.com

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external

interface, as a rule, switch on the external power supply after switching on the internal power supply.

When switching the power supply off, as a rule, switch off the external power supply and then the

internal power supply. Use of the reverse power on/off sequences may result in the application of an

overvoltage to the internal elements of the device, causing malfunction and degradation of internal

elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related

specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current

injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and

the abnormal current that passes in the device at this time may cause degradation of internal elements.

Input of signals during the power off state must be judged separately for each device and according to

related specifications governing the device.

NOTES FOR CMOS DEVICES

5

6

How to Use This Manual

Target Readers This manual is intended for users who wish to understand the functions of the V850E2S

CPU core for designing application systems using the V850E2S CPU core.

Purpose This manual is intended for users to understand the architecture of the V850E2S CPU core

described in the Organization below.

Organization This manual contains the following information:

 • Basic function

 • Processor protection function

How to Use this Manual It is assumed that the reader of this manual has general knowledge in the fields of electrical

engineering, logic circuits, and microcontrollers.

 To learn about the hardware functions,

  Read Hardware User’s Manual of each product.

 To learn about the functions of a specific instruction in detail,

  Read PART 2 CHAPTER 5 INSTRUCTIONS

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: B (B is appended to pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numerical representation: Binary ...  or B

 Decimal ... 
 Hexadecimal ... H

 Prefix indicating the power of 2 (address space, memory capacity):

 K (Kilo): 210 = 1,024

 M (Mega): 220 = 1,0242

 G (Giga): 230 = 1,0243

 5

Table of Contents

PART 1 OVERVIEW ... 12

CHAPTER 1 FEATURES .. 13
1.1 Basic function ... 13
1.2 Processor protection function .. 13

PART 2 BASIC FUNCTION .. 14

CHAPTER 1 OVERVIEW .. 15
1.1 Features ... 15

CHAPTER 2 REGISTER SET ... 17

2.1 Program Registers .. 18
2.2 System Register Bank .. 19

2.2.1 BSEL  Register bank selection ... 21
2.3 CPU Function Group/Main Bank ... 22

2.3.1 EIPC and EIPSW  Status save registers when acknowledging EI level exception 23
2.3.2 FEPC and FEPSW  Status save registers when acknowledging FE level exception 23
2.3.3 ECR  Exception cause .. 24
2.3.4 PSW  Program status word .. 25
2.3.5 SCCFG  SYSCALL operation setting ... 28
2.3.6 SCBP  SYSCALL base pointer ... 28
2.3.7 EIIC  EI level exception cause .. 29
2.3.8 FEIC  FE level exception cause .. 29
2.3.9 CTPC and CTPSW  Status save registers when executing CALLT .. 29
2.3.10 CTBP  CALLT base pointer .. 30
2.3.11 EIWR  EI level exception working register .. 30
2.3.12 FEWR  FE level exception working register .. 30
2.3.13 DBIC  DB level exception cause ... 31
2.3.14 DBPC and DBPSW  Status save registers when acknowledging DB level exception 31
2.3.15 DBWR  DB level exception working register ... 31
2.3.16 DIR  Debug interface register ... 31

2.4 CPU Function Group/Exception Handler Address Switching Function Banks 32
2.4.1 SW_CTL  Exception handler address switching control ... 34
2.4.2 SW_CFG  Exception handler address switching configuration ... 34
2.4.3 SW_BASE  Exception handler address switching base address .. 34
2.4.4 EH_CFG  Exception handler configuration ... 35
2.4.5 EH_BASE  Exception handler base address .. 35
2.4.6 EH_RESET  Reset address .. 36

2.5 User Group .. 37

CHAPTER 3 DATA TYPES ... 38
3.1 Data Formats ... 38

3.1.1 Byte .. 38
3.1.2 Halfword ... 38
3.1.3 Word ... 39

 6

3.1.4 Bit .. 39
3.2 Data Representation .. 40

3.2.1 Integers ... 40
3.2.2 Unsigned integers ... 40
3.2.3 Bits .. 40

3.3 Data Alignment ... 41

CHAPTER 4 ADDRESS SPACE .. 42
4.1 Memory Map ... 43
4.2 Addressing Modes ... 45

4.2.1 Instruction address .. 45
4.2.2 Operand address .. 48

CHAPTER 5 INSTRUCTIONS .. 51

5.1 Opcodes and Instruction Formats ... 51
5.1.1 CPU instructions ... 51
5.1.2 Coprocessor instructions ... 56
5.1.3 Reserved instructions ... 56

5.2 Overview of Instructions ... 57
5.3 Instruction Set .. 62

ADD .. 65
ADDI .. 66
ADF .. 67
AND .. 68
ANDI .. 69
Bcond .. 70
BSH .. 72
BSW .. 73
CALLT .. 74
CAXI .. 75
CLR1 .. 76
CMOV .. 78
CMP .. 80
CTRET ... 81
DI .. 82
DISPOSE ... 83
DIV .. 85
DIVH .. 86
DIVHU .. 88
DIVQ .. 89
DIVQU .. 90
DIVU .. 91
EI .. 92
EIRET .. 93
FERET ... 94
FETRAP ... 95
HALT .. 96
HSH .. 97
HSW .. 98
JARL .. 99

 7

JMP ... 101
JR ... 102
LD.B ... 103
LD.BU ... 104
LD.H ... 105
LD.HU ... 106
LD.W ... 107
LDSR ... 108
MAC ... 109
MACU ... 110
MOV ... 111
MOVEA .. 112
MOVHI ... 113
MUL ... 114
MULH ... 115
MULHI ... 116
MULU ... 117
NOP ... 118
NOT ... 119
NOT1 ... 120
OR ... 122
ORI ... 123
PREPARE .. 124
RETI ... 126
RIE ... 128
SAR ... 129
SASF ... 131
SATADD .. 132
SATSUB .. 134
SATSUBI ... 135
SATSUBR .. 136
SBF ... 137
SCH0L ... 138
SCH0R... 139
SCH1L ... 140
SCH1R... 141
SET1 ... 142
SETF ... 144
SHL ... 146
SHR ... 148
SLD.B ... 150
SLD.BU .. 151
SLD.H ... 152
SLD.HU.. 153
SLD.W ... 154
SST.B ... 155
SST.H ... 156
SST.W ... 157
ST.B ... 158
ST.H ... 159

 8

ST.W .. 160
STSR .. 161
SUB .. 162
SUBR .. 163
SWITCH ... 164
SXB .. 165
SXH .. 166
SYNCE ... 167
SYNCM .. 168
SYNCP ... 169
SYSCALL ... 170
TRAP .. 172
TST .. 173
TST1 .. 174
XOR .. 175
XORI .. 176
ZXB .. 177
ZXH .. 178

CHAPTER 6 EXCEPTIONS .. 179

6.1 Outline of Exceptions .. 179
6.1.1 Exception cause list .. 179
6.1.2 Types of exceptions .. 182
6.1.3 Exception processing flow ... 184
6.1.4 Exception acknowledgment priority and pending conditions ... 185
6.1.5 Exception acknowledgment conditions ... 185
6.1.6 Resume and restoration .. 185
6.1.7 Exception level and context saving ... 186
6.1.8 Return instructions .. 187

6.2 Operations When Exception Occurs .. 190
6.2.1 EI level exception without acknowledgment conditions ... 190
6.2.2 EI level exception with acknowledgment conditions .. 192
6.2.3 FE level exception without acknowledgment conditions .. 194
6.2.4 FE level exception with acknowledgment conditions ... 196
6.2.5 Special operations .. 198

6.3 Exception Management ... 200
6.4 Exception Handler Address Switching Function .. 201

6.4.1 Determining exception handler addresses .. 201
6.4.2 Purpose of exception handler address switching .. 202
6.4.3 Settings for exception handler address switching function .. 202

CHAPTER 7 COPROCESSOR UNUSABLE STATUS .. 203

7.1 Coprocessor Unusable Exception ... 203
7.2 System Registers ... 203

CHAPTER 8 RESET ... 204

8.1 Status of Registers After Reset .. 204
8.2 Start ... 204

 9

PART 3 PROCESSOR PROTECTION FUNCTION ... 205

CHAPTER 1 OVERVIEW .. 206
1.1 Features ... 206

CHAPTER 2 REGISTER SET ... 208

2.1 System Register Bank .. 208
2.2 System Registers .. 210

2.2.1 PSW – Program Status Word ... 213
2.2.2 MPM – Setting of processor protection operation mode ... 214
2.2.3 MPC – Specification of processor protection command ... 217
2.2.4 TID – Task identifier ... 217
2.2.5 Other system registers ... 217

CHAPTER 3 OPERATION SETTING .. 218

3.1 Starting Use of Processor Protection Function .. 218
3.2 Setting of Execution Level Auto Transition Function ... 218
3.3 Stopping Use of Processor Protection Function .. 218

CHAPTER 4 EXECUTION LEVEL .. 219

4.1 Nature of Program .. 219
4.2 Protection Bits on PSW .. 220

4.2.1 T state (trusted state) ... 220
4.2.2 NT state (non-trusted state) .. 220

4.3 Definition of Execution Level ... 220
4.4 Transition of Execution Level .. 221

4.4.1 Transition by execution of write instruction to system register .. 221
4.4.2 Transition as result of occurrence of exception .. 222
4.4.3 Transition by execution of return instruction ... 222

4.5 Program Model .. 223
4.6 Task Identifier .. 224

CHAPTER 5 SYSTEM REGISTER PROTECTION ... 225

5.1 Register Set ... 226
5.1.1 VSECR – System register protection violation cause ... 227
5.1.2 VSTID – System register protection violation task identifier ... 227
5.1.3 VSADR – System register protection violation address .. 228

5.2 Access Control .. 229
5.3 Registers to Be Protected .. 229
5.4 Detection of Violation ... 230
5.5 Operation Method ... 230

CHAPTER 6 MEMORY PROTECTION ... 231

6.1 Register Set ... 232
6.1.1 PAnL – Protection area n lower-limit address (n = 0 to 3) .. 233
6.1.2 PAnU – Protection area n upper-limit address (n = 0 to 3) ... 234
6.1.3 VMECR – Memory protection violation cause .. 235
6.1.4 VMTID – Memory protection violation task identifier ... 236
6.1.5 VMADR – Memory protection violation address ... 236

 10

6.2 Access Control ... 237
6.3 Setting Protection Area ... 238

6.3.1 Valid bit (E bit) ... 238
6.3.2 Execution enable bit (X bit) ... 238
6.3.3 Read enable bit (R bit) .. 239
6.3.4 Write enable bit (W bit) ... 239
6.3.5 sp indirect access enable bit (S bit) .. 239
6.3.6 Protection area lower-limit address (AL31 to AL0 bits) ... 239
6.3.7 Protection area upper-limit address (AU31 to AU0 bits) .. 239

6.4 Notes on Setting Protection Area ... 240
6.4.1 Crossing of protection area boundaries .. 240
6.4.2 Invalid protection area setting ... 240

6.5 Special Memory Access Instructions .. 241
6.5.1 Load and store instructions executing misaligned access ... 241
6.5.2 Some bit manipulation instructions and CAXI instruction .. 241
6.5.3 Stack frame manipulation instructions... 241
6.5.4 SYSCALL instruction .. 241

6.6 Protection Violation and Exception ... 242

CHAPTER 7 PROCESSOR PROTECTION EXCEPTION ... 243
7.1 Types of Violations .. 243

7.1.1 System register protection violation .. 243
7.1.2 Execution protection violation ... 243
7.1.3 Data protection violation .. 243

7.2 Types of Exceptions .. 244
7.2.1 MIP exception ... 244
7.2.2 MDP exception .. 244

7.3 Identifying Violation Cause ... 245
7.3.1 MIP exception ... 245
7.3.2 MDP exception .. 245

CHAPTER 8 SPECIFAL FUNCTON .. 247

8.1 Clearing Memory Protection Setting All at Once .. 247

APPENDIX A LIST OF INSTRUCTIONS ... 248
A.1 Basic Instructions .. 248

APPENDIX B INSTRUCTION OPCODE MAP ... 252

B.1 Basic Instruction Opcode Map ... 252

APPENDIX C PIPELINES ... 257
C.1 Features .. 259
C.2 Clock Requirements .. 261

C.2.1 Clock requirements for basic instructions .. 261
C.3 Pipeline for Basic Instructions ... 266

C.3.1 Load instructions ... 266
C.3.2 Store instructions .. 266
C.3.3 Multiply instructions ... 267
C.3.4 Multiply-accumulate instructions ... 268
C.3.5 Arithmetic operation instructions ... 269

 11

C.3.6 Conditional operation instructions ... 269
C.3.7 Saturated operation instructions ... 269
C.3.8 Logic operation instructions .. 269
C.3.9 Data manipulation instructions .. 270
C.3.10 Bit search instructions .. 270
C.3.11 Divide instructions .. 270
C.3.12 High-speed divide instructions .. 271
C.3.13 Branch instructions ... 272
C.3.14 Bit manipulation instructions ... 274
C.3.15 Special instructions ... 275

APPENDIX D DIFFERENCES BETWEEN V850E2S CPU AND OTHER CPUS 279

D.1 Difference Between V850E2 and V850E2M .. 279

APPENDIX E INSTRUCTION INDEX .. 282
E.1 Basic Instructions ... 282

R01US0037EJ0100 Rev.1.00 Page 12 of 282
May 29, 2014

R01US0037EJ0100
Rev.1.00

May 29, 2014

V850E2S
RENESAS MCU

PART 1 OVERVIEW

V850E2S PART 1 CHAPTER 1 FEATURES

R01US0037EJ0100 Rev.1.00 Page 13 of 282
May 29, 2014

CHAPTER 1 FEATURES

The V850E2S CPU conforms to the V850E2v3 architecture and is designed for microcontrollers that control embedded

systems based on the concept of high performance, high functionality, and high reliability.

The V850E2S CPU supplies the following functions.

(1) Basic function
(2) Processor protection function

The V850E2S CPU executes almost all instructions, such as for address calculation, arithmetic and logic operations,

and data transfer, with one clock under control of a 5-stage pipeline.

The V850E2S CPU can use the software resources of the conventional system as is because it is upwardly compatible

with the V850 CPU, V850E1 CPU, V850E2 CPU, V850E2M CPU, and V850ES CPU at object code level.

1.1 Basic function

Basic integer operation instructions allowing general data processing and control programming, and special instructions

for application program optimization are provided. In addition, flexible exception processing functions that allow high-

reliability programming and load/store instructions with an extended displacement range are also provided.

The basic funciton mainly consists of an instruction queue, program counter, execution unit, general-purpose registers,

system registers, and control block. The execution unit contains dedicated hardware such as an ALU, LD/ST unit,

multiplier (16 bits x 16 bits), barrel shifter (32 bits/clock), and divider, to execute complicated processing.

For details of the basic function, see PART 2 BASIC FUNCTION.

1.2 Processor protection function

The processor protection function that protects resources, such as the memory and system registers, thereby

protecting the system from illegal use is provided.

The processor protection function is a function to guarantee high-reliability operations of a CPU which consists of

system register protection and memory protection.

For details of the processor protection function, see PART 3 PROCESSOR PROTECTION FUNCTION.

V850E2S PART 2 CHAPTER 1 OVERVIEW

R01US0037EJ0100 Rev.1.00 Page 14 of 282
May 29, 2014

PART 2 BASIC FUNCTION

V850E2S PART 2 CHAPTER 1 OVERVIEW

R01US0037EJ0100 Rev.1.00 Page 15 of 282
May 29, 2014

CHAPTER 1 OVERVIEW

The V850E2S CPU conforms to the V850E2v3 Architecture, and it supplies basic operations to establish OS and

application programs, and basic functions to manage exceptions.

(1) Integer operation instructions

Basic integer operation instructions that allow general data processing and control programming are provided.

In addition, the conventional load/store instructions are extended with a 23-bit displacement format added.

(2) Special instructions

Instructions useful for optimizing an application program, such as stack frame manipulation instructions and

common function call instructions, are provided.

(3) High-function OS support

Instructions dedicated to supporting development of high-function OS are provided.

(4) Flexible and high-performance exception processing

Various exception processing functions that enable high-reliability programming are provided.

1.1 Features

(1) Advanced 32-bit architecture for embedded control
 Number of instructions: 98

 32-bit general-purpose registers: 32 registers

 Load/store instructions with multiple displacement formats

  Long (32 bits)

  Middle (16 bits)

  Short (8 bits)

 3 operand instructions

 Address space: Program area … 4 GB linear

 Data area … 4 GB linear

(2) Instructions used for various application fields
 Saturated operation instructions

 Bit manipulation instructions

 Multiply instructions (on-chip hardware multiplier enable single-clock multiplication processing)

16 bits  16 bits  32 bits

32 bits  32 bits  32 bits or 64 bits

 MAC operation instructions

32 bits  32 bits + 64 bits  64 bits

 High-speed division instruction

This division instruction detects a valid bit length and changes it to the minimum number of execution cycles.

32 bits  32 bits  32 bits (quotient), 32 bits (remainder)

V850E2S PART 2 CHAPTER 1 OVERVIEW

R01US0037EJ0100 Rev.1.00 Page 16 of 282
May 29, 2014

(3) Instructions suitable for high-function/high-performance programming
 Stack frame manipulation instruction

 Exclusive control instruction

 System call instruction (OS service calling instruction)

 Synchronization instruction (event control)

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 17 of 282
May 29, 2014

CHAPTER 2 REGISTER SET

There are two types of registers related to the basic functions: program registers that are used for ordinary programs

and system registers that are used to control the execution environment. All are 32-bit registers.

Figure 2-1. Register List

(a) Program registers

(b) System registers

Note These are debug functions for development tools.

031

r0 (zero register)

r1 (assembler reserved registers)

r2

r3 (stack pointer) (SP)

r4 (global pointer) (GP)

r5 (text pointer) (TP)

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30 (element pointer) (EP)

r31 (link pointer) (LP)

PC (program counter)

Processor protection function group system registers

0 31

EIPC  status save register when acknowledging an EI level exception

EIPSW  status save register when acknowledging an EI level exception

FEPC  status save register when acknowledging an FE level exception

FEPSW  status save register when acknowledging an FE level exception

ECR  exception cause

PSW  program status word

CPU function group system registers

EIIC  EI level exception cause

FEIC  FE level exception cause

DBICNote  DB level exception cause

CTPC  status save register when executing CALLT

CTPSW  status save register when executing CALLT

DBPCNote  status save register when acknowledging a DB level exception

DBPSWNote  status save register when acknowledging a DB level exception

CTBP  CALLT base pointer

EIWR  EI level exception working register

FEWR  FE level exception working register

DBWRNote  DB level execution working register

BSEL  register bank selection

Debug function registersNote

SCCFG  SYSCALL operation setting

SCBP  SYSCALL base pointer

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 18 of 282
May 29, 2014

2.1 Program Registers

Program registers includes general-purpose registers (r0 to r31) and the program counter (PC).

Table 2-1. Program Register List

Program register Name Function Description

General-purpose

registers

r0 Zero register Always retains “0”

r1 Assembler reserved register Used as working register for generating addresses

r2 Register for address and data variables (when the real-time OS being used does not use this

register)

r3 Stack pointer (SP) Used for stack frame generation when functions are called

r4 Global pointer (GP) When to access global variable in data area

r5 Text pointer (TP) Used as a register that indicates the start of the text area

(area where program code is placed)

r6 to r29 Register for addresses and data variables

r30 Element pointer (EP) Used as base pointer for generating addresses when

accessing memory

r31 Link pointer (LP) Used when compiler calls a function

Program counter PC Retains instruction addresses during execution of programs

Remark For further descriptions of r1, r3 to r5, and r31 used for an assembler and/or C compiler, refer to the document

of each software development environment.

(1) General-purpose registers (r0 to r31)

A total of 32 general-purpose registers (r0 to r31) are provided. All of these registers can be used for either

data variables or address variables.

The following points must be noted when using r0 to r5, r30, and r31 because these registers are assumed to

be used for special purposes in a software development environment.

(a) r0, r3, and r30

These registers are implicitly used by instructions.

r0 is a register that always retains “0”. It is used for operations that use 0, addressing with base address

being 0, etc.

r3 is implicitly used by the PREPARE instruction and DISPOSE instruction.

r30 is used as a base pointer when the SLD instruction or SST instruction accesses memory.

(b) r1, r4, r5, and r31

These registers are implicitly used by the assembler and C compiler.

When using these registers, register contents must first be saved so they are not lost and can be restored

after the registers are used.

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 19 of 282
May 29, 2014

(c) r2

This register is used by a real-time OS in some cases. If the real-time OS that is being used is not using r2,

r2 can be used as a register for address variables or data variables.

(2) Program counter (PC)

The PC retains instruction addresses during program execution. Bit 0 is fixed to 0, and branching to an odd

number address is disabled.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 is
automatically set to bits 31 to 26.

2.2 System Register Bank

The V850E2S CPU system registers are provided in the system register bank. These system registers are defined in

groups based on functions, and within these groups “banks” are defined for more specific applications. Up to 28 system

registers can be defined (as registers 0 to 27) within each bank.

The V850E2S CPU includes the following groups and banks.

 CPU function group

 Main bank: Conventional system registers

 Exception handler switching function bank 0: System registers that switches exception handler

addresses

 Exception handler switching function bank 1 :System registers that switches exception handler addresses

 Processor protection function group

 Processor protection violation bank: System registers related to processor

protection violations

 Processor protection setting bank: System registers related to processor protection

functions

 Software paging bank: System registers that are used when the memory

protection function is used for software paging operation

 User group

 User 0 bank: This bank is able to access only system registers used by user applications.

31 29 28 1 0

PC Initial value
00000000H

 (Instruction address during execution)

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 20 of 282
May 29, 2014

Figure 2-2. System Register Bank

System register 30 (DBWR  DB level working register)

System register 31 (BSEL  register bank selection)

System register 28 (EIWR  EI level working register)

System register 29 (FEWR  FE level working register)

T
he

se
 s

ys
te

m
 r

eg
is

te
rs

 c
an

 b
e

ac
ce

ss
ed

 w
he

n
th

ei
r

ba
nk

 is
 s

el
ec

te
d

by
 th

e
B

S
E

L
re

gi
st

er
 s

et
tin

gs
.

T
he

se
 s

ys
te

m
 r

eg
is

te
rs

al

w
ay

s
ca

n
be

 a
cc

es
se

d,

re
ga

rd
le

ss
 o

f t
he

 s
et

tin
gs

in

 th
e

B
S

E
L

re
gi

st
er

.

System register 26

System register 27

System register 24

System register 25

System register 23

System register 22

:
:

System register 21

System register 06

System register 07

System register 04

System register 05

System register 02

System register 03

System register 00

System register 01

Main banks

CPU function group Processor protection
function group

User
group

E
xc

ep
tio

n
ha

nd
le

r
sw

itc
hi

ng

fu
nc

tio
n

ba
nk

 0

E
xc

ep
tio

n
ha

nd
le

r
sw

itc
hi

ng

fu
nc

tio
n

ba
nk

 1

P
ro

ce
ss

or
 p

ro
te

ct
io

n
vi

ol
at

io
n

ba
nk

P
ro

ce
ss

or
 p

ro
te

ct
io

n
se

tti
ng

 b
an

k

U
se

r
0

ba
nk

S
of

tw
ar

e
pa

gi
n

g
ba

nk

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 21 of 282
May 29, 2014

2.2.1 BSEL  Register bank selection
The BSEL register is used to select the system registers to be accessed by the LDSR instruction and STSR instruction.

The BSEL register can also be referenced, regardless of which bank has been selected.

Always set “0” to bits 31 to 16.

 Bit position Bit name Description

 15 to 8 GRP Specifies the system register bank group number (initial value: 0).

 00H: CPU function group

 10H: Processor protection function group

 FFH: User group

Settings other than the above are prohibited.

 7 to 0 BNK Specifies bank number of system register bank (initial value: 0).

 GRP BNK Corresponding execution level

 00H 00H Main bank

 10H Exception handler switching function bank 0

 11H Exception handler switching function bank 1

 10H 00H Processor protection violation bank

 01H Processor protection setting bank

 10H Software paging bank

 FFH 00H User 0 bank

 Other than above Setting prohibited

Part 2 described the CPU function group system register and user banks. For description of the system registers of the

processor protection function group, see PART 3 PROCESSOR PROTECTION FUNCTION.

31 16 7 0

BSEL Initial value
00000000H

0 0 0 BNK 0 0 0 0 0 0 0 0 0 0 0 0 0

15 8

GRP

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 22 of 282
May 29, 2014

2.3 CPU Function Group/Main Bank
The system registers in the main bank are used to control CPU status and to retain exception information.

System register read and write operations are performed using the LDSR instruction and STSR instruction, as specified

via the following system register numbers.

Table 2-2. System Register List (Main Bank)

System

Register

No.

Symbol System Register Name Able to Specify Operands? System

Register

Protection
LDSR

Instruction

STSR

Instruction

0 EIPC EI level exception status save register   

1 EIPSW EI level exception status save register   

2 FEPC FE level exception status save register   

3 FEPSW FE level exception status save register   

4 ECR Exception cause   

5 PSW Program status word    Note1

6 to 10 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

11 SCCFG SYSCAL operation setting   

12 SCBP SYSCALL base pointer   

13 EIIC EI level exception cause   

14 FEIC FE level exception cause   

15 DBIC Note2 DB level exception cause   

16 CTPC CALLT execution status save register   

17 CTPSW CALLT execution status save register   

18 DBPC Note2 DB level exception status save register   

19 DBPSW Note2 DB level exception status save register   

20 CTBP CALLT base pointer   

21 DIR Debug interface register Note3 Note4 

22 to 27 Debug function register   

28 EIWR EI level exception working register   

29 FEWR FE level exception working register   

30 DBWR Note2 DB level exception working register   

31 BSEL Register bank selection   

Notes 1. Only bits 31 to 6 are protected. Even if a write access is made while these bits are protected, a system

register protection violation is not detected. For details, refer to CHAPTER 5 SYSTEM REGISTER
PROTECTION in PART 3.

2. These are debug functions for development tools.

3. Can be written (updated) only in the debug mode.

4. The value read from some bits may be undefined in the user mode.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 23 of 282
May 29, 2014

2.3.1 EIPC and EIPSW  Status save registers when acknowledging EI level
exception

The EI level exception status save registers include EIPC and EIPSW.

When an EI level exception (EI level software exception, EI level interrupt (INT), etc.) has occurred, the address of the

instruction that was being executed when the EI level exception occurred, or of the next instruction, is saved to the EIPC

register (see Table 6-1 Exception Cause List). The current PSW information is saved to the EIPSW register.

Since there is only one pair of EI level exception status save registers, when processing multiple exceptions, the

contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the EIPC register. An odd-numbered address must not be specified.

If PSW bits are specified to be set to 0, the same bits in the EIPSW register must also be set to 0.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of
EIPC is automatically set to bits 31 to 26.

2.3.2 FEPC and FEPSW  Status save registers when acknowledging FE level
exception

The FE level exception status save register include FEPC and FEPSW.

When an FE level exception (FE level software exception, FE level interrupt (FEINT or FENMI), etc.) has occurred,

address of the instruction that was being executed when the FE level exception occurred, or of the next instruction, is

saved to the FEPC register (see Table 6-1 Exception Cause List). The current PSW information is saved to the FEPSW

register.

Since there is only one pair of FE level exception status save registers, when processing multiple exceptions, the

contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the FEPC register. An odd-numbered address must not be specified.

If PSW bits are specified to be set to 0, the same bits in the FEPSW register must also be set to 0.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of
FEPC is automatically set to bits 31 to 26.

31 0

EIPSW (PSW contents)

31 0

EIPC (PC contents)
Initial value
Undefined

Initial value
00000020H

31 0

FEPC (PC contents)

31 0

FEPSW (PSW contents)

Initial value
Undefined

Initial value
00000020H

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 24 of 282
May 29, 2014

2.3.3 ECR  Exception cause
When an exception has occurred, the ECR register retains the cause of the exception. These values retained in the

ECR are exception codes corresponding to individual exception causes (see Table 6-1 Exception Cause List). Since

this is a read-only register, the LDSR instruction cannot be used to write data to this register.

Caution The ECR register is for upward compatibility and is prohibited from being used in principle.
For programs other than existing programs that do not enable modification, use a program
that uses either the EIIC register or the FEIC register to overwrite all parts that were using the
ECR register.

 Bit position Bit name Description

 31 to 16 FECC Exception code for FE level exception (initial value: 0)

 15 to 0 EICC Exception code for EI level exception (initial value: 0)

31 0

ECR FECC EICC

16 15

Initial value
00000000H

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 25 of 282
May 29, 2014

2.3.4 PSW  Program status word
PSW (program status word) is a set of flags that indicate the program status (instruction execution result) and bits that

indicate the operation status of the CPU (flags are bits in the PSW that are referenced by a condition instruction (Bcond,

CMOV, etc.)).

When the LDSR instruction is used to change the contents of various bits in a register, the changed contents become

valid once execution of the LDSR instruction is completed.

Bits 31 to 6 are subject to system register protection. When system register protection is enabled, the contents of bits

31 to 6 cannot be changed by using the LDSR instruction (see CHAPTER 5 SYSTEM REGISTER PROTECTION in PART

3).

Bits 31 to 19, 15 to 12, and 8 are reserved for future function expansion, and be sure to set them to 0. Values are

undefined when readNote.

Note Use of bits 18 to 16 is described in PART 3 PROCESSOR PROTECTION FUNCTIONS (see PART 3

PROCESSOR PROTECTION FUNCTION).

 (1/3)

 Bit position Bit or flag name Description

 18 NPV This bit indicates a state of system register protection.

It indicates whether the CPU trusts an access to a system register by the program currently

being executed.

 0: T state (CPU trusts an access to the system register.) (initial value)

 1: NT state (CPU does not trust an access to the system register.)

The system register protection function does not limit accesses when the NPV bit indicates

the T state. When the NPV bit indicates the NT state, it limits accesses.

31 7 6 5 4 3 2 1 0

PSW
N
P

S
A
T

E
P

I
D

O
V

S Z
C
Y

Initial value
00000020H

0 0 0 0 0 0 0 0 0 0
D
M
P

I
M
P

0 0 0 00
N
P
V

0 0 0

0

 161718

0 0

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 26 of 282
May 29, 2014

 (2/3)

 Bit position Flag name Description

 17 DMP This bit indicates a state of memory protection against a data access (to a data area).

It indicates whether the CPU trusts a data access by the program currently being executed.

 0: T state (CPU trusts the data access.) (initial value)

 1: NT state (CPU does not trust the data access.)

The memory protection function does not limit data accesses when the DMP bit indicates the

T state. When the DMP bit indicates the NT state, it limits data accesses.

 16 IMP This bit indicates a state of memory protection in a program area. It indicates whether the

CPU trusts an access to the program area by the program currently being executed.

 0: T state (CPU trusts the access to the program area.) (initial value)

 1: NT status (CPU does not trust the access to the program area.)

The memory protection function does not limit accesses to the program area when the IMP

bit indicates the T state. When the IMP bit indicates the NT state, it limits accesses to the

program area

 7 NP This bit indicates when FE level exception processing is in progress. When an FE level

exception is acknowledged, this bit is set (1), which prohibits occurrence of multiple

exceptions .

 0: FE level exception processing is not in progress. (initial value)

 1: FE level exception processing is in progress.

 6 EP This bit indicates that an exception other than an interruptNote is being processed. It is set (1)

when the corresponding exception occurs. This bit does not affect acknowledging an

exception request even when it is set (1).

 0: An interrupt is being processed (initial value).

 1: An exception other than an interrupt is being processed.

 5 ID This bit indicates that an EI-level exception is being processed. It is set (1) when an EI level

exception is acknowledged, disabling generation of multiple exceptions. This bit is also used

to disable EI level exceptions from being acknowledged as a critical section while an

ordinary program or interrupt is being processed. It is set (1) when the DI instruction is

executed, and cleared (0) when the EI instruction is executed.

 0: EI level exception is being processed or the section is not a critical section (after

execution of EI instruction).

 1: EI level exception is being processed or the section is a critical section (after

execution of DI instruction). (initial value)

 Note
 F

or details

of

interrupts,

see 6.1.2
Types of
exception
s.

N
o
t
e

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 27 of 282
May 29, 2014

(3/3)

 Bit position Flag name Description

 4 SATNote This bit indicates that the operation result is saturated because the result of a saturated

operation instruction operation has overflowed. This is a cumulative flag, so when the operation

result of the saturated operation instruction becomes saturated, this bit is set (1), but

it is not later cleared to 0 when the operation result for a subsequent instruction is not saturated.

This bit is cleared (0) by the LDSR instruction. This bit is neither set (1) nor cleared (0) when an

arithmetic operation instruction is executed.

 0: Not saturated (initial value)

 1: Saturated

 3 CY This bit indicates whether a carry or borrow has occurred in the operation result.

 0: Carry and borrow have not occurred (initial value).

 1: Carry or borrow has occurred.

 2 OVNote This bit indicates whether or not an overflow has occurred during an operation.

 0: Overflow has not occurred (initial value).

 1: Overflow has occurred.

 1 SNote This bit indicates whether or not the result of an operation is negative.

 0: Result of operation is positive or 0 (initial value).

 1: Result of operation is negative.

 0 Z This bit indicates whether or not the result of an operation is 0.

 0: Result of operation is not 0 (initial value).

 1: Result of operation is 0.

 Note The operation result of the saturation processing is determined in accordance with the contents of the OV flag and S

flag during a saturated operation. When only the OV flag is set (1) during a saturated operation, the SAT flag is set

(1).

 Operation result status Flag status Operation result after

saturation processing SAT OV S

 Exceeded positive maximum value 1 1 0 7FFFFFFFH

 Exceeded negative maximum value 1 1 1 80000000H

 Positive (maximum value not exceeded) Value prior to

operation is

retained.

0 0 Operation result itself

 Negative (maximum value not

exceeded)

1

 Note

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 28 of 282
May 29, 2014

2.3.5 SCCFG  SYSCALL operation setting
This register is used to set operations related to the SYSCALL instruction. Be sure to set an appropriate value to this

register before using the SYSCALL instruction. Be sure to set 0 to bits 31 to 8.

Caution Do not place the SYSCALL instruction immediately after the LDSR instruction that changes the
contents of the SCCFG register.

 Bit position Bit name Description

 7 to 0 SIZE These bits specify the maximum number of entries of a table that the SYSCALL instruction

references. The maximum number of entries the SYSCALL instruction references is 1 if SIZE

is 0, and 256 if SIZE is 255. By setting the maximum number of entries appropriately in

accordance with the number of functions branched by the SYSCALL instruction, the memory

area can be effectively used.

If a vector exceeding the maximum number of entries is specified for the SYSCALL

instruction, the first entry is selected. Place an error processing routine at the first entry.

2.3.6 SCBP  SYSCALL base pointer
The SCBP register is used to specify a table address of the SYSCALL instruction and generate a target address. Be

sure to set an appropriate value to this register before using the SYSCALL instruction.

Be sure to set a word address to the SCBP register.

Note that bits 1 and 0 are fixed to 0.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of
SCBP is automatically set to bits 31 to 26.

31 0

SCCFG
Initial value
UndefinedSIZE

78

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000

31 0

SCBP
(Base address)

Initial value
Undefined

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 29 of 282
May 29, 2014

2.3.7 EIIC  EI level exception cause
The EIIC register retains the cause of any EI level exception that occurs. The value retained in this register is an

exception code corresponding to a specific exception cause (see Table 6-1 Exception Cause List).

2.3.8 FEIC  FE level exception cause
The FEIC register retains the cause of any FE level exception that occurs. The value retained in this register is an

exception code corresponding to a specific exception cause (see Table 6-1 Exception Cause List).

2.3.9 CTPC and CTPSW  Status save registers when executing CALLT
These are the status save registers when executing CALLT are CTPC and CTPSW.

When a CALLT instruction is executed, the address of the next instruction after the CALLT instruction is saved to CTPC

and the contents of the PSW (program status word) is saved to CTPSW.

Be sure to set bit 0 of the CTPC register to 0.

Whenever a PSW bit is specified to be set to 0, the same bit in the CTPSW register must also be set to 0.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of
CTPC is automatically set to bits 31 to 26.

31 0

EIIC Initial value
00000000H

31 0

FEIC Initial value
00000000H

31 0

CTPC (PC contents)

31 0

CTPSW
Initial value
00000020H

Initial value
Undefined

(PSW contents)

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 30 of 282
May 29, 2014

2.3.10 CTBP  CALLT base pointer
The CTBP register is used to specify table addresses of the CALLT instruction and generate target addresses.

Be sure to set the CTBP register to a halfword address.

Note that bit 0 is fixed to 0.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of
CTBP is automatically set to bits 31 to 26.

2.3.11 EIWR  EI level exception working register
The EIWR register is used as working register when an EI level exception has occurred.

The EIWR register can always be referenced, regardless of which bank is selected.

2.3.12 FEWR  FE level exception working register
The FEWR register is used as a working register when an FE level exception has occurred.

The FEWR register can always be referenced, regardless of which bank is selected.

31 0

CTBP (Base address)
Initial value
Undefined

31 0

EIWR Initial value
00000000HEIWR

31 0

FEWR Initial value
00000000HFEWR

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 31 of 282
May 29, 2014

2.3.13 DBIC  DB level exception cause
The DBIC register is related to debug function.

The DBIC register is a debug function for development tools.

2.3.14 DBPC and DBPSW  Status save registers when acknowledging DB level
exception

The status save registers when acknowledging the DB level exception are DBPC and DBPSW.

The DBPC and DBPSW register are debug functions for development tools.

2.3.15 DBWR  DB level exception working register
The DBWR register is related to debug function.

The DBWR register is a debug a function for development tools.

2.3.16 DIR  Debug interface register
The DIR register controls and indicates the status of debug function.

The DIR register and other debug function-related registers (system registers 22 to 27) are debug functions for

development tools.

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 32 of 282
May 29, 2014

2.4 CPU Function Group/Exception Handler Address Switching
Function Banks

Exception handler switching function banks 0 and 1 are selected when 00000010H and 00000011H are set to the

BSEL register by LDSR instructions (see 2.2.1 BSEL  Register bank selection).

System registers 28 to 31 are system registers for all banks, and EIWR, FEWR, DBWR, and BSEL registers in the CPU

function bank are referenced regardless of the settings in the BSEL register.

 Exception handler switching function bank 0

(Group number 00H, bank number 10H, abbreviated as EHSW0 bank)

 Exception handler switching function bank 1

(Group number 00H, bank number 11H, abbreviated as EHSW1 bank)

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 33 of 282
May 29, 2014

Table 2-3. System Register Bank

Group CPU Function (00H)

Bank Exception Handler Switching Function Bank 0 (10H) Exception Handler Switching Function Bank 1 (11H)

Bank label EHSW0 EHSW1

Register

No.

Name Function Able to Specify

Operands?

S
ys

te
m

 R
eg

is
te

r

Name Function Able to Specify

Operands?

S
ys

te
m

 R
eg

is
te

r

LDSR

Instruction

STSR

Instruction

LDSR

Instruction

STSR

Instruction

0 SW_CTL Exception

handler address

switching control

   Reserved for future function

expansion

  

1 SW_CFG Exception

handler address

switching

configuration

   EH_CFG Exception

handler

configuration

  

2 Reserved for future function

expansion

   EH_RESE Reset address

register

  

3 SW_BASE Exception handler

address switching

base address

   EH_BASE Exception handler

base address

  

4 to 27 Reserved for future function

expansion

   Reserved for future function

expansion

  

28 EIWR EI level exception working register   

29 FEWR FE level exception working register   

30 DBWRNote DB level exception working register   

31 BSEL Register bank selection   

Note The DBWR register is a debug function for development tools.

Remark : Indicates in the column of “Able to specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to specify Operands?” that the register cannot be specified. In the column of

“System Register Protection”, this symbol indicates that the register is not protected.

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 34 of 282
May 29, 2014

2.4.1 SW_CTL  Exception handler address switching control
This register controls the exception handler address switching functions.

Be sure to set bits 31 to 1 to “0”.

 Bit position Bit name Description

 0 SET When the SET bit is set (1), values in the SW_CFG and SW_BASE registers are transferred to

EH_CFG and EH_BASE. After these transfers are completed, the SET bit is cleared (0).

2.4.2 SW_CFG  Exception handler address switching configuration
This register specifies settings for the exception handler address switching function.

Be sure to set bits 31 to 1 to “0”.

 Bit position Bit name Description

 0 RINT When the SW_CTL.SET bit is set (1), values in the SW_CFG register are transferred to the

EH_CFG register.

2.4.3 SW_BASE  Exception handler address switching base address
This register specifies the base address for the exception handler addresses used by the exception handler address

switching function.

Be sure to set bits 12 to 0 to “0”.

 Bit position Bit name Description

 31 to 13 SW_BASE31 to

SW_BASE13

When the SW_CTL.SET bit is set (1), the contents of the SW_BASE register are

transferred to the EH_BASE register.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of
bit 25 of SW_BASE is automatically set to bits 31 to 26.

31 1 0

SW_CTL 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0
S
E
T

Initial value
00000000H

000 0 0 0 0

31 1 0

SW_CFG 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0 Initial value
0000000xH

000 0 0 0 0

R
IN

T

31 0

SW_BASE SW_BASE31 to SW_BASE13 0 0 0 0 Initial value
Undefined

000 0 0 0 0 0

13 1228 29

0

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 35 of 282
May 29, 2014

2.4.4 EH_CFG  Exception handler configuration
This register indicates the current settings of the exception handler address switching function.

Bits 31 to 1 are fixed to 0.

 Bit position Bit name Description

 0 RINT When the RINT bit is set (1), exception handler addresses INT0 to INT127 are reduced to a

single handler address (INT0). When this bit is cleared (0), INT0 to INT127 are held as

independent exception handler addresses. The EH_CFG register is set to the initial value

defined for each product at reset. When the SW_CTL.SET bit is set (1), the contents of

SW_CFG are transferred.

2.4.5 EH_BASE  Exception handler base address
This register indicates the base addresses of the current exception handler address for the exception handler address

switching function.

Bits 12 to 0 are fixed to 0.

 Bit position Bit name Description

 31 to 13 EH_BASE31 to

EH_BASE13

Addresses are changed by adding an offset address for each exception to the base

addresses of exception handler routines specified in this register.

The EH_BASE register is set to the initial value defined for each product at reset. When

the SW_CTL.SET bit is set (1), the contents of SW_BASE are transferred.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of
EH_BASE is automatically set to bits 31 to 26.

31 1 0

EH_CFG 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0 Initial value
0000000xH

000 0 0 0 0

R
IN

T

0

31 0

EH_BASE EH_BASE31 to EH_BASE13 0 0 0 Initial value
Undefined

000 0 0 0 0 0

13 1228 29

0

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 36 of 282
May 29, 2014

2.4.6 EH_RESET  Reset address
This register indicates the reset address when the current reset is input.

Bits 12 to 0 are fixed to 0.

 Bit position Bit name Description

 31 to 13 EH_RESET31 to

EH_RESET13

The values in the EH_RESET register do not change except when initialized by a reset.

For details, see the User’s Manual of each product or CPU.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of
EH_RESET is automatically set to bits 31 to 26.

31 0

EH_RESET EH_RESET31 to EH_RESET13 0 0 0 0 000 0 0 0 0 0

13 1228 29

0 Initial value
Undefined

V850E2S PART 2 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 37 of 282
May 29, 2014

2.5 User Group

The user group is selected when 0000FF00H is set by an LDSR instruction to the BSEL register (see 2.2.1 BSEL 

Register bank selection). System registers in the user group are maps of the registers in the main bank. The user group

includes the following bank.

 User 0 bank (see Table 2-4)

Table 2-4. System Register List (User 0 Bank)

System

Register No.

Symbol Function Able to Specify

Operands?

System Register

Protection

LDSR STSR

0 to 4 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

5 PSW Program status word   Note1

6-15 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

16 CTPC Status save register when executing CALLT   

17 CTPSW Status save register when executing CALLT   

18, 19 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

20 CTBP CALLT base pointer   

21 to 27 (Reserved for future function expansion (operation is not

guaranteed when accessed))

  

28 EIWR EI level exception working register   

29 FEWR FE level exception working register   

30 DBWR

Note2

DB level exception working register   

31 BSEL Register bank selection   

Notes1. Only bits 31 to 6 are protected. Even if a write access is made while these bits are protected, a system

register protection violation is not detected. For details, refer to CHAPTER 5 SYSTEM REGISTER

PROTECTION in PART 3.

 2. The DBWR register is a debug function for development tools.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2S PART 2 CHAPTER 3 DATA TYPES

R01US0037EJ0100 Rev.1.00 Page 38 of 282
May 29, 2014

CHAPTER 3 DATA TYPES

3.1 Data Formats

The V850E2S CPU handles data in little endian format. This means that byte 0 of a halfword or a word is always the

least significant (rightmost) byte.

The supported data format is as follows.

 Byte (8-bit data)

 Halfword (16-bit data)

 Word (32-bit data)

 Bit (1-bit data)

3.1.1 Byte
A byte is 8 consecutive bits of data that starts from any byte boundary. Numbers from 0 to 7 are assigned to these bits,

with bit 0 as the LSB (least significant bit) and bit 7 as the MSB (most significant bit). The byte address is specified as “A”.

3.1.2 Halfword
A halfword is two consecutive bytes (16 bits) of data that starts from any byte boundaryNote. Numbers from 0 to 15 are

assigned to these bits, with bit 0 as the LSB and bit 15 as the MSB. The bytes in a halfword are specified using address

“A”, so that the two addresses comprise byte data of “A” and “A+1”.

Note During word access, the V850E2S CPU can be accessed at all byte boundaries.

See 3.3 Data Alignment.

7 0

Data

AddressesA

L
S
B

M
S
B

15 7 0

Data

8

AddressesA A+1

M
S
B

L
S
B

V850E2S PART 2 CHAPTER 3 DATA TYPES

R01US0037EJ0100 Rev.1.00 Page 39 of 282
May 29, 2014

3.1.3 Word
A word is four consecutive bytes (32 bits) of data that starts from any byte boundaryNote. Numbers from 0 to 31 are

assigned to these bits, with bit 0 as the LSB (least significant bit) and bit 31 as the MSB (most significant bit). A word is

specified by address “A” and consists of byte data of four addresses: “A”, “A+1”, “A+2”, and “A+3”.

Note During word access, the V850E2S CPU can be accessed at all byte boundaries.

See 3.3 Data Alignment.

3.1.4 Bit
A bit is bit data at the nth bit within 8-bit data that starts from any byte boundary. Each bit is specified using its byte

address “A” and its bit number “n” (n = 0 to 7).

L
S
B

31 24 23 16 15 7 0

Data

8

AddressesA A+1 A+2 A+3

M
S
B

7

Address “A” byte …....

0

AddressA

Bit numbern

Data

V850E2S PART 2 CHAPTER 3 DATA TYPES

R01US0037EJ0100 Rev.1.00 Page 40 of 282
May 29, 2014

3.2 Data Representation

3.2.1 Integers
Integers are represented as binary values using 2’s complement, and are used in one of three lengths: 32 bits, 16 bits,

or 8 bits. Regardless of the length of an integer, its place uses bit 0 as the LSB, and this place gets higher as the bit

number increases. Since this is a 2’s complement representation, the MSB is used as a signed bit.

The integer ranges for various data lengths are as follows.

 Word (32 bits): 2147483648 to +2147483647

 Halfword (16 bits): 32768 to +32767

 Byte (8 bits): 128 to +127

3.2.2 Unsigned integers
In contrast to “integers” which are data that can take either a positive or negative sign, “unsigned integers” are never

negative integers. Like integers, unsigned integers are represented as binary values, and are used in one of three

lengths: 32 bits, 16 bits, or 8 bits. Also like integers, the place of unsigned integers uses bit 0 as the LSB and gets higher

as the bit number increases. However, unsigned integers do not use a sign bit.

The unsigned integer ranges for various data lengths are as follows.

 Word (32 bits): 0 to 4294967295

 Halfword (16 bits): 0 to 65535

 Byte (8 bits): 0 to 255

3.2.3 Bits
Bit data are handled as single-bit data with either of two values: cleared (0) or set (1). There are four types of bit-

related operations (listed below), which target only single-byte data in the memory space.

 Set

 Clear

 Invert

 Test

V850E2S PART 2 CHAPTER 3 DATA TYPES

R01US0037EJ0100 Rev.1.00 Page 41 of 282
May 29, 2014

3.3 Data Alignment

The V850E2S CPU allows misaligned placement of data.

When the data to be processed is in halfword format, misaligned access indicates the access to an address that is not

at the halfword boundary (where the address LSB = 0), and when the data to be processed is in word format, misaligned

access indicates the access to an address that is not at the word boundary (where the lower two bits of the address = 0).

Regardless of the data format (byte, halfword, or word), data can be allocated at all addresses.

However, in the case of halfword data or word data, if the data is not aligned, at least one extra bus cycle will occur,

which increases the execution time for the instruction.

Figure 3-1. Example of Data Placement for Misaligned Access

Remark W: word data

HW: halfword data

xxxxxx00H

xxxxxx01H

xxxxxx02H

xxxxxx03H

xxxxxx04H
 Halfword boundary/Word boundary

xxxxxx05H

xxxxxx06H

HW

HW

xxxxxx07H

 Halfword boundary W

HW

W

 Halfword boundary/Word boundary

 Halfword boundary

 Halfword boundary/Word boundary

Aligned
access

Misaligned
access

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 42 of 282
May 29, 2014

CHAPTER 4 ADDRESS SPACE

The V850E2S CPU supports a linear address space of up to 4 GB. Both memory and I/O are mapped to this address

space (using the memory mapped I/O method). The CPU outputs a 32-bit address for memory and I/O, in which the

highest address number is “232  1”.

The byte data placed at various addresses is defined with bit 0 as the LSB and bit 7 as the MSB. When the data is

comprised of multiple bytes, it is defined so that the byte data at the lowest address is the LSB and the byte data at the

highest address is the MSB (i.e., in little endian format).

This manual stipulates that, when representing data comprised of multiple bytes, the right edge must be represented as

the lower address and the left side as the upper address, as shown below.

31 24 23 16 15 7 0

Data

8

AddressA A+1 A+2 A+3

15 7 0

Data

8

AddressA A+1

7 0

Data

AddressA

Word data at
address “A”

Halfword data at
address “A” ..

Byte data at
address “A” ..

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 43 of 282
May 29, 2014

4.1 Memory Map

The V850E2S CPU is 32-bit architecture and supports a linear address space of up to 4 GB. The whole range of this 4

GB address space can be addressed by instruction addressing (instruction access) and operand addressing (data access).

A memory map is shown in Figure 4-1.

Figure 4-1. Memory Map (Address Space)

00000000H

FFFFFFFFH

80000000H

7FFFFFFFH

Data area Program area

4
G

B

Address space

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 44 of 282
May 29, 2014

Caution For the V850E2S CPU, the range of the 4 GB program area that can be actually addressed
is
a 64 MB because of physical restrictions of registers that hold an instruction address
(such as the program counter). The following registers hold an instruction address.
  PC (program counter)
  EIPC and FEPC (exception context)
  SCBP, CTBP, and CTPC (table branch/exception instruction)
  SW_BASE, EH_BASE, and EH_RESET (exception handler selection function)
  VSADR (processor protection function)
With the V850E2S CPU whose addressable range of the program area is a 64 MB, the
higher 6 bits of these registers are automatically set to values resulting from a sign-
extension of bit 25. Therefore, the addressable ranges are 00000000H to 01FFFFFEH and
FE000000H to FFFFFFFEH (the least significant bit is always 0).

 The memory map in this case is shown below.

Be sure to place a table that is referenced by instructions and the SWITCH, CALLT, and SYSCALL

instructions in a range that can be addressed by instruction addressing. The data must also be
assigned within a range of 64 MB.

Sign
extension

31 26 25 0

0S

Data area Program area

4
G

B

Non-
addressable

range

Non-
addressable

range

FE000000H

01FFFFFFH

32
 M

B

32
 M

B

Address space

00000000H
FFFFFFFFH

80000000H

7FFFFFFFH

Data area

Access
prohibited area

Access
prohibited area

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 45 of 282
May 29, 2014

4.2 Addressing Modes

Two types of addresses are generated: instruction addresses that are used for instructions involved in branch

operations, and operand addresses that are used for instructions that access data.

4.2.1 Instruction address
The instruction address is determined based on the contents of the program counter (PC), and is automatically

incremented according to the number of bytes in the executed instruction. When a branch instruction is executed, the

addressing shown below is used to set the branch destination address to the PC.

(1) Relative addressing (PC relative)

Signed N-bit data (displacement: disp N) is added to the instruction code in the program counter (PC). In this case,

displacement is handled as 2’s complement data, and the MSB is a signed bit (S).

If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The JARL, JR, and Bcond instructions are used with this type of addressing.

Figure 4-2. Relative Addressing

(a) JARL disp22, reg2 instruction, and JR disp22 instruction

Remark This is an example of 22-bit displacement.

31 0

PC

31 22 0

Sign extension S

+
21

0 disp22

Instruction
(branch destination)

31 0

PC

0

0

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 46 of 282
May 29, 2014

(2) Register addressing (register indirect)

The contents of the general-purpose register (reg1) or system register (regID) specified by the instruction are

transferred to the program counter (PC).

The JMP, CTRET, EIRET, FERET, RETI, and DISPOSE instructions are used with this type of addressing.

Figure 4-3. Register Addressing

(3) Based addressing

Contents that are specified by the instruction in the general-purpose register (reg1) and that include the added

N-bit displacement (dispN) are transferred to the program counter (PC). At this time, the displacement is handled

as a 2’s complement data, and the MSB is a signed bit (S). If the displacement is less than 32 bits, the higher bits

are sign-extended (N differs from one instruction to another).

The JMP instruction is used with this type of addressing.

Figure 4-4. Based Addressing

31 0

reg1 or regID

Instruction
(branch destination)

31 0

PC 0

31 0

reg1

31 0

S

+

0 disp32

Instruction
(branch destination)

31 0

PC 0

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 47 of 282
May 29, 2014

 (4) Other addressing

A value specified by an instruction is transferred to the program counter (PC). How a value is specified is

explained in Operation or Description of each instruction.

The CALLT, SYSCALL, TRAP, FETRAP, and RIE instructions, and branch in case of an exception are used

with this type of addressing.

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 48 of 282
May 29, 2014

4.2.2 Operand address
The following methods can be used to access the target registers or memory when executing an instruction.

(1) Register addressing

This addressing method accesses the general-purpose register or system register specified in the general-

purpose register field as an operand.

Any instruction that includes the operand reg1, reg2, reg3, or regID are used with this type of addressing.

(2) Immediate addressing

This address mode uses arbitrary size data as the operation target in the instruction code.

Any instruction that includes the operand imm5, imm16, vector, or cccc are used with this type of addressing.

Remark vector: This is immediate data that specifies the exception vector (00H to 1FH), and is an operand

used by the TRAP, FETRAP, and SYSCALL instructions. The data width differs from one

instruction to another.

 cccc: This is 4-bit data that specifies a condition code, and is an operand used in the CMOV

instruction, SASF instruction, and SETF instruction. One bit (0) is added to the higher position

and is then assigned to an opcode as a 5-bit immediate data.

(3) Based addressing

There are two types of based addressing, as described below.

(a) Type 1

The contents of the general-purpose register (reg1) specified at the addressing specification field in the

instruction code are added to the N-bit displacement (dispN) data sign-extended to word length to obtain the

operand address, and addressing accesses the target memory for the operation. At this time, the

displacement is handled as a 2’s complement data, and the MSB is a signed bit (S). If the displacement is

less than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The LD, ST, and CAXI instructions are used with this type of addressing.

Figure 4-5. Based Addressing (Type 1)

Remark This is an example of 16-bit displacement.

31 0

reg1

Target memory for
operation

31 0

Sign extension disp16

+
1516

S

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 49 of 282
May 29, 2014

(b) Type 2
This addressing accesses a memory to be manipulated by using as an operand address the sum of the

contents of the element pointer (r30) and N-bit displacement data (dispN) that is zero-extended to a word

length. If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one

instruction to another).

The SLD instruction and SST instruction are used with this type of addressing.

Figure 4-6. Based Addressing (Type 2)

Remark This is an example of 8-bit displacement.

(4) Bit addressing
The contents of the general-purpose register (reg1) are added to the N-bit displacement (dispN) data sign-

extended to word length to obtain the operand address, and bit addressing accesses one bit (as specified by 3-bit

data “bit #3”) in one byte of the target memory space. At this time, the displacement is handled as a 2’s

complement data, and the MSB is a signed bit (S). If the displacement is less than 32 bits, the higher bits are sign-

extended (N differs from one instruction to another).

The CLR1, SET1, NOT1, and TST1 instructions are used with this type of addressing.

Figure 4-7. Bit Addressing

Remark n: Bit position specified by 3-bit data (bit #3) (n = 0 to 7)

In case of 16-bit displacement

31 0

r30 (element pointer)

Target memory for
operation

31 0

0 (zero extension) disp8

+
78

31 0

reg1

Target memory for
operation

31 0

Sign extension disp16

+
1516

n

S

V850E2S PART 2 CHAPTER 4 ADDRESS SPACE

R01US0037EJ0100 Rev.1.00 Page 50 of 282
May 29, 2014

(5) Other addressing

This addressing is to access a memory to be manipulated by using a value specified by an instruction as the

operand address. How a value is specified is explained in [Operation] or [Description] of each instruction.

The SWITCH, CALLT, SYSCALL, PREPARE, and DISPOSE instructions are used with this type of addressing.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 51 of 282
May 29, 2014

CHAPTER 5 INSTRUCTIONS

5.1 Opcodes and Instruction Formats

The V850E2S CPU has CPU instructions which are defined as basic instructions.

5.1.1 CPU instructions
CPU instructions are basically expressed in 16-bit and 32-bit formats. There are also several instructions that use

option data to add bits, enabling the configuration of 48-bit and 64-bit instructions. For details, see the opcode of the

relevant instruction in 5.3 Instruction Set.

Opcodes in the CPU instruction opcode area that do not define significant CPU instructions are reserved for future

function expansion and cannot be used. For details, see 5.1.3 Reserved instructions.

(1) reg-reg instruction (Format I)

A 16-bit instruction format consists of a 6-bit opcode field and two general-purpose register specification fields.

15 4 0511 10

reg2 opcode reg1

(2) imm-reg instruction (Format II)

A 16-bit instruction format consists of a 6-bit opcode field, 5-bit immediate field, and a general-purpose register

specification field.

15 4 0511 10

reg2 opcode imm

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 52 of 282
May 29, 2014

(3) Conditional branch instruction (Format III)

A 16-bit instruction format consists of a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

15 4 0711 10

disp opcode cond

6

disp

3

(4) 16-bit load/store instruction (Format IV)

A 16-bit instruction format consists of a 4-bit opcode field, a general-purpose register specification field, and a 7-bit

displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

15 0711 10

reg2 opcode

6

disp

1

disp/sub-opcode

A 16-bit instruction format consists of a 7-bit opcode field, a general-purpose register specification field, and a 4-bit

displacement field.

15 4 011 10

reg2 opcode disp

3

(5) Jump instruction (Format V)

A 32-bit instruction format consists of a 5-bit opcode field, a general-purpose register specification field, and a 22-

bit displacement field.

15 5 011 10

reg2 opcode disp

6 31 17 16

0

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 53 of 282
May 29, 2014

(6) 3-operand instruction (Format VI)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a

16-bit immediate field.

15 5 011 10

reg1opcode imm

4 31 16

reg2

(7) 32-bit load/store instruction (Format VII)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a

16-bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

15 5 011 10

reg1opcode disp

4 31 16

reg2

17

disp/sub-opcode

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format consists of a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a

general-purpose register specification field, and a 16-bit displacement field.

15 5 011 10

reg1opcode disp

4 31 16

sub

14

bit #

13

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 54 of 282
May 29, 2014

(9) Extended instruction format 1 (Format IX)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields,

and handles the other bits as a sub-opcode field.

Caution Extended instruction format 1 may use part of the general-purpose register specification field
of the sub-opcode field as a system register number field, condition code field, immediate field,
or displacement field. For details, refer to the description of each instruction in 5.3 Instruction
Set.

(10) Extended instruction format 2 (Format X)

This is a 32-bit instruction format that has a 6-bit opcode field and uses the other bits as a sub-opcode field.

Caution Extended instruction format 2 may use part of the general-purpose register specification field
of the sub-opcode field as a system register number field, condition code field, immediate field,
or displacement field. For details, refer to the description of each instruction in 5.3 Instruction
Set.

(11) Extended instruction format 3 (Format XI)

This is a 32-bit instruction format that has a 6-bit opcode field and three general-purpose register specification

fields, and uses the other bits as a sub-opcode field.

Caution Extended instruction format 3 may use part of the general-purpose register specification field
or the sub-opcode field as a system register number field, condition code field, immediate field,
or displacement field. For details, refer to the description of each instruction in 5.3 Instruction
Set.

15 5 011 10

reg1opcode

4 31 16

reg2

17

0sub-opcode

15 5 011 10

opcode

4 31 1617

0sub-opcodesub-opcode
sub-opcode
imm/vector

15 5 011 10

reg1opcode reg3

4 31 16

reg2

27 26

0sub-opcode

17

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 55 of 282
May 29, 2014

(12) Extended instruction format 4 (Format XII)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields,

and uses the other bits as a sub-opcode field.

Caution Extended instruction format 4 may use part of the general-purpose register specification field
of the sub-opcode field as a system register number field, condition code field, immediate field,
or displacement field. For details, refer to the description of each instruction in 5.3 Instruction
Set.

(13) Stack manipulation instruction format (Format XIII)

A 32-bit instruction format consists of a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, 5-bit sub-

opcode field, and one general-purpose register specification field (or 5-bit sub-opcode field).

The general-purpose register specification field is used as a sub-opcode filed, depending on the format of the

instruction.

(14) Load/store instruction 48-bit format (Format XIV)

This is a 48-bit instruction format that has a 6-bit opcode field, two general-purpose register specification fields,

and a 23-bit displacement field, and uses the other bits as a sub-opcode field.

15 5 011 10

sub-opcodeopcode reg3

4 31 16

reg2

27 26

0sub-opcode

17

15 5 011 10

imm opcode list

31 16

sub-opcode

20 21

reg2

6 1

15 5 011 10

reg1opcode reg3

31 16

sub-opcode

20 4 27 26

disp (low)

19

47 32

disp (high)

sub-opcode

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 56 of 282
May 29, 2014

5.1.2 Coprocessor instructions
Instructions in the following format are defined as coprocessor instructions.

Coprocessor instructions define the functions of each coprocessor.

Coprocessor instructions are not defined in the V850E2S CPU.

(1) Coprocessor unusable exception

If an attempt is made to execute a coprocessor instruction defined by an opcode that refers to a nonexistent

coprocessor or a coprocessor that cannot be used due to the operational status of the device, a coprocessor

unusable exception (UCPOP) immediately occurs.

For details, see CHAPTER 7 COPROCESSOR UNUSABLE STATUS.

5.1.3 Reserved instructions
An opcode reserved for future function extension and for which no instruction is defined is defined as a reserved

instruction.

It is defined by the product specification that either of the following two types of operations is performed on the opcode

of a reserved instruction.

 A reserved instruction exception occurs

 The reserved instruction is executed as an instruction

In the V850E2S CPU, the following opcodes define the RIE instruction, which always causes a reserved instruction

exception to occur.

 RIE instruction (16 bits)

 RIE instruction (32 bits)

 (x = Either 0 or 1)

15 5 011 10

1 reg3

4 31 16

reg2

27 26

opcode

17

opcode or reg1

1 1 1 1 1 1 0

259 8 7 6

15 4 05 11 10

0 0 0 0 0 0 0 0 0 1 0 0 0 0 00

5 011 10

1 x x x x1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 31 16

x x x x x

15

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 57 of 282
May 29, 2014

5.2 Overview of Instructions

(1) Load instructions:

Execute data transfer from memory to register. The following instructions (mnemonics) are provided.

(a) LD instructions

 LD.B: Load byte

 LD.BU: Load byte unsigned

 LD.H: Load halfword

 LD.HU: Load halfword unsigned

 LD.W: Load word

(b) SLD instructions

 SLD.B: Short format load byte

 SLD.BU: Short format load byte unsigned

 SLD.H: Short format load halfword

 SLD.HU: Short format load halfword unsigned

 SLD.W: Short format load word

(2) Store instructions:

Execute data transfer from register to memory. The following instructions (mnemonics) are provided.

(a) ST instructions

 ST.B: Store byte

 ST.H: Store halfword

 ST.W: Store word

(b) SST instructions

 SST.B: Short format store byte

 SST.H: Short format store halfword

 SST.W: Short format store word

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 58 of 282
May 29, 2014

(3) Multiply instructions:

Execute multiplication in 1 clock with on-chip hardware multiplier. The following instructions (mnemonics) are

provided.

 MUL: Multiply word

 MULH: Multiply halfword

 MULHI: Multiply halfword immediate

 MULU: Multiply word unsigned

(4) Multiply-accumulate instructions

After a multiplication operation, a value is added to the result. The following instructions (mnemonics) are

available.

 MAC: Multiply word and add

 MACU: Multiply word unsigned and add

(5) Arithmetic instructions:

Add, subtract, divide, transfer, or compare data between registers. The following instructions (mnemonics) are

provided.

 ADD: Add

 ADDI: Add immediate

 CMP: Compare

 MOV: Move

 MOVEA: Move effective address

 MOVHI: Move high halfword

 SUB: Subtract

 SUBR: Subtract reverse

(6) Conditional arithmetic instructions

Add and subtract operations are performed under specified conditions. The following instructions (mnemonics)

are available.

 ADF: Add on condition flag

 SBF: Subtract on condition flag

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 59 of 282
May 29, 2014

(7) Saturated operation instructions:

Execute saturated addition and subtraction. If the operation result exceeds the maximum positive value

(7FFFFFFFH), 7FFFFFFFH returns. If the operation result exceeds the maximum negative value (80000000H),

80000000H returns. The following instructions (mnemonics) are provided.

 SATADD: Saturated add

 SATSUB: Saturated subtract

 SATSUBI: Saturated subtract immediate

 SATSUBR: Saturated subtract reverse

(8) Logical instructions:

Include logical operation instructions. The following instructions (mnemonics) are provided.

 AND: AND

 ANDI: AND immediate

 NOT: NOT

 OR: OR

 ORI: OR immediate

 TST: Test

 XOR: Exclusive OR

 XORI: Exclusive OR immediate

(9) Data manipulation instructions:

Include data manipulation instructions and shift instructions with arithmetic shift and logical shift. Operands can be

shifted by multiple bits in one clock cycle through the on-chip barrel shifter. The following instructions (mnemonics)

are provided:

 BSH: Byte swap halfword

 BSW: Byte swap word

 CMOV: Conditional move

 HSH: Halfword swap halfword

 HSW: Halfword swap word

 SAR: Shift arithmetic right

 SASF: Shift and set flag condition

 SETF: Set flag condition

 SHL: Shift logical left

 SHR: Shift logical right

 SXB: Sign-extend byte

 SXH: Sign-extend halfword

 ZXB: Zero-extend byte

 ZXH: Zero-extend halfword

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 60 of 282
May 29, 2014

(10) Bit search instructions

The specified bit values are searched among data stored in registers.

 SCH0L: Search zero from left

 SCH0R: Search zero from right

 SCH1L: Search one from left

 SCH1R: Search one from right

(11) Divide instructions:

Execute division operations. Regardless of values stored in a register, the operation can be performed using a

constant number of steps. The following instructions (mnemonics) are provided.

 DIV: Divide word

 DIVH: Divide halfword

 DIVHU: Divide halfword unsigned

 DIVU: Divide word unsigned

(12) High-speed divide instructions

These instructions perform division operations. The number of valid digits in the quotient is determined in

advanced from values stored in a register, so the operation can be performed using a minimum number of steps.

The following instructions (mnemonics are provided).

 DIVQ: Divide word quickly

 DIVQU: Divide word unsigned quickly

(13) Branch instructions:

Include unconditional branch instructions (JARL, JMP, and JR) and a conditional branch instruction (Bcond) which

accommodates the flag status to switch controls. Program control can be transferred to the address specified by a

branch instruction. The following instructions (mnemonics) are provided.

 Bcond: Branch on condition code (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH,

BNL, BNV, BNZ, BP, BR, BSA, BV, BZ)

 JARL: Jump and register link

 JMP: Jump register

 JR: Jump relative

(14) Bit manipulation instructions:

Execute logical operation on memory bit data. Only a specified bit is affected. The following instructions

(mnemonics) are provided.

 CLR1: Clear bit

 NOT1: Not bit

 SET1: Set bit

 TST1: Test bit

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 61 of 282
May 29, 2014

(15) Special instructions:

Include instructions not provided in the categories of instructions described above. The following instructions

(mnemonics) are provided.

 CALLT: Call with table look up

 CAXI: Compare and exchange for interlock

 CTRET: Return from CALLT

 DI: Disable interrupt

 DISPOSE: Function dispose

 EI: Enable interrupt

 EIRET: Return from trap or interrupt

 FERET: Return from trap or interrupt

 FETRAP: Software trap

 HALT: Halt

 LDSR: Load system register

 NOP: No operation

 PREPARE: Function prepare

 RETI: Return from trap or interrupt

 RIE Reserved instruction exception

 STSR: Store system register

 SWITCH: Jump with table look up

 TRAP: Trap

 SYNCM: Synchronize memory

 SYNCP: Synchronize pipeline

 SYNCE: Synchronize exceptions

 SYSCALL: System call

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 62 of 282
May 29, 2014

5.3 Instruction Set

This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

 Instruction format: Indicates the description and the instruction operand (for symbols, refer to Table 5-1).

 Operation: Indicates the function of the instruction (for symbols, refer to Table 5-2).

 Format: Indicates the instruction format (refer to 5.1 Opcodes and Instruction Formats).

 Opcode: Indicates the bit field of the instruction opcode (for symbols, refer to Table 5-3).

 Flag: Indicates the change of flags of PSW (program status word) after the instruction execution.

“0” is to clear (reset), “1” to set, and “--” to remain unchanged.

 Description: Describes the operation of the instruction.

 Remark: Provides supplementary information on instruction.

 Caution: Provides precautionary notes.

Table 5-1. Conventions of Instruction Format

Symbol Meaning

reg1 General-purpose register (as source register)

reg2 General-purpose register (primarily as destination register with some as source registers)

reg3 General-purpose register (primarily used to store the remainder of a division result and/or the

higher 32 bits of a multiplication result)

bit#3 3-bit data to specify bit number

imm -bit immediate data

disp -bit displacement data

regID System register number

vector Data to specify vector ( indicates the bit size)

cond Condition code (refer to Table 5-4 Condition Codes)

cccc 4-bit data to specify condition code (refer to Table 5-4 Condition Codes)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 63 of 282
May 29, 2014

Table 5-2. Conventions of Operation

Symbol Meaning

 Assignment

GR [] General-purpose register

SR [] System register

zero-extend (n) Zero-extends “n” to word

sign-extend (n) Sign-extends “n” to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

extract-bit (a, b) Extracts value of bit b of data a

set-bit (a, b) Sets value of bit b of data a

not-bit (a, b) Inverts value of bit b of data a

clear-bit (a, b) Clears value of bit b of data a

saturate (n) Performs saturated processing of “n.”

If n > 7FFFFFFFH, n = 7FFFFFFFH.

If n < 80000000H, n = 80000000H.

result Outputs results on flag

Byte Byte (8 bits)

Halfword Halfword (16 bits)

Word Word (32 bits)

+ Add

– Subtract

|| Bit concatenation

 Multiply

 Divide

% Remainder of division results

AND AND

OR OR

XOR Exclusive OR

NOT Logical negate

logically shift left by Logical left-shift

logically shift right by Logical right-shift

arithmetically shift right by Arithmetic right-shift

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 64 of 282
May 29, 2014

Table 5-3. Conventions of Opcode

Symbol Meaning

R 1-bit data of code specifying reg1 or regID

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

D 1-bit data of displacement (indicates higher bits of displacement)

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

V 1-bit data of code specifying vector (indicates higher bits of vector)

v 1-bit data of code specifying vector

cccc 4-bit data for condition code specification (Refer to Table 5-4 Condition Codes)

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general-purpose register in register list

S 1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list

P 1-bit data of code specifying PSW in register list

Table 5-4. Condition Codes

Condition Code (cccc) Condition Name Condition Formula

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T always (Unconditional)

1101 SA SAT = 1

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 65 of 282
May 29, 2014

<Arithmetic instruction>

Add register/immediate

ADD

Add

[Instruction format] (1) ADD reg1, reg2

 (2) ADD imm5, reg2

[Operation] (1) GR [reg2]  GR [reg2] + GR [reg1]

 (2) GR [reg2]  GR [reg2] + sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr001110RRRRR

 15 0

 (2) rrrrr010010iiiii

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

 (2) Adds the 5-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 66 of 282
May 29, 2014

<Arithmetic instruction>

Add immediate

ADDI

Add immediate

[Instruction format] ADDI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110000RRRRR iiiiiiiiiiiiiiii

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise “0”.

SAT --

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 67 of 282
May 29, 2014

<Conditional Operation Instructions>

Add on condition flag

ADF

Conditional add

[Instruction format] ADF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3]  GR [reg1] + GR [reg2] +1

else GR [reg3]  GR [reg1] + GR [reg2] +0

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww011101cccc0

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Adds 1 to the result of adding the word data of general-purpose register reg1 to the word data of

general-purpose register reg2 and stores the result of addition in general-purpose register reg3, if

the condition specified as condition code “cccc” is satisfied.

If the condition specified as condition code “cccc” is not satisfied, the word data of general-purpose

register reg1 is added to the word data of general-purpose register reg2, and the result is stored in

general-purpose register reg3.

General-purpose registers reg1 and reg2 are not affected. Designate one of the condition codes

shown in the following table as [cccc]. (cccc is not equal to 1101.)

Condition

Code

Name Condition Formula Condition

Code

Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T always

(Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 68 of 282
May 29, 2014

<Logical instruction>

AND

AND

AND

[Instruction format] AND reg1, reg2

[Operation] GR [reg2]  GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001010RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 69 of 282
May 29, 2014

<Logical instruction>

AND immediate

ANDI

AND immediate

[Instruction format] ANDI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] AND zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110110RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] ANDs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-extended

to word length, and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 70 of 282
May 29, 2014

<Branch instruction>

Branch on condition code with 9-bit displacement

Bcond

Conditional branch

[Instruction format] Bcond disp9

[Operation] if conditions are satisfied

then PC  PC + sign-extend (disp9)

[Format] Format III

[Opcode] 15 0

 ddddd1011dddcccc

 dddddddd is the higher 8 bits of disp9.

cccc is the condition code of the condition indicated by cond (refer to Table 5-5 Bcond

Instructions).

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Checks each PSW flag specified by the instruction and branches if a condition is met; otherwise,

executes the next instruction. The PC of branch destination is the sum of the current PC value and

the 9-bit displacement (= 8-bit immediate data shifted by 1 and sign-extended to word length).

[Comment] Bit 0 of the 9-bit displacement is masked to “0”. The current PC value used for calculation is the

address of the first byte of this instruction. The displacement value being “0” signifies that the

branch destination is the instruction itself.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 71 of 282
May 29, 2014

Table 5-5. Bcond Instructions

Instruction Condition Code

(cccc)

Flag Status Branch Condition

Signed

integer

BGE 1110 (S xor OV) = 0 Greater than or equal to signed

BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal to signed

BLT 0110 (S xor OV) = 1 Less than signed

Unsigned

integer

BH 1011 (CY or Z) = 0 Higher (Greater than)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

BNL 1001 CY = 0 Not lower (Greater than or equal)

Common BE 0010 Z = 1 Equal

BNE 1010 Z = 0 Not equal

Others BC 0001 CY = 1 Carry

BF 1010 Z = 0 False

BN 0100 S = 1 Negative

BNC 1001 CY = 0 No carry

BNV 1000 OV = 0 No overflow

BNZ 1010 Z = 0 Not zero

BP 1100 S = 0 Positive

BR 0101 – Always (unconditional)

BSA 1101 SAT = 1 Saturated

BT 0010 Z = 1 True

BV 0000 OV = 1 Overflow

BZ 0010 Z = 1 Zero

Caution The branch condition loses its meaning if a conditional branch instruction is executed
on a signed integer (BGE, BGT, BLE, or BLT) when the saturated operation instruction
sets “1” to the SAT flag. In normal operations, if an overflow occurs, the S flag is
inverted (0  1 or 1  0). This is because the result is a negative value if it exceeds
the maximum positive value and it is a positive value if it exceeds the maximum
negative value. However, when a saturated operation instruction is executed,
and if the result exceeds the maximum positive value, the result is saturated with a
positive value; if the result exceeds the maximum negative value, the result is
saturated with a negative value. Unlike the normal operation, the S flag is not inverted
even if an overflow occurs.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 72 of 282
May 29, 2014

<Data manipulation instruction>

Byte swap halfword

BSH

Byte swap of halfword data

[Instruction format] BSH reg2, reg3

[Operation] GR [reg3]  GR [reg2] (23:16)  GR [reg2] (31:24)  GR [reg2] (7:0)  GR [reg2] (15:8)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000010

[Flags] CY “1” when there is at least one byte value of zero in the lower halfword of the operation result;

 otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” when lower halfword of operation result is “0”; otherwise, “0”.

 SAT --

[Description] Executes endian swap.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 73 of 282
May 29, 2014

<Data manipulation instruction>

Byte swap word

BSW

Byte swap of word data

[Instruction format] BSW reg2, reg3

[Operation] GR [reg3]  GR [reg2] (7:0)  GR [reg2] (15:8)  GR [reg2] (23:16)  GR [reg2] (31:24)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000000

[Flags] CY “1” when there is at least one byte value of zero in the word data of the operation result;

otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result word data is “0”; otherwise, “0”.

 SAT --

[Description] Executes endian swap.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 74 of 282
May 29, 2014

<Special instruction>

Call with table look up

CALLT

Subroutine call with table look up

[Instruction format] CALLT imm6

[Operation] CTPC  PC + 2 (return PC)

CTPSW  PSW

adr  CTBP + zero-extend (imm6 logically shift left by 1)

PC  CTBP + zero-extend (Load-memory (adr, Halfword))

[Format] Format II

[Opcode] 15 0

 0000001000iiiiii

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] The following steps are taken.

 (1) Transfers the contents of both return PC and PSW to CTPC and CTPSW.

 (2) Adds the CTBP value to the 6-bit immediate data, logically left-shifted by 1, and zero-extended

to word length, to generate a 32-bit table entry address.

 (3) Loads the halfword entry data of the address generated in step (2) and zero-extend to word

length.

 (4) Adds the CTBP value to the data generated in step (3) to generate a 32-bit target address.

 (5) Jumps to the target address.

Cautions 1. When an exception occurs during CALLT instruction execution, the execution is aborted
after the end of the read/write cycle.

 2. In the CALLT instruction memory read operation executed in order to read the table,
processor protection is performed.

 3. When memory protection (PSW.DMP = 1) is enabled, loading the data for generating a
target address from a table allocated in an area to which access from a user program is
prohibited cannot be performed.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 75 of 282
May 29, 2014

<Special instruction>

Compare and exchange for interlock

CAXI

Comparison and swap

[Instruction format] CAXI [reg1], reg2, reg3

[Operation] adr  GR[reg1]Note

 token  Load-memory (adr, Word)

 result  GR[reg2]  token

 If result == 0

 then Store-memory (adr, GR[reg3], Word)

 GR[reg3]  token

 else Store-memory(adr, token, Word)

 GR[reg3]  token

 Note The lower 2 bits of GR [reg1] is masked to 0 as adr.

[Format] Format XI

[Opcode] 15 031 16

 rrrrr111111RRRRR wwwww00011101110

[Flags] CY “1” if a borrow occurs in the result operation; otherwise, “0”

OV “1” if overflow occurs in the result operation; otherwise, “0”

S “1” if result is negative; otherwise, “0”

Z “1” if result is 0; otherwise, “0”

SAT --

[Description] First, the data in general-purpose register reg1 is read and the lower two bits are masked to “0”,

then a 32-bit address aligned to the word boundary is generated. Word data is read from the

generated address, then is compared with the word data in general-purpose register reg2, and the

result is indicated by flags in the PSW. Comparison is performed by subtracting the read word data

from the word data in general-purpose register reg2. If the comparison result is “0”, word data in

general-purpose register reg3 is stored in the generated address, otherwise the read word data is

stored in the generated address. Afterward, the read word data is stored in general-purpose

register reg3. General-purpose registers reg1 and reg2 are not affected.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during
the period between read and write operations, the target address is not affected by
access due to any other cause.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 76 of 282
May 29, 2014

<Bit manipulation instruction>

Clear bit

CLR1

Bit clear

[Instruction format] (1) CLR1 bit#3, disp16 [reg1]

 (2) CLR1 reg2, [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 token  Load-memory (adr, Byte)

 Z flag  Not (extract-bit (token, bit#3))

 token  clear-bit (token, bit#3)

 Store-memory (adr, token, Byte)

 (2) adr  GR [reg1]

 token  Load-memory (adr, Byte)

 Z flag  Not (extract-bit (token, reg2))

 token  clear-bit (token, reg2)

 Store-memory (adr, token, Byte)

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 10bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100100

[Flags] CY --

OV --

S --

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, then the bits indicated by the 3-bit bit number are cleared (0) and the data is written

back to the original address.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, the bits indicated by the lower three bits of reg2 are cleared

(0), and the data is written back to the original address.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 77 of 282
May 29, 2014

[Comment] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is executed,

and does not indicate the content of the specified bit after this instruction is executed.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during
the period between read and write operations, the target address is not affected by
access due to any other cause.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 78 of 282
May 29, 2014

<Data manipulation instruction>

Conditional move

CMOV

Conditional transfer

[Instruction format] (1) CMOV cccc, reg1, reg2, reg3

 (2) CMOV cccc, imm5, reg2, reg3

[Operation] (1) if conditions are satisfied

 then GR [reg3]  GR [reg1]

 else GR [reg3]  GR [reg2]

 (2) if conditions are satisfied

 then GR [reg3]  sign-extended (imm5)

 else GR [reg3]  GR [reg2]

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww011001cccc0

 15 0 31 16

 (2) rrrrr111111iiiii wwwww011000cccc0

[Flags] CY --

OV --

S --

Z --

SAT --

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 79 of 282
May 29, 2014

[Description] (1) When the condition specified by condition code “cccc” is met, data in general-purpose register

reg1 is transferred to general-purpose register reg3. When that condition is not met, data in

general-purpose register reg2 is transferred to general-purpose register reg3. Specify one of

the condition codes shown in the following table as “cccc”.

Condition

code

Name Condition formula Condition

code

Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

 (2) When the condition specified by condition code “cccc” is met, 5-bit immediate data sign-

extended to word-length is transferred to general-purpose register reg3. When that condition is

not met, the data in general-purpose register reg2 is transferred to general-purpose register

reg3. Specify one of the condition codes shown in the following table as “cccc”.

Condition

code

Name Condition formula Condition

code

Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Comment] See the description of the SETF instruction.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 80 of 282
May 29, 2014

<Arithmetic instruction>

Compare register/immediate (5-bit)

CMP

Compare

[Instruction format] (1) CMP reg1, reg2

 (2) CMP imm5, reg2

[Operation] (1) result  GR [reg2]  GR [reg1]

 (2) result  GR [reg2]  sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr001111RRRRR

 15 0

 (2) rrrrr010011iiiii

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Compares the word data of general-purpose register reg2 with the word data of general-

purpose register reg1 and outputs the result through the PSW flags. Comparison is performed

by subtracting the reg1 contents from the reg2 word data. General-purpose registers reg1 and

reg2 are not affected.

 (2) Compares the word data of general-purpose register reg2 with the 5-bit immediate data, sign-

extended to word length, and outputs the result through the PSW flags. Comparison is

performed by subtracting the sign-extended immediate data from the reg2 word data. General-

purpose register reg2 is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 81 of 282
May 29, 2014

<Special instruction>

Return from CALLT

CTRET

Return from subroutine call

[Instruction format] CTRET

[Operation] PC  CTPC

PSW  CTPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101000100

[Flags] CY Value read from CTPSW is set.

OV Value read from CTPSW is set.

S Value read from CTPSW is set.

Z Value read from CTPSW is set.

SAT Value read from CTPSW is set.

[Description] Loads the return PC and PSW from the appropriate system register and returns from a routine

under CALLT instruction. The following steps are taken:

 (1) The return PC and PSW are loaded from the CTPC and CTPSW.

 (2) The values are restored in PC and PSW and the control is transferred to the return address.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 82 of 282
May 29, 2014

<Special instruction>

Disable interrupt

DI

Disable EI level maskable exception

[Instruction format] DI

[Operation] PSW.ID  1 (Disables EI level maskable interrupt)

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101100000

[Flags] CY --

OV --

S --

Z --

SAT --

ID 1

[Description] Sets “1” to the ID flag of the PSW to immediately disable the acknowledgement of EI level

maskable exceptions.

[Comment] Overwrite of flags in the PSW by this instruction becomes valid as of the next instruction.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 83 of 282
May 29, 2014

<Special instruction>

Function dispose

DISPOSE

Stack frame deletion

[Instruction format] (1) DISPOSE imm5, list12

 (2) DISPOSE imm5, list12, [reg1]

[Operation] (1) adr  sp + zero-extend (imm5 logically shift left by 2)

 foreach (all regs in list12) {

 GR[reg in list12]  Load-memory (adr, Word)Note

 adr  adr + 4

 }

 sp  adr

 (2) adr  sp + zero-extend (imm5 logically shift left by 2)

 foreach (all regs in list12) {

 GR[reg in list12]  Load-memory (adr, Word)Note

 adr  adr + 4

 }

 sp  adr

 PC  GR[reg1]

 Note When loading to memory, the lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode] 15 0 31 16

 (1) 0000011001iiiiiL LLLLLLLLLLL00000

 15 0 31 16

 (2) 0000011001iiiiiL LLLLLLLLLLLRRRRR

 RRRRR  00000 (Do not specify r0 for reg1.)

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list “list12” (for

example, the “L” at bit 21 of the opcode corresponds to the value of bit21 in list12).

list12 is a 32-bit register list, defined as follows.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 84 of 282
May 29, 2014

 31 30 29 28 27 26 25 24 23 22 21 20 ... 1 0

 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 -- r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any

of these bits is set (1), it specifies a corresponding register operation as a processing target.

For example, when r20 and r30 are specified, the values in list12 appear as shown below

(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

 When all of the register’s non-corresponding bits are “0”: 08000001H

 When all of the register’s non-corresponding bits are “1”: 081FFFFFH

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length, to

sp; returns to general-purpose registers listed in list12 by loading the data from the address

specified by sp and adds 4 to sp.

 (2) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length, to

sp; returns to general-purpose registers listed in list12 by loading the data from the address

specified by sp and adds 4 to sp; and transfers the control to the address specified by general-

purpose register reg1.

[Comment] General-purpose registers in list12 are loaded in descending order (r31, r30, ... r20). The imm5

restores a stack frame for automatic variables and temporary data. The lower 2 bits of the address

specified by sp is always masked to “0” and aligned to the word boundary.

Cautions 1. If an exception occurs while this instruction is being executed, execution of the
instruction may be stopped after the read/write cycle and the register value write
operation are completed, but sp will retain its original value from before the start of
execution. The instruction will be executed again later, after a return from the exception.

 2. For instruction format (2) DISPOSE imm5, list12, [reg1], do not specify r0 for reg1.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 85 of 282
May 29, 2014

<Divide instruction>

Divide word

DIV

Division of (signed) word data

[Instruction format] DIV reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011000000

[Flags] CY --

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result quotient is negative; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT --

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose register

reg1 and stores the quotient to general-purpose register reg2 with the remainder set to general-

purpose register reg3. General-purpose register reg1 is not affected. When division by zero occurs,

an overflow results and all operation results except for the OV flag are undefined.

[Comment] Overflow occurs when the maximum negative value (80000000H) is divided by 1 with the quotient

= 80000000H and when the data is divided by 0 with quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIV instruction execution, the execution is aborted to process

the exception. The execution resumes at the original instruction address upon returning from the

exception. General-purpose register reg1 and general-purpose register reg2 retain their values prior

to execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register,
the operation result quotient is not stored in reg2, so the flag is undefined.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 86 of 282
May 29, 2014

<Divide instruction>

Divide halfword

DIVH

Division of (signed) halfword data

[Instruction format] (1) DIVH reg1, reg2

 (2) DIVH reg1, reg2, reg3

[Operation] (1) GR [reg2]  GR [reg2]  GR [reg1]

 (2) GR [reg2]  GR [reg2]  GR [reg1]

 GR [reg3]  GR [reg2] % GR [reg1]

[Format] (1) Format I

 (2) Format XI

[Opcode] 15 0

 (1) rrrrr000010RRRRR

 RRRRR  00000 (Do not specify r0 for reg1.)

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww01010000000

[Flags] CY --

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result quotient is negative; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT --

[Description] (1) Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2. General-

purpose register reg1 is not affected. When division by zero occurs, an overflow results and all

operation results except for the OV flag are undefined.

 (2) Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2 with the

remainder set to general-purpose register reg3. General-purpose register reg1 is not affected.

When division by zero occurs, an overflow results and all operation results except for the OV

flag are undefined.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 87 of 282
May 29, 2014

[Comment] (1) The remainder is not stored. Overflow occurs when the maximum negative value (80000000H)

is divided by 1 with the quotient = 80000000H and when the data is divided by 0 with quotient

being undefined.

When an exception occurs during the DIVH instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon

returning from the exception. General-purpose register reg1 and general-purpose register reg2

retain their values prior to execution of this instruction.

 (2) Overflow occurs when the maximum negative value (80000000H) is divided by 1 with the

quotient = 80000000H and when the data is divided by 0 with quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVH instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon

returning from the exception. General-purpose register reg1 and general-purpose register reg2

retain their values prior to execution of this instruction.

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

 2. Do not specify r0 as reg1 and reg2 for DIVH reg1 and reg2 in instruction format (1).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 88 of 282
May 29, 2014

<Divide instruction>

Divide halfword unsigned

DIVHU

Division of (unsigned) halfword data

[Instruction format] DIVHU reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01010000010

[Flags] CY --

OV “1” if overflow occurs; otherwise, “0”.

S “1” when the operation result quotient word data is “1”; otherwise, “0”

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT --

[Description] Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2 with the remainder

set to general-purpose register reg3. General-purpose register reg1 is not affected. When division

by zero occurs, an overflow results and all operation results except for the OV flag are undefined.

[Comment] Overflow occurs by division by zero (with the operation result being undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVHU instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon returning

from the exception. General-purpose register reg1 and general-purpose register reg2 retain their

values prior to execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register,
the operation result quotient is not stored in reg2, so the flag is undefined.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 89 of 282
May 29, 2014

<High-speed divide instructions>

Divide word quickly

DIVQ

Division of (signed) word data (variable steps)

[Instruction format] DIVQ reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011111100

[Flags] CY --

OV “1” when overflow occurs; otherwise, “0”.

S “1” when operation result quotient is a negative value; otherwise, “0”.

Z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT --

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose register

reg1, stores the quotient in reg2, and stores the remainder in general-purpose register reg3.

General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1 and reg2,

then this operation is executed. When division by zero occurs, an overflow results and all operation

results except for the OV flag are undefined.

[Comment] (1) Overflow occurs when the maximum negative value (80000000H) is divided by -1 (with the

quotient = 80000000H) and when the data is divided by 0 with the quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted. After

exception processing is completed, the execution resumes at the original instruction address

when returning from the exception. General-purpose register reg1 and general-purpose

register reg2 retain their values prior to execution of this instruction.

 (2) The smaller the difference in the number of valid bits between reg1 and reg2, the smaller the

number of execution cycles. In most cases, the number of instruction cycles is smaller than

that of the ordinary division instruction. If data of 16-bit integer type is divided by another 16-bit

integer type data, the difference in the number of valid bits is 15 or less, and the operation is

completed within 20 cycles.

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

 2. For the accurate number of execution cycles, refer to C.2 Clock Requirements.
 3. If the number of execution cycles must always be constant to guarantee real-time

features, use the ordinary division instruction.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 90 of 282
May 29, 2014

<High-speed divide instructions>

Divide word unsigned quickly

DIVQU

Division of (unsigned) word data (variable steps)

[Instruction format] DIVQU reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011111110

[Flags] CY --

OV “1” when overflow occurs; otherwise, “0”.

S “1” when operation result quotient is a negative value; otherwise, “0”.

Z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT --

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose register

reg1, stores the quotient in reg2, and stores the remainder in general-purpose register reg3.

General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1 and reg2,

then this operation is executed. When division by zero occurs, an overflow results and all operation

results except for the OV flag are undefined.

[Comment] (1) An overflow occurs when there is division by zero (the operation result is undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted. After

exception processing is completed, using the return address as this instruction’s start address,

the execution resumes when returning from the exception. General-purpose register reg1 and

general-purpose register reg2 retain their values prior to execution of this instruction.

 (2) The smaller the difference in the number of valid bits between reg1 and reg2, the smaller the

number of execution cycles. In most cases, the number of instruction cycles is smaller than

that of the ordinary division instruction. If data of 16-bit integer type is divided by another 16-bit

integer type data, the difference in the number of valid bits is 15 or less, and the operation is

completed within 20 cycles.

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

 2. For the accurate number of execution cycles, refer to C.2 Clock Requirements.
 3. If the number of execution cycles must always be constant to guarantee real-time

features, use the ordinary division instruction.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 91 of 282
May 29, 2014

<Divide instruction>

Divide word unsigned

DIVU

Division of (unsigned) word data

[Instruction format] DIVU reg1, reg2, reg3

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

GR [reg3]  GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011000010

[Flags] CY --

OV “1” if overflow occurs; otherwise, “0”.

S “1” when operation result quotient word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT --

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose register

reg1 and stores the quotient to general-purpose register reg2 with the remainder set to general-

purpose register reg3. General-purpose register reg1 is not affected. When division by zero occurs,

an overflow results and all operation results except for the OV flag are undefined.

[Comment] When an exception occurs during the DIVU instruction execution, the execution is aborted to

process the exception.

If reg2 and reg3 are the same register, the remainder is stored in that register.

The execution resumes at the original instruction address upon returning from the exception.

General-purpose register reg1 and general-purpose register reg2 retain their values prior to

execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register,
the operation result quotient is not stored in reg2, so the flag is undefined.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 92 of 282
May 29, 2014

<Special instruction>

Enable interrupt

EI

Enable EI level maskable exception

[Instruction format] EI

[Operation] PSW.ID  0 (enables EI level maskable exception)

[Format] Format X

[Opcode] 15 0 31 16

 1000011111100000 0000000101100000

[Flags] CY --

OV --

S --

Z --

SAT --

ID 0

[Description] Clears the ID flag of the PSW to “0” and enables the acknowledgement of maskable exceptions

starting the next instruction.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 93 of 282
May 29, 2014

<Special instruction>

Return from trap or interrupt

EIRET

Return from EL level exception

[Instruction format] EIRET

[Operation] PC  EIPC

 PSW  EIPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101001000

[Flags] CY Value read from EIPSW is set

OV Value read from EIPSW is set

S Value read from EIPSW is set

Z Value read from EIPSW is set

SAT Value read from EIPSW is set

[Description] Returns execution from an EI level exception. The return PC and PSW are loaded from the EIPC

and EIPSW registers and set in the PC and PSW, and control is passed. When EP = 0, completed

execution of the exception routine is reported externally (to the interrupt controller, etc.).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 94 of 282
May 29, 2014

<Special instruction>

Return from trap or interrupt

FERET

Return from FE level exception

[Instruction format] FERET

[Operation] PC  FEPC

 PSW  FEPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101001010

[Flags] CY Value read from FEPSW is set

OV Value read from FEPSW is set

S Value read from FEPSW is set

Z Value read from FEPSW is set

SAT Value read from FEPSW is set

[Description] Returns execution from an FE level exception. The return PC and PSW are loaded from the FEPC

and FEPSW registers and set in the PC and PSW, and control is passed. When EP = 0, completed

execution of the exception routine is reported externally (to the interrupt controller and elsewhere).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 95 of 282
May 29, 2014

<Special instruction>

FE-level Trap

FETRAP

FE level software exception

[Instruction format] FETRAP vector4

[Operation] FEPC  PC + 2 (return PC)

FEPSW  PSW

ECR.FECC  exception code (31H-3FH)

 FEIC  exception code (31H-3FH)

PSW.EP  1

PSW.ID  1

 PSW.NP  1

 If (MPM.AUE==1) is satisfied

 then PSW.IMP  0

 PSW.DMP  0

 PSW.NPV  0

PC  00000030H

[Format] Format I

[Opcode] 15 0

 0vvvv00001000000

 Where vvvv is vector4.

 Do not set 0H to vector4 (vvvv ≠ 0000).

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Saves the contents of the return PC (address of the instruction next to the FETRAP instruction) and

the current contents of the PSW to FEPC and FEPSW, respectively, stores an exception source

code in the FEIC register and ECR.FECC bit, and sets (1) the PSW.NP, EP, and ID bits. If the

MPM.AUE bit is set (1), it clears (0) the PSW.NPV, DMP, and IMP bits.

Execution then branches to the exception handler address (00000030H) and exception processing

is started.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 96 of 282
May 29, 2014

<Special instruction>

Halt

HALT

Halt

[Instruction format] HALT

[Operation] Instruction execution is halted until the HALT state release request is generated.

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000100100000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Places the system in the HALT state.

 Occurrence of the HALT state release request will return the system to normal execution status.

 If an exception is acknowledged while the system is in HALT state, the return PC of that exception

is the PC of the instruction that follows the HALT instruction.

 A HALT state release request is input when the following exception requests occur.

  Reset input (RESET)

  EI level maskable interrupt input (INT0 to INT127)

  FE level maskable interrupt input (FEINT)

  FE level non-maskable interrupt input (FENMI)

  System error exception (SYSERR)

 Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID or NP

value), as long as a HALT mode release request exists, HALT state is released (for example, even

if ID = 1, HALT state is released when INT0 occurs).

[Comment] The HALT status is not released if interrupt inputs (INT0 to INT127, FEINT, and FENMI) are

“disabled” by the following registers of the interrupt controller.

  EI level interrupt control registers (EIC0 to EIC255)

  EI level interrupt mask registers (IMR0 to IMR15)

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 97 of 282
May 29, 2014

<Data manipulation instructions>

Halfword swap halfword

HSH

Halfword swap of halfword data

[Instruction format] HSH reg2, reg3

[Operation] GR [reg3]  GR [reg2]

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000110

[Flags] CY “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

SAT --

[Description] Stores the content of general-purpose register reg2 in general-purpose register reg3, and stores the

flag judgment result in PSW.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 98 of 282
May 29, 2014

<Data manipulation instruction>

Halfword swap word

HSW

Halfword swap of word data

[Instruction format] HSW reg2, reg3

[Operation] GR [reg3]  GR [reg2] (15:0)  GR [reg2] (31:16)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000100

[Flags] CY “1” when there is at least one halfword of zero in the word data of the operation result;

 otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result word data is “0”; otherwise, “0”.

 SAT --

[Description] Executes endian swap.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 99 of 282
May 29, 2014

<Branch instruction>

Jump and register link

JARL

Branch and register link

[Instruction format] (1) JARL disp22, reg2

 (2) JARL disp32, reg1

[Operation] (1) GR [reg2]  PC + 4

PC  PC + sign-extend (disp22)

 (2) GR [reg1]  PC + 6

PC  PC + disp32

[Format] (1) Format V

 (2) Format VI

[Opcode] 15 0 31 16

 (1) rrrrr11110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

 (2) 00000010111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

 RRRRR  00000 (Do not specify r0 for reg1.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Saves the current PC value + 4 in general-purpose register reg2, adds the 22-bit displacement

data, sign-extended to word length, to PC; stores the value in and transfers the control to PC.

Bit 0 of the 22-bit displacement is masked to “0”.

 (2) Saves the current PC value + 6 in general-purpose register reg1, adds the 32-bit displacement

data to PC and stores the value in and transfers the control to PC. Bit 0 of the 32-bit

displacement is masked to “0”.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 100 of 282
May 29, 2014

[Comment] The current PC value used for calculation is the address of the first byte of this instruction itself. The

jump destination is this instruction with the displacement value = 0. JARL instruction corresponds to

the call function of the subroutine control instruction, and saves the return PC address in either reg1

or reg2. JMP instruction corresponds to the return function of the subroutine control instruction, and

can be used to specify general-purpose register containing the return address as reg1 to the return

PC.

Caution Do not specify r0 for reg2 in instruction format (1) JARL disp22, reg2.
Do not specify r0 for reg1 in instruction format (2) JARL disp32, reg1.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 101 of 282
May 29, 2014

<Branch instruction>

Jump register

JMP

Unconditional branch (register relative)

[Instruction format] (1) JMP [reg1]

 (2) JMP disp32 [reg1]

[Operation] (1) PC  GR [reg1]

 (2) PC  GR [reg1] + disp32

[Format] (1) Format I

 (2) Format VI

[Opcode] 15 0

 (1) 00000000011RRRRR

 15 0 31 16 47 32

 (2) 00000110111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Transfers the control to the address specified by general-purpose register reg1. Bit 0 of the

address is masked to “0”.

 (2) Adds the 32-bit displacement to general-purpose register reg1, and transfers the control to the

resulting address. Bit 0 of the address is masked to “0”.

[Comment] Using this instruction as the subroutine control instruction requires the return PC to be specified by

general-purpose register reg1.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 102 of 282
May 29, 2014

<Branch instruction>

Jump relative

JR

Unconditional branch (PC relative)

[Instruction format] (1) JR disp22

 (2) JR disp32

[Operation] (1) PC  PC + sign-extend (disp22)

 (2) PC  PC + disp32

[Format] (1) Format V

 (2) Format VI

[Opcode] 15 0 31 16

 (1) 0000011110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

 15 0 31 16 47 32

 (2) 0000001011100000 ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the 22-bit displacement data, sign-extended to word length, to the current PC and stores

the value in and transfers the control to PC. Bit 0 of the 22-bit displacement is masked to “0”.

 (2) Adds the 32-bit displacement data to the current PC and stores the value in PC and transfers

the control to PC. Bit 0 of the 32-bit displacement is masked to “0”.

[Comment] The current PC value used for calculation is the address of the first byte of this instruction itself. The

displacement value being “0” signifies that the branch destination is the instruction itself.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 103 of 282
May 29, 2014

<Load instruction>

Load byte

LD.B

Load of (signed) byte data

[Instruction format] (1) LD.B disp16 [reg1] , reg2

(2) LD.B disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  sign-extend (Load-memory (adr, Byte))

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  sign-extend (Load-memory (adr, Byte))

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111000RRRRR dddddddddddddddd

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

 ddddddd is the lower 7 bits of disp23.

 DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, sign-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, sign-extended to word length, and stored in general-purpose register reg3.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 104 of 282
May 29, 2014

<Load instruction>

Load byte unsigned

LD.BU

Load of (unsigned) byte data

[Instruction format] (1) LD.BU disp16 [reg1] , reg2

(2) LD.BU disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  zero-extend (Load-memory (adr, Byte))

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  zero-extend (Load-memory (adr, Byte))

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr11110bRRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16, and b is bit 0 of disp16.

rrrrr  00000 (Do not specify r0 for reg2.)

 15 031 1647 32

 (2) 00000111101RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, zero-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, zero-extended to word length, and stored in general-purpose register reg3.

Caution Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 105 of 282
May 29, 2014

<Load instruction>

Load halfword

LD.H

Load of (unsigned) halfword data

[Instruction format] (1) LD.H disp16 [reg1] , reg2

(2) LD.H disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  sign-extend (Load-memory (adr, Halfword))

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  sign-extend (Load-memory (adr, Halfword))

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111001RRRRR ddddddddddddddd0

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit

address, sign-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit

address, sign-extended to word length, and stored in general-purpose register reg3.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 106 of 282
May 29, 2014

<Load instruction>

Load halfword unsigned

LD.HU

Load of (signed) halfword data

[Instruction format] (1) LD.HU disp16 [reg1] , reg2

(2) LD.HU disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  zero-extend (Load-memory (adr, Halfword))

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  zero-extend (Load-memory (adr, Halfword))

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111111RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

rrrrr  00000 (Do not specify r0 for reg2.)

 15 031 1647 32

 (2) 00000111101RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit

address, zero-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this address,

zero-extended to word length, and stored in general-purpose register reg3.

Caution Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 107 of 282
May 29, 2014

<Load instruction>

Load word

LD.W

Load of word data

[Instruction format] (1) LD.W disp16 [reg1] , reg2

(2) LD.W disp23 [reg1] , reg3

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 GR [reg2]  Load-memory (adr, Word)

(2) adr  GR [reg1] + sign-extend (disp23)

 GR [reg3]  Load-memory (adr, Word)

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111001RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwdddddd01001 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Word data is read from this 32-bit

address, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Word data is read from this address,

and stored in general-purpose register reg3.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 108 of 282
May 29, 2014

<Special instruction>

Load to system register

LDSR

Load to system register

[Instruction format] LDSR reg2, regID

[Operation] SR [regID]  GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR 0000000000100000

Caution The fields to define reg1 and reg2 are swapped in this instruction. “RRR” is normally

used for reg1 that is the source operand, and “rrr” is represented by reg2 that is the
destination operand. In this instruction, “RRR” is used for the source operand that is
represented by reg2, and “rrr” is used for the register destination.
 rrrrr: regID specification
 RRRRR: reg2 specification

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Loads the word data of general-purpose register reg2 to a system register specified by the system

register number (regID). General-purpose register reg2 is not affected.

Caution The system register number regID is to identify a system register. Accessing
system registers that are reserved or write-prohibited is prohibited.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 109 of 282
May 29, 2014

<Multiply-accumulate instruction>

Multiply and add word

MAC

Multiply-accumulate for (signed) word data

[Instruction format] MAC reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4]  GR [reg2]  GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwww0011110mmmm0

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of

general-purpose register reg3 and the data in general-purpose register reg3+1 (for example, this

would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result (64-bit

data), the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32 bits are

stored in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

Caution General-purpose registers that can be specified as reg3 or reg4 must be an even-
numbered register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered
register (r1, r3, …, r31) is specified.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 110 of 282
May 29, 2014

<Multiply-accumulate instruction>

Multiply and add word unsigned

MACU

Multiply-accumulate for (unsigned) word data

[Instruction format] MACU reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4]  GR [reg2]  GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwww0011111mmmm0

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of

general-purpose register reg3 and the data in general-purpose register reg3+1 (for example, this

would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result (64-bit

data), the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32 bits are

stored in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register re1, reg2, reg3, or reg3+1.

Caution General-purpose registers that can be specified as reg3 or reg4 must be an even-
numbered register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered
register (r1, r3, …, r31) is specified.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 111 of 282
May 29, 2014

<Arithmetic instruction>

Move register/immediate (5-bit) /immediate (32-bit)

MOV

Data transfer

[Instruction format] (1) MOV reg1, reg2

 (2) MOV imm5, reg2

 (3) MOV imm32, reg1

[Operation] (1) GR [reg2]  GR [reg1]

 (2) GR [reg2]  sign-extend (imm5)

 (3) GR [reg1]  imm32

[Format] (1) Format I

 (2) Format II

 (3) Format VI

[Opcode] 15 0

 (1) rrrrr000000RRRRR

rrrrr  00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010000iiiii

rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

 (3) 00000110001RRRRR iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.

I (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Copies and transfers the word data of general-purpose register reg1 to general-purpose

register reg2. General-purpose register reg1 is not affected.

 (2) Copies and transfers the 5-bit immediate data, sign-extended to word length, to general-

purpose register reg2.

 (3) Copies and transfers the 32-bit immediate data to general-purpose register reg1.

Caution Do not specify r0 as reg2 in MOV reg1, reg2 for instruction format (1) or in MOV imm5,
reg2 for instruction format (2).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 112 of 282
May 29, 2014

<Arithmetic instruction>

Move effective address

MOVEA

Effective address transfer

[Instruction format] MOVEA imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110001RRRRR iiiiiiiiiiiiiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. Neither general-purpose

register reg1 nor the flags is affected.

[Comment] This instruction is to execute a 32-bit address calculation with the PSW flag value unchanged.

Caution Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 113 of 282
May 29, 2014

<Arithmetic instruction>

Move high halfword

MOVHI

Higher halfword transfer

[Instruction format] MOVHI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] + (imm16  016)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110010RRRRR iiiiiiiiiiiiiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the word data with its higher 16 bits specified as the 16-bit immediate data and the lower 16

bits being “0” to the word data of general-purpose register reg1 and stores the result in general-

purpose register reg2. Neither general-purpose register reg1 nor the flags is affected.

[Comment] This instruction is to generate the higher 16 bits of a 32-bit address.

Caution Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 114 of 282
May 29, 2014

<Multiply instruction>

Multiply word by register/immediate (9-bit)

MUL

Multiplication of (signed) word data

[Instruction format] (1) MUL reg1, reg2, reg3

 (2) MUL imm9, reg2, reg3

[Operation] (1) GR [reg3]  GR [reg2]  GR [reg2]  GR [reg1]

 (2) GR [reg3]  GR [reg2]  GR [reg2]  sign-extend (imm9)

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww01000100000

 15 0 31 16

 (2) rrrrr111111iiiii wwwww01001IIII00

iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then stores the higher 32 bits of the result (64-bit data) in general-purpose

register reg3 and the lower 32 bits in general-purpose register reg2.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

General-purpose register reg1 is not affected.

 (2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, extended to

word length, then stores the higher 32 bits of the result (64-bit data) in general-purpose register

reg3 and the lower 32 bits in general-purpose register reg2.

[Comment] When general-purpose register reg2 and general-purpose register reg3 are the same register, only

the higher 32 bits of the multiplication result are stored in the register.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 115 of 282
May 29, 2014

<Multiply instruction>

Multiply halfword by register/immediate (5-bit)

MULH

Multiplication of (signed) halfword data

[Instruction format] (1) MULH reg1, reg2

 (2) MULH imm5, reg2

[Operation] (1) GR [reg2] (32)  GR [reg2] (16)  GR [reg1] (16)

 (2) GR [reg2]  GR [reg2]  sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr000111RRRRR

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010111iiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data of

general-purpose register reg1 and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

 (2) Multiplies the lower halfword data of general-purpose register reg2 by the 5-bit immediate data,

sign-extended to halfword length, and stores the result in general-purpose register reg2.

[Comment] In the case of a multiplier or a multiplicand, the higher 16 bits of general-purpose registers reg1 and

reg2, are ignored.

Caution Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 116 of 282
May 29, 2014

<Multiply instruction>

Multiply halfword by immediate (16-bit)

MULHI

Multiplication of (signed) halfword immediate data

[Instruction format] MULHI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1]  imm16

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110111RRRRR iiiiiiiiiiiiiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Multiplies the lower halfword data of general-purpose register reg1 by the 16-bit immediate data

and stores the result in general-purpose register reg2. General-purpose register reg1 is not affected.

[Comment] In the case of a multiplicand, the higher 16 bits of general-purpose register reg1 are ignored.

Caution Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 117 of 282
May 29, 2014

<Multiply instruction>

Multiply word unsigned by register/immediate (9-bit)

MULU

Multiplication of (unsigned) word data

[Instruction format] (1) MULU reg1, reg2, reg3

 (2) MULU imm9, reg2, reg3

[Operation] (1) GR [reg3]  GR [reg2]  GR [reg2]  GR [reg1]

 (2) GR [reg3]  GR [reg2]  GR [reg2]  zero-extend (imm9)

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww01000100010

 15 0 31 16

 (2) rrrrr111111iiiii wwwww01001IIII10

 iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then stores the higher 32 bits of the result (64-bit data) in general-purpose

register reg3 and the lower 32 bits in general-purpose register reg2. General-purpose register

reg1 is not affected.

 (2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, zero-

extended to word length, then stores the higher 32 bits of the result (64-bit data) in general-

purpose register reg3 and the lower 32 bits in general-purpose register reg2.

[Comment] When general-purpose register reg2 and general-purpose register reg3 are the same register, only

the higher 32 bits of the multiplication result are stored in the register.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 118 of 282
May 29, 2014

<Special instruction>

No operation

NOP

No operation

[Instruction format] NOP

[Operation] PC for this instruction is incremented by +2 (nothing else is done).

[Format] Format I

[Opcode] 15 0

 0000000000000000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] PC for this instruction is incremented by +2 (nothing else is done).

[Comment] The opcode is the same as that of MOV r0, r0.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 119 of 282
May 29, 2014

<Logical instruction>

NOT

NOT

Logical negation (1’s complement)

[Instruction format] NOT reg1, reg2

[Operation] GR [reg2]  NOT (GR [reg1])

[Format] Format I

[Opcode] 15 0

 rrrrr000001RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Logically negates the word data of general-purpose register reg1 using 1’s complement and stores

the result in general-purpose register reg2. General-purpose register reg1 is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 120 of 282
May 29, 2014

<Bit manipulation instruction>

NOT bit

NOT1

NOT bit

[Instruction format] (1) NOT1 bit#3, disp16 [reg1]

 (2) NOT1 reg2, [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, bit#3))

token  not-bit (token, bit#3)

Store-memory (adr, token, Byte)

 (2) adr  GR [reg1]

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, reg2))

token  not-bit (token, reg2)

Store-memory (adr, token, Byte)

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 01bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100010

[Flags] CY --

OV --

S --

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, then the bits indicated by the 3-bit bit number are inverted (0  1, 1  0) and the

data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0”.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, then the bits specified by lower 3 bits of general-purpose

register reg2 are inverted (0  1, 1  0) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0”.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 121 of 282
May 29, 2014

[Comment] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is executed

and does not indicate the content of the specified bit resulting from the instruction execution.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during
the period between read and write operations, the target address is not affected by
access due to any other cause.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 122 of 282
May 29, 2014

<Logical instruction>

OR

OR

OR

[Instruction format] OR reg1, reg2

[Operation] GR [reg2]  GR [reg2] OR GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001000RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] ORs the word data of general-purpose register reg2 with the word data of general-purpose register

reg1 and stores the result in general-purpose register reg2. General-purpose register reg1 is not

affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 123 of 282
May 29, 2014

<Logical instruction>

OR immediate (16-bit)

ORI

OR immediate

[Instruction format] ORI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] OR zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110100RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] ORs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-extended

to word length, and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 124 of 282
May 29, 2014

<Special instruction>

Function prepare

PREPARE

Create stack frame

[Instruction format] (1) PREPARE list12, imm5

 (2) PREPARE list12, imm5, sp/immNote

 Note The sp/imm values are specified by bits 19 and 20 of the sub-opcode.

[Operation] (1) adr  sp

foreach (all regs in list12) {

 adr  adr  4

 Store-memory (adr, GR[reg in list12], Word)Note

}

sp  adr  zero-extend (imm5 logically shift left by 2)

 (2) adr  sp

foreach (all regs in list12) {

 adr  adr  4

 Store-memory (adr, GR[reg in list12], Word) Note

}

sp  adr  zero-extend (imm5 logically shift left by 2)

case

 ff = 00: ep  sp

 ff = 01: ep  sign-extend (imm16)

 ff = 10: ep  imm16 logically shift left by 16

 ff = 11: ep  imm32

 Note When storing to memory, the lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode] 15 0 31 16

 (1) 0000011110iiiiiL LLLLLLLLLLL00001

 15 0 31 16 Option (47-32 or 63-32)

 (2) 0000011110iiiiiL LLLLLLLLLLLff011 imm16 / imm32

 In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32 and

bits 63 to 48 are the higher 16 bits of imm32.

 ff = 00: sp is loaded to ep

 ff = 01: Sign-extended 16-bit immediate data (bits 47 to 32) is loaded to ep

 ff = 10: 16-bit logical left-shifted 16-bit immediate data (bits 47 to 32) is loaded to ep

 ff = 11: 32-bit immediate data (bits 63 to 32) is loaded to ep

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 125 of 282
May 29, 2014

 The values of LLLLLLLLLLLL are the corresponding bit values shown in register list “list12” (for

example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in list12).

list12 is a 32-bit register list, defined as follows.

 31 30 29 28 27 26 25 24 23 22 21 20 ... 1 0

 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 -- r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any

of these bits is set (1), it specifies a corresponding register operation as a processing target.

For example, when r20 and r30 are specified, the values in list12 appear as shown below

(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

  When all of the register’s non-corresponding bits are “0”: 08000001H

  When all of the register’s non-corresponding bits are “1”: 081FFFFFH

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and the

data is stored in that address). Next, subtracts 5-bit immediate data, logically left-shifted by 2

bits and zero-extended to word length, from sp.

 (2) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and the

data is stored in that address). Next, subtracts 5-bit immediate data, logically left-shifted by 2

bits and zero-extended to word length, from sp.

Then, loads the data specified by the third operand (sp/imm) to ep.

[Comment] list12 general-purpose registers are saved in ascending order (r20, r21, ..., r31).

imm5 is used to create a stack frame that is used for auto variables and temporary data.

The lower two bits of the address specified by sp are masked to 0 and aligned to the word boundary.

Caution If an exception occurs while this instruction is being executed, execution of the
instruction may be stopped after the read cycle and the register value write operation
are completed, but sp will retain its original value from before the start of execution.
The instruction will be executed again later, after a return from the exception.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 126 of 282
May 29, 2014

<Special instruction>

Return from trap or interrupt

RETI

Return from EI level software exception or interrupt

[Instruction format] RETI

[Operation] if PSW.EP = 1

then PC  EIPC

 PSW  EIPSW

else if PSW.NP = 1

 then PC  FEPC

 PSW  FEPSW

 else PC  EIPC

 PSW  EIPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101000000

[Flags] CY Value read from FEPSW or EIPSW is set.

OV Value read from FEPSW or EIPSW is set.

S Value read from FEPSW or EIPSW is set.

Z Value read from FEPSW or EIPSW is set.

SAT Value read from FEPSW or EIPSW is set.

[Description] Reads the return PC and PSW from the appropriate system register and returns from a software

exception or interrupt routine. The following steps are taken:

 (1) If the EP bit of PSW is “1”, the return PC and PSW are read from EIPC and EIPSW, regardless

of the status of the NP bit of PSW.

If the EP bit of PSW is “0” and the NP bit of PSW is “1”, the return PC and PSW are read from

FEPC and FEPSW.

If the EP bit of PSW is “0” and the NP bit of PSW is “0”, the return PC and PSW are read from

EIPC and EIPSW.

 (2) The values are restored in PC and PSW and the control is transferred to the return address.

 When EP = 0, completed execution of the exception routine is reported externally (to the interrupt

controller or elsewhere).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 127 of 282
May 29, 2014

Cautions 1. The RETI instruction is defined for backward compatibility with the V850E1 and V850E2
CPU. Therefore, in principle, use of the RETI instruction is prohibited. Except for
existing programs that cannot be revised, all RETI instructions should be replaced with
EIRET or FERET instructions.
If the RETI instruction is used, the operation is undefined except when returning from an
interrupt or EI level software exception.

 2. To enable normal restoration of the PC and PSW when returning (via a RETI instruction)
from an FE level non-maskable interrupt exception (FENMI), FE level maskable interrupt
exception (FEINT), or an EI level software exception (TRAP), the NP and EP bits must be
set as follows just before executing the RETI instruction.

  When using RETI instruction to return from FE level non-maskable interrupt exception
 (FENMI): NP = 1 and EP = 0

  When using RETI instruction to return from FE level maskable interrupt exception
 (FEINT): NP = 1 and EP = 0

  When using RETI instruction to return from EI level software exception (TRAP):
 EP = 1

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 128 of 282
May 29, 2014

<Special instruction>

Reserved instruction exception

RIE

Reserved instruction exception

[Instruction format] (1) RIE

(2) RIE imm5, imm4

[Operation] FEPC  PC (return PC)

FEPSW  PSW

ECR.FECC  exception code

FEIC  exception code

PSW.NP  1

PSW.EP  1

 PSW.ID  1

 If (MPM.AUE==1) is satisfied

 then PSW.IMP  0

 PSW.DMP  0

 PSW.NPV  0

PC  00000030H

[Format] (1) Format I

(2) Format X

[Opcode] 15 0

 (1) 0000000001000000

 15 0 31 16

 (2) iiiii1111111IIII 0000000000000000

 Where iiiii = imm5, IIII = imm4.

[Flags] CY 

OV 

S 

Z 

SAT 

[Description] Saves the contents of the return PC (address of the RIE instruction) and the current contents of the

PSW to FEPC and FEPSW, respectively, stores an exception source code in the FEIC register and

ECR.FECC bit, and sets (1) the PSW.NP, EP, and ID bits. If the MPM.AUE bit is set (1), it clears

(0) the PSW.NPV, DMP, and IMP bits.

Execution then branches to the exception handler address (00000030H) and exception processing

is started.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 129 of 282
May 29, 2014

<Data manipulation instruction>

Shift arithmetic right by register/immediate (5-bit)

SAR

Arithmetic right shift

[Instruction format] (1) SAR reg1, reg2

 (2) SAR imm5, reg2

 (3) SAR reg1, reg2, reg3

[Operation] (1) GR [reg2]  GR [reg2] arithmetically shift right by GR [reg1]

 (2) GR [reg2]  GR [reg2] arithmetically shift right by zero-extend

 (3) GR [reg3]  GR [reg2] arithmetically shift right by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000010100000

 15 0

 (2) rrrrr010101iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00010100010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by copying the pre-shift

MSB value to the post-shift MSB. The result is written to general-purpose register reg2. When

the number of shifts is 0, general-purpose register reg2 retains the value prior to execution of

instructions. General-purpose register reg1 is not affected.

 (2) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by copying the

pre-shift MSB value to the post-shift MSB. The result is written to general-purpose register reg2.

When the number of shifts is 0, general-purpose register reg2 retains the value prior to

execution of instructions.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 130 of 282
May 29, 2014

 (3) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by copying the pre-shift

MSB value to the post-shift MSB. The result is written to general-purpose register reg3. When

the number of shifts is 0, general-purpose register reg3 retains the value prior to execution of

instructions. General-purpose registers reg1 and reg2 are not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 131 of 282
May 29, 2014

<Data manipulation instruction>

Shift and set flag condition

SASF

Shift and flag condition setting

[Instruction format] SASF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2]  (GR [reg2] Logically shift left by 1) OR 00000001H

 else GR [reg2]  (GR [reg2] Logically shift left by 1) OR 00000000H

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr1111110cccc 0000001000000000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] When the condition specified by condition code “cccc” is met, logically left-shifts data of general-

purpose register reg2 by 1 bit, and sets (1) the least significant bit (LSB). If a condition is not met,

logically left-shifts data of reg2 and clears the LSB.

Designate one of the condition codes shown in the following table as [cccc].

Condition

code

Name Condition formula Condition

code

Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Comment] Refer to the SETF instruction.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 132 of 282
May 29, 2014

<Saturated operation instructions>

Saturated add register/immediate (5-bit)

SATADD

Saturated addition

[Instruction format] (1) SATADD reg1, reg2

 (2) SATADD imm5, reg2

 (3) SATADD reg1, reg2, reg3

[Operation] (1) GR [reg2]  saturated (GR [reg2] + GR [reg1])

 (2) GR [reg2]  saturated (GR [reg2] + sign-extend (imm5))

 (3) GR [reg3]  saturated (GR [reg2] + GR [reg1])

[Format] (1) Format I

 (2) Format II

 (3) Format XI

[Opcode] 15 0

 (1) rrrrr000110RRRRR

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010001iiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww01110111010

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg2. However, when the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2, and when it

exceeds the maximum negative value 80000000H, 80000000H is stored in reg2; then the SAT

flag is set (1). General-purpose register reg1 is not affected.

 (2) Adds the 5-bit immediate data, sign-extended to the word length, to the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. However, when

the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2,

and when it exceeds the maximum negative value 80000000H, 80000000H is stored in reg2;

then the SAT flag is set (1).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 133 of 282
May 29, 2014

 (3) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg3. However, when the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg3, and when it

exceeds the maximum negative value 80000000H, 80000000H is stored in reg3; then the SAT

flag is set (1). General-purpose registers reg1 and reg2 are not affected.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
 2. Do not specify r0 as reg2 in instruction format (1) SATADD reg1, reg2 and in instruction

format (2) SATADD imm5, reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 134 of 282
May 29, 2014

<Saturated operation instruction>

Saturated subtract

SATSUB

Saturated subtraction

[Instruction format] (1) SATSUB reg1, reg2

 (2) SATSUB reg1, reg2, reg3

[Operation] (1) GR [reg2]  saturated (GR [reg2]  GR [reg1])

 (2) GR [reg3]  saturated (GR [reg2]  GR [reg1])

[Format] (1) Format I

 (2) Format XI

[Opcode] 15 0

 (1) rrrrr000101RRRRR

 rrrrr  00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww01110011010

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] (1) Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. If the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result

exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag

is set to “1”. General-purpose register reg1 is not affected.

 (2) Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg3. However, when

the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg3,

and when it exceeds the maximum negative value 80000000H, 80000000H is stored in reg3;

then the SAT flag is set (1). General-purpose registers reg1 and reg2 are not affected.

[Comment] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
 2. Do not specify r0 as reg2 in instruction format (1) SATSUB reg1, reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 135 of 282
May 29, 2014

<Saturated operation instruction>

Saturated subtract immediate

SATSUBI

Saturated subtraction

[Instruction format] SATSUBI imm16, reg1, reg2

[Operation] GR [reg2]  saturated (GR [reg1]  sign-extend (imm16))

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110011RRRRR iiiiiiiiiiiiiiii

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. If the result exceeds

the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the

maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1”.

General-purpose register reg1 is not affected.

[Comment] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
 2. Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 136 of 282
May 29, 2014

<Saturated operation instruction>

Saturated subtract reverse

SATSUBR

Saturated reverse subtraction

[Instruction format] SATSUBR reg1, reg2

[Operation] GR [reg2]  saturated (GR [reg1]  GR [reg2])

[Format] Format I

[Opcode] 15 0

 rrrrr000100RRRRR

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. If the result exceeds the

maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the

maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1”.

General-purpose register reg1 is not affected.

[Comment] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.
 2. Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 137 of 282
May 29, 2014

<Conditional operation instructions>

Subtract on condition flag

SBF

Conditional subtraction

[Instruction format] SBF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3]  GR [reg2]  GR [reg1] 1

else GR [reg3]  GR [reg2]  GR [reg1] 0

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww011100cccc0

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if operation result is negative; otherwise, “0”.

Z “1” if operation result is “0”; otherwise, “0”.

SAT --

[Description] Subtracts 1 from the result of subtracting the word data of general-purpose register reg1 from the

word data of general-purpose register reg2, and stores the result of subtraction in general-purpose

register reg3, if the condition specified by condition code “cccc” is satisfied.

If the condition specified by condition code “cccc” is not satisfied, subtracts the word data of

general-purpose register reg1 from the word data of general-purpose register reg2, and stores the

result in general-purpose register reg3.

General-purpose registers reg1 and register 2 are not affected. Designate one of the condition

codes shown in the following table as [cccc]. (However, cccc cannot equal 1101.)

Condition

Code

Name Condition Formula Condition

Code

Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T always (Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 138 of 282
May 29, 2014

<Bit search instructions>

Search zero from left

SCH0L

Bit (0) search from MSB side

[Instruction format] SCH0L reg2, reg3

[Operation] GR [reg3]  search zero from left of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100100

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT --

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes the

number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 31 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (0)

is eventually found, the CY flag is set (1).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 139 of 282
May 29, 2014

<Bit search instructions>

Search zero from right

SCH0R

Bit (0) search from LSB side

[Instruction format] SCH0R reg2, reg3

[Operation] GR [reg3]  search zero from right of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100000

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT --

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes the

number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 0 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (0)

is eventually found, the CY flag is set (1).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 140 of 282
May 29, 2014

<Bit search instructions>

Search one from left

SCH1L

Bit (1) search from MSB side

[Instruction format] SCH1L reg2, reg3

[Operation] GR [reg3]  search one from left of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100110

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT --

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes the

number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 31 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (1)

is eventually found, the CY flag is set (1).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 141 of 282
May 29, 2014

<Bit search instructions>

Search one from right

SCH1R

Bit (1) search from LSB side

[Instruction format] SCH1R reg2, reg3

[Operation] GR [reg3]  search one from right of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100010

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT --

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes the

number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 0 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). When bit (1)

is eventually found, the CY flag is set (1).

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 142 of 282
May 29, 2014

<Bit manipulation instruction>

Set bit

SET1

Bit setting

[Instruction format] (1) SET1 bit#3, disp16 [reg1]

 (2) SET1 reg2, [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, bit#3))

token  set-bit (token, bit#3)

Store-memory (adr, token, Byte)

 (2) adr  GR [reg1]

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, reg2))

token  set-bit (token, reg2)

Store-memory (adr, token, Byte)

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 00bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100000

[Flags] CY --

OV --

S --

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, the bits indicated by the 3-bit bit number are set (1) and the data is written back to the

original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0”.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, the lower 3 bits indicated of general-purpose register reg2

are set (1) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is

“1”, the Z flag is cleared to “0”.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 143 of 282
May 29, 2014

[Comment] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate the

content of the specified bit resulting from the instruction execution.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during
the period between read and write operations, the target address is not affected by
access due to any other cause.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 144 of 282
May 29, 2014

<Data manipulation instruction>

Set flag condition

SETF

Flag condition setting

[Instruction format] SETF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2]  00000001H

 else GR [reg2]  00000000H

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr1111110cccc 0000000000000000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] When the condition specified by condition code “cccc” is met, stores “1” to general-purpose register

reg2 if a condition is met and stores “0” if a condition is not met.

Designate one of the condition codes shown in the following table as [cccc].

Condition

code

Name Condition formula Condition

code

Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 145 of 282
May 29, 2014

[Comment] Examples of SETF instruction:

 (1) Translation of multiple condition clauses

 If A of statement if (A) in C language consists of two or greater condition clauses (a1, a2,

a3, and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The object code

executes “conditional branch” by checking the result of evaluation equivalent to an. Since a

pipeline operation requires more time to execute “condition judgment” + “branch” than to

execute an ordinary operation, the result of evaluating each condition clause if (an) is stored in

register Ra. By performing a logical operation to Ran after all the condition clauses have been

evaluated, the pipeline delay can be prevented.

 (2) Double-length operation

 To execute a double-length operation, such as “Add with Carry”, the result of the CY flag can

be stored in general-purpose register reg2. Therefore, a carry from the lower bits can be

represented as a numeric value.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 146 of 282
May 29, 2014

<Data manipulation instruction>

Shift logical left by register/immediate (5-bit)

SHL

Logical left shift

[Instruction format] (1) SHL reg1, reg2

 (2) SHL imm5, reg2

 (3) SHL reg1, reg2, reg3

[Operation] (1) GR [reg2]  GR [reg2] logically shift left by GR [reg1]

 (2) GR [reg2]  GR [reg2] logically shift left by zero-extend (imm5)

 (3) GR [reg3]  GR [reg2] logically shift left by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000011000000

 15 0

 (2) rrrrr010110iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00011000010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position

specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to LSB. The result

is written to general-purpose register reg2. When the number of shifts is 0, general-purpose

register reg2 retains the value prior to execution of instructions. General-purpose register reg1

is not affected.

 (2) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position

specified by the 5-bit immediate data, zero-extended to word length, by shifting “0” to LSB. The

result is written to general-purpose register reg2. When the number of shifts is 0, general-

purpose register reg2 retains the value prior to execution of instructions.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 147 of 282
May 29, 2014

 (3) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the position

specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to LSB. The result

is written to general-purpose register reg3. When the number of shifts is 0, general-purpose

register reg3 retains the value prior to execution of instructions. General-purpose registers reg1

and reg2 are not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 148 of 282
May 29, 2014

<Data manipulation instruction>

Shift logical right by register/immediate (5-bit)

SHR

Logical right shift

[Instruction format] (1) SHR reg1, reg2

 (2) SHR imm5, reg2

 (3) SHR reg1, reg2, reg3

[Operation] (1) GR [reg2]  GR [reg2] logically shift right by GR [reg1]

 (2) GR [reg2]  GR [reg2] logically shift right by zero-extend(imm5)

 (3) GR [reg3]  GR [reg2] logically shift right by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000010000000

 15 0

 (2) rrrrr010100iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00010000010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] (1) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to MSB.

The result is written to general-purpose register reg2. When the number of shifts is 0, general-

purpose register reg2 retains the value prior to execution of instructions. General-purpose

register reg1 is not affected.

 (2) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by shifting “0” to

MSB. The result is written to general-purpose register reg2. When the number of shifts is 0,

general-purpose register reg2 retains the value prior to execution of instructions.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 149 of 282
May 29, 2014

 (3) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to MSB.

The result is written to general-purpose register reg3. When the number of shifts is 0, general-

purpose register reg3 retains the value prior to execution of instructions. General-purpose

registers reg1 and reg2 are not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 150 of 282
May 29, 2014

<Load instruction>

Short format load byte

SLD.B

Load of (signed) byte data

[Instruction format] SLD.B disp7 [ep] , reg2

[Operation] adr  ep + zero-extend (disp7)

GR [reg2]  sign-extend (Load-memory (adr, Byte))

[Format] Format IV

[Opcode] 15 0

 rrrrr0110ddddddd

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to generate

a 32-bit address. Byte data is read from the generated address, sign-extended to word length, and

stored in reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 151 of 282
May 29, 2014

<Load instruction>

Short format load byte unsigned

SLD.BU

Load of (unsigned) byte data

[Instruction format] SLD.BU disp4 [ep] , reg2

[Operation] adr  ep + zero-extend (disp4)

GR [reg2]  zero-extend (Load-memory (adr, Byte))

[Format] Format IV

[Opcode] 15 0

 rrrrr0000110dddd

 rrrrr  00000 (Do not specify r0 for reg2.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the 4-bit displacement data, zero-extended to word length, to the element pointer to generate

a 32-bit address. Byte data is read from the generated address, zero-extended to word length, and

stored in reg2.

Caution Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 152 of 282
May 29, 2014

<Load instruction>

Short format load halfword

SLD.H

Load of (signed) halfword data

[Instruction format] SLD.H disp8 [ep] , reg2

[Operation] adr  ep + zero-extend (disp8)

GR [reg2]  sign-extend (Load-memory (adr, Halfword))

[Format] Format IV

[Opcode] 15 0

 rrrrr1000ddddddd

 ddddddd is the higher 7 bits of disp8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Halfword data is read from this 32-bit address, sign-extended to word length, and

stored in general-purpose register reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 153 of 282
May 29, 2014

<Load instruction>

Short format load halfword unsigned

SLD.HU

Load of (unsigned) halfword data

[Instruction format] SLD.HU disp5 [ep] , reg2

[Operation] adr  ep + zero-extend (disp5)

GR [reg2]  zero-extend (Load-memory (adr, Halfword))

[Format] Format IV

[Opcode] 15 0

 rrrrr0000111dddd

 rrrrr  00000 (Do not specify r0 for reg2.)

 dddd is the higher 4 bits of disp5.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 5-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Halfword data is read from this 32-bit address, zero-extended to word length, and

stored in general-purpose register reg2.

Caution Do not specify r0 for reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 154 of 282
May 29, 2014

<Load instruction>

Short format load word

SLD.W

Load of word data

[Instruction format] SLD.W disp8 [ep] , reg2

[Operation] adr  ep + zero-extend (disp8)

GR [reg2]  Load-memory (adr, Word)

[Format] Format IV

[Opcode] 15 0

 rrrrr1010dddddd0

 dddddd is the higher 6 bits of disp8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address. Word data is read from this 32-bit address, and stored in general-purpose register

reg2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 155 of 282
May 29, 2014

<Store instruction>

Short format store byte

SST.B

Storage of byte data

[Instruction format] SST.B reg2, disp7 [ep]

[Operation] adr  ep + zero-extend (disp7)

Store-memory (adr, GR [reg2] , Byte)

[Format] Format IV

[Opcode] 15 0

 rrrrr0111ddddddd

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 7-bit displacement data, zero-extended to word length, to generate

a 32-bit address and stores the data of the lowest byte of reg2 to the generated address.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 156 of 282
May 29, 2014

<Store instruction>

Short format store halfword

SST.H

Storage of halfword data

[Instruction format] SST.H reg2, disp8 [ep]

[Operation] adr  ep + zero-extend (disp8)

Store-memory (adr, GR [reg2] , Halfword)

[Format] Format IV

[Opcode] 15 0

 rrrrr1001ddddddd

 ddddddd is the higher 7 bits of disp8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address, and stores the lower halfword data of reg2 to the generated 32-bit address.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 157 of 282
May 29, 2014

<Store instruction>

Short format store word

SST.W

Storage of word data

[Instruction format] SST.W reg2, disp8 [ep]

[Operation] adr  ep + zero-extend (disp8)

Store-memory (adr, GR [reg2] , Word)

[Format] Format IV

[Opcode] 15 0

 rrrrr1010dddddd1

 dddddd is the higher 6 bits of disp8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate

a 32-bit address and stores the word data of reg2 to the generated 32-bit address.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 158 of 282
May 29, 2014

<Store instruction>

Store byte

ST.B

Storage of byte data

[Instruction format] (1) ST.B reg2, disp16 [reg1]

(2) ST.B reg3, disp23 [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Byte)

(2) adr  GR [reg1] + sign-extend (disp23)

 Store-memory (adr, GR [reg3], Byte)

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111010RRRRR dddddddddddddddd

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwddddddd1101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 [Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest byte data of general-purpose

register reg2 to the generated address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest byte data of general-purpose

register reg3 to the generated address.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 159 of 282
May 29, 2014

<Store instruction>

Store halfword

ST.H

Storage of halfword data

[Instruction format] (1) ST.H reg2, disp16 [reg1]

(2) ST.H reg3, disp23 [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Halfword)

(2) adr  GR [reg1] + sign-extend (disp23)

 Store-memory (adr, GR [reg3], Halfword)

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111011RRRRR ddddddddddddddd0

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 031 1647 32

 (2) 00000111101RRRRR wwwwwdddddd01101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lower halfword data of general-

purpose register reg2 to the generated address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest halfword data of general-

purpose register reg3 to the generated address.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 160 of 282
May 29, 2014

<Store instruction>

Store word

ST.W

Storage of word data

[Instruction format] (1) ST.W reg2, disp16 [reg1]

(2) ST.W reg3, disp23 [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Word)

(2) adr  GR [reg1] + sign-extend (disp23)

 Store-memory (adr, GR [reg3], Word)

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 031 16

 (1) rrrrr111011RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 031 1647 32

 (2) 00000111100RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the word data of general-purpose

register reg2 to the generated 32-bit address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest word data of general-

purpose register reg3 to the generated 32-bit address.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 161 of 282
May 29, 2014

<Special instruction>

Store contents of system register

STSR

Storage of contents of system register

[Instruction format] STSR regID, reg2

[Operation] GR [reg2]  SR [regID]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR 0000000001000000

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Stores the system register contents specified by the system register number (regID) to general-

purpose register reg2. The system-register contents are not affected.

Caution The system register number regID is to identify a system register. Operation is not
guaranteed if the reserved system register ID is specified.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 162 of 282
May 29, 2014

<Arithmetic instruction>

Subtract

SUB

Subtraction

[Instruction format] SUB reg1, reg2

[Operation] GR [reg2]  GR [reg2]  GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001101RRRRR

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Subtracts the word data of general-purpose register reg1 from the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 163 of 282
May 29, 2014

<Arithmetic instruction>

Subtract reverse

SUBR

Reverse subtraction

[Instruction format] SUBR reg1, reg2

[Operation] GR [reg2] GR [reg1]  GR [reg2]

[Format] Format I

[Opcode] 15 0

 rrrrr001100RRRRR

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 164 of 282
May 29, 2014

<Special instruction>

Jump with table look up

SWITCH

Jump with table look up

[Instruction format] SWITCH reg1

[Operation] adr  (PC + 2) + (GR [reg1] logically shift left by 1)

PC  (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

[Format] Format I

[Opcode] 15 0

 00000000010RRRRR

 RRRRR  00000 (Do not specify r0 for reg1.)

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] The following steps are taken.

 (1) Adds the start address (the one subsequent to the SWITCH instruction) to general-purpose

register reg1, logically left-shifted by 1, to generate a 32-bit table entry address.

 (2) Loads the halfword entry data indicated by the address generated in step (1).

 (3) Adds the table start address after sign-extending the loaded halfword data and logically left-

shifting it by 1 (the one subsequent to the SWITCH instruction) to generate a 32-bit target

address.

 (4) Jumps to the target address generated in step (3).

Cautions 1. Do not specify r0 for reg1.
 2. In the SWITCH instruction memory read operation executed in order to read the table,

processor protection is performed.
 3. When memory protection (PSW.DMP = 1) is enabled, loading the data for generating a

target address from a table allocated in an area to which access from a user program is
prohibited cannot be performed.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 165 of 282
May 29, 2014

<Data manipulation instruction>

Sign extend byte

SXB

Sign-extension of byte data

[Instruction format] SXB reg1

[Operation] GR [reg1]  sign-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode] 15 0

 00000000101RRRRR

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Sign-extends the lowest byte of general-purpose register reg1 to word length.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 166 of 282
May 29, 2014

<Data manipulation instruction>

Sign extend halfword

SXH

Sign-extension of halfword data

[Instruction format] SXH reg1

[Operation] GR [reg1]  sign-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode] 15 0

 00000000111RRRRR

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Sign-extends the lower halfword of general-purpose register reg1 to word length.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 167 of 282
May 29, 2014

<Special instruction>

Synchronize exceptions

SYNCE

Exception synchronization instruction

[Instruction format] SYNCE

[Operation] Starts execution when exceptions are synchronized, and increments PC by +2 without executing

anything.

[Format] Format I

[Opcode] 15 0

 0000000000011101

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Waits for the synchronization of all preceding exceptions before starting execution.

It does not perform any operation but is completed when its execution is started.

“Exception synchronization” means that all exceptions that are generated by the preceding

instructions are notified to the CPU and are kept waiting until their priority is judged. If a condition

of acknowledging exceptions is satisfied before this instruction is executed, therefore, all imprecise

exceptions that are generated because of the preceding instructions are always acknowledged

before execution of this instruction is completed. However, imprecise exceptions are not generated

in the V850E2S CPU. Though the SYNCE instruction is supported, since the CPU does not have

any exception causes that are kept waiting for the execution, it is replaced by the SYNCM

instruction when executed.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 168 of 282
May 29, 2014

<Special instruction>

Synchronize memory

SYNCM

Memory synchronize instruction

[Instruction format] SYNCM

[Operation] Starts execution when accesses to the memory device are synchronized, and increments PC by +2

without executing anything.

[Format] Format I

[Opcode] 15 0

 0000000000011110

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Waits for the synchronization of all preceding memory accesses before starting execution.

“Synchronization” refers to the status where the result of preceding memory accesses can be

referenced by any master device within the system.

In cases such as when buffering is used to delay memory accesses and synchronization of all

memory accesses has not occurred, the SYNCM instruction does not complete and waits for the

synchronization.

The subsequent instructions will not be executed until the SYNCM instruction execution is complete.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 169 of 282
May 29, 2014

<Special instruction>

Synchronize pipeline

SYNCP

Pipeline synchronize instruction

[Instruction format] SYNCP

[Operation] Starts execution when pipeline is synchronized, and increments PC by +2 without executing

anything.

[Format] Format I

[Opcode] 15 0

 0000000000011111

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Waits until execution of all previous instructions is completed before being executed. Execution of

this instruction increments PC by +2.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 170 of 282
May 29, 2014

<Special instruction>

System call

SYSCALL

System call exception

[Instruction format] SYSCALL vector8

[Operation] EIPC  PC + 4 (return PC)

EIPSW  PSW

EIIC  exception code (8000H-80FFH)

ECR.EICC  exception code (8000H-80FFH)

PSW.EP  1

PSW.ID  1

If (MPM.AUE==1) is satisfied

 then PSW.IMP  0

 PSW.DMP  0

 PSW.NPV  0

if (vector8 <= SCCFG.SIZE) is satisfied

 then adr  SCBP + zero-extend (vector8 logically shifted left by 2)

 else adr  SCBP

PC  SCBP + Load-memory (adr, Word)

[Format] Format X

[Opcode] 15 0 31 16

 11010111111vvvvv 00VVV00101100000

 where VVV is the higher 3 bits of vector8 and vvvvv is the lower 5 bits of vector8.

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] This instruction calls the system service of an OS.

 <1> Saves the contents of the return PC (address of the instruction next to the SYSCALL

instruction) and PSW to EIPC and EIPSW.

 <2> Stores the exception code corresponding to vector8 to the EIIC register and ECR.EICC bit.

The exception code is the value of vector8 plus 8000H.

 <3> Sets (1) the PSW.ID and EP bits.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 171 of 282
May 29, 2014

 <4> Clears (0) the PSW.NPV, DMP, and IMP bits when the MPM.AUE bit is 1.

 <5> Generates a 32-bit table entry address by adding the value of the SCBP register and vector8

that is logically shifted 2 bits to the left and zero-extended to a word length.

 If vector8 is greater than the value specified by the SIZE bit of system register SCCFG;

however, vector8 that is used for the above addition is handled as 0.

 <6> Loads the word of the address generated in <5>.

 <7> Generates a 32-bit target address by adding the value of the SCBP register to the data in <6>.

 <8> Branches to the target address generated in <7>.

Cautions 1. This instruction is dedicated to calling the system service of an OS. For how to use it in
the user program, refer to the Function Specification of each OS.

 2. In the SYSCALL instruction memory read operation executed in order to read the table,
processor protection is not performed.

 3. When memory protection (PSW.DMP = 1) is enabled, loading the data for generating a
target address from a table allocated in an area to which access from a user program is
prohibited can be performed.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 172 of 282
May 29, 2014

<Special instruction>

Trap

TRAP

Software exception

[Instruction format] TRAP vector5

[Operation] EIPC  PC + 4 (return PC)

EIPSW  PSW

ECR.EICC  exception code (40H to 5FH)

EIIC  exception code (40H to 5FH)

PSW.EP  1

 PSW.ID  1

If (MPM.AUE==1) is satisfied

 then PSW.IMP  0

 PSW.DMP  0

 PSW.NPV  0

 PC  00000040H (when vector5: 00H to 0FH (exception code: 40H to 4FH))

 00000050H (when vector5: 10H to 1FH (exception code: 50H to 5FH))

[Format] Format X

[Opcode] 15 0 31 16

 00000111111vvvvv 0000000100000000

 vvvvv = vector5

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Saves the contents of the return PC (address of the instruction next to the TRAP instruction) and

the current contents of the PSW to EIPC and EIPSW, respectively, stores the exception source

code in the EIIC register and ECR.EICC bit, and sets (1) the PSW.EP and ID bits. If the MPM.AUE

bit is set (1), it clears (0) the PSW.NPV, DMP, and IMP bits.

It then branches to an exception handler address corresponding to the vector (00H to 1FH)

specified as “vector5” and starts exception processing.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 173 of 282
May 29, 2014

<Logical instruction>

Test

TST

Test

[Instruction format] TST reg1, reg2

[Operation] result  GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001011RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, 0.

SAT --

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1. The result is not stored with only the flags being changed. General-purpose registers

reg1 and reg2 are not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 174 of 282
May 29, 2014

<Bit manipulation instruction>

Test bit

TST1

Bit test

[Instruction format] (1) TST1 bit#3, disp16 [reg1]

 (2) TST1 reg2, [reg1]

[Operation] (1) adr  GR [reg1] + sign-extend (disp16)

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, bit#3))

 (2) adr  GR [reg1]

token  Load-memory (adr, Byte)

Z flag  Not (extract-bit (token, reg2))

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 11bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100110

[Flags] CY --

OV --

S --

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT --

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data, sign-

extended to word length, to generate a 32-bit address; checks the bit specified by the 3-bit bit

number at the byte data location referenced by the generated address. If the specified bit is “0”,

“1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is cleared to “0”. The byte data,

including the specified bit, is not affected.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address; checks the

bit specified by the lower 3 bits of reg2 at the byte data location referenced by the generated

address. If the specified bit is “0”, “1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is

cleared to “0”. The byte data, including the specified bit, is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 175 of 282
May 29, 2014

<Logical instruction>

Exclusive OR

XOR

Exclusive OR

[Instruction format] XOR reg1, reg2

[Operation] GR [reg2]  GR [reg2] XOR GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001001RRRRR

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Exclusively ORs the word data of general-purpose register reg2 with the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 176 of 282
May 29, 2014

<Logical instruction>

Exclusive OR immediate (16-bit)

XORI

Exclusive OR immediate

[Instruction format] XORI imm16, reg1, reg2

[Operation] GR [reg2]  GR [reg1] XOR zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110101RRRRR iiiiiiiiiiiiiiii

[Flags] CY --

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT --

[Description] Exclusively ORs the word data of general-purpose register reg1 with the 16-bit immediate data,

zero-extended to word length, and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 177 of 282
May 29, 2014

<Data manipulation instruction>

Zero extend byte

ZXB

Zero-extension of byte data

[Instruction format] ZXB reg1

[Operation] GR [reg1]  zero-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode] 15 0

 00000000100RRRRR

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Zero-extends the lowest byte of general-purpose register reg1 to word length.

V850E2S PART 2 CHAPTER 5 INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 178 of 282
May 29, 2014

<Data manipulation instruction>

Zero extend halfword

ZXH

Zero-extension of halfword data

[Instruction format] ZXH reg1

[Operation] GR [reg1]  zero-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode] 15 0

 00000000110RRRRR

[Flags] CY --

OV --

S --

Z --

SAT --

[Description] Zero-extends the lower halfword of general-purpose register reg1 to word length.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 179 of 282
May 29, 2014

CHAPTER 6 EXCEPTIONS

An exception is an unusual event that forces a branch operation from the current program to another program, due to

certain causes.

A program at the branch destination of each exception is called an “exception handler”. The exception handler start

address is set by the exception handler address switching function (see 6.4 Exception Handler Address Switching
Function).

6.1 Outline of Exceptions

The following describes the elements that assign properties to exceptions, and shows how exceptions work.

 Exception cause list

 Exception types

 Exception processing flow

 Interrupts

 Priority of exception acknowledgment

 Exception acknowledgment condition

 Resume and restoration

 Exception level and context saving

 Return instructions

6.1.1 Exception cause list
The V850E2S CPU supports the following types of exceptions.

R
01U

S
00

37E
J010

0 R
ev.1.0

0

P
age 1

80 of 2
8

2
M

ay 29, 201
4

V
850E

2S

P
A

R
T

 2 C
H

A
P

T
E

R
 6 E

X
C

E
P

T
IO

N
S

Table 6-1. Exception Cause List (1/2)

Name Symbol Cause Priority Exception

Level

Type Resume Restoration Acknowledgment

Condition (: 0 or 1)

Exception

CodeNote 1
Return

PCNote 1
Register Refresh Value (s: save) Return

Instruction

PSW Handler

OffsetNote 2
PSW

ID NP Execution

LevelNote 3
NP EP ID

CPU initialization RESET Reset input 1  Asynchronous NG NG   None None +0000H 0 0 0 1 None

FE level non-maskable

interrupt

FENMI FENMI inputNote 4 3 FE Interrupt NG NG   00000020H currentPC +0020H Note 5 1 0 1 FERET

System error exception SYSERR SYSERR input

(4 causes)

4 FE Note 6 NG NG   00000230H

 :

00000233H

currentPC +0030H Note 5 1 1 1 FERET

FE level maskable

interrupt

FEINT FEINT inputNote 4 7 FE Interrupt OK OK  0 00000010H currentPC +0010H Note 5 1 0 1 FERET

EI level maskable

interrupt

INT INTn inputNote 4

(n = 0 to 255)

9 EI Interrupt OK OK 0 0 00000080H

 :

00001070H

currentPC +0080H

 :

+1070H

Note 5 s 0 1 EIRET

Notes 1. The return PC and PSW, and the exception code storage destination are specified by the exception level (EI or FE) (nextPC: next instruction, currentPC: current

instruction).

 2. The base address is set by the exception handler switching function.
 3. For details of the execution level, see CHAPTER 4 EXECUTION LEVEL in PART 3.

 4. Input is from INTC.

 5. The execution level changes to 0 when MPM.AUE = 1. It does not change when MPM.AUE = 0.

 6. Each cause may be asynchronous, depending on the implementation of the product.

 Remark In the table, Priority refers to the order in which exceptions that have occurred at the same time and for which the acknowledgement conditions have been met are

acknowledged.

R
01U

S
00

37E
J010

0 R
ev.1.0

0

P
age 1

81 of 2
8

2
M

ay 29, 201
4

V
850E

2S

P
A

R
T

 2 C
H

A
P

T
E

R
 6 E

X
C

E
P

T
IO

N
S

Table 6-1. Exception Cause List (2/2)
Name Symbol Cause Priority Exception

Level
Type Resume Restoration Acknowledgment

Condition (: 0 or 1)
Exception
CodeNote 1

Return
PCNote 1

Register Refresh Value (s: save) Return
Instruction

PSW Handler
OffsetNote 2

PSW

ID NP Execution
LevelNote 3

NP EP ID

Execution protection
exception

MIP Execution protection
violation

11 FE Precise OKNote 4 OKNote 4   00000430H currentPC +0030H 0 1 1 1 FERET

Memory error
exception

MEP Instruction access
error inputNote 5

12 FE Precise NGNote 4 NGNote 4   00000330H
 :
00000333H

currentPC +0030H Note 6 1 1 1 FERET

Data protection
exception

MDP Data protection
violation

13Notes 7 FE Precise OKNote 4 OKNote 4   00000431H currentPC +0030H 0 1 1 1 FERET

Coprocessor
unusable exception

UCPOP Coprocessor
instruction

FE Precise OKNote 4 OKNote 4   00000530H
 :
00000537H

currentPC +0030H Note 6 1 1 1 FERET

Reserved instruction
exception

RIE Reserved instruction FE Precise OKNote 4 OKNote 4   00000130H currentPC +0030H Note 6 1 1 1 FERET

FE level software
exception

FETRAP FETRAP instruction
(vector = 1H to FH)

FE Precise OKNote 4 OKNote 4   00000031H
 :
0000003FH

nextPC +0030H Note 6 1 1 1 FERET

EI level software
exception

TRAP TRAP0n instruction
(vector = 00 to 0FH)

EI Precise OKNote 4 OKNote 4   00000040H
 :
0000004FH

nextPC +0040H Note 6 s 1 1 EIRET

EI level software
exception

TRAP TRAP1n instruction
(vector = 10H to 1FH)

EI Precise OKNote 4 OKNote 4   00000050H
 :
0000005FH

nextPC +0050H Note 6 s 1 1 EIRET

System call exception SYSCALL SYSCALL instruction
(vector = 00H to FFH)

EI Precise OKNote 4 OKNote 4   00008000H
 :
000080FFH

nextPC Note 8 Note 6 s 1 1 EIRET

Notes 1. The return PC and PSW, and the exception code storage destination are specified by the exception level (EI or FE) (nextPC: next instruction, currentPC: current

instruction).

 2. The base address is set by the exception handler switching function.

 3. For details of the execution level, see CHAPTER 4 EXECUTION LEVEL in PART 3.

 4. For the instruction access error input, see the Hardware User’s Manual of each product.
 5. These causes occur according to the operation order of each instruction.

 6. The execution level changes to 0 when MPM.AUE = 1. It does not change when MPM.AUE = 0.

 7. When this occurs during a critical section at the same exception level, values in the original return PC, PSW, etc. may be destroyed.

 8. For the branch destination, see SYSCALL Instruction in 5.3 Instruction Set.

 Remark In the table, Priority refers to the order in which exceptions that have occurred at the same time and for which the acknowledgement conditions have been met are

acknowledged.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 182 of 282
May 29, 2014

6.1.2 Types of exceptions
The V850E2S CPU classifies exceptions into the following three types by their timing of generation and characteristics.

 Precise exception

 Asynchronous exception

 Interrupt

(1) Precise exception

This exception is precise in that it is generated in synchronization with an instruction that has caused it. Examples

of this instruction are a software exception that is always generated as result of executing an instruction, and an

exception that is immediately generated if the result of instruction execution is illegal. Because execution can

branch to exception processing before the following instruction is executed in case of a precise exception, the

original processing can be correctly executed after exception processing in many casesNote.

The following exceptions are classified as precise exceptions.

 Execution protection exception

 Memory error exception

 Data protection exception

 Coprocessor unusable exception

 Reserved instruction exception

 FE level software exception

 EI level software exception

 System call exception

Note If a memory error exception occurs, the original processing cannot be restored because the timing of

generation of this exception cannot be controlled.

(2) Asynchronous exception

This exception is acknowledged before the operation of an instruction is executed, by aborting that instruction. It is

not generated as a result of executing the current instruction but is generated independently of the instruction.

The following exceptions are classified as asynchronous exceptions.

 CPU initialization

 System error exception (Each source depends on the implementation.)

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 183 of 282
May 29, 2014

 (3) Interrupt

This exception is acknowledged before the operation of an instruction is executed, by aborting that instruction. It is

not generated as a result of executing the current instruction but is generated independently of the instruction. An

interrupt is an exception to execute any user program via interrupt controller.

The following exceptions are classified as interrupts.

 FE level non-maskable interrupt

 FE level maskable interrupt

 EI level maskable interrupt

Unlike the other exceptions, the PSW.EP bit is cleared (0) when an interrupt is generated. Consequently,

termination of the exception handler routine is reported to the external interrupt controller when the return

instruction is executed. Be sure to execute an instruction that returns execution from an interrupt while the

PSW.EP bit is cleared (0).

Caution The PSW.EP bit is cleared (0) only when an interrupt (INT0 to INT127, FEINT, or FENMI) is
acknowledged. It is set (1) when any other exception occurs.
If an instruction to return execution from the exception handler routine that has been started
by generation of an interrupt is executed while the PSW.EP bit is set (1), the resources on the
external interrupt controller may not be released, causing malfunctioning.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 184 of 282
May 29, 2014

Acknowledge
interrupt or asynchronous

exception?

Acknowledge
precise exception?

Reflect result of normal
execution

(via register, PC, etc.)

End

Start

No

No

Yes

Yes

Execute instruction

Reflect exception result
(via register, PC, etc.)

6.1.3 Exception processing flow
The handling flow for exceptions in relation to instruction execution and results is reflected (by writing to registers, etc.)

as shown below.

Acknowledgment or non-acknowledgment of an interrupt and asynchronous exception is decided before an instruction

is executed. If the exception can be acknowledged, processing branches to exception processing. After exception

handing, if the current instruction execution that has been aborted must be executed again, the return PC therefore stores

the current instruction (Current PC).

By contrast, when a precise exception occurs, processing branches to exception processing unconditionally, as the

instruction execution result. If multiple causes of precise exceptions exist at the same time, only the one with the highest

priority is acknowledged. The return PC is determined according to that exception properties, and in cases where the

instruction does not have to be re-executed after an exception, such as with a software trap or single step exception, the

next instruction (Next PC) is stored. When re-execution is required, such as with a memory protection exception, the

current instruction (Current PC) is stored.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 185 of 282
May 29, 2014

6.1.4 Exception acknowledgment priority and pending conditions
Exception acknowledgment is when processing branches to the exception handler corresponding to the exception

cause after an exception has occurred due to that exception cause. The CPU is able to acknowledge only one exception

at a time. The following priority is used to determine which exception will be acknowledged. When multiple exceptions

occur at the same time, exceptions that are not acknowledged are held pending (Except for CPU initialization. For details,

refer to 6.2.5 Special operations).

Table 6-2. Exception Priority

Priority Exception Timing

 CPU initialization (RESET)

 FE level non-maskable interrupt (FENMI)

 System error exception (SYSERR)

 FE level maskable interrupt (FEINT)

 EI level maskable interrupt (INT)

Before instruction

 execution

Execution protection exception (MIP)

Memory error exception (MEP)

Data protection exception (MDP)Note

Coprocessor unusable exception (UCPOP)Note

Reserved instruction exception (RIE)Note

FE level software exception (FETRAP)Note

EI level software exception (TRAP)Note

System call exception (SYSCALL)Note

After instruction

 execution

Note The priority is the same, and the exception occurs based on the instruction operations.

6.1.5 Exception acknowledgment conditions
The acknowledgment of some exceptions may be held pending according to certain conditions.

Exceptions that are listed in Table 6-1 with “0” in the acknowledgment condition column can be acknowledged only

when the relevant bit value is “0”. When one of these exceptions has a relevant bit value of “1”, acknowledgment of the

exception is held pending until the relevant bit value becomes “0”, at which time the exception can be acknowledged.

6.1.6 Resume and restoration
When exception processing has been performed, it may affect the original program that was interrupted by the

acknowledged exception. This effect is indicated from two perspectives: “Resume” and “Restoration”.

 Resume: Indicates whether or not the original program can be resumed from where it was interrupted.

 Restoration: Indicates whether or not the processor status (status of processor resources such as general-

purpose registers and system registers) can be restored as they were when the original program was

interrupted.

High

Low

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 186 of 282
May 29, 2014

6.1.7 Exception level and context saving

(1) Exception level

The V850E2S CPU manages exception causes in three exception levels (EI level, FE level, and DB level). When

an exception occurs, the exception cause, return PC, and return PSW are automatically stored in the

corresponding return register according to each level (Except for CPU initialization. For details, refer to 6.2.5

Special operations).

Table 6-3. Exception Levels

EI Level Exceptions FE Level Exceptions DB Level ExceptionsNote

EI level maskable interrupt

EI level software exception

System call exception

System error exception

FE level maskable interrupt

FE level non-maskable interrupt

FE level software exception

Reserved instruction exception

Memory error exception

Execution protection exception

Data protection exception

Coprocessor unusable exception

Debug exceptionNote

Note The DB level exceptions are used by the debug function for development tools

(2) Context saving

Exceptions with certain acknowledgment conditions may not be acknowledged at the start of exception processing,

based on the pending bits (PSW.ID and NP bits) that are automatically set when another exception is

acknowledged.

To enable processing of multiple exceptions of the same level that can be acknowledged again, certain information

about the corresponding return registers and exception causes must be saved, such as to a stack. This

information that must be saved is called the “context”.

In principle, before saving the context, caution is needed to avoid the occurrence of exceptions at the same level.

The work system registers that can be used for work to save the context, and the system registers that must be at

least saved to enable multiple exception processing are called basic context registers.

These basic context registers are provided for each level.

Table 6-4. Basic Context Registers

Exception Level Basic Context Registers

EI level EIPC, EIPSW, EIIC, EIWR

FE level FEPC, FEPSW, FEIC, FEWR

DB levelNote DBPCNote, DBPSWNote, DBICNote, DBWRNote

Note The DB level exceptions are used by the debug function for development tools

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 187 of 282
May 29, 2014

6.1.8 Return instructions
To return from exception processing, execute the return instruction (EIRET, FERET) corresponding to the relevant

exception level.

When a context has been saved, such as to a stack, the context must be restored before executing the return

instruction. When execution is returned from an irrecoverable exception, the status before the exception occurs in the

original program cannot be restored. Consequently, the execution result may be different from that when the exception

does not occur.

(1) EIRET instruction

The EIRET instruction is used to return from exception processing of EI level.

When the EIRET instruction is executed, the CPU performs the following processing and then passes control to

the return PC address.

<1> Return PC and PSW are loaded from the EIPC and EIPSW registers.

<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

When EP = 0, reports that the exception handler routine execution has been ended to the external units (interrupt

controllers, etc.).

A return from EI level exception processing is illustrated below.

Figure 6-1. EIRET Instruction

PC  EIPC
PSW  EIPSW

Jump to return PC address

EIRET instruction

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 188 of 282
May 29, 2014

(2) FERET instruction

To return from FE level exception processing, execute the FERET instruction.

When the FERET instruction is executed, the CPU performs the next processing and then passes control to the

return PC address.

<1> Return PC and PSW are loaded from the FEPC and FEPSW registers.

<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

Figure 6-2. FERET Instruction

PC  FEPC
PSW  FEPSW

Jump to return PC address

FERET instruction

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 189 of 282
May 29, 2014

(3) Execute the RETI instruction to return from an interrupt or EI level software exception (TRAP)

Caution The RETI instruction is defined for backward compatibility with the V850E1 and V850E2 CPU.
Therefore, in principle, use of the RETI instruction is prohibited. Except for existing
programs that cannot be revised, all RETI instructions should be replaced with EIRET or
FERET instructions.
If the RETI instruction is used, the operation is undefined except when returning from an
interrupt or EI level software exception (TRAP).

Execute the RETI instruction to return from an interrupt or EI level software exception (TRAP).

When the RETI instruction is executed, the CPU performs the next processing and then passes control to the

return PC address.

<1> When the PSW.EP bit is 0 and the PSW.NP bit is 1, the return PC and PSW are loaded from FEPC and

FEPSW. Otherwise, the return PC and PSW are read from EIPC and EIPSW.

<2> Control is passed to the address indicated by the return PC and PSW that were loaded.

When returning from any type of exception processing, the LDSR instruction must be used just before the RETI

instruction to correctly restore the PC and PSW, and the flags for the PSW.NP and PSW.EP bits must be set to the

following status.

 When returning from FE level maskable interrupt servicingNote : PSW.NP bit = 1, PSW.EP bit = 0

 When returning from EI level maskable interrupt servicing : PSW.NP bit = 0, PSW.EP bit = 0

 When returning from EI level software exception (TRAP) processing : PSW.EP bit = 1

Note The RETI instruction cannot be used to return from FENMI. After exception processing, perform a

system reset. FENMI is acknowledged even when the PSW.NP bit is set (1).

The following figure illustrates return processing using the RETI instruction.

Figure 6-3. RETI Instruction

PC  EIPC
PSW  EIPSW

Yes

PSW.EP = 0 ?

No

Jump to return PC address

RETI instruction

Yes

PSW.NP = 0 ?
No

<Return from EI level
maskable interrupt>

<Return from FE level non-
maskable interrupt>

<Return from EI level software
exception (TRAP)>

PC  FEPC
PSW  FEPSW

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 190 of 282
May 29, 2014

6.2 Operations When Exception Occurs

6.2.1 EI level exception without acknowledgment conditions
This exception can always be acknowledged because it cannot be disabled by changing the instruction or status of the

PSW from being acknowledged.

If an EI level exception without acknowledgment conditions occurs, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Saves the return PC to EIPC.

<2> Saves the current PSW to EIPSW.

<3> Writes the exception code to EIIC registerNote.

<4> Sets (1) the PSW.ID bit.

<5> Sets (1) the PSW.EP bit.

<6> Clears (0) the PSW.NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.NPV, DMP,

and IMP bits will not be updated.

<7> Sets an exception handler address to the PC and transfers control to the exception handler routine.

Note Although the exception code is also written to the lower 16 bits (EICC) of the ECR register, the EIIC

register should be used except when using an existing program that cannot be revised.

EIPC and EIPSW are used as status save registers. An EI level exception without acknowledgment conditions is

acknowledged even if it occurs while another EI level exception is being processed (while the PSW.NP or PSW.ID bit is 1).

If an EI level exception without acknowledgment conditions occurs before the context of the EI level exception is saved,

therefore, the original PC and PSW may be damaged.

Because only one pair of EIPC and EIPSW is available, the context must be saved in advance by a program before

multiple exceptions are enabled.

The format of processing of an EI level exception without acknowledgment conditions is illustrated below.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 191 of 282
May 29, 2014

Figure 6-4. Processing Format of EI Level Exception Without Acknowledgment Conditions

EIPC  Return PC
EIPSW  PSW
EIIC  Exception code
PSW.ID  1
PSW.EP  1

Exception processing

MPM.AUE = 1

Clears (0) PSW.NPV, DMP,
and IMP bits.

PC  Handler address

Yes

No

Occurrence of exception

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 192 of 282
May 29, 2014

6.2.2 EI level exception with acknowledgment conditions
This exception can be held pending by the PSW.ID and NP bits from being acknowledged.

If an EI level exception with acknowledgment conditions is generated, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Holds the exception pending if the PSW.NP bit is set (1).

<2> Holds the exception pending if the PSW.ID bit is set (1).

<3> Saves the return PC to EIPC.

<4> Saves the current PSW to EIPSW.

<5> Writes an exception code to EIICNote.

<6> Sets (1) the PSW.ID bit.

<7> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<8> Clears (0) the PSW.NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.NPV, DMP,

and IMP bits will not be updated.

<9> Sets an exception handler address to the PC and transfers control to the exception handler.

Note Although the exception code is also written to the lower 16 bits (EICC) of the ECR register, the EIIC

register should be used except when using an existing program that cannot be revised.

EIPC and EIPSW are used as status save registers. An EI level exception with acknowledgment conditions that has

occurred is held pending while other EI level exception is being processed (while the PSW.NP or PSW.ID bit is 1). In this

case, if the PSW.NP and ID bits are cleared (0) by using the LDSR or EI instruction, the EI-level exception with

acknowledgment conditions which have been held pending is acknowledged.

Because only one pair of EIPC and EIPSW is available, the context must be saved in advance by the program before

multiple exceptions are enabled.

The format of processing of an EI level exception with acknowledgment conditions is illustrated below.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 193 of 282
May 29, 2014

Figure 6-5. Processing Format of EI Level Exception with Acknowledgment Conditions

Clears (0) PSW.NPV, DMP,
and IMP bits.

PSW.NP = 0

PSW.ID = 0

EIPC  Return PC
EIPSW  PSW
EIIC  Exception code
PSW.ID  1

Exception processing Exception processing pending

Occurrence of exception

Yes

Yes

No

No

Interrupt?

Clears (0) PSW.EP bit. Sets (1) PSW.EP bit.

MPM.AUE = 1

No

Yes

PC  Handler address

Other than interrupt

Interrupt

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 194 of 282
May 29, 2014

6.2.3 FE level exception without acknowledgment conditions
This exception cannot be disabled by an instruction or by changing the status of PSW from being acknowledged and

can always be acknowledged.

If an FE level exception without acknowledgment conditions is generated, the CPU performs the following processing

and transfers control to the exception handler routine.

<1> Saves the return PC to FEPC.

<2> Saves the current PSW to FEPSW.

<3> Writes the exception code to FEICNote 1.

<4> Sets (1) the PSW.NP and ID bits.

<5> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<6> Clears (0) the PSW.NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.NPV, DMP,

and IMP bits will not be updatedNote 2.

<7> Sets an exception handler address to the PC and transfers control to the handler.

Notes 1. Although the exception code is also written to the higher 16 bits (FECC) of the ECR register, the FEIC

 register should be used except for when using the existing program that cannot be revised.

 2. The PSW.NPV, DMP, and IMP bits are always cleared (0) if an exception related to processor protection

 (MDP or MIP exception) occurs.

FEPC and FEPSW are used as status save registers. An FE level exception without acknowledgment conditions is

acknowledged even if it occurs while other FE level exception is being processed (while the PSW.NP bit is 1). If the

exception occurs before the context of the FE exception level is saved, therefore, the original PC and PSW may be

damaged.

Because only one pair of FEPC and FEPSW is available, the context must be saved in advance by a program before

multiple exceptions are enabled.

The format of processing of an FE level exception without acknowledgment conditions is illustrated below.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 195 of 282
May 29, 2014

Figure 6-6. Processing Format of FE Level Exception Without Acknowledgment Conditions

Note If a processor protection exception (MDP or MIP) occurs, the PSW.NPV, DMP, and IMP bits are

always cleared (0) regardless of the status of MPM.AUE.

FEPC  Return PC
FEPSW  PSW
FEIC  Exception code
PSW.NP  1
PSW.ID  1

Occurrence of exception

Exception processing

Clears (0) PSW.NPV, DMP, and
IMP bits.

Interrupt?

Clears (0) PSW.EP bit. Sets (1) PSW.EP bit.

No

Yes

PC  Handler address

Other than interrupt

Interrupt

MPM.AUE = 1Note

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 196 of 282
May 29, 2014

6.2.4 FE level exception with acknowledgment conditions
This exception can be held pending by the PSW.NP bit from being acknowledged.

If an FE level exception with acknowledgment conditions is generated, the CPU performs the following processing and

transfers control to the exception handler routine.

<1> Holds the exception pending if the PSW.NP bit is set (1).

<2> Saves the return PC to FEPC.

<3> Saves the current PSW to FEPSW.

<4> Writes an exception code to FEICNote 1.

<5> Sets (1) the PSW.NP and ID bits.

<6> Clears (0) the PSW.EP bit if an interrupt occurs. Sets (1) the PSW.EP bit if any other exception occurs.

<7> Clears (0) the PSW.NPV, DMP, and IMP bits if the MPM.AUE bit is set (1). Otherwise, the PSW.NPV,

DMP, and IMP bits will not be updated.

<8> Sets an exception handler address to the PC and transfers control to the exception handler.

Notes 1. Although the exception code is also written to the lower 16 bits (FECC) of the ECR register, the FEIC

 register should be used except for when using the existing program that cannot be revised.

FEPC and FEPSW are used as status save registers. An FE level exception with acknowledgment conditions that has

occurred is held pending while an other FE level exception is being processed (while the PSW.NP is 1). In this case, if the

PSW.NP bit is cleared (0) by using the LDSR instruction, the FE-level exception with acknowledgment conditions which

has been held pending is acknowledged.

Because only one pair of FEPC and FEPSW is available, the context must be saved in advance by a program before

multiple exceptions are enabled.

The format of processing of an FE level exception with acknowledgment conditions is illustrated below.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 197 of 282
May 29, 2014

Figure 6-7. Processing Format of FE Level Exception with Acknowledgment Conditions

PSW.NP = 0

FEPC  Return PC
FEPSW  PSW
FEIC  Exception code
PSW.NP  1
PSW.ID  1

Exception processing Exception processing pending

Occurrence of exception

Yes

No

Clears (0) PSW.NPV, DMP,
and IMP bits.

Interrupt?

Clears (0) PSW.EP bit. Sets (1) PSW.EP bit.

MPM.AUE = 1

No

Yes

PC  Handler address

Other than interrupt

Interrupt

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 198 of 282
May 29, 2014

6.2.5 Special operations

(1) EP bit of PSW register

If an interrupt is acknowledged, the PSW.EP bit is cleared (0). If an exception other than an interrupt is

acknowledged, the PSW.EP bit is set (1).

Depending on the status of the EP bit, the operation changes when the EIRET, FERET, or RETI instruction is

executed. If the EP bit is cleared (0), the end of the exception processing routine is reported to the external

interrupt controller. This function is necessary for correctly controlling the resources on the interrupt controller

when an interrupt is acknowledged or when execution returns from the interrupt.

To return from an interrupt, be sure to execute the return instruction with the EP bit cleared (0).

(2) NPV, DMP, and IMP bits of PSW register

If a processor protection exception is acknowledged, the PSW.NPV, DMP, and IMP bits are unconditionally

cleared (0). If an exception other than the processor protection exception is acknowledged, the operation differs

depending on the setting of the MPM.AUE bit. If the MPM.AUE bit is set (1) (if the execution level auto transition

function is enabled), the PSW.NPV, DMP, and IMP bits are cleared (0). If the MPM.AUE bit is cleared (0) (if the

execution level auto transition function is disabled), the value of the PSW.NPV, DMP, and IMP bits is not updated

but the previous value is retained.

(3) Coprocessor unusable exception

The generated opcode of the coprocessor unusable exception changes depending on the function specification

of the product.

If an opcode defined as a coprocessor instruction is not implemented on the product or if its use is not enabled

depending on the operation status, the coprocessor unusable exception (UCPOP) immediately occurs when an

attempt to execute the coprocessor instruction is made.

For details, refer to CHAPTER 7 COPROCESSOR UNUSABLE STATUS.

(4) Reserved instruction exception

If an opcode that is reserved for future function extension and for which no instruction is defined is executed, a

reserved instruction exception (RIE) occurs.

However, which of the following two types of operations each opcode is to perform may be defined by the

product specification.

 Reserved instruction exception occurs.

 Operates as a defined instruction.

An opcode for which a reserved instruction exception occurs is always defined as an RIE instruction.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 199 of 282
May 29, 2014

(5) System call exception

For a system call exception, a table entry to be referenced is selected by the value of a vector specified by the

opcode and the value of the SSCFG.SIZE bit, and the exception handler address is calculated in accordance with

the contents of that table entry and the value of the SCBP register.

If table size n is specified by SSCFG.SIZE, for example, a table entry is selected as follows. Note that, where n

< 255, table entry 0 is referenced from vector n+1 to 255.

Vector Exception Code Table Entry to Be Referenced

0 0000 8000H Table entry 0

1 0000 8001H Table entry 1

2 0000 8002H Table entry 2

(omitted) : :

n-1 0000 8000H + (n-1) H Table entry n-1

n 0000 8000H + nH Table entry n

N+1 0000 8000H + (n+1) H Table entry 0

(omitted) : :

254 0000 80FEH Table entry 0

255 0000 80FFH Table entry 0

Caution Place an error processing routine at table entry 0 because it is also selected when a
vector exceeding n specified by SCCFG.SIZE is specified.

(6) Reset

An operation which is the same as an exception is performed to initialize the CPU by reset. However, reset

does not belong to any of EI level exception, FE level exception. The reset operation is the same that of an

exception without acknowledgment conditions, but the value of each register is changed to the default value. In

addition, execution does not return from the reset status.

All exceptions that have occurred at the same time as CPU initialization are canceled and not acknowledged

even after CPU initialization.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 200 of 282
May 29, 2014

6.3 Exception Management

The V850E2S CPU provides the exception synchronization instruction (SYNCE instruction). The exceptions that are

synchronized by the SYNCE instruction are imprecise exceptions. However, since the V850E2S CPU does not support

imprecise exceptions, the SYNCE instruction is replaced by the SYNCM instruction when executed.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 201 of 282
May 29, 2014

6.4 Exception Handler Address Switching Function

The V850E2S CPU can use the exception handler address switching function to change the exception handler address.

The exception handler address where processing is passed after an exception is determined by the value set by this

exception handler switching function.

The exception handler address switching function uses the following two banks among the system register banks. For

details, see 2.4 CPU Function Bank/Exception Handler Address Switching Function Banks.

The exception handler address are divided into the following three types.

 CPU initialization (RESET)

 EI level maskable interrupts (INT0 to INT127)

 All other types of exceptions

6.4.1 Determining exception handler addresses
The current exception handler address is indicated by the register assigned to exception handler switching function

bank 1 (ESWH1).

(1) Start address for CPU initialization (RESET)

This address is indicated by the EH_RESET register.

(2) EI level maskable interrupt (INT0 to INT127)

This interrupt is indicated by the EH_BASE register and the RINT bit in the EH_CFG register. The settings in

this register can be changed by software.

When the RINT bit is cleared (0), 128 different exception handler addresses that include the EH_BASE register

and offset addresses are used as the exception handler addresses for INT0 to INT127.

When the RINT bit is set (1), the exception handler addresses for INT0 to INT127 are reduced and a single

exception handler address specified by adding 0080H to EH_BASE is used.

Once an 4096-byte address range has been reserved for INT0 to INT127 exception handler addresses,

reduction to 16 bytes can be performed by setting (1) the RINT bit.

Caution Even when using a reduced exception handler address, exception codes can be used to

distinguish among exception causes for INT0 to INT127.

(3) Exception handler addresses for other types of exceptions

These addresses are indicated by the EH_BASE register. Offset addresses for each exception are added to

addresses indicated in the EH_BASE register to create the address that is used as the particular exception handler

address. The settings in this register can be changed by software.

V850E2S PART 2 CHAPTER 6 EXCEPTIONS

R01US0037EJ0100 Rev.1.00 Page 202 of 282
May 29, 2014

6.4.2 Purpose of exception handler address switching
Exception handler address switching setting is made by software after startup.

(1) Switch according to software

After system startup, addresses can be switched to set up a temporary consistent instruction address area

when instructions are not consistent at addresses near the exception handler address, for various reasons (such

as a flash memory rewrite).

6.4.3 Settings for exception handler address switching function

 (1) Switch according to software

The following methods can be used to change the exception handler address via the following steps while the

CPU is operating.

When switching exception handler addresses, try to prevent exceptions from occurring between when the

switch is started and ended (or, if an exception does occur, try to prevent any problems it would cause). For

example, this can be done by prohibiting exceptions, by using control to prevent system-wide exceptions from

occurring, or by assigning only programs that operate normally to the exception handler addresses before and

after the switch.

Caution The CPU initialization (RESET) start address cannot be changed by software.

Write 1 to SW_CTL.SET

End

Set SW_BASE register

Switch bank to EHSW0 bank

V850E2S PART 2 CHAPTER 7 COPROCESSOR UNUSABLE STATUS

R01US0037EJ0100 Rev.1.00 Page 203 of 282
May 29, 2014

CHAPTER 7 COPROCESSOR UNUSABLE STATUS

The V850E2S CPU defines a function limited to a specific application as a coprocessor.

7.1 Coprocessor Unusable Exception

A coprocessor unusable exception (UCPOP) occurs in the following cases if an opcode defined as a coprocessor

instruction is to be executed.

 If the coprocessor function is not defined

 If the coprocessor function is not implemented for the product

 If the coprocessor function is disabled by a function of the product

The coprocessor unusable exception is assigned an exception code for each coprocessor function. The

correspondence between the coprocessor functions and exception causes is shown in the following table.

Coprocessor Function Exception to Occur Exception Code

Undefined UCPOP0 to UCPOP7Note 530H to 537HNote

Note Which exception occur for an undefined opcode is defined by the product specification. For details,

refer to the manuals of each product.

 Coprocessor instructions are not defined in the V850E2S CPU.

7.2 System Registers

System registers are defined as a part of some coprocessor functions. The operation of the system register of the

corresponding coprocessor function is undefined in the following cases because of the architecture.

 If the coprocessor function is not implemented on the product

 If the coprocessor function is disabled by a function of the product

V850E2S PART 2 CHAPTER 8 RESET

R01US0037EJ0100 Rev.1.00 Page 204 of 282
May 29, 2014

CHAPTER 8 RESET

8.1 Status of Registers After Reset

If a reset signal is input by a method defined by the product specification, the program registers and system registers

are placed in the status shown in Table 8-1, and program execution is started. Initialize the contents of each register to an

appropriate value in the program.

Table 8-1. Status of Registers After Reset

 Register Status After Reset (Initial Value)

Program registers General-purpose register (r0) 00000000H (fixed)

General-purpose registers (r1 to r31) Undefined

Program counter (PC) 00000000H

System registers EIPC  Status save register when acknowledging EI level exception Undefined

EIPSW  Status save register when acknowledging EI level exception 00000020H

FEPC  Status save register when acknowledging FE level exception Undefined

FEPSW  Status save register when acknowledging FE level exception 00000020H

ECR  Exception cause 00000000H

PSW  Program status word 00000020H

SCCFG  SYSCAL operation configuration Undefined

SCBP  SYSCALL base pointer Undefined

EIIC  EI level exception cause 00000000H

FEIC  FE level exception cause 00000000H

DBICNote  DB level interrupt cause 00000000H

CTPC  CALLT execution status save register Undefined

CTPSW  CALLT execution status save register 00000020H

CTBP  CALLT base pointer Undefined

EIWR  EI level exception working register

FEWR  FE level exception working register

BSEL  Register bank selection 00000000H

Note The DBIC register is used by the debug function for development tools.

8.2 Start

The CPU executes a reset to start execution of a program from the reset address specified by the exception handler

address switching function.

INT exceptions are not acknowledged immediately after a reset. If the program will use INT exceptions, be sure to

clear (0) the PSW.ID bit.

V850E2S PART 3 CHAPTER 1 OVERVIEW

R01US0037EJ0100 Rev.1.00 Page 205 of 282
May 29, 2014

PART 3 PROCESSOR PROTECTION FUNCTION

V850E2S PART 3 CHAPTER 1 OVERVIEW

R01US0037EJ0100 Rev.1.00 Page 206 of 282
May 29, 2014

CHAPTER 1 OVERVIEW

The V850E2S CPU conforms to the V850E2v3 Architecture and supplies a processor protection function that detects or

prevents illegal use of system resources and inappropriate possession of the CPU execution time by non-trusted

programs or program loops, thereby enabling a highly-reliable system to be set up.

Caution The available processor protection functions vary depending on the product.

1.1 Features

(1) Resource access control

The V850E2S CPU supplies a function to control accesses to the following two types of resources.

 System register protection

Damage to the system registers by a non-trusted program can be prevented.

 Memory protection

A total of four protection areas can be set, which are shared as instruction/constant protection areas and data

protection areas in the address space. As a result, execution or data manipulation by the user program that is

not allowed is detected, so that illegal execution or data manipulation can be prevented. Each area is

specified using both upper-limit and lower-limit addresses, so that the address space can be efficiently used

with fine detail.

(2) Management by execution level

The V850E2S CPU has more than one status bit to control accesses to the resources, and combinations of these

status bits are defined as execution levels.

The user can control accesses in accordance with a situation by selecting an execution level in accordance with

the situation, or by using an execution level auto transition function that automatically changes when some special

instructions are executed if an exception occurs or when execution returns from an exception.

V850E2S PART 3 CHAPTER 1 OVERVIEW

R01US0037EJ0100 Rev.1.00 Page 207 of 282
May 29, 2014

(3) Selectable and scalable specification

To use the execution level auto transition function, the OS (and programs similar to it), common library, and user

task must comply with a specific program model.

The V850E2S CPU employs scalable specification that allows processor protection to be used even when the

execution level auto transition function is not selected. Therefore, the processor protection can be easily

introduced to the existing software resources. Moreover, the operation can be performed, in a status without a

processor protection function as usual.

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 208 of 282
May 29, 2014

CHAPTER 2 REGISTER SET

2.1 System Register Bank

Table 2-1 shows the system register banks related to the processor protection function.

The processor protection setting bank, the processor protection violation bank and the software paging bank are

selected by setting 00001001H, 00001000H and 00001010H to a system register (BSEL) by using an LDSR instruction.

System registers numbered 28 to 31 are shared by the banks, and the EIWR, FEWR, DBWRNote, and BSEL registers of

the CPU function bank are referenced regardless of the set value of the BSEL register.

Note The DBWR register is used by the debug function for development tools.

 Processor protection violation bank

(Group number: 10H, Bank number: 00H, Abbreviation: MPV/PROT00 bank, Stores processor protection

violation registers.)

 Processor protection setting bank

(Group number: 10H, Bank number: 01H, Abbreviation: MPU/PROT01 bank, Stores processor protection setting

registers.)

 Software paging bank

(Group number: 10H, Bank number: 10H, Abbreviation: PROT10 bank, Stores processor protection

setting/violation registers.)

The following system register of the CPU function bank is used as a register related to the processor protection function.

 PSW register

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 209 of 282
May 29, 2014

Table 2-1. System Register Bank

Group Processor Protection Function (10H)

Bank Processor protection violation (00H) Processor protection setting (01H) Software paging (10H)

Bank label MPV, PROT00 MPU, PROT01 PROT10

Register No. Name Function Name Function Name

0 VSECR System register protection violation
cause

MPM Setting of processor protection operation

mode

MPM

1 VSTID System register protection violation task
identifier

MPC Specification of processor protection

command

MPC

2 VSADR System register protection violation
address

TID Task identifier TID

3 Reserved for function expansion Reserved for function extension VMECR

4 VMECR Memory protection violation cause VMTID

5 VMTID Memory protection violation task identifier VMADR

6 VMADR Memory protection violation address PA0L Protection area 0 lower-limit address PA0L

7 Reserved for function expansion PA0U Protection area 0 upper-limit address PA0U

8 PA1L Protection area 1 lower-limit address PA1L

9 PA1U Protection area 1 upper-limit address PA1U

10 PA2L Protection area 2 lower-limit address PA2L

11 PA2U Protection area 2 upper-limit address PA2U

12 PA3L Protection area 3 lower-limit address PA3L

13 PA3U Protection area 3 upper-limit address PA3U

14 Reserved for function expansion Reserved for
function expansion15

16

17

18

19

20

21

22

23

24

25

26

27

28 EIWR Work register for EI level exception

29 FEWR Work register for FE level exception

30 DBWRNot

e

Work register for DB level exception

31 BSEL Selection of register bank

Note The DBWR register is used by the debug function for development tools.

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 210 of 282
May 29, 2014

2.2 System Registers

(1) Processor protection setting registers
The processor protection setting registers select a processor protection mode and specifies a subject to protection.

A system register can be read or written by the LDSR or STSR instruction, by specifying one of the system register

numbers shown in this table.

Table 2-2 lists the processor protection setting registers.

Table 2-2. Processor Protection Setting Registers

System

Register

Number

Name Function Able to Specify

Operands?

System

Register

ProtectionNote
LDSR STSR

0 MPM Setting of processor protection operation mode   

1 MPC Specification of processor protection command   

2 TID Task identifier   

3 to 5 (Reserved for future function expansion (Operation is not guaranteed if

these registers are accessed.))

  

6 PA0L Protection area 0 lower-limit address   

7 PA0U Protection area 0 upper-limit address   

8 PA1L Protection area 1 lower-limit address   

9 PA1U Protection area 1 upper-limit address   

10 PA2L Protection area 2 lower-limit address   

11 PA2U Protection area 2 upper-limit address   

12 PA3L Protection area 3 lower-limit address   

13 PA3U Protection area 3 upper-limit address   

14-27 (Reserved for future function expansion (Operation is not guaranteed if

these registers are accessed.))

  

Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 211 of 282
May 29, 2014

(2) Processor protection violation registers

The processor protection violation registers (memory protection violation report registers) report a violation causes,

violation task identifiers, and violation addresses. A system register can be read or written by the LDSR or STSR

instruction, by specifying one of the system register numbers shown in this table.

Table 2-3 lists the processor protection violation registers.

Table 2-3. Processor Protection Violation Registers

System

Register

Number

Name Function Able to Specify

Operands?

System

Register

ProtectionNote
LDSR STSR

0 VSECR System register protection violation cause   

1 VSTID System register protection violation task identifier   

2 VSADR System register protection violation address   

3 (Reserved for future function expansion (Operation is not guaranteed if

this register is accessed.))

  

4 VMECR Memory protection violation cause   

5 VMTID Memory protection violation task identifier   

6 VMADR Memory protection violation address   

7 to 27 (Reserved for future function expansion (Operation is not guaranteed if

these registers are accessed.))

  

Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

(3) Software paging registers

The software paging registers realize software paging operation using memory protection. These registers are

maps of the processor protection setting registers and processor protection violation registers.

With the V850E2S CPU, it is a general rule to set a fixed memory protection area for each task to protect the

memory. However, an operation that sequentially changes protection setting by an exception program that is

started by a processor protection exception if a memory access is requested when the program accesses the

memory is assumed to provide for a case where the number of memory protection areas runs short in an

extremely large software system. This operation method is called software paging, and a bank consisting of

system registers suitable for this operation is defined as a software paging bank.

By using this bank, the switching of the bank can be reduced to once during a processor protection exception

processing. As a result, the software overhead can be reduced by decreasing the number of general-purpose

registers necessary for software paging and by reducing the execution cycles necessary for saving or restoring the

context.

Table 2-4 lists the software paging registers. A system register can be read or written by the LDSR or STSR

instruction, by specifying one of the system register numbers shown in the following table.

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 212 of 282
May 29, 2014

Table 2-4. Software Paging Registers

System

Register

Number

Name Function Able to Specify

Operands?

System

Register

ProtectionNote
LDSR STSR

0 MPM Setting of processor protection operation mode   

1 MPC Specification of processor protection command   

2 TID Task identifier   

3 VMECR Memory protection violation cause   

4 VMTID Memory protection violation task identifier   

5 VMADR Memory protection violation address   

6 PA0L Protection area 0 lower-limit address   

7 PA0U Protection area 0 upper-limit address   

8 PA1L Protection area 1 lower-limit address   

9 PA1U Protection area 1 upper-limit address   

10 PA2L Protection area 2 lower-limit address   

11 PA2U Protection area 2 upper-limit address   

12 PA3L Protection area 3 lower-limit address   

13 PA3U Protection area 3 upper-limit address   

14-27 (Reserved for future function expansion (Operation is not guaranteed if

these registers are accessed.))

  

Note Refer to CHAPTER 5 SYSTEM REGISTER PROTECTION.

Remark : Indicates in the column of “Able to Specify Operands?” that the register can be specified. In the column of

“System Register Protection”, this symbol indicates that the register is protected.

 : Indicates in the column of “Able to Specify Operands?” that the register cannot be specified. In the column

of “System Register Protection”, this symbol indicates that the register is not protected.

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 213 of 282
May 29, 2014

2.2.1 PSW – Program Status Word
Bits related to the processor protection function are assigned to bits 16 to 18 of the PSW register in the CPU function

bank.

Figure 2-1. Memory Protection Operation Status Bits in PSW

 Bit Position Bit Name Description

 18 NPV Status bit of system register protection.

This bit indicates whether the CPU trusts an access by the program currently under execution

to the system register.

 0: T state (CPU trusts the access to the system register.) (initial value)

 1: NT state (CPU does not trust the access to the system register.)

The system register protection function does not limit accesses if the NPV bit indicates the T

state. If it indicates the NT state, it limits the accesses.

 17 DMP Status bit of memory protection for data access (data area).

This bit indicates whether the CPU trusts a data access by the program currently under

execution. (initial value: 0)

 0: T state (CPU trusts data access.) (initial value)

 1: NT state (CPU does not trust data access.)

The memory protection function does not limit data access if the DMP bit indicates the T state.

If it indicates the NT state, it limits data access.

 16 IMP Status bit of memory protection for program area

This bit indicates whether the CPU trusts an access by the program currently under execution

to a program area. (initial value: 0)

 0: T state (CPU trusts the access to the program area.) (initial value)

 1: NT state (CPU does not trust the access to the program area.)

The memory protection function does not limit an access to the program area if the IMP bit

indicates the T state. If it indicates the NT state, it limits an access to the program area.

31 7 6 5 4 3 2 1 0

PSW
N
P

S
A
T

E
P

I
D

O
V S Z

C
Y

Initial value
00000020H

0 0 0 0 0 0 0 0 0 0 0
D
M
P

0 0 0 00
N
P
V

S
B

S
E

0

11

S
S

91018 1617
I

M
P

0

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 214 of 282
May 29, 2014

2.2.2 MPM – Setting of processor protection operation mode
The processor protection mode register determines the basic operation status of the processor protection function. Be

sure to set bits 31 to 6 and 2 to “0”.

(1/3)

 Bit Position Bit Name Description

 5 DWENote1 This bit enables or disables write access to any space that is not in a specified area.

When this DWE bit is cleared to 0, write access to data placed in any space that is not in a

specified area is prohibited.

If an instruction that writes data to the access-prohibited space is executed, data protection

violation is detected and the MDP exception is immediately acknowledged.

 0: Disables write access to space not in a specified area

 1: Enables write access to space not in a specified area

 4 DRENote1 This bit enables or disables read access to any space that is not in a specified area.

When this DRE bit is cleared to 0, read access to data placed in any space that is not in a

specified area is prohibited.

If an instruction that reads data from the access-prohibited space is executed, data protection

violation is detected and the MDP exception is immediately acknowledged.

 0: Disables read access to space not in a specified area

 1: Enables read access to space not in a specified area

 3 DXENote1 This bit enables or disables execution of an instruction in any space that is not in a specified

area.

When this DXE bit is cleared to 0, execution of a program placed in any space that is not in a

specified area is prohibited.

If execution of an instruction is attempted in an access-prohibited space, an instruction

protection violation is detected and an MIP exception is immediately acknowledged.

 0: Disables execution of instructions in space not in a specified area

 1: Enables execution of instructions in space not in a specified area

31 1 0

MPM
M
P
E

Initial value
00000000H

0 0
A
U
E

0

4 35
D
X
E

D
R
E

D
W
E

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 215 of 282
May 29, 2014

(2/3)

 Bit Position Bit Name Description

 1 AUE This bit automatically changes the execution level if an exception occurs, and sets a function

to update the PSW.NPV, DMP, and IMP bits (initial value: 0).

 0: Does not automatically update.

 The value of the PSW.NPV, DMP, and IMP bits are not changed even if an exception

 occursNote2, 3.

 1: Automatically updates.

 The value of the PSW.NPV, DMP, and IMP bits is cleared to 0 if an exception occurs.

 Notes 1. DWE, DRE, and DXE are valid only for the 64 MB space from 0000_0000H to 01FF_FFFFH and

 from FE00_0000H to FFFF_FFFFH. Instruction execution and access are prohibited outside of

 the 64 MB space described above.

 2. The exception that changes the execution level to the DB level and the processor protection

 violation exceptions (MDP and MIP exceptions) are excluded. When these exceptions are

 acknowledged, the PSW.NPV, DMP, and IMP bits are always updated to 0 under any

 circumstances.

 3. The PSW.NPV bit is fixed to 0 and cannot be changed if the MPM.AUE bit is cleared (0).

Remark The PAnL/U register setting takes priority among all settings in the 64 MB space where

addressing is enabled. For example, even if read access is enabled for a space that is not

covered by the area specification in DRE = 1, read access is still prohibited in any area set as

access-prohibited in the PAnL/U register.

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 216 of 282
May 29, 2014

(3/3)

 Bit Position Bit Name Description

 0 MPE This bit enables or disables the operation of the processor protection function (initial value: 0).

0: Processor protection function disabled

 PSW.NPV bit is fixed to 0.

The system register protection function is disabled and access to all the system

registers is enabled.

 PSW.DMP and IMP bits are fixed to 0.

The memory protection function is disabled and all memory accesses are

enabled. The MIP and MDP exceptions does not occur.

1: Processor protection function enabled

 Updating the PSW.NPV bit is enabled.

The system register protection function is enabled and detects violation in

accordance with the setting.

 Updating the PSW.DMP and IMP bits is enabled.

The memory protection function is enabled and detects violation in accordance

with setting. The MIP and MDP exceptions may occur.

 Remark For details on the NPV, IMP, and DMP bits, refer to 2.2.1 PSW – Program Status Word.

Caution When data access occurs outside the 64 MB area where addressing is not enabled, if the
processor protection function is enabled (MPE = 1), all data access is detected as a memory
protection violation that throws an MDP exception. However, it is not possible to detect
memory protection violations (MIP exceptions) that occur due to execution of an instruction
outside the 64 MB area where addressing is not enabled.

V850E2S PART 3 CHAPTER 2 REGISTER SET

R01US0037EJ0100 Rev.1.00 Page 217 of 282
May 29, 2014

2.2.3 MPC – Specification of processor protection command
This register consists of bits that are used for special operation of the processor protection function.

Be sure to set bits 31 to 1 to “0”.

 Bit Position Bit Name Meaning

 0 ALDS When this bit is set (1), the protection operation bits of the entire memory protection area is

immediately cleared (0). The target bits are as follows.

PAnL.E bit (n = 0 to 3)

When all these bits have been cleared (0), the ALDS bit is also cleared (0).

Caution Even when the bits cleared (0) by the function of the ALDS bit are set (1) by the LDSR instruction
immediately after the LDSR instruction that has set the ALDS bit (1), the result in accordance
with the execution sequence of the instruction can be obtained (the target bits are set (1)).

2.2.4 TID – Task identifier
This register is used to set an identifier of a task under execution. The TID register setting is not automatically changed.

Be sure to set an appropriate value to the TID register by program when switching the task.

 Bit Position Bit Name Meaning

 31 to 0 TID These bits set an identifier of a task under execution.

2.2.5 Other system registers
For details on the other system registers, refer to CHAPTER 5 SYSTEM REGISTER PROTECTION, CHAPTER 6

MEMORY PROTECTION, and CHAPTER 8 SPECIAL FUNCTION.

31 0

MPC 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0
Initial value

00000000H

1

0 0 0 0 0 0 0 AL
DS

31 0

TID
Initial value
00000000HT I D

V850E2S PART 3 CHAPTER 3 OPERATION SETTING

R01US0037EJ0100 Rev.1.00 Page 218 of 282
May 29, 2014

CHAPTER 3 OPERATION SETTING

To use the processor protection function, an operation related to overall processor protection must be first set.

Switch the system register bank to the processor protection setting bank (group number: 10H, bank number: 01H) and

set an appropriate value to the MPM register.

3.1 Starting Use of Processor Protection Function

To enable the processor protection function, first the MPM.MPE bit must be set (1). If the MPE bit is cleared (0), the

PSW.NPV, DMP, and IMP bits are fixed to 0, and each function of the processor protection function does not operate.

When the MPM.MPE bit is set (1), use of the processor protection function is started as follows.

 The PSW.NPV, DMP, and IMP bits can be updated.

(The system register protection function and memory protection function can be used.)

3.2 Setting of Execution Level Auto Transition Function

A function to automatically change the execution level is enabled by setting the MPM.AUE bit (1). To operate a system

with a program model that automatically changes the execution level, be sure to set the AUE bit before using the

processor protection function.

For details, refer to CHAPTER 4 EXECUTION LEVEL.

3.3 Stopping Use of Processor Protection Function

To disable the processor protection function that has been once enabled, clear (0) the MPM.MPE bit. As a result, the

PSW.NPV, DMP, and IMP bits are fixed to 0, and use of the processor protection function is stopped as follows.

 The PSW.NPV, DMP, and IMP bits are fixed to 0.

(The system register protection function and memory protection function cannot be used.)

V850E2S PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0037EJ0100 Rev.1.00 Page 219 of 282
May 29, 2014

CHAPTER 4 EXECUTION LEVEL

The V850E2S CPU indicates the reliability status of the program currently under execution and a right of access to the

resources of the program by controlling the following 3 bits of the PSW (Program Status Word). These bits are called

protection bits, and specific combinations of these bits are called execution levels.

 NPV bit:

Indicates whether the CPU trusts an access by the program under execution to the system registers.

 DMP bit:

Indicates whether the CPU trusts data access by the program under execution.

 IMP bit:

Indicates whether the CPU trusts an access by the program under execution to the program area.

4.1 Nature of Program

Programs under execution are classified into “trusted programs” and “non-trusted programs” according to their design

quality. Generally, the “trusted programs” are programs that do not pose any threat to systems such as OS (and programs

similar to it) and device derivers. The “non-trusted programs” have not yet been confirmed that they do not pose any

threat to systems such as user programs under development and programs of third parties.

For each of the following three protected subjects; system registers, data area, and program area, PSW.NPV, DMP,

and IMP bits are defined as information by which the hardware can distinguish between the operation of a trusted program

and the operation of a non-trusted program. These bits have the following meaning for the related resources, and are set

to an appropriate value by the OS (and programs similar to it) before execution of each program is started.

Status of Protection Bit Status Name Program Quality

0 T state Trusted (trusted program)

1 NT state Not trusted (non-trusted program)

V850E2S PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0037EJ0100 Rev.1.00 Page 220 of 282
May 29, 2014

4.2 Protection Bits on PSW

Protection bits (NPV, DMP, and IMP bits) that indicate the reliability status of the program under execution on the

resources subject to processor protection are placed on PSW. Bits 18, 17, and 16 of the PSW are defined as NPV, DMP,

and IMP bits. Set these bits appropriately when using the processor protection function.

Caution The PSW.NPV, DMP, and IMP bits are fixed to 0 when the MPM.MPE bit is 0. Because these bits
are subject to system register protection, they cannot be written when the NPV bit is 1.

4.2.1 T state (trusted state)
Set 0 to the protection bits if the operation of the program under execution on the resource corresponding to each bit

can be fully trusted and if the program does not perform an illegal operation. The state in which 0 is set to each of the

protection bits is considered as a state in which operation on the resource corresponding to the bit is “trusted” and is called

a T state.

Usually, when a program is in the T state, no violation is detected and the program performs a privileged operation.

4.2.2 NT state (non-trusted state)
Set 1 to each of the protection bits if an operation by the program under execution on the resource corresponding to the

bit cannot be trusted and if the program may perform an illegal operation. A state in which each bit is set to 1 is

considered as a state in which the operation on the resource corresponding to the bit “cannot be trusted” and is called an

NT state.

If a program is in the NT state, violation is detected in accordance with setting and, in some cases, an exception occurs.

4.3 Definition of Execution Level

The V850E2S CPU assumes that some combinations of the statuses of the PSW.NPV, DMP, and IMP bits which are

typically used are defined and used as execution levels. Use with any combinations other than these is possible but not

recommended.

Table 4-1 shows the execution levels and examples of their use.

Table 4-1. Execution Level

Execution

 Level

NPV Bit

(system register

protection)

DMP Bit

(memory protection data area)

IMP Bit

(memory protection program area)

Example of Use of Execution Level

0 0 0 0 Exception handler, OS kernel, etc.

1 0 0 0 Device driver, etc.

2 0 1 1 Common library, etc.

3 1 1 1 User task

V850E2S PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0037EJ0100 Rev.1.00 Page 221 of 282
May 29, 2014

4.4 Transition of Execution Level

With the V850E2S CPU, the execution level is mainly changed in the following three ways.

 Execution of write instruction to system registers

 Occurrence of exception

 Execution of return instruction

While the MPM.MPE bit is cleared (0), the PSW.NPV, DMP, and IMP bits are fixed to 0 in any of the above cases, and

the execution level does not change from 0.

Caution For the V850E2S CPU, executing the CALLT instruction does not cause a transition of the
execution level. Common subroutines called as a result of executing this instruction operate
with the same processor protection status as the caller.

4.4.1 Transition by execution of write instruction to system register
The PSW.NPV, DMP, and IMP bits can be rewritten by executing a write instruction (LDSR instruction) to a system

register, so that the user can change the execution level to any level. The rewritten execution level becomes valid when

the next instruction is executed.

Cautions 1. When the PSW.NPV bit is set (1), the PSW.NPV, DMP, and IMP bits cannot be changed
because the system registers are protected. Consequently, the execution level is not
changed (refer to CHAPTER 5 SYSTEM REGISTER PROTECTION).

 2. When the MPM.AUE bit is cleared (0), the PSW.NPV bit is fixed to 0 and cannot be
changed.

 3. If the setting of the PSW.IMP bit is changed by using the LDSR instruction, it may take
several instructions to reflect the new setting. In this case, the new setting can be
accurately reflected by performing a branch by executing the EIRET or FERET
instruction.

V850E2S PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0037EJ0100 Rev.1.00 Page 222 of 282
May 29, 2014

4.4.2 Transition as result of occurrence of exception
The execution level auto transition function is enabled when the MPM.AUE bit is set (1). If an exception occurs in this

status, the PSW.NPV, DMP, and IMP bits are automatically cleared (0) and the execution level changes to level 0.

Caution If an exception that causes the execution level to change to the DB level or a memory
protection exception (MDP or MIP) occurs, the PSW.NPV, DMP, and IMP bits are
automatically cleared (0) regardless of the setting of the AUE bit.

4.4.3 Transition by execution of return instruction
When a return instruction (RETI, EIRET, FERET, or CTRET) to return execution from an exception or the CALLT

instruction is executed, the value of the return PSW (EIPSW, FEPSW, or CTPSW) corresponding to the executed return

instruction is copied to the PSW. If the MPM.MPE bit is set (1) at this time, the value of the bits corresponding to the NPV,

DMP, and IMP bits of the register that stores the value of the return PSW is copied to the NPV, DMP, and IMP bits of the

PSW. The value of the PSW.NPV, DMP, and IMP bits do not change if the MPE bit is cleared (0). The NPV bit is always

fixed to 0.

If an exception occurs, the value of the PSW before the exception occurs is saved for each exception level. If the value

of the register that stores the value of the return PSW is not changed while the exception is processed, the NPV, DMP,

and IMP bits are restored to the status before occurrence of the exception when the exception return instruction is

executed. When viewed from the program that is interrupted by the exception, therefore, the execution level does not

change before and after the exception processing.

Cautions 1. The PSW.NPV, DMP, and IMP bits are updated by the return instruction even when the
execution level auto transition function is disabled.

 2. The execution level also changes when execution is returned by the CTRET
instruction from a subroutine that has been called by the CALLT instruction. However,
the value of the PSW when the CALLT instruction has been executed is saved to
CTPSW, and CTPSW is protected by the system register protection function.
Therefore, the state will not change to the T state even if the user illegally changes the
bit corresponding to the protected bit of CTPSW.

V850E2S PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0037EJ0100 Rev.1.00 Page 223 of 282
May 29, 2014

4.5 Program Model

By using the execution level auto transition function, two program models each having a different execution level

management policy can be selected. Select a program model suitable for your system.

 Program model that automatically changes execution level

The execution level auto transition function is enabled and the execution level is changed if an exception occurs.

This program model is suitable for being used by an OS (and programs similar to it) or a program that is

hierarchically managed.

 Program model that always operates at constant execution level

The execution level auto transition function is disabled and the execution level is not changed even when an

exception is acknowledged. The execution level is changed only by a special instruction executed by the user

program, so that processor protection can be easily applied to the existing software resources.

V850E2S PART 3 CHAPTER 4 EXECUTION LEVEL

R01US0037EJ0100 Rev.1.00 Page 224 of 282
May 29, 2014

4.6 Task Identifier

The V850E2S CPU is equipped with a register that identifies to which group the program currently being executed

belongs when two or more different program groups are executed. This group of programs is called a task. An identifier

for each task is defined as a task identifier and set to the TID register.

The processor protection function uses this task identifier as one piece of violation information when an exception

occurs.

V850E2S PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0037EJ0100 Rev.1.00 Page 225 of 282
May 29, 2014

CHAPTER 5 SYSTEM REGISTER PROTECTION

The V850E2S CPU can control accesses to specific system registers to protect the setting of the system from being

illegally changed by a program that is not trusted (non-trusted program).

If a system register protection violation occurs, the violation information is saved in the system registers of the

processor protection violation bank.

V850E2S PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0037EJ0100 Rev.1.00 Page 226 of 282
May 29, 2014

5.1 Register Set

Table 5-1 shows the system registers related to the system register protection function.

Table 5-1. System Register Bank

Group Processor Protection Function (10H)

Bank Processor protection violation (00H) Processor protection setting (01H) Software paging (10H)

Bank label MPV, PROT00 MPU, PROT01 PROT10

Register No. Name Function Name Function Name

0 VSECR System register protection violation cause MPM Setting of processor protection operation mode MPM

1 VSTID System register protection violation task

identifier

MPC Specification of processor protection command MPC

2 VSADR System register protection violation

address

TID Task identifier TID

3 Reserved for function expansion Reserved for function expansion VMECR

4 VMECR Memory protection violation cause VMTID

5 VMTID Memory protection violation task identifier VMADR

6 VMADR Memory protection violation address PA0L Protection area 0 lower-limit address PA0L

7 Reserved for function expansion PA0U Protection area 0 upper-limit address PA0U

8 PA1L Protection area 1 lower-limit address PA1L

9 PA1U Protection area 1 upper-limit address PA1U

10 PA2L Protection area 2 lower-limit address PA2L

11 PA2U Protection area 2 upper-limit address PA2U

12 PA3L Protection area 3 lower-limit address PA3L

13 PA3U Protection area 3 upper-limit address PA3U

14 Reserved for function expansion Reserved for

function expansion 15

16

17

18

19

20

21

22

23

24

25

26

27

V850E2S PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0037EJ0100 Rev.1.00 Page 227 of 282
May 29, 2014

5.1.1 VSECR – System register protection violation cause
This register indicates the number of times violation has been detected by the system register protection function.

Be sure to set 0 to bits 31 to 8.

 Bit Position Bit Name Description

 7 to 0 VSEC These bits save the number of times the system register protection violation has been

detected.

When the value of the VSEC bit has reached 255, it is not incremented any longer and

remains as 255. When violation processing has been performed, clear the VSECR register

by program.

5.1.2 VSTID – System register protection violation task identifier
This register saves the contents of the task identifier (TID) when the first instruction that is detected by the system

register protection function as violation is executed.

 Bit Position Bit Name Description

 31 to 0 VSTID These bits store the value of the TID register (in the processor protection setting bank) if

system register protection violation is detected while the VSEC bit of the VSECR register is 0.

The VSTID register saves the identifier of the task that first violates system register protection

after violation processing.

31 0

VSECR
Initial value
00000000HVSEC

78

000000000000000000 000 000

31 0

VSTID
Initial value
UndefinedVSTID

V850E2S PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0037EJ0100 Rev.1.00 Page 228 of 282
May 29, 2014

5.1.3 VSADR – System register protection violation address
This register saves the PC of the first instruction that is detected as violation by the system register protection function.

Bit 0 is fixed to 0.

 Bit Position Bit Name Description

 31 to 0 VSADR These bits store the PC of the instruction if system register protection violation is detected

while the VSEC bit of the VSECR register is 0.

The VSADR register saves the PC of the instruction that first violates system register

protection after violation processing.

Caution Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of the
VSADR register is automatically set to bits 31 to 26.

VSADR

31 0

VSADR Initial value
Undefined

V850E2S PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0037EJ0100 Rev.1.00 Page 229 of 282
May 29, 2014

5.2 Access Control

A write access to the system register is controlled by the PSW.NPV bitNote.

When the PSW.NPV bit is cleared (0) (T state), all the system registers that can be specified by the LDSR instruction

can be written. On the other hand, when the NPV bit is set (1) (NT state), a write access by the LDSR instruction to

specific system registers that are protected and to specific bits of such registers is blocked, and the written value is not

reflected on the registers.

By controlling write accesses in this way, the setting of the system registers can be protected from being changed by a

program that is not trusted (non-trusted program).

Note Only the write access by the LDSR instruction is controlled. The EI, DI, and return instructions (EIRET, FERET,

and RETI) and operations to update the other system registers are not subject to access control.

Cautions 1. When the execution level auto transition function is disabled (AUE = 0), the NPV bit is fixed
to 0. As a result, write operations are not blocked by the system register protection
function.

 2. Note that the PSW.NPV bit itself is also subject to system register protection. If the
PSW.NPV bit has been once set (1), it cannot be cleared (0) unless an exception occurs.

5.3 Registers to Be Protected

Refer to the item of system register protection on the list of the system register of below.

 Main banks

PART2 Table 2-2. System Register List (Main Banks)

 Exception handler switching function 0, 1

PART2 Table 2-3. System Register Bank

 User 0 bank

PART2 Table 2-4. System Register List (User 0 Bank)

 Processor Protection setting bank

PART3 Table 2-2. Processor Protection Setting Registers

 Processor Protection violation bank

PART3 Table 2-3. Processor Protection Violation Registers

 Software Paging bank

PART3 Table 2-4. Software Paging Registers

Caution All system register numbers for which no function is defined are subject to system register
protection.

V850E2S PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

R01US0037EJ0100 Rev.1.00 Page 230 of 282
May 29, 2014

5.4 Detection of Violation

If the program under execution is not trusted (non-trusted program), set the PSW.NPV bit (1) so that the CPU operates

in the NT state. If a write access is made by the LDSR instruction to a system register protected by the system register

protection function while the CPU operates in the NT state, system register protection violation is immediately detected.

The following operations are performed when the system register protection violation has been detected.

 The write access operation by the LDSR instruction is blocked (the written value is not reflected on the register

value).

 If the value of the VSECR register is 0, the following operations are performed.

 The value of the TID register when the LDSR instruction is executed is stored in the VSTID register.

 The PC of the LDSR instruction is stored in the VSADR register.

 The value of the VSECR register is incremented by 1.

Caution The PSW register has bits that are protected and bits that are not protected. Therefore, it does not
detect violation even if an illegal write access is made to it. However, the write access to the
protected bits is blocked and the written value is not reflected on the value of these bits.

5.5 Operation Method

Check the status of detection of system register violation by using the VSECR, VSTID, and VSADR registers and take

an appropriate action each time the task has been changed by the OS (and programs similar to it) or at a specific interval.

If system register violation has been detected more than once, the chances are the system registers have been illegally

accessed between the previous check and the latest check.

In addition, be sure to clear the VSECR register before returning to the normal processing.

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 231 of 282
May 29, 2014

CHAPTER 6 MEMORY PROTECTION

The V850E2S CPU can control accesses to the following two areas on the address space; the program area that is

referenced when an instruction is executed (instruction access) and the data area that is referenced when an instruction

that accesses the memory is executed (data access), to protect the system from illegal accesses by a program that is not

trusted (non-trusted program).

For memory protection for the V850E2S CPU, memory protection areas are specified using a maximum and minimum

address. Areas that have a granularity of 16 bytes can be specified. Therefore, suitable protection can be set up by using

only a few areas. The specified addresses are retained in 32-bit system registers, and protection setting is enabled for 64

MB of address space.

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 232 of 282
May 29, 2014

6.1 Register Set

Table 6-1 lists the system registers related to the memory protection function.

Table 6-1. System Register Bank

Group Processor Protection Function (10H)

Bank Processor protection violation (00H) Processor protection setting (01H) Software

paging (10H)

Bank label MPV, PROT00 MPU, PROT01 PROT10

Register No. Name Function Name Function Name

0 VSECR System register protection violation cause MPM Setting of processor protection operation mode MPM

1 VSTID System register protection violation task
identifier

MPC Specifying processor protection command MPC

2 VSADR System register protection violation
address

TID Task identifier TID

3 Reserved for function expansion Reserved for function expansion VMECR

4 VMECR Memory protection violation cause VMTID

5 VMTID Memory protection violation task identifier VMADR

6 VMADR Memory protection violation address PA0L Protection area 0 lower-limit address PA0L

7 Reserved for function expansion PA0U Protection area 0 upper-limit address PA0U

8 PA1L Protection area 1 lower-limit address PA1L

9 PA1U Protection area 1 upper-limit address PA1U

10 PA2L Protection area 2 lower-limit address PA2L

11 PA2U Protection area 2 upper-limit address PA2U

12 PA3L Protection area 3 lower-limit address PA3L

13 PA3U Protection area 3 upper-limit address PA3U

14 Reserved for function expansion Reserved

for function

expansion
15

16

17

18

19

20

21

22

23

24

25

26

27

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 233 of 282
May 29, 2014

6.1.1 PAnL – Protection area n lower-limit address (n = 0 to 3)
This register is used to set the lower-limit address and operation of the protection area.

Be sure to set bits 3 and 2 to “0”.

 Bit Position Bit Name Description

 31 to 4 AL31 to

AL4

These bits set the lower-limit address of the protection area.

Because bits 3 to 0 of the PAnL register are used for the other setting of the protection area,

bits 3 to 0 (AL3 to 0) of the lower-limit address are implicitly 0.

Specify the 64 MB space from 00000000H to 01FFFFFFH and from FE000000H to

FFFFFFFFH.

Write to AL31 to AL26 is ignored, and the value of AL25 is used for extension to AL31.

 1 S This bit enables or disables data access to the protection area in the sp (r3) register indirect

access mode. When the S bit is cleared (0), accessing data placed in the protection area of

the data area in the sp (r3) register indirect access mode is prohibited.

If an instruction that accesses the access-prohibited protection area is executed, data

protection violation is detected, and MDP exception is immediately acknowledged.

 0: Disables data access to protection area in sp (r3) register indirect access mode.

 1: Enables data access to protection area in sp (r3) register indirect access mode.

 0 E This bit enables or disable the setting of the protection area.

When the E bit is cleared (0), the contents of all the other setting bits are invalid, and no

protection area is set.

 0: Invalid (Protection area n is not used.)

 1: Valid (Protection area n is used.)

 Remark n = 0 to 3

31

PAnL

29 28

15

Initial value
00000000H

AL
15

27

AL
25

AL
24

AL
23

AL
22

AL
21

AL
20

AL
19

AL
18

AL
17

AL
16

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

AL
14

AL
13

AL
12

AL
11

AL
10

AL
9

AL
8

AL
7

7 6 5 4 3 2 1 0

0 S E
AL
6

AL
5

AL
4 0

30

AL
31

AL
30

AL
29

AL
28

AL
27

AL
26

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 234 of 282
May 29, 2014

6.1.2 PAnU – Protection area n upper-limit address (n = 0 to 3)
This register is used to set the upper-limit address of the instruction/constant protection area.

Be sure to set bits 3 to “0”.

Bit Position Bit Name Description

 31 to 4 AU31 to

AU4

These bits set the upper-limit address of the protection area.

Because bits 3 to 0 of the PAnU register are used for the other setting of the protection area,

bits 3 to 0 (AU3 to 0) of the upper-limit address are implicitly 1.

Specify the 64 MB space from 00000000H to 01FFFFFFH and from FE000000H to

FFFFFFFFH.

 2 W This bit enables or disables a write access to the protection area.

When the W bit is cleared (0), a write access to the data placed in the protection area of the

data area is prohibited.

If an instruction that writes data to the access-prohibited protection area is executed, data

protection violation is detected and the MDP exception is immediately acknowledged.

 0: Disables write access to the protection area.

 1: Enables write access to the protection area.

 1 R This bit enables or disables a read access to the protection area.

When the R bit is cleared (0), a read access to the data placed in the protection area of the

data area is prohibited.

If an instruction that reads the access-prohibited protection area is executed, data protection

violation is detected and the MDP exception is immediately acknowledged.

 0: Disables read access to the protection area.

 1: Enables read access to the protection area.

 0 X This bit enables or disables instruction execution for the protection area.

When the X bit is cleared (0), execution of the program placed in the protection area of the

program area is prohibited.

If an instruction is executed for the protection area, instruction protection violation is detected

and the MIP exception is immediately acknowledged.

 0: Disables instruction execution for the protection area.

 1: Enables instruction execution for the protection area.

 Remark n = 0 to 3

31

PAnU AU31 AU30 AU28

29 28

15
Initial value
00000000H

AU15

AU29 AU27

27

AU26 AU25 AU24 AU23 AU22 AU21 AU20 AU19 AU18 AU17 AU16

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

AU14 AU13 AU12 AU11 AU10 AU9 AU8 AU7

7 6 5 4 3 2 1 0

W R XAU6 AU5 AU4 0

30

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 235 of 282
May 29, 2014

6.1.3 VMECR – Memory protection violation cause
The VMECR register indicates a protection violation cause in case the MIP or MDP exception occurs.

Be sure to set bits 31 to 7 to “0”.

 Bit Position Bit Name Description

 6 VMMS This bit indicates whether a data protection exception occurs. It is set (1) if a data protection

exception occurs during misaligned access by the LD, ST, SLD, or SST instruction.

Otherwise, this bit is cleared (0).

 5 VMRMW This bit indicates whether a data protection exception occurs. It is set (1) if a data protection

exception occurs during access by the SET1, CLR1, NOT1, or CAXI instruction. Otherwise,

this bit is cleared (0).

 4 VMS This bit is set if an MDP exception occurs due to sp indirect access violation. Otherwise, it is

cleared (0).

If this bit is set (1), the VMX bit is always cleared (0). This bit may be set (1) together with the

VMR and VMW bits.

 3 VMW This bit is set (1) if an MDP exception occurs due to write access violation. Otherwise, it is

cleared (0).

If this bit is set (1), the VMX and VMR bits are always cleared (0). This bit may be set (1)

together with the VMS bit.

 2 VMR This bit is set (1) if an MDP exception occurs due to read access violation. Otherwise, it is

cleared (0).

If this bit is set (1), the VMX and VMW bits are always cleared (0). This bit may be set (1)

together with the VMS bit.

 1 VMX This bit is set if an MIP exception occurs due to instruction execution violation. Otherwise, it

is cleared (0).

If this bit is set (1), the VMR, VMW, and VMS bits are always cleared (0).

 Remark For the status of each bit in case of an exception, refer to 7.3 Identifying Violation Cause.

31

VMECR 0 0 0

29 28

15
Initial value
00000000H

0

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

VMR VMX 0VMMS
VM

RMW
VMS VMW

30

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 236 of 282
May 29, 2014

6.1.4 VMTID – Memory protection violation task identifier
The VMTID register stores the identifier of a task in case of the MIP or MDP exception.

 Bit Position Bit Name Description

 31 to 0 VMTID These bits store the contents of the identifier of the task (value of the TID register) when an

instruction that causes either execution protection violation or data protection violation is

executed.

6.1.5 VMADR – Memory protection violation address
The VMADR register stores the address when the MIP or MDP exception has occurred.

 Bit Position Bit Name Description

 31 to 0 VMADR These bits store the PC of the instruction that violates execution protection if execution

protection violation is detected, or the address of a data access if data protection violation is

detected.

Caution The PC value of the instruction that has detected execution protection violation may not match
the address of the instruction that has actually violated execution protection if the former
instruction is placed, extending from one address to another.

31 0

VMTID
Initial value
UndefinedVMTID

31 0

VMADR Initial value
UndefinedVMADR

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 237 of 282
May 29, 2014

6.2 Access Control

The PSW.IMP bit controls accesses to the program area that is referenced when an instruction is executed. If the IMP

bit is cleared (0) (T state), instruction execution in the entire program area is enabled, and an instruction at any position

can be freely executed. On the other hand, if the IMP bit is set (1) (NT state), an execution of instruction to the entire

program area is prohibited in general, and only instructions to a range enabled as a protection area where instruction

execution is enabled.

The PSW.DMP bit controls accesses to the data area that is referenced when an instruction that accesses the memory

is executed. If the DMP bit is cleared (0) (T state), memory access in the entire data area is enabled, and data at any

position can be freely read and written. On the other hand, if the DMP bit is set (1) (NT state), memory access to the

entire data area is disabled in general, and only the data in a range enabled as a protection area can be manipulated. In

addition, access control that considers writing, reading and stack manipulation is performed.

By these access control features, illegal instruction execution or data access by a program not trusted (non-trusted

program) can be prevented.

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 238 of 282
May 29, 2014

6.3 Setting Protection Area

In principle, the program area or data area is prohibited from being accessed. To use memory protection, a protection

area where access is enabled is specified in these areas for each program not trusted (non-trusted program). The

protection area can be enabled or disabled depending on the type of the access (execution, read, or write).

The V850E2S CPU uses the following register as a pair to set a protection area.

 PAnL/PAnU (n = 0 to 3)

Each protection area is set by two combinations of registers: an upper-limit register and a lower-limit register. The

registers defined for the V850E2S CPU allow the placement of up to 4 protection areas. The settings that can be specified

for each area are shown in Table 6-2 below. Note that, depending on the register, the values of some bits are fixed.

Table 6-2. Setting Protection Area
Register PAnU PAnL

 Bits 31 to 4 Bit 3 Bit 2 Bit 1 Bit 0 Bits 31 to 4 Bit 3 Bit 1 Bit 0

Field function Upper-limit address
 (mask value)

(RFU) Write
enable

Read
enable

Execution
enable

Lower-limit address
 (base address)

(RFU) sp indirect
access
enable

Area
enable

 Field name AU W R X AL S E

PA0U/L Instruction
protection

 area setting

Upper-limit address 0 0 (0) (0) Lower-limit address 0 (0) (0)

PA1U/L Upper-limit address 0 0 (0) (0) Lower-limit address 0 (0) (0)

PA2U/L Upper-limit address 0 0 (0) (0) Lower-limit address 0 (0) (0)

PA3U/L Upper-limit address 0 0 (0) (0) Lower-limit address 0 (0) (0)

Remark 0: Be sure to set this bit to 0.

 1: Be sure to set this bit to 1.

 (0): This bit may be set by the user. The value in parentheses indicates the initial value.

The default value of each register is as follows.

Register Initial Value

PA0L to PA3L 0000 0000H

PA0U to PA3U 0000 0000H

The function of each bit is described below.

6.3.1 Valid bit (E bit)
This bit indicates whether setting of a protection area is enabled or disabled.

When the E bit is cleared (0), all the contents of the other setting bits are invalid, and a protection area is not set.

6.3.2 Execution enable bit (X bit)
This bit enables or disables instruction execution for the protection area.

When the X bit is cleared (0), execution of a program placed in the protection area of the program area is disabled.

If an instruction for the protection area is executed, an instruction protection violation is detected and the MIP exception

is immediately acknowledged.

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 239 of 282
May 29, 2014

6.3.3 Read enable bit (R bit)
This bit enables or disables a read access to the protection area.

When the R bit is cleared (0), a read access to data placed in the protection area of the data area is prohibited.

If an instruction that reads the access-prohibited protection area is executed, data protection violation is detected and

the MPD exception is immediately acknowledged.

6.3.4 Write enable bit (W bit)
This bit enables or disables a write access to the protection area.

When the W bit is cleared (0), a write access to data placed in the protection area of the data area is prohibited.

If an instruction that writes data to the protection area is executed, data protection violation is detected and the MPD

exception is immediately acknowledged.

6.3.5 sp indirect access enable bit (S bit)
This bit enables or disables a data access in the sp (r3) register indirect access mode to the protection area.

When the S bit is cleared (0), a data access in the sp (r3) register indirect access mode to data placed in the protection

area of the data space is prohibited.

If an instruction that accesses the protection area for data in the sp (r3) register indirect access mode is executed, data

protection violation is detected and the MPD exception is immediately acknowledged.

6.3.6 Protection area lower-limit address (AL31 to AL0 bits)
The lower-limit address of the protection area is indicated.

Because the bits 3 to 0 of the PAnL registers are used for the other setting of the protection area, the bits 3 to 0 (AL3 to

AL0) of the lower-limit address are implicitly 0 (n = 0 to 3).

6.3.7 Protection area upper-limit address (AU31 to AU0 bits)
The upper-limit address of the protection area is indicated.

Because the bits 3 to 0 of the PAnU registers are used for the other setting of the protection area, the bits 3 to 0 (AU3

to AU0) of the upper-limit address are implicitly 1 (n = 0 to 3).

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 240 of 282
May 29, 2014

6.4 Notes on Setting Protection Area

6.4.1 Crossing of protection area boundaries
If the range of a protection area is set in duplicate, setting access control of the crossing part takes precedence.

(1) When used as instruction protection area

If two or more protection area are set at certain addresses and if execution is enabled in one of the protection

areas, enabling execution is assumed. If read is enabled in one of the areas, enabling read is assumed.

(2) When used as data protection area

If two or more protection areas are set at certain addresses and if read is enabled in one of the protection areas,

enabling read is assumed.

The same applies to enabling write and sp indirect access.

6.4.2 Invalid protection area setting
Setting of a protection area is invalid in the following case.

 If a value greater than the upper-limit address is set to the lower-limit address

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 241 of 282
May 29, 2014

6.5 Special Memory Access Instructions

The V850E2S CPU has instructions that access the memory more than once while one of the instructions is executed.

For these instructions, the memory protection function performs a special operation. Instructions subject to special

protection operations are described below.

 Load and store instructions that execute misaligned access (LD, ST, SLD, and SST)

 Some bit manipulation instructions (SET1, NOT1, and CLR1) and CAXI instruction

 Stack frame manipulation instructions (PREPARE and DISPOSE)

 SYSCALL instruction

6.5.1 Load and store instructions executing misaligned access
With the V850E2S CPU, data can be allocated at all addresses regardless of the data format (byte, halfword, or word).

A misaligned access indicates an access to an address other than a halfword boundary (the least significant bit of the

address is 0) when the data to be processed is in the halfword format, and an access to an address other than the word

boundary when the data to be processed is in a word format.

When a misaligned access is made, access is enabled if all the addresses to be accessed are in one protection area,

and if read is enabled when the load instruction is executed or if write is enabled when the store instruction is executed.

Caution Even if two protection areas are defined at consecutive addresses without overlapping each other,
a misaligned access extending between the two protection areas is judged as protection violation.

6.5.2 Some bit manipulation instructions and CAXI instruction
Some bit manipulation instructions (SET1, NOT1, and CLR1) and CAXI instruction detect data protection violation if the

address to be accessed is enabled from being read but not from being written.

6.5.3 Stack frame manipulation instructions
The stack frame manipulation instructions (PREPARE and DISPOSE) generates as many memory accesses as the

number of registers specified. The memory protection function detects violation of each of these memory accesses and,

as soon as it has detected violation, it aborts execution of the stack frame manipulation instruction at occurrence of a data

protection exception. However, memory accesses preceding the memory access from which violation has been detected

are executed. The DISPOSE instruction writes a general-purpose register corresponding to the executed memory access.

If the access has been aborted, sp is not updated.

The stack frame manipulation instruction that has been aborted is executed from the beginning again when execution

returns from the exception. Consequently, the same memory access as that which was executed once before execution

was aborted is executed again.

6.5.4 SYSCALL instruction
The SYSCALL instruction is used to call a service supplied by a management program such as an OS (and programs

similar to it). The service is a trusted program and the address table to branch to the service is also trusted. Therefore,

memory protection is not applied to the memory access by the SYSCALL instruction even if the PSW.DMP bit is set (1).

Consequently, the MDP exception is never detected while the SYSCALL instruction is executed.

V850E2S PART 3 CHAPTER 6 MEMORY PROTECTION

R01US0037EJ0100 Rev.1.00 Page 242 of 282
May 29, 2014

6.6 Protection Violation and Exception

If an instruction is executed on or a data access is made to an address that is not enabled, instruction protection

violation or data protection violation is detected. If violation is detected, the following operations are performed.

For details of the MIP and MDP exceptions, refer to CHAPTER 7 PROCESSOR PROTECTION EXCEPTION.

(1) If instruction protection violation is detected

 Execution of the instruction placed at the address where instruction protection violation has been detected does

not start.

 An access to the address where instruction protection violation has been detected does not make any request to

the outside of the CPU.

 The MIP exception occurs and exception processing starts immediately.

(2) If data protection violation is detected

 Execution of the instruction that accesses the address where data protection violation has been detected is

aborted.

 An access to the address where data protection violation has been detected does not make any request to the

outside of the CPU.

 The MDP exception occurs and exception processing starts immediately.

V850E2S PART 3 CHAPTER 7 PROCESSOR PROTECTION EXCEPTION

R01US0037EJ0100 Rev.1.00 Page 243 of 282
May 29, 2014

CHAPTER 7 PROCESSOR PROTECTION EXCEPTION

This chapter describes different types of processor protection violations and exceptions. For details about processing

for each exception, see CHAPTER 6 EXCEPTIONS, which is in PART 2.

7.1 Types of Violations

The V850E2S CPU detects violation in accordance with the setting of each protection function and, as necessary,

generates an exception defined by each protection function. This section explains in detail the relationship between

violations and exceptions.

The following three types of violations are detected in accordance with the setting defined by the processor protection

function.

 System register protection violation

 Execution protection violation

 Data protection violation

7.1.1 System register protection violation
This violation is detected if a system register is illegally accessed. No exception occurs even when this violation is

detected. For the processing to be performed if this violation is detected, refer to 5.5 Operation Method.

7.1.2 Execution protection violation
This violation may be detected when an instruction is executed. The execution protection violation is detected if an

attempt is made to execute an instruction allocated in an area of the program area where execution is not enabled.

If the execution protection violation is detected, the MIP exception is always generated.

7.1.3 Data protection violation
This violation may be detected when an instruction accesses data. It is detected if a memory access instruction reads

or writes data from or to an area of the data area that is not enabled to be accessed.

If the data protection violation is detected, the MDP exception always occurs.

V850E2S PART 3 CHAPTER 7 PROCESSOR PROTECTION EXCEPTION

R01US0037EJ0100 Rev.1.00 Page 244 of 282
May 29, 2014

7.2 Types of Exceptions

The V850E2S CPU generates four types of exceptions defined by the processor protection function. If an exception

occurs, execution branches to the exception handler (00000030H) and violation information defined for each source is

stored in a register.

7.2.1 MIP exception
This exception occurs when an execution protection violation has been detected. This exception is a precise exception

that occurs if execution of an instruction allocated at an address that is not permitted to be accessed is attempted. It can

also be resumed and restored because the original processing can be correctly continued from the instruction that has

generated this exception.

7.2.2 MDP exception
This exception occurs if a data protection violation is detected. This exception is a precise exception that occurs if data

allocated at an address not permitted to be accessed is read or written. It can also be resumed and restored because the

original processing can be correctly continued from the instruction that has caused this exception.

V850E2S PART 3 CHAPTER 7 PROCESSOR PROTECTION EXCEPTION

R01US0037EJ0100 Rev.1.00 Page 245 of 282
May 29, 2014

7.3 Identifying Violation Cause

If protection violation is detected, an exception cause that indicates which exception, MIP or MDP, has caused a

branch to the exception handler is stored in the system register FEIC of the CPU bank. Because the exception handler

address is shared with the other exceptions, branching processing by the exception cause is necessary. As shown in

Table 7-1, auxiliary information indicating the cause of each exception is stored in a specific system register of the MPV

bank.

Table 7-1. Identifying Violation Cause

 FEIC Exception Type Violation Violation Information Register

Violation related to

processor protection

00000430H MIP exception Execution protection violation VMECR, VMADR, VMTID

00000431H MDP exception Data protection violation VMECR, VMADR, VMTID

Other exceptions    

7.3.1 MIP exception
00000430H is stored in the FEIC register. The contents of the TID register when this exception occurs are stored in the

VMTID register, and the PC of the instruction that has caused the exception is stored in the VMADR register. The VMX bit

of the VMECR register is set (1), and the other bits are cleared (0).

Because the MIP and MDP exceptions never occur at the same time, the MIP exception share the violation information

registers (VMECR, VMTID, and VMADR registers) with the MDP exception.

Table 7-2. VMECR Set Value When MIP Exception Occurs

Register VMECR

Bit number 6 5 4 3 2 1 0

Bit name VMMS VMRMW VMS VMW VMR VMX -

All instructions 0 0 0 0 0 1 0

7.3.2 MDP exception
00000431H is stored in the FEIC register. The contents of the TID register when this exception occurs are stored in the

VMTID register, and the address of a memory access that has caused the exception is stored in the VMADR register.

In accordance with the contents of the violation detected, the VMR, VMW, and VMS bits of the VMECR register are set

(1) and the VMX bit is cleared (0).

Because the MIP and MDP exceptions never occur at the same time, the MDP exception shares the violation

information registers (VMECR, VMTID, and VMADR registers) with the MIP exception.

V850E2S PART 3 CHAPTER 7 PROCESSOR PROTECTION EXCEPTION

R01US0037EJ0100 Rev.1.00 Page 246 of 282
May 29, 2014

Table 7-3. VMECR Set Value When MDP Exception Occurs

Register VMECR

Bit number 6 5 4 3 2 1 0

Bit name VMMS VMRMW VMS VMW VMR VMX 

Read instruction (aligned)Note 1 0 0 0/1Note 5 0 1 0 0

Write instruction (aligned)Note 2 0 0 0/1Note 5 1 0 0 0

Read instruction (misaligned)Note 3 1 0 0/1Note 5 0 1 0 0

Write instruction (misaligned)Note 2 1 0 0/1Note 5 1 0 0 0

CAXI/SET1/NOT1/CLR1 instructionNote 4 0 1 0/1Note 5 0 1 0 0

PREPARE instruction 0 0 1 1 0 0 0

DISPOSE instruction 0 0 1 0 1 0 0

Notes 1. LD/SLD/CALLT/SWITCH/TST1 instruction

 2. ST/SST instruction

 3. LD/SLD instruction

 4. When an instruction that performs a read-modify-write operation is executed, violation occurs only during the

read operation because enabling the write operation is checked in the read cycle.

 5. 1 if sp indirect access is executed in accordance with the operand specification of an instruction; otherwise, 0.

V850E2S PART 3 CHAPTER 8 SPECIFAL FUNCTON

R01US0037EJ0100 Rev.1.00 Page 247 of 282
May 29, 2014

CHAPTER 8 SPECIFAL FUNCTON

This chapter explains the special function related to the processor protection function.

8.1 Clearing Memory Protection Setting All at Once

By setting (1) the MPC.ALDS bit, the following memory protection setting bits are cleared (0) all at once in the cycle

next to the one in which the MPC.ALDS bit is set.

 PAnL.E bit (n = 0 to 3)

V850E2S APPENDIX A LIST OF INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 248 of 282

May 29, 2014

APPENDIX A LIST OF INSTRUCTIONS

A.1 Basic Instructions

Table A-1 shows an alphabetized list of basic instruction functions.

Table A-1. Basic Instruction Function List (Alphabetic Order) (1/4)

Mnemonic Operand Format Flag Function of Instruction

CY OV S Z SAT

ADD reg1, reg2 I 0/1 0/1 0/1 0/1  Add

ADD imm5, reg2 II 0/1 0/1 0/1 0/1  Add

ADDI imm16, reg1, reg2 VI 0/1 0/1 0/1 0/1  Add

ADF cccc, reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1  Conditional add

AND reg1, reg2 I  0 0/1 0/1  AND

ANDI imm16, reg1, reg2 VI  0 0/1 0/1  AND

Bcond disp9 III      Conditional branch

BSH reg2, reg3 XII 0/1 0 0/1 0/1  Byte swap of halfword data

BSW reg2, reg3 XII 0/1 0 0/1 0/1  Byte swap of word data

CALLT imm6 II      Subroutine call with table look up

CAXI [reg1], reg2, reg3 IX 0/1 0/1 0/1 0/1  Comparison and swap

CLR1 bit#3, disp16 [reg1] VIII    0/1  Bit clear

CLR1 reg2, [reg1] IX    0/1  Bit clear

CMOV cccc, reg1, reg2, reg3 XI      Conditional transfer

CMOV cccc, imm5, reg2, reg3 XII      Conditional transfer

CMP reg1, reg2 I 0/1 0/1 0/1 0/1  Comparison

CMP imm5, reg2 II 0/1 0/1 0/1 0/1  Comparison

CTRET (None) X 0/1 0/1 0/1 0/1 0/1 Return from subroutine call

DI (None) X      Disable EI level maskable exception

DISPOSE imm5, list12 XIII      Stack frame deletion

DISPOSE imm5, list12, [reg1] XIII      Stack frame deletion

DIV reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (signed) word data

DIVH reg1, reg2 I  0/1 0/1 0/1  Division of (signed) halfword data

DIVH reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (signed) halfword data.

DIVHU reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (unsigned) halfword data

DIVQ reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (signed) word data (variable steps)

DIVQU reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (unsigned) word data (variable steps)

DIVU reg1, reg2, reg3 XI  0/1 0/1 0/1  Division of (unsigned) word data

V850E2S APPENDIX A LIST OF INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 249 of 282

May 29, 2014

Table A-1. Basic Instruction Function List (Alphabetic Order) (2/4)

Mnemonic Operand Format Flag Function of Instruction

CY OV S Z SAT

EI (None) X      Enable EI level maskable exception

EIRET (None) X 0/1 0/1 0/1 0/1 0/1 Return from EI level exception

FERET (None) X 0/1 0/1 0/1 0/1 0/1 Return from FE level exception

FETRAP vector I      FE level software exception instruction

HALT (None) X      Halt

HSH reg2, reg3 XII 0/1 0 0/1 0/1  Halfword swap of halfword data

HSW reg2, reg3 XII 0/1 0 0/1 0/1  Halfword swap of word data

JARL disp22, reg2 V      Branch and register link

JARL disp32, reg1 VI      Branch and register link

JMP [reg1] I      Unconditional branch (register relative)

JMP disp32 [reg1] VI      Unconditional branch (register relative)

JR disp22 V      Unconditional branch (PC relative)

JR disp32 VI      Unconditional branch (PC relative)

LD.B disp16 [reg1], reg2 VII      Load of (signed) byte data

LD.B disp23 [reg1], reg3 XIV      Load of (signed) byte data

LD.BU disp16 [reg1], reg2 VII      Load of (unsigned) byte data

LD.BU disp23 [reg1], reg3 XIV      Load of (unsigned) byte data

LD.H disp16 [reg1], reg2 VII      Load of (signed) halfword data

LD.H disp23 [reg1], reg3 XIV      Load of (signed) halfword data

LD.HU disp16 [reg1], reg2 VII      Load of (unsigned) halfword data

LD.HU disp23 [reg1], reg3 XIV      Load of (unsigned) halfword data

LD.W disp16 [reg1], reg2 VII      Load of word data

LD.W disp23 [reg1], reg3 XIV     Load of word data

LDSR reg2, regID IX      Load to system register

MAC reg1, reg2, reg3, reg4 XI      Multiply-accumulate for (signed) word data

MACU reg1, reg2, reg3, reg4 XI      Multiply-accumulate for (unsigned) word data

MOV reg1, reg2 I      Data transfer

MOV imm5, reg2 II      Data transfer

MOV imm32, reg1 VI      Data transfer

MOVEA imm16, reg1, reg2 VI      Effective address transfer

MOVHI imm16, reg1, reg2 VI      Higher halfword transfer

MUL reg1, reg2, reg3 XI      Multiplication of (signed) word data

MUL imm9, reg2, reg3 XII      Multiplication of (signed) word data

MULH reg1, reg2 I      Multiplication of (signed) halfword data

MULH imm5, reg2 II      Multiplication of (signed) halfword data

MULHI imm16, reg1, reg2 VI      Multiplication of (signed) halfword immediate data

V850E2S APPENDIX A LIST OF INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 250 of 282

May 29, 2014

Table A-1. Basic Instruction Function List (Alphabetic Order) (3/4)

Mnemonic Operand Format Flag Function of Instruction

CY OV S Z SAT

MULU reg1, reg2, reg3 XI      Multiplication of (unsigned) word data

MULU imm9, reg2, reg3 XII      Multiplication of (unsigned) word data

NOP (None) I      Nothing else is done.

NOT reg1, reg2 I  0 0/1 0/1  Logical negation (1’s complement)

NOT1 bit#3, disp16 [reg1] VIII    0/1  NOT bit

NOT1 reg2, [reg1] IX    0/1  NOT bit

OR reg1, reg2 I  0 0/1 0/1  OR

ORI imm16, reg1, reg2 VI  0 0/1 0/1  OR immediate

PREPARE list12, imm5 XIII      Create stack frame

PREPARE list12, imm5, sp/imm XIII      Create stack frame

RETI (None) X 0/1 0/1 0/1 0/1 0/1 Return from EI level software exception or interrupt

RIE (None) I/X      Reserved instruction exception

SAR reg1, reg2 IX 0/1 0 0/1 0/1  Arithmetic right shift

SAR imm5, reg2 II 0/1 0 0/1 0/1  Arithmetic right shift

SAR reg1, reg2, reg3 XI 0/1 0 0/1 0/1  Arithmetic right shift

SASF cccc, reg2 IX      Shift and flag condition setting

SATADD reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated addition

SATADD imm5, reg2 II 0/1 0/1 0/1 0/1 0/1 Saturated addition

SATADD reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1 0/1 Saturated addition

SATSUB reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated subtraction

SATSUB reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1 0/1 Saturated subtraction

SATSUBI imm16, reg1, reg2 VI 0/1 0/1 0/1 0/1 0/1 Saturated subtraction

SATSUBR reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated reverse subtraction

SBF cccc, reg1, reg2, reg3 XI 0/1 0/1 0/1 0/1  Conditional subtraction

SCH0L reg2, reg3 IX 0/1 0 0 0/1  Bit (0) search from MSB side

SCH0R reg2, reg3 IX 0/1 0 0 0/1  Bit (0) search from LSB side

SCH1L reg2, reg3 IX 0/1 0 0 0/1  Bit (1) search from MSB side

SCH1R reg2, reg3 IX 0/1 0 0 0/1  Bit (1) search from LSB side

SET1 bit#3, disp16 [reg1] VIII    0/1  Bit setting

SET1 reg2, [reg1] IX    0/1  Bit setting

SETF cccc, reg2 IX      Flag condition setting

SHL reg1, reg2 IX 0/1 0 0/1 0/1  Logical left shift

SHL imm5, reg2 II 0/1 0 0/1 0/1  Logical left shift

SHL reg1, reg2, reg3 XI 0/1 0 0/1 0/1  Logical left shift

V850E2S APPENDIX A LIST OF INSTRUCTIONS

R01US0037EJ0100 Rev.1.00 Page 251 of 282

May 29, 2014

Table A-1. Basic Instruction Function List (Alphabetic Order) (4/4)

Mnemonic Operand Format Flag Function of Instruction

CY OV S Z SAT

SHR reg1, reg2 IX 0/1 0 0/1 0/1  Logical right shift

SHR imm5, reg2 II 0/1 0 0/1 0/1  Logical right shift

SHR reg1, reg2, reg3 XI 0/1 0 0/1 0/1  Logical right shift

SLD.B disp7 [ep], reg2 IV      Load of (signed) byte data

SLD.BU disp4 [ep], reg2 IV      Load of (unsigned) byte data

SLD.H disp8 [ep], reg2 IV      Load of (signed) halfword data

SLD.HU disp5 [ep], reg2 IV      Load of (unsigned) halfword data

SLD.W disp8 [ep], reg2 IV      Load of word data

SST.B reg2, disp7 [ep] IV      Storage of byte data

SST.H reg2, disp8 [ep] IV      Storage of halfword data

SST.W reg2, disp8 [ep] IV      Storage of word data

ST.B reg2, disp16 [reg1] VII      Storage of byte data

ST.B reg3, disp23 [reg1] XIV      Storage of byte data

ST.H reg2, disp16 [reg1] VII      Storage of halfword data

ST.H reg3, disp23 [reg1] XIV      Storage of halfword data

ST.W reg2, disp16 [reg1] VII      Storage of word data

ST.W reg3, disp23 [reg1] XIV      Storage of word data

STSR regID, reg2 IX      Storage of contents of system register

SUB reg1, reg2 I 0/1 0/1 0/1 0/1  Subtraction

SUBR reg1, reg2 I 0/1 0/1 0/1 0/1  Reverse subtraction

SWITCH reg1 I      Jump with table look up

SXB reg1 I      Sign-extension of byte data

SXH reg1 I      Sign-extension of halfword data

SYNCE (None) I      Exception synchronize instruction

SYNCM (None) I      Memory synchronize instruction

SYNCP (None) I      Pipeline synchronize instruction

SYSCALL vector8 X      System call exception

TRAP vector5 X      Software exception

TST reg1, reg2 I  0 0/1 0/1  Test

TST1 bit#3, disp16 [reg1] VIII    0/1  Bit test

TST1 reg2, [reg1] IX    0/1  Bit test

XOR reg1, reg2 I  0 0/1 0/1  Exclusive OR

XORI imm16, reg1, reg2 VI  0 0/1 0/1  Exclusive OR immediate

ZXB reg1 I      Zero-extension of byte data

ZXH reg1 I      Zero-extension of halfword data

V850E2S APPENDIX B INSTRUCTION OPCODE MAP

R01US0037EJ0100 Rev.1.00 Page 252 of 282

May 29, 2014

APPENDIX B INSTRUCTION OPCODE MAP

B.1 Basic Instruction Opcode Map

The following shows opcode maps for the basic instruction code.

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (1/4)

Mnemonic Operand Format opcode Remark

15 11 10 5 4 0 31 27 26 21 20 16

NOP I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SYNCE I 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

SYNCM I 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

SYNCP I 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

MOV reg1, reg2 I r r r r r 0 0 0 0 0 0 R R R R R rrrrr  00000

NOT reg1, reg2 I r r r r r 0 0 0 0 0 1 R R R R R

RIE I 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

SWITCH reg1 I 0 0 0 0 0 0 0 0 0 1 0 R R R R R

FETRAP vector4 I 0 i i i i 0 0 0 0 1 0 0 0 0 0 0 iiii  0000

DIVH reg1, reg2 I r r r r r 0 0 0 0 1 0 R R R R R rrrrr  00000,

RRRRR  00000

JMP [reg1] I 000000 0 0 0 0 1 1 R R R R R

SLD.BU disp4 [ep], reg2 IV r r r r r 0 0 0 0 1 1 0 d d d d rrrrr  00000

SLD.HU disp5 [ep],reg2 IV r r r r r 0 0 0 0 1 1 1 d d d d rrrrr  00000

ZXB reg1 I 0 0 0 0 0 0 0 0 1 0 0 R R R R R

SXB reg1 I 0 0 0 0 0 0 0 0 1 0 1 R R R R R

ZXH reg1 I 0 0 0 0 0 0 0 0 1 1 0 R R R R R

SXH reg1 I 0 0 0 0 0 0 0 0 1 1 1 R R R R R

SATSUBR reg1, reg2 I r r r r r 0 0 0 1 0 0 R R R R R rrrrr  00000

SATSUB reg1, reg2 I r r r r r 0 0 0 1 0 1 R R R R R rrrrr  00000

SATADD reg1, reg2 I r r r r r 0 0 0 1 1 0 R R R R R rrrrr  00000

MULH reg1, reg2 I r r r r r 0 0 0 1 1 1 R R R R R rrrrr  00000

OR reg1, reg2 I r r r r r 0 0 1 0 0 0 R R R R R

XOR reg1, reg2 I r r r r r 0 0 1 0 0 1 R R R R R

AND reg1, reg2 I r r r r r 0 0 1 0 1 0 R R R R R

TST reg1, reg2 I r r r r r 0 0 1 0 1 1 R R R R R

SUBR reg1, reg2 I r r r r r 0 0 1 1 0 0 R R R R R

SUB reg1, reg2 I r r r r r 0 0 1 1 0 1 R R R R R

ADD reg1, reg2 I r r r r r 0 0 1 1 1 0 R R R R R

CMP reg1, reg2 I r r r r r 0 0 1 1 1 1 R R R R R

MOV imm5, reg2 I r r r r r 0 1 0 0 0 0 i i i i i rrrrr  00000

V850E2S APPENDIX B INSTRUCTION OPCODE MAP

R01US0037EJ0100 Rev.1.00 Page 253 of 282

May 29, 2014

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (2/4)

Mnemonic Operand Format opcode Remark

15 11 10 5 4 0 31 27 26 21 20 16

SATADD imm5, reg2 I r r r r r 0 1 0 0 0 1 i i i i i rrrrr  00000

ADD imm5, reg2 I r r r r r 0 1 0 0 1 0 i i i i i

CMP imm5, reg2 I r r r r r 0 1 0 0 1 1 i i i i i

CALLT imm6 II 0 0 0 0 0 0 1 0 0 0 i i i i i i

SHR imm5, reg2 II r r r r r 0 1 0 1 0 0 i i i i i

SAR imm5, reg2 II r r r r r 0 1 0 1 0 1 i i i i i

SHL imm5, reg2 II r r r r r 0 1 0 1 1 0 i i i i i

MULH imm5, reg2 II r r r r r 0 1 0 1 1 1 i i i i i rrrrr  00000

JR disp32 VI 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 ddddd d d d d d d d d d d 0 See Table B-2
JARL disp32, reg1 VI 0 0 0 0 0 0 1 0 1 1 1 R R R R R ddddd d d d d d d d d d d 0 See Table B-2

RRRRR  00000

SLD.B disp7 [ep], reg2 IV r r r r r 0 1 1 0 d d d d d d d

SST.B reg2, disp7 [ep] IV r r r r r 0 1 1 1 d d d d d d d

SLD.H disp8 [ep], reg2 IV r r r r r 1 0 0 0 d d d d d d d

SST.H reg2, disp8 [ep] IV r r r r r 1 0 0 1 d d d d d d d

SLD.W disp8 [ep], reg2 IV r r r r r 1 0 1 0 d d d d d d 0

SST.W reg2, disp8 [ep] IV r r r r r 1 0 1 0 d d d d d d 1

Bcond disp9 III d d d d d 1 0 1 1 d d d C C C C

ADDI imm16, reg1, reg2 VI r r r r r 1 1 0 0 0 0 R R R R R iiiii i i i i i i i i i i i

MOV imm32, reg1 VI 0 0 0 0 0 1 1 0 0 0 1 R R R R R IIIII I I I I I I I I I I I See Table B-2
MOVEA imm16, reg1, reg2 VI r r r r r 1 1 0 0 0 1 R R R R R iiiii i i i i i i i i i i i rrrrr  00000

MOVHI imm16, reg1, reg2 VI r r r r r 1 1 0 0 1 0 R R R R R iiiii i i i i i i i i i i i rrrrr  00000

SATSUBI imm16, reg1, reg2 VI r r r r r 1 1 0 0 1 1 R R R R R iiiii i i i i i i i i i i i rrrrr  00000

DISPOSE imm5, list12 XIII 0 0 0 0 0 1 1 0 0 1 i i i i i L LLLLL L L L L L L 0 0 0 0 0

DISPOSE imm5, list12, [reg1] XIII 0 0 0 0 0 1 1 0 0 1 i i i i i L LLLLL L L L L L L R R R R R RRRRR  00000

ORI imm16, reg1, reg2 VI r r r r r 1 1 0 1 0 0 R R R R R iiiii i i i i i i i i i i i

XORI imm16, reg1, reg2 VI r r r r r 1 1 0 1 0 1 R R R R R iiiii i i i i i i i i i i i

ANDI imm16, reg1, reg2 VI r r r r r 1 1 0 1 1 0 R R R R R iiiii i i i i i i i i i i i

MULHI imm16, reg1, reg2 VI r r r r r 1 1 0 1 1 1 R R R R R iiiii i i i i i i i i i i i rrrrr  00000

JMP imm32 [reg1] VI 0 0 0 0 0 1 1 0 1 1 1 R R R R R ddddd d d d d d d d d d d 0 See Table B-2
LD.B disp16 [reg1], reg2 VII r r r r r 1 1 1 0 0 0 R R R R R ddddd d d d d d d d d d d d

LD.H disp16 [reg1], reg2 VII r r r r r 1 1 1 0 0 1 R R R R R ddddd d d d d d d d d d d 0

LD.W disp16 [reg1], reg2 VII r r r r r 1 1 1 0 0 1 R R R R R ddddd d d d d d d d d d d 1

ST.B reg2, disp16 [reg1] VII r r r r r 1 1 1 0 1 0 R R R R R ddddd d d d d d d d d d d d

ST.H reg2, disp16 [reg1] VII r r r r r 1 1 1 0 1 1 R R R R R ddddd d d d d d d d d d d 0

ST.W reg2, disp16 [reg1] VII r r r r r 1 1 1 0 1 1 R R R R R ddddd d d d d d d d d d d 1

PREPARE list12, imm5 XIII 0 0 0 0 0 1 1 1 1 0 i i i i i L LLLLL L L L L L L 0 0 0 0 1

PREPARE list12, imm5, sp/imm XIII 0 0 0 0 0 1 1 1 1 0 i iiiiiL LLLLL L L L L L L f f 0 1 1 Note

Note See Table B-2 when ff = 01 or 10, and see Table B-3 when ff = 11.

V850E2S APPENDIX B INSTRUCTION OPCODE MAP

R01US0037EJ0100 Rev.1.00 Page 254 of 282

May 29, 2014

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (3/4)

Mnemonic Operand Format opcode Remark

15 11 10 5 4 0 31 27 26 21 20 16

LD.B disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d d 0 1 0 1 See Table B-2
LD.H disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d 0 0 1 1 1 See Table B-2
LD.W disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d 0 1 0 0 1 See Table B-2
ST.B reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d d 1 1 0 1 See Table B-2
ST.W reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR wwwww d d d d d d 0 1 1 1 1 See Table B-2
LD.BU disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR wwwww d d d d d d d 0 1 0 1 See Table B-2
LD.HU disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR wwwww d d d d d d 0 0 1 1 1 See Table B-2
ST.H reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR wwwww d d d d d d 0 1 1 0 1 See Table B-2
JR disp22 V 0 0 0 0 0 1 1 1 1 0 D D D D D D ddddd d d d d d d d d d d 0

JARL disp22, reg2 V r r r r r 1 1 1 1 0 D D D D D D ddddd d d d d d d d d d d 0 rrrrr  00000

LD.BU disp16 [reg1], reg2 VII r r r r r 1 1 1 1 0 b R R R R R ddddd d d d d d d d d d d 1

SET1 bit3#, disp16 [reg1] VIII 0 0 b b b 1 1 1 1 1 0 R R R R R ddddd d d d d d d d d d d d

NOT1 bit#3, disp16 [reg1] VIII 0 1 b b b 1 1 1 1 1 0 R R R R R ddddd d d d d d d d d d d d

CLR1 bit3#, disp16 [reg1] VIII 1 0 b b b 1 1 1 1 1 0 R R R R R ddddd d d d d d d d d d d d

TST1 bit3#, disp16 [reg1] VIII 1 1 b b b 1 1 1 1 1 0 R R R R R ddddd d d d d d d d d d d d

LD.HU disp16 [reg1], reg2 VII r r r r r 1 1 1 1 1 1 R R R R R ddddd d d d d d d d d d d 1 rrrrr  00000

SETF cond, reg2 IX r r r r r 1 1 1 1 1 1 0 C C C C 00000 0 0 0 0 0 0 0 0 0 0 0

RIE X x x x x x 1 1 1 1 1 1 1 x x x x 00000 0 0 0 0 0 0 0 0 0 0 0

LDSR reg2, regID IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 0 0 1 0 0 0 0 0

STSR sr1, reg2 IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 0 1 0 0 0 0 0 0

SHR reg1, reg2 IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 0 0 0 0 0 0 0

SHR reg1, reg2, reg3 IX r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 0 0 1 0 0 0 0 0 1 0

SAR reg1, reg2 IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 0 1 0 0 0 0 0

SAR reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 0 0 1 0 1 0 0 0 1 0

SHL reg1, reg2 IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 0 0 0 0 0 0

SHL reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 0 0 1 1 0 0 0 0 1 0

SET1 reg2, [reg1] IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 1 0 0 0 0 0

NOT1 reg2, [reg1] IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 1 0 0 0 1 0

CLR1 reg2, [reg1] IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 1 0 0 1 0 0

TST1 reg2, [reg1] IX r r r r r 1 1 1 1 1 1 R R R R R 00000 0 0 0 1 1 1 0 0 1 1 0

CAXI [reg1], reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 0 0 1 1 1 0 1 1 1 0

TRAP imm5 X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 0 0 0 0 0 0

HALT X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 0 1 0 0 0 0 0

RETI X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 1 0 0 0 0 0 0

CTRET X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 1 0 0 0 1 0 0

EIRET X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 1 0 0 1 0 0 0

FERET X 0 0 0 0 0 1 1 1 1 1 1 i i i i i 00000 0 0 1 0 1 0 0 1 0 1 0

DI X 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 00000 0 0 1 0 1 1 0 0 0 0 0

EI X 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 00000 0 0 1 0 1 1 0 0 0 0 0

V850E2S APPENDIX B INSTRUCTION OPCODE MAP

R01US0037EJ0100 Rev.1.00 Page 255 of 282

May 29, 2014

Table B-1. Basic Instruction Opcode Map (16-/32-bit Instruction) (4/4)

Mnemonic Operand Format opcode Remark

15 11 10 5 4 0 31 27 26 21 20 16

SYSCALL vector8 X 1 1 0 1 0 1 1 1 1 1 1 v v v v v 00VVV 001011 00000

SASF cccc, reg2 IX r r r r r 1 1 1 1 1 1 0 c c c c 00000 0 1 0 0 0 0 0 0 0 0 0

MUL reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 0 0 1 0 0 0 0 0

MULU reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 0 0 1 0 0 0 1 0

MUL imm9, reg2, reg3 XII r r r r r 1 1 1 1 1 1 i i i i i wwwww 0 1 0 0 1 I I I I 0 0

MULU imm9, reg2, reg3 XII r r r r r 1 1 1 1 1 1 i i i i i wwwww 0 1 0 0 1 I I I I 1 0

DIVH reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 0 0 0 0 0 0 0

DIVHU reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 0 0 0 0 0 1 0

DIV reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 1 0 0 0 0 0 0

DIVQ reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 1 1 1 1 1 0 0

DIVU reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 1 0 0 0 0 1 0

DIVQU reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 0 1 1 1 1 1 1 1 0

CMOV cccc, imm5, reg2, reg3 XI r r r r r 1 1 1 1 1 1 i i i i i wwwww 0 1 1 0 0 0 c c c c 0

CMOV cccc, reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 0 0 1 c c c c 0

BSW reg2, reg3 XII r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 0 0 0 0 0 0

BSH reg2, reg3 XII r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 0 0 0 0 1 0

HSW reg2, reg3 XII r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 0 0 0 1 0 0

HSH reg2, reg3 XII r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 0 0 0 1 1 0

SCH0R reg2, reg3 IX r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 1 0 0 0 0 0

SCH1R reg2, reg3 IX r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 1 0 0 0 1 0

SCH0L reg2, reg3 IX r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 1 0 0 1 0 0

SCH1L reg2, reg3 IX r r r r r 1 1 1 1 1 1 0 0 0 0 0 wwwww 0 1 1 0 1 1 0 0 1 1 0

SBF cccc, reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 1 0 0 c c c c 0 cccc  1101

SATSUB reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 1 0 0 1 1 0 1 0

ADF cccc, reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 1 0 1 c c c c 0 cccc  1101

SATADD reg1, reg2, reg3 XI r r r r r 1 1 1 1 1 1 R R R R R wwwww 0 1 1 1 0 1 1 1 0 1 0

MAC reg1, reg2, reg3, reg4 XI r r r r r 1 1 1 1 1 1 R R R R R wwww0 0 1 1 1 1 0 m m m m 0

MACU reg1, reg2, reg3, reg4 XI r r r r r 1 1 1 1 1 1 R R R R R wwww0 0 1 1 1 1 1 m m m m 0

V850E2S APPENDIX B INSTRUCTION OPCODE MAP

R01US0037EJ0100 Rev.1.00 Page 256 of 282

May 29, 2014

Table B-2. Basic Instruction Opcodes (48-bit Instructions)

Mnemonic Operand Format opcode

15 11 10 5 4 0 31 27 26 21 20 16 47 43 42 37 36 32

JR disp32 VI 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 d d d d d d d d d d d d d d d 0 D D D D D D D D D D D D D D D D

JARL disp32, reg1 VI 0 0 0 0 0 0 1 0 1 1 1 R R R R R d d d d d d d d d d d d d d d 0 D D D D D D D D D D D D D D D D

MOV imm32, reg1 VI 0 0 0 0 0 1 1 0 0 0 1 R R R R R i i i i i i i i i i i i i i i I I I I I I I I I I I I I I I I

JMP disp32 [reg1] VI 0 0 0 0 0 1 1 0 1 1 1 R R R R R d d d d d d d d d d d d d d d 0 D D D D D D D D D D D D D D D D

PREPARE list12, imm5, sp/imm XIII 0 0 0 0 0 1 1 1 1 0 i iiiiiL L L L L L L L L L L L ffNote011 I I I I I I I I I I I I I I I I

LD.B disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d d 0 1 0 1 D D D D D D D D D D D D D D D D

LD.H disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d 0 0 1 1 1 D D D D D D D D D D D D D D D D

LD.W disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d 0 1 0 0 1 D D D D D D D D D D D D D D D D

ST.B reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d d 1 1 0 1 D D D D D D D D D D D D D D D D

ST.W reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 0 RRRRRR w w w w w d d d d d d 0 1 1 1 1 D D D D D D D D D D D D D D D D

LD.BU disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR w w w w w d d d d d d d 0 1 0 1 D D D D D D D D D D D D D D D D

LD.HU disp23[reg1], reg3 XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR w w w w w d d d d d d 0 0 1 1 1 D D D D D D D D D D D D D D D D

ST.H reg3, disp23[reg1] XIV 0 0 0 0 0 1 1 1 1 0 1 RRRRRR w w w w w d d d d d d 0 1 1 0 1 D D D D D D D D D D D D D D D D

Note ff = 01, 10

Table B-3. Basic Instruction Opcode Map (64-bit Instruction)

Mnemonic Operand Format opcode Remark

15 11 10 5 4 0 31 27 26 21 20 16

PREPARE list12, imm5, sp/imm XIII 0 0 0 0 0 1 1 1 1 0 i iiiiiL L L L L L L L L L L L 1 1 0 1 1

 47 32 63 48

 I

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 257 of 282

May 29, 2014

APPENDIX C PIPELINES

The V850E2S CPU, which is based on RISC architecture, uses five-stage pipeline control to execute almost all types of

instructions in just one clock cycle. The instruction execution sequence normally includes five stages, from instruction

fetch (IF) to writeback (WB). The execution time per stage differs depending on factors such as the type of instruction and

the type of memory to be accessed. As an example of pipeline operations, Figure C-1 shows processing by the CPU

when 9 typical instructions are executed consecutively.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 258 of 282

May 29, 2014

Figure C-1. Example of Consecutive Execution of 9 Typical Instructions

IF ID

ID

EX MEM

IF

IF

Instruction
1

ID EX

EX

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12>

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Processing performed simultaneously by CPU

Internal system clock

Time flow

Instruction
2

Instruction
3

Instruction
4

Instruction
5

Instruction
6

Instruction
7

Instruction
8

Execution of instructions per clock cycle

Instruction 9

MEM WB

ID

EX MEM

MEM WBIF

WB

WB

<13>

Instruction
9

IDIF EX MEM WB

IDIF EX MEM WB

IDIF EX MEM WB

IDIF EX MEM WB

IDIF EX MEM WB

IF (instruction fetch): Fetches instruction and increments fetch pointer.

ID (instruction decode): Decodes instruction, generates immediate data, and

reads registers.

EX (execution using ALU, multiplier, or barrel shifter): Executes decoded instructions.

MEM (memory access): Access a target memory.

WB (writeback): Writes execution result to register.

<1> to <13> are CPU states.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 259 of 282

May 29, 2014

C.1 Features

Figure C-2 shows the pipeline configuration of the CPU assumed by the V850E2S CPU.

Figure C-2. Pipeline Configuration

Writeback unit

Data bus

Instruction bus

MEM
unit

ALU
unit

MUL
unit

Instruction fetch unit

Instruction decode unit

Instruction queue

Register file

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 260 of 282

May 29, 2014

This pipeline includes the following functions.

(a) Instruction fetch unit

This unit fetches one instruction per cycle using a 32-bit fetch bus (CPU fetch bus).

(b) Instruction decode unit

This unit decodes instructions issued from the instruction fetch unit.

(c) ALU unit

This unit issues instructions that perform integer operations and/or logic operations.

(d) MEM unit

This unit executes instructions (such as load and store instructions) that perform memory access.

(e) MUL unit

This unit executes instructions that perform integer multiplications.

(f) Writeback unit

This unit controls writeback to register files.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 261 of 282

May 29, 2014

C.2 Clock Requirements

C.2.1 Clock requirements for basic instructions
Table C-1 lists clock requirements for basic instructions. The clock requirements may differ according to the

combination of instructions. For details, see C.3 Pipeline for Basic Instructions.

Table C-1. Clock Requirements for Basic Instructions (1/4)

Instruction Type Mnemonic Operand Byte

Count

No. of Execution Clocks

issue repeat latency

Load instructions LD.B disp16 [reg1] , reg2 4 1 1 2Note 1
LD.B disp23 [reg1] , reg3 6 1 1 2Note 1

LD.BU disp16 [reg1] , reg2 4 1 1 2Note 1
LD.BU disp23 [reg1] , reg3 6 1 1 2Note 1

LD.H disp16 [reg1] , reg2 4 1 1 2Note 1
LD.H disp23 [reg1] , reg3 6 1 1 2Note 1

LD.HU disp16 [reg1] , reg2 4 1 1 2Note 1
LD.HU disp23 [reg1] , reg3 6 1 1 2Note 1

LD.W disp16 [reg1] , reg2 4 1 1 2Note 1
LD.W disp23 [reg1] , reg3 6 1 1 2Note 1

SLD.B disp7 [ep] , reg2 2 1 1 2Note 1
SLD.BU disp4 [ep] , reg2 2 1 1 2Note 1
SLD.H disp8 [ep] , reg2 2 1 1 2Note 1
SLD.HU disp5 [ep] , reg2 2 1 1 2Note 1
SLD.W disp8 [ep] , reg2 2 1 1 2Note 1

Store instructions ST.B reg2, disp16 [reg1] 4 1 1 1

ST.B reg3, disp23 [reg1] 6 1 1 1

ST.H reg2, disp16 [reg1] 4 1 1 1

ST.H reg3, disp23 [reg1] 6 1 1 1

ST.W reg2, disp16 [reg1] 4 1 1 1

ST.W reg3, disp23 [reg1] 6 1 1 1

SST.B reg2, disp7 [ep] 2 1 1 1

SST.H reg2, disp8 [ep] 2 1 1 1

SST.W reg2, disp8 [ep] 2 1 1 1

Multiply instructions MUL reg1, reg2, reg3 4 1 4 4

MUL imm9, reg2, reg3 4 1 4 4

MULH reg1, reg2 2 1 1 1

MULH imm5, reg2 2 1 1 1

MULHI imm16, reg1, reg2 4 1 1 1

MULU reg1, reg2, reg3 4 1 4 4

MULU imm9, reg2, reg3 4 1 4 4

Multiply-accumulate

instructions

MAC reg1, reg2, reg3, reg4 4 2 5 5

MACU reg1, reg2, reg3, reg4 4 2 5 5

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 262 of 282

May 29, 2014

Table C-1. Clock Requirements for Basic Instructions (2/4)

Instruction Type Mnemonic Operand Byte

Count

No. of Execution Clocks

issue repeat latency

Arithmetic operation

instructions

ADD reg1, reg2 2 1 1 1

ADD imm5, reg2 2 1 1 1

ADDI imm16, reg1, reg2 4 1 1 1

CMP reg1, reg2 2 1 1 1

CMP imm5, reg2 2 1 1 1

MOV reg1, reg2 2 1 1 1

MOV imm5, reg2 2 1 1 1

MOV imm32, reg1 4 1 1 1

MOVEA imm16, reg1, reg2 4 1 1 1

MOVHI imm16, reg1, reg2 4 1 1 1

SUB reg1, reg2 2 1 1 1

SUBR reg1, reg2 2 1 1 1

Conditional operation

instructions

ADF cccc, reg1, reg2, reg3 4 1 1 1

SBF cccc, reg1, reg2, reg3 4 1 1 1

Saturated operation

instructions

SATADD reg1, reg2 2 1 1 1

SATADD imm5, reg2 2 1 1 1

SATADD reg1, reg2, reg3 4 1 1 1

SATSUB reg1, reg2 2 1 1 1

SATSUB reg1, reg2, reg3 4 1 1 1

SATSUBI imm16, reg1, reg2 4 1 1 1

SATSUBR reg1, reg2 2 1 1 1

Logic operation

instructions

AND reg1, reg2 2 1 1 1

ANDI imm16, reg1, reg2 4 1 1 1

NOT reg1, reg2 2 1 1 1

OR reg1, reg2 2 1 1 1

ORI imm16, reg1, reg2 4 1 1 1

TST reg1, reg2 2 1 1 1

XOR reg1, reg2 2 1 1 1

XORI imm16, reg1, reg2 4 1 1 1

Data manipulation

instructions

BSH reg2, reg3 4 1 1 1

BSW reg2, reg3 4 1 1 1

CMOV cccc, reg1, reg2, reg3 4 1 1 1

CMOV cccc, imm5, reg2, reg3 4 1 1 1

HSH reg2, reg3 4 1 1 1

HSW reg2, reg3 4 1 1 1

SAR reg1, reg2 4 1 1 1

SAR imm5, reg2 2 1 1 1

SAR reg1, reg2, reg3 4 1 1 1

SASF cccc, reg2 4 1 1 1

SETF cccc, reg2 4 1 1 1

SHL reg1, reg2 4 1 1 1

SHL imm5, reg2 2 1 1 1

SHL reg1, reg2, reg3 4 1 1 1

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 263 of 282

May 29, 2014

Table C-1. Clock Requirements for Basic Instructions (3/4)

Instruction Type Mnemonic Operand Byte

Count

No. of Execution Clocks

issue repeat latency

Data manipulation

instructions

SHR reg1, reg2 4 1 1 1

SHR imm5, reg2 2 1 1 1

SHR reg1, reg2, reg3 4 1 1 1

SXB reg1 2 1 1 1

SXH reg1 2 1 1 1

ZXB reg1 2 1 1 1

ZXH reg1 2 1 1 1

Bit search instructions SCH0L reg2, reg3 4 1 1 1

SCH0R reg2, reg3 4 1 1 1

SCH1L reg2, reg3 4 1 1 1

SCH1R reg2, reg3 4 1 1 1

Divide instructions DIV reg1, reg2, reg3 4 36 36 36

DIVH reg1, reg2 2 36 36 36

DIVH reg1, reg2, reg3 4 36 36 36

DIVHU reg1, reg2, reg3 4 35 35 35

DIVU reg1, reg2, reg3 4 35 35 35

High-speed divide

instructions

DIVQ reg1, reg2, reg3 4 N+7Note 4 N+7Note 4 N+7Note 4

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 264 of 282

May 29, 2014

Table C-1. Clock Requirements for Basic Instructions (4/4)

Instruction Type Mnemonic Operand Byte

Count

No. of Execution Clocks

issue repeat latency

Special instruction FETRAP vector 2 3 3 3

HALT  4 Undefined Undefined Undefined

LDSR reg2, regID 4 1 1 1

NOP  2 1 1 1

PREPARE list12, imm5 4 n+1Note 3 n+1Note 3 n+1Note 3

PREPARE list12, imm5, sp 4 n+2Note 3 n+2Note 3 n+2Note 3

PREPARE list12, imm5, imm16 4 n+2Note 3 n+2Note 3 n+2Note 3

PREPARE list12, imm5, imm16<<16 4 n+2Note 3 n+2Note 3 n+2Note 3

PREPARE list12, imm5, imm32 4 n+2Note 3 n+2Note 3 n+2Note 3

RETI  4 3 3 3

RIE  2 3 3 3

RIE  4 3 3 3

STSR regID, reg2 4 1 1 1

SWITCH reg1 2 5 5 5

SYNCE  2 Undefined Undefined Undefined

SYNCM  2 Undefined Undefined Undefined

SYNCP  2 Undefined Undefined Undefined

SYSCALL vector8 4 5 5 5

TRAP vector5 4 3 3 3

Undefined instruction code (operates as RIE instruction) 4 3 3 3

Notes 1. When there are wait states (+ number of read access wait states)

 2. Add one (+ 1) when an instruction replaces the previous contents of PSW register.

 3. n is the total number of registers specified in list  (depends on the number of wait states. When there are no

wait states, n matches with the number of registers specified in list ).

 4. N = (Number of valid bits of dividend) – (Number of valid bits of divisor)

 However, if N is 0 or below, then N = 1.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 265 of 282

May 29, 2014

Remarks 1. Description of operands
Symbol Description

reg1 General-purpose register (used as source register)

reg2 General-purpose register (mainly used as the destination register, but used as a

source register for some instructions)

reg3 General-purpose register (mainly stores remainders from division results and the

higher 32 bits from multiplication results)

bit#3 3-bit data for specifying bit number

imm   bit immediate data

disp   bit displacement data

regID System register number

vector  Data specifying vector ( indicates the bit size)

cond Condition name (see Table 5-4 Condition Codes in PART 2).

cccc 4-bit data indicating condition code (see Table 5-4 Condition Codes in PART 2)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Register list

 2. Description of execution clocks

Symbol Description

issue When next instruction is executed immediately after previous instruction

repeat When same instruction is executed again immediately after its first execution

latency When execution result of the current instruction is used by the immediate next

instruction

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 266 of 282

May 29, 2014

C.3 Pipeline for Basic Instructions

C.3.1 Load instructions

[Target instructions] LD.B, LD.H, LD.W, LD.BU, LD.HU, SLD.B, SLD.BU, SLD.H, SLD.HU, and SLD.W

[Pipeline]

IF ID EX MEM WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>

Load instruction

Next instruction

[Description] The pipeline has five stages: the IF, ID, EX, MEM, and WB stages. However, if an instruction

that uses the execution result is placed immediately after the load instruction, a data wait

period may be generated.

C.3.2 Store instructions

[Target instructions] ST.B, ST.H, ST.W, SST.B, SST.H, and SST.W

[Pipeline]

IF ID EX MEM WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>

Store instruction

Next instruction

[Description] This pipeline has five stages: the IF, ID, EX, MEM, and WB stages. However, since data

cannot be written to registers, nothing is done at the WB stage.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 267 of 282

May 29, 2014

C.3.3 Multiply instructions

(1) Halfword data multiply instruction

[Target instructions] MULH and MULHI

[Pipeline]

IF ID EX WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>

Multiply instruction

Next instruction

[Description] The pipeline has four stages: the IF, ID, EX, and WB stages.

(2) Word data multiply instruction

[Target instructions] MUL and MULU

[Pipeline] (a) When the next three instructions are not multiply instructions

IF ID EX1 EX2

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>

Instruction 2

Instruction 3

<7> <8>

EX3 EX4 WB

IF ID EX MEM WB

IF ID EX MEM WB

Multiply instruction

Instruction 1

 (b) When the next instruction is a halfword multiply instruction

IF ID EX1 EX2

IF (ID)

<1> <2> <3> <4> <5> <6>
Multiply instruction 1

Multiply instruction 2
(halfword)

<7> <8>
EX3 EX4 WB

EX WB(ID) (ID) ID

 (C) When the third next instruction is a multiply instruction

Multiply instruction

Instruction 1

Instruction 2

Instruction 3

<1> <2> <3> <4> <5> <6> <7> <8>

IF ID EX1 EX2

IF ID EX MEM WB

EX3 EX4 WB

IF ID EX MEM WB

IF (ID) ID EX1

<9>

EX3

<10>

EX4

<11>

WBEX2

[Description] The pipeline has seven stages: the IF, ID, EX1, EX2, EX3, EX4, and WB stages. If an

instruction that uses the execution result is placed immediately after the multiply instruction, a

data wait period may be generated.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 268 of 282

May 29, 2014

C.3.4 Multiply-accumulate instructions

[Target instructions] MAC and MACU

[Pipeline] (a) When the next three instructions are not multiply-accumulate instructions

Multiply-accumulate
instruction

Instruction 1

Instruction 2

Instruction 3

<1> <2> <3> <4> <5> <6> <7> <8>
IF ID1 ID2 EX1

IF ID EX MEM WB

EX2 EX4 WB

IF ID EX MEM WB

IF ID EX MEM WB

EX3

 (b) When the next instruction is a halfword multiply instruction

Multiply-accumulate
instruction

Multiply instruction
(Halfword)

<1> <2> <3> <4> <5> <6> <7> <8>

IF ID1 ID2 EX2

IF (ID) (ID) ID

EX3 EX4 WB

WBEX

EX1

(ID) (ID)

<9>

 (c) When the next instruction is a multiply-accumulate instruction

Multiply-accumulate
instruction 1

Multiply-accumulate
instruction 2

ID2 EX1 EX2 WB

EX1 EX2

<1> <2> <3> <4> <5> <6> <7> <8>

IF ID1

IF

EX4EX3

(ID) (ID) ID1(ID) (ID) ID2

<9>

EX3

<11>

EX4

<12>

WB

<13><10>

 (d) When the third next instruction is a halfword multiply instruction

Multiply-accumulate
instruction

Instruction 1

Instruction 2
Multiply instruction

(Halfword)

<1> <2> <3> <4> <5> <6> <7> <8>
IF ID1 ID2 EX2

IF ID EX MEM WB

EX3 EX4 WB

IF ID EX MEM WB

IF ID EX WB

EX1

(ID)(ID)

<9>

 (e) When the third next instruction is a multiply-accumulate instruction

Multiply-accumulate
instruction 1

Instruction 1

Instruction 2

Multiply-accumulate
instruction 2

<1> <2> <3> <4> <5> <6> <7> <8>

IF ID1 EX1 EX2

IF ID EX MEM WB

EX3 EX4 WB

IF ID EX MEM WB

IF ID1 EX1 EX2(ID)(ID) ID2

<9>

EX3

<11>

EX4

<12>

WB

<13><10>

ID2

[Description] The pipeline has eight stages: the IF, ID1, ID2, EX1, EX2, EX3, EX4, and WB stages. If an

instruction that uses the execution result is placed immediately after the multiply instruction, a

data wait period may be generated.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 269 of 282

May 29, 2014

C.3.5 Arithmetic operation instructions

[Target instructions] ADD, ADDI, CMP, MOV, MOVEA, MOVHI, SUB, and SUBR

[Pipeline]

IF ID EX WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>
Arithmetic operation

instruction
Next instruction

[Description] The pipeline has four stages: the IF, ID, EX, and WB stages.

C.3.6 Conditional operation instructions

[Target instructions] ADF and SBF

[Pipeline]

IF ID EX WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>
Conditional operation

instruction
Next instruction

[Description] The pipeline has four stages: the IF, ID, EX, and WB stages.

C.3.7 Saturated operation instructions

[Target instructions] SATADD, SATSUB, SATSUBI, and SATSUBR

[Pipeline]

IF ID EX WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>
Saturated operation

instruction
Next instruction

[Description] The pipeline has four stages: the IF, ID, EX, and WB stages.

C.3.8 Logic operation instructions

[Target instructions] AND, ANDI, NOT, OR, ORI, TST, XOR, and XORI

[Pipeline]

IF ID EX WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>
Logic operation

instruction

Next instruction

[Description] The pipeline has four stages: the IF, ID, EX, and WB stages.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 270 of 282

May 29, 2014

C.3.9 Data manipulation instructions

[Target instructions] BSH, BSW, CMOV, HSH, HSW, SAR, SASF, SETF, SHL, SHR, SXB, SXH, ZXB, and ZXH

[Pipeline]

IF ID EX WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>
Data manipulation

instruction
Next instruction

[Description] The pipeline has four stages: the IF, ID, EX, and WB stages.

C.3.10 Bit search instructions

[Target instructions] SCH0L, SCH0R, SCH1L, and SCH1R

[Pipeline]

IF ID EX WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>
Bit search
instruction

Next instruction

[Description] The pipeline has four stages: the IF, ID, EX, and WB stages.

C.3.11 Divide instructions

[Target instructions] DIV, DIVH, DIVHU, and DIVU

[Pipeline] (a) DIV and DIVH

Divide instruction

Instruction 1

Instruction 2

<1> <2> <3> <4> <37> <38>

IF ID EX1

IF (ID) (ID)

WB

EX35 EX36 WB

ID

ID

EX MEM WB

IF EX

<39> <40>

EX2

MEM

(ID)

<42><41>

 (b) DIVU and DIVHU
<36>

EX2

MEM

WB

(ID)(ID)

IDIF EX MEM

Divide instruction

Instruction 1

Instruction 2

<1> <2> <3> <4>
IF ID EX1

IF

<37> <38> <39> <40> <41>
EX34 EX35 WB

ID EX WB(ID)

[Description] For a DIV or DIVH instruction, the pipeline has 39 stages: IF, ID, EX1 to EX36 (ordinary EX

stage), and WB, and for the DIVU and DIVHU instructions, it has 38 stages: IF, ID, EX1 to EX35

(ordinary EX stage), and WB.

Remark If an interrupt occurs during execution of a divide instruction, execution is halted and

the interrupt is handled using the start address of this instruction as the return address.

After the interrupt has been handled, this instruction is restarted. In such cases, the

values prior to execution of this instruction are retained in general-purpose register

reg1 and general-purpose register reg2.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 271 of 282

May 29, 2014

C.3.12 High-speed divide instructions
This instruction automatically determines the minimum number of steps required for the operation.

[Target instructions] DIVQ and DIVQU

[Pipeline] (a) DIVQ
<N+8>

EX
(N+4)

MEM

WB

(ID)(ID)

IDIF EX MEM

DIVQ instruction

Instruction 1

Instruction 2

<1> <2> <3> <N+6>

IF ID EX1

IF

<N+9> <N+10> <N+11> <N+12> <N+13>

WB

ID EX WB(ID)(ID)

<N+7>

EX2

(ID)

<4>
EX

(N+5)
EX

(N+6)
EX

(N+7)

 (b) DIVQU
<N+8>

EX
(N+4)

MEM

WB

(ID)(ID)

IDIF EX MEM

DIVQU instruction

Instruction 1

Instruction 2

<1> <2> <3> <N+6>

IF ID EX1

IF

<N+9> <N+10> <N+11> <N+12>

ID EX WB(ID)

<N+7>

EX2

(ID)

<4>
EX

(N+5)
EX

(N+6) WB

[Description] For the DIVQ instruction, the pipeline has N + 10 stages: IF, ID, EX1 to EX(N + 7), and WB,

and for the DIVQU instruction, it has N +9 stages: IF, ID, EX1 to EX(N+6), and WB.

 Remark N = (Number of valid bits of dividend)  (Number of valid bits of divisor)

 However, if N is negative, it is assumed that N = 1.

In addition, if an interrupt occurs during execution of a divide instruction, execution is halted

and the interrupt is handled using the start address of this instruction as the return address.

After the interrupt has been handled, this instruction is restarted. In such cases, the values

prior to execution of this instruction are retained in general-purpose register reg1 and general-

purpose register reg2.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 272 of 282

May 29, 2014

C.3.13 Branch instructions

(1) Conditional branch instruction (except BR instruction)

[Target instructions] Bcond instruction

[Pipeline] (a) When condition has not been met

IF ID EX MEM WB

IF ID EX MEM WB

<1> <2> <3> <4> <5> <6>
Conditional branch

instruction

Next instruction

 (b) When condition has been met

IF ID EX MEM WB

(IF)

IF ID EX MEM

<1> <2> <3> <4> <5> <6>

WB

<7>

Branch destination
instruction

Conditional branch
instruction

Next instruction

(IF): Invalid instruction fetch

[Description] The pipeline has five stages: IF, ID, EX, MEM, and WB stages. Since the branch

destination is set at the ID stage, nothing occurs at the EX stage, MEM stage, or WB stage.

(2) BR instruction and unconditional branch instructions (except JMP instruction)

[Target instructions] BR, JARL, and JR instruction

[Pipeline]

IF ID EX MEM

(IF)

IF ID EX MEM

<1> <2> <3> <4> <5> <6>
BR instruction, unconditional

branch instruction

Next instruction

WB

<7>

Branch destination
instruction

WB*

(IF): Invalid instruction fetch

WB*: No operation if JR or BR instruction, but writes back to return

PC if JARL instruction.

[Description] The pipeline has five stages: IF, ID, EX, MEM, and WB stages. Since the branch

destination is set at the ID stage, nothing occurs at the EX stage, MEM stage, or WB stage.

However, in the case of the JARL instruction, a writeback to return PC occurs at the WB

stage. Also, the IF is invalid for the instruction after the branch instruction.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 273 of 282

May 29, 2014

(3) JMP instructions

(a) JMP [reg1] instruction

[Pipeline]

IF ID EX MEM WB

(IF)

(IF)

IF ID MEM

<1> <2> <3> <4> <5> <6>
JMP [reg1]
instruction

Next instruction

WB

<7>

Branch destination
instruction

EX

Instruction after next
instruction

(IF): Invalid instruction fetch

[Description] The pipeline has five stages: IF, ID, EX, MEM, and WB stages. Since the branch

destination is set at the EX stage, nothing occurs at the MEM stage or WB stage.

(b) JMP dip32 [reg1] instruction

[Pipeline]

IF ID EX MEM WB

(IF)

(IF)

IF ID MEM

<1> <2> <3> <4> <5> <6>
JMP [reg1]
instruction

Next instruction

WB

<7>

Branch destination
instruction

EX

Instruction after next
instruction

(IF): Invalid instruction fetch

[Description] The pipeline has five stages: IF, ID, EX, MEM, and WB stages. Since the branch

destination is set at the EX stage, nothing occurs at the MEM stage or WB stage.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 274 of 282

May 29, 2014

C.3.14 Bit manipulation instructions

(1) CLR1, NOT1, and SET1 instructions

[Pipeline]
Bit manipulation

instruction

Next instruction

Instruction after next
instruction

<1> <2> <3> <4> <5> <6> <7> <8>
IF ID EX MEM

ID EX MEM WB

WB

IF (ID) MEM WB

IF ID EX WB

ID EX

(2)

<9>

MEM

(1)

(ID)

[Description] The pipeline has seven stages: IF, ID, EX1, MEM, EX2 (ordinary stage), MEM, and WB

stages. Since no data is written to registers, nothing occurs at the WB stage. This

instruction executes memory access as read-modify-write operations, and requires a total

of two clock cycles at the EX stage and two clock cycles at the MEM stage.

(2) TST1 instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>

IF ID EX MEM

ID EX MEM WB

WB

IF (ID) MEM WB

IF ID EX WB

ID EX

MEM

Bit manipulation
instruction

Next instruction

Instruction after next
instruction

(2)

(1)

(ID)

[Description] The pipeline has seven stages: IF, ID, EX1, MEM, EX2 (ordinary stage), MEM, and WB

stages. Since no data is written to registers and there is no second memory access,

nothing occurs at the second MEM stage and WB stage. This instruction requires a total of

two clock cycles.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 275 of 282

May 29, 2014

C.3.15 Special instructions

(1) CALLT and SYSCALL instruction

[Pipeline]
CALLT, SYSCALL

instructions

Branch destination
instruction

<1> <2> <3> <4> <7> <8>

IF ID EX

(IF)

WB

EX

WB

WB

ID EX

MEM

IF

<9> <10>

MEM

MEM

ID

<6><5>

Next instruction

[Description] The pipeline has seven stages: IF, ID, EX1, MEM, EX2, MEM, and WB stages. Since there

is no memory access at the second MEM and WB stages, no data is written to registers,

and so nothing occurs.

(2) CAXI instruction

[Pipeline]
CAXI

instruction

<1> <2> <3> <4> <7> <8>

IF ID

EX

WB

EX2

WB

WB

ID EX

MEM

IF

<9> <10>

MEM

MEM

ID

<6><5>

WB

(ID)(ID)(ID)(ID)

EXID

EX

Next instruction

[Description] The pipeline has eight stages: IF, ID, EX1, MEM, EX2, EX3, MEM, and WB stages.

(3) CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions

[Pipeline]

IF ID EX WB

(IF)

MEM

EX MEM WB

<1> <2> <3> <4> <5> <6>

InstructionNote

Next instruction

(IF)

IF ID

Instruction after
next instruction

Branch destination
instruction

<7> <8>

(IF): Invalid instruction fetch

 Note CTRET, EIRET, FERET, FETRAP, RETI, RIE, and TRAP instructions

[Description] The pipeline has five stages: IF, ID, EX, MEM, and WB stages. The branch destination is

determined at the EX stage, and nothing occurs at the MEM stage and WB stage.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 276 of 282

May 29, 2014

(4) DI, EI, and LDSR instructions

[Pipeline]

IF ID EX WB

EX MEM WB

<1> <2> <3> <4> <5> <6>

EI, DI instruction

Next instruction IF ID

[Description] The pipeline has four stages: IF, ID, EX, and WB stages. However, there is no memory

access at the WB stage, so no data is written to registers and nothing occurs.

(5) DISPOSE instruction

[Pipeline] (a) No branch

DISPOSE
instruction

Next instruction

Instruction after
next instruction

<1> <2> <3> <4> <5> <6> <n+3>

IF ID EX

ID EX

MEM WB

WB

IF

ID

EX

MEM

WB

IF

(ID)

ID

EX

WB

MEM

(ID) (ID) (ID) (ID) (ID) ID WBEX MEM

ID WBEX MEM

(1)
(2)

(n+1)

(n+2)

<n+4> <n+5> <n+6> <n+7> <n+8> <n+9>

 (b) Branch

DISPOSE
instruction

Next instruction

Instruction after
next instruction

(1)

(2)

(n+1)

(n+2)

<1> <2> <3> <4> <5> <6> <n+3>

IF ID EX

ID EX

MEM WB

WB

(IF)

ID

EX

MEM

WB

ID

EX

WB

MEM

IF MEMID EX

<n+4> <n+5> <n+6> <n+7> <n+8> <n+9> <n+10>

WB

 Remark n is the number of registers specified by the register list (list12).

[Description] The pipeline has “n + 5” stages: IF, ID, EX, MEM (n + 1 time), and WB stages (n: register

list number). The MEM stage requires n + 1 cycles.

(6) HALT instruction

[Pipeline]

IF ID EX WB

(ID)

MEM

EX MEM WB

<1> <2> <3> <4> <5>

HALT instruction

Next instruction (ID)IF (ID)

Instruction after
next instruction

MEM WBEXIF ID

(ID) (ID) ID

HALT canceled

[Description] The pipeline has five stages: IF, ID, EX, MEM, and WB stages. Since there is no memory

access or writing of data to registers, nothing occurs at the MEM stage and WB stage.

Also, the ID stage is delayed at the next instruction until HALT mode is cleared.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 277 of 282

May 29, 2014

(7) NOP instruction

[Pipeline]

IF ID EX WB

EX

MEM

<1> <2> <3> <4> <5>

NOP instruction

Next instruction MEMIF ID WB

<6>

[Description] The pipeline has five stages: IF, ID, EX, MEM, and WB stages. However, since no

operations, memory access, or writing of data to registers is performed, nothing occurs at

the EX stage, MEM stage, and WB stage.

(8) PREPARE instruction

[Pipeline] <5>

MEM

WB

(ID)(ID)

IDIF EX

MEM

PREPARE
instruction

Next instruction

Instruction after
next instruction

<1> <2> <3> <4>

IF ID EX

IF

<6> <n+3> <n+4> <n+5> <n+6>

WB

ID EX WB

(ID)

MEM

WB

ID EX MEM

WB

ID EX

WB

ID EX MEM

(ID)(ID) (ID)

(1)

(2)

(n+1)

(n+2)

<n+7> <n+8> <n+9>

 Remark n is the number of registers specified in the register list (list12).

[Description] The pipeline has “n + 5” stages: IF, ID, EX, MEM (n + 1 time), and WB stages (n: register

list number). The MEM stage requires n + 1 cycles. However, since no data is written to

registers at the WB stage, nothing occurs.

(9) STSR instruction

[Pipeline]

MEM

<6>

WB

EXID

STSR instruction

Next instruction

<1> <2> <3> <4>

IF ID EX

IF

<5>

WB

[Description] The pipeline has four stages: IF, ID, EX, and WB stages. If an STSR instruction that uses

the same register is placed immediately after the LDSR instruction, a wait for data

alignment will occur.

V850E2S APPENDIX C PIPELINES

R01US0037EJ0100 Rev.1.00 Page 278 of 282

May 29, 2014

(10) SWITCH instruction

[Pipeline]

SWITCH instruction

Next instruction

Branch destination
instrucion

<1> <2> <3> <4> <5> <6>
IF ID EX

ID EX

MEM WB

WB

(IF)

ID EX

MEM

IF WBMEM

<7> <8> <9> <10>

(IF): Invalid instruction fetch

[Description] The pipeline has seven stages: IF, ID, EX1 (ordinary EX stage), MEM, EX2, MEM, and WB

stages. However, there is no memory access or writing of data to registers at the second

MEM and WB stages, so nothing occurs.

 (11) Synchronization instructions

[Target instructions] SYNCM and SYNCP

[Pipeline]

Synchronization
instructions

Next instruction

<1> <2> <3> <n+1>

IF

IF

(ID)

(ID)

(ID)

(ID)

ID EX

MEMEX

<n+2> <n+3>

WB

<n+5><n+4>

WB

ID(ID)

(ID)

<n>

 Note n is an undefined value.

[Description] The synchronization instructions are not issued until processing of all instructions held

pending by the CPU has been completed. Since no data is written to registers at the WB

stage, nothing occurs.

V850E2S APPENDIX D DIFFERENCES BETWEEN V850E2S CPU AND OTHER CPUS

R01US0037EJ0100 Rev.1.00 Page 279 of 282

May 29, 2014

APPENDIX D DIFFERENCES BETWEEN V850E2S CPU AND
OTHER CPUS

D.1 Difference Between V850E2 and V850E2M
(1/3)

Item V850E2S V850E2M V850E2

Instructions

(including

operands)

ADF cccc, reg1, reg2, reg3 Provided

HSH reg2, reg3

JARL disp32, reg1

JMP disp32, [reg1]

JR disp32

MAC reg1, reg2, reg3, reg4

MACU reg1, reg2, reg3, reg4

SAR reg1, reg2, reg3

SATADD reg1, reg2, reg3

SATSUB reg1, reg2, reg3

SBF cccc, reg1, reg2, reg3

SCH0L reg1, reg2

SCH0R reg1, reg2

SCH1L reg1, reg2

SCH1R reg1, reg2

SHL reg1, reg2, reg3

SHR reg1, reg2, reg3

CAXI [reg1], reg2, reg3 Provided Not provided

DIVQ reg1, reg2, reg3

DIVQU reg1, reg2, reg3

EIRET

FERET

FETRAP vector4

RIE

SYNCM

SYNCP

SYNCE

SYSCALL vector8

LD.B disp23 [reg1] , reg3

LD.BU disp23 [reg1] , reg4

LD.H disp23 [reg1] , reg3

LD.HU disp23 [reg1] , reg3

LD.W disp23 [reg1] , reg3

ST.B reg3, disp23 [reg1]

ST.H reg3, disp23 [reg2]

ST.W reg3, disp23 [reg3]

V850E2S APPENDIX D DIFFERENCES BETWEEN V850E2S CPU AND OTHER CPUS

R01US0037EJ0100 Rev.1.00 Page 280 of 282

May 29, 2014

(2/3)

Item V850E2S V850E2M V850E2

Instructions

(including

operands)

Floating to point operation exception Not provided Provided Not provided

Number of instruction execution clocks Varies among certain instructions.

Program area 64 MB 4 GBNote 2 512 MB

Valid bits in program counter (PC) 32 bitsNote 1 32 bitsNote 2 Lower 29 bits

Data area 64 MB 4 GB

System register bank Provided Not provided

 Main bank Provided ProvidedNote 3

 PSW Functions differ.

 ECR Provided (use is generally prohibited) Provided

 EIWR Provided Not Provided

 FEWR

 EIIC

 FEIC

 BSEL

 SCCFG

 SCBP

 Exception handler address switching function bank 0

Exception handler address switching function bank 1

 MPU violation bank

 MPU setting bank

 Software paging bank

 FPU status bank Not Provided Provided Not Provided

 FPEC

 User 0 bank Provided Not Provided

Notes 1. Instruction addressing range is a 64 MB. A value resulting from a sign-extension of bit 25 of EIPC is

automatically set to bits 31 to 26.

 2. For a CPU whose instruction addressing range is limited by the product specification to 512 MB, a value

resulting from a sign to extension of bit 28 of EIPC is automatically set to bits 31 to 29.

 3. Bank configuration is not employed and only system registers equivalent to the main bank are available.

V850E2S APPENDIX D DIFFERENCES BETWEEN V850E2S CPU AND OTHER CPUS

R01US0037EJ0100 Rev.1.00 Page 281 of 282

May 29, 2014

(3/3)

Item V850E2S V850E2M V850E2

Processor protection function Functions differ Not provided

Exceptions FE level non to maskable exception FENMI NMI2Note

FE level maskable exception FEINT NMI0, NMI1Note

EI level maskable exception INT

Memory protection exception Provided (30H) Not provided

Floating to point operation exception Not provided Provided (70H) Not provided

Return from FE level exception FERET RETI

Return from EI level exception EIRET

Checking and cancelling exception Provided Not provided

Execution of undefined opcodes Reserved instruction exception

FE level exception (30H)

Illegal instruction

exception

DB level exception (60H)

Operation mode Misaligned access enable setting Always enabled Can be set as enabled or

disabled

Pipeline 5 stages 7 stages

Pipeline flow varies for each instruction.

Debug functions Functions differ.

Note Some specifications such as exception handler addresses and exception code are different.

V850E2S APPENDIX E INSTRUCTION INDEX

R01US0037EJ0100 Rev.1.00 Page 282 of 282

May 29, 2014

APPENDIX E INSTRUCTION INDEX

E.1 Basic Instructions

[A]

ADD 65

ADDI 66

ADF 67

AND 68

ANDI 69

[B]

Bcond 70

BSH 72

BSW 73

[C]

CALLT 74

CAXI 75

CLR1 76

CMOV 78

CMP 80

CTRET 81

[D]

DI 82

DISPOSE 83

DIV 85

DIVH 86

DIVHU 88

DIVQ 89

DIVQU 90

DIVU 91

[E]

EI 92

EIRET 93

[F]

FERET 94

FETRAP 95

[H]

HALT 96

HSH 97

HSW 98

[J]

JARL 99

JMP 101

JR 102

[L]

LD.B 103

LD.BU 104

LD.H 105

LD.HU 106

LD.W 107

LDSR 108

[M]

MAC 109

MACU 110

MOV 111

MOVEA 112

MOVHI 113

MUL 114

MULH 115

MULHI 116

MULU 117

[N]

NOP 118

NOT 119

NOT1 120

[O]

OR 122

ORI 123

[P]

PREPARE 124

[R]

RETI 126

RIE 128

[S]

SAR 129

SASF 131

SATADD 132

SATSUB.................. 134

SATSUBI................. 135

SATSUBR 136

SBF 137

SCH0L 138

SCH0R 139

SCH1L 140

SCH1R 141

SET1 142

SETF 144

SHL 146

SHR 148

SLD.B 150

SLD.BU 151

SLD.H 152

SLD.HU 153

SLD.W 154

SST.B 155

SST.H 156

SST.W 157

ST.B 158

ST.H 159

ST.W 160

STSR 161

SUB 162

SUBR 163

SWITCH 164

SXB 165

SXH 166

SYNCE 167

SYNCM 168

SYNCP 169

SYSCALL 170

[T]

TRAP 172

TST 173

TST1 174

[X]

XOR 175

XORI 176

ZXB 177

ZXH 178

C - 1

REVISION HISTORY V850E2S User’s Manual: Architecture

Rev. Date Description
Page Summary

0.01 Dec 26, 2011  First Edition issued

1.00 May 29, 2014 Throughout Changed symbols of EI level software exception, Reserved instruction exception,

FE level software exception and System call exception

PART 2 CHAPTER 2 REGISTER SET

25 to 26 2. 3. 4 PSW, changed the Note, register figure and table

33 Table 2-3. System Register Bank, changed

PART 3 CHAPTER 5 SYSTEM REGISTER PROTECTION

225 Changed the description

PART 3 CHAPTER 6 MEMORY PROTECTION

233 6. 1. 1 PAnL, changed

APPENDIX C PIPELINES

267 C. 3. 3 (2) Word data multiply instruction - (b) and (c), changed

268 C. 3. 4 Multiply-accumulate instructions - (b) to (e) , changed

277 C. 3. 15 (8) PREPARE instruction , changed

278 C. 3. 15 (11) Synchronization instructions, changed

V850E2S User’s Manual: Architecture

Publication Date: Rev.0.01 Dec 26, 2011

Rev.1.00 May 29, 2014

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 3.0

V850E2S

R01US0037EJ0100

	Cover
	Notice
	NOTES FOR CMOS DEVICES
	How to Use This Manual
	Table of Contents
	PART 1 OVERVIEW
	CHAPTER 1 FEATURES
	1.1 Basic function
	1.2 Processor protection function

	PART 2 BASIC FUNCTION
	CHAPTER 1 OVERVIEW
	1.1 Features

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.2 System Register Bank
	2.2.1 BSEL (Register bank selection

	2.3 CPU Function Group/Main Bank
	2.3.1 EIPC and EIPSW (Status save registers when acknowledging EI level exception
	2.3.2 FEPC and FEPSW (Status save registers when acknowledging FE level exception
	2.3.3 ECR (Exception cause
	2.3.4 PSW (Program status word
	2.3.5 SCCFG (SYSCALL operation setting
	2.3.6 SCBP (SYSCALL base pointer
	2.3.7 EIIC (EI level exception cause
	2.3.8 FEIC (FE level exception cause
	2.3.9 CTPC and CTPSW (Status save registers when executing CALLT
	2.3.10 CTBP (CALLT base pointer
	2.3.11 EIWR (EI level exception working register
	2.3.12 FEWR (FE level exception working register
	2.3.13 DBIC (DB level exception cause
	2.3.14 DBPC and DBPSW (Status save registers when acknowledging DB level exception
	2.3.15 DBWR (DB level exception working register
	2.3.16 DIR (Debug interface register

	2.4 CPU Function Group/Exception Handler Address Switching Function Banks
	2.4.1 SW_CTL (Exception handler address switching control
	2.4.2 SW_CFG (Exception handler address switching configuration
	2.4.3 SW_BASE (Exception handler address switching base address
	2.4.4 EH_CFG (Exception handler configuration
	2.4.5 EH_BASE (Exception handler base address
	2.4.6 EH_RESET (Reset address

	2.5 User Group

	CHAPTER 3 DATA TYPES
	3.1 Data Formats
	3.1.1 Byte
	3.1.2 Halfword
	3.1.3 Word
	3.1.4 Bit

	3.2 Data Representation
	3.2.1 Integers
	3.2.2 Unsigned integers
	3.2.3 Bits

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory Map
	4.2 Addressing Modes
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTIONS
	5.1 Opcodes and Instruction Formats
	5.1.1 CPU instructions
	5.1.2 Coprocessor instructions
	5.1.3 Reserved instructions

	5.2 Overview of Instructions
	5.3 Instruction Set

	CHAPTER 6 EXCEPTIONS
	6.1 Outline of Exceptions
	6.1.1 Exception cause list
	6.1.2 Types of exceptions
	6.1.3 Exception processing flow
	6.1.4 Exception acknowledgment priority and pending conditions
	6.1.5 Exception acknowledgment conditions
	6.1.6 Resume and restoration
	6.1.7 Exception level and context saving
	6.1.8 Return instructions

	6.2 Operations When Exception Occurs
	6.2.1 EI level exception without acknowledgment conditions
	6.2.2 EI level exception with acknowledgment conditions
	6.2.3 FE level exception without acknowledgment conditions
	6.2.4 FE level exception with acknowledgment conditions
	6.2.5 Special operations

	6.3 Exception Management
	6.4 Exception Handler Address Switching Function
	6.4.1 Determining exception handler addresses
	6.4.2 Purpose of exception handler address switching
	6.4.3 Settings for exception handler address switching function

	CHAPTER 7 COPROCESSOR UNUSABLE STATUS
	7.1 Coprocessor Unusable Exception
	7.2 System Registers

	CHAPTER 8 RESET
	8.1 Status of Registers After Reset
	8.2 Start

	PART 3 PROCESSOR PROTECTION FUNCTION
	CHAPTER 1 OVERVIEW
	1.1 Features

	CHAPTER 2 REGISTER SET
	2.1 System Register Bank
	2.2 System Registers
	2.2.1 PSW – Program Status Word
	2.2.2 MPM – Setting of processor protection operation mode
	2.2.3 MPC – Specification of processor protection command
	2.2.4 TID – Task identifier
	2.2.5 Other system registers

	CHAPTER 3 OPERATION SETTING
	3.1 Starting Use of Processor Protection Function
	3.2 Setting of Execution Level Auto Transition Function
	3.3 Stopping Use of Processor Protection Function

	CHAPTER 4 EXECUTION LEVEL
	4.1 Nature of Program
	4.2 Protection Bits on PSW
	4.2.1 T state (trusted state)
	4.2.2 NT state (non-trusted state)

	4.3 Definition of Execution Level
	4.4 Transition of Execution Level
	4.4.1 Transition by execution of write instruction to system register
	4.4.2 Transition as result of occurrence of exception
	4.4.3 Transition by execution of return instruction

	4.5 Program Model
	4.6 Task Identifier

	CHAPTER 5 SYSTEM REGISTER PROTECTION
	5.1 Register Set
	5.1.1 VSECR – System register protection violation cause
	5.1.2 VSTID – System register protection violation task identifier
	5.1.3 VSADR – System register protection violation address

	5.2 Access Control
	5.3 Registers to Be Protected
	5.4 Detection of Violation
	5.5 Operation Method

	CHAPTER 6 MEMORY PROTECTION
	6.1 Register Set
	6.1.1 PAnL – Protection area n lower-limit address (n = 0 to 3)
	6.1.2 PAnU – Protection area n upper-limit address (n = 0 to 3)
	6.1.3 VMECR – Memory protection violation cause
	6.1.4 VMTID – Memory protection violation task identifier
	6.1.5 VMADR – Memory protection violation address

	6.2 Access Control
	6.3 Setting Protection Area
	6.3.1 Valid bit (E bit)
	6.3.2 Execution enable bit (X bit)
	6.3.3 Read enable bit (R bit)
	6.3.4 Write enable bit (W bit)
	6.3.5 sp indirect access enable bit (S bit)
	6.3.6 Protection area lower-limit address (AL31 to AL0 bits)
	6.3.7 Protection area upper-limit address (AU31 to AU0 bits)

	6.4 Notes on Setting Protection Area
	6.4.1 Crossing of protection area boundaries
	6.4.2 Invalid protection area setting

	6.5 Special Memory Access Instructions
	6.5.1 Load and store instructions executing misaligned access
	6.5.2 Some bit manipulation instructions and CAXI instruction
	6.5.3 Stack frame manipulation instructions
	6.5.4 SYSCALL instruction

	6.6 Protection Violation and Exception

	CHAPTER 7 PROCESSOR PROTECTION EXCEPTION
	7.1 Types of Violations
	7.1.1 System register protection violation
	7.1.2 Execution protection violation
	7.1.3 Data protection violation

	7.2 Types of Exceptions
	7.2.1 MIP exception
	7.2.2 MDP exception

	7.3 Identifying Violation Cause
	7.3.1 MIP exception
	7.3.2 MDP exception

	CHAPTER 8 SPECIFAL FUNCTON
	8.1 Clearing Memory Protection Setting All at Once

	APPENDIX A LIST OF INSTRUCTIONS
	A.1 Basic Instructions

	APPENDIX B INSTRUCTION OPCODE MAP
	B.1 Basic Instruction Opcode Map

	APPENDIX C PIPELINES
	C.1 Features
	C.2 Clock Requirements
	C.2.1 Clock requirements for basic instructions

	C.3 Pipeline for Basic Instructions
	C.3.1 Load instructions
	C.3.2 Store instructions
	C.3.3 Multiply instructions
	C.3.4 Multiply-accumulate instructions
	C.3.5 Arithmetic operation instructions
	C.3.6 Conditional operation instructions
	C.3.7 Saturated operation instructions
	C.3.8 Logic operation instructions
	C.3.9 Data manipulation instructions
	C.3.10 Bit search instructions
	C.3.11 Divide instructions
	C.3.12 High-speed divide instructions
	C.3.13 Branch instructions
	C.3.14 Bit manipulation instructions
	C.3.15 Special instructions

	APPENDIX D DIFFERENCES BETWEEN V850E2S CPU AND OTHER CPUS
	D.1 Difference Between V850E2 and V850E2M

	APPENDIX E INSTRUCTION INDEX
	E.1 Basic Instructions

	REVISION HISTORY
	Colophon
	Address List
	Back Cover

