Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

The revision list can be viewed directly by clicking the title page. The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

H8/3857 Group, H8/3857 F-ZTATTM, H8/3854 Group, H8/3854 F-ZTATTM Hardware Manual Renesas 8-Bit Single-Chip Microcomputer H8 Family/H8/300L Series H8/3857 HD6433857, HCD6433857 H8/3856 HCD6433856

H8/3856 H8/3855 H8/3857 F-ZTAT™ H8/3854 H8/3853 H8/3852 H8/3854 F-ZTAT™ HD6433857, HCD6433857 HD6433856, HCD6433856 HD6433855, HCD6433855 HD64F3857, HCD64F3857 HD6433854, HCD6433854 HD6433853, HCD6433853 HD6433852, HCD64F3854

Renesas Electronics

Rev.3.00 2007.07

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to charge without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions may occur due to the false recognition of the pin state as an input signal. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

 The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern.
 When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Renesas

Preface

The H8/300L Series of single-chip microcomputers has the high-speed H8/300L CPU at its core, with many necessary peripheral functions on-chip. The H8/300L CPU instruction set is compatible with the H8/300 CPU.

The H8/3857 Group has the following on-chip peripheral functions required for system configuration: a maximum 1,280-dot display LCD controller, four types of timers, a 14-bit PWM, a 2-channel serial communication interface, and an 8-channel A/D converter.

The H8/3854 Group has the following on-chip peripheral functions required for system configuration: a maximum 640-dot display LCD controller, three types of timers, a single-channel serial communication interface, and a 4-channel A/D converter.

Both series can be used as embedded microcomputers in systems requiring LCD display.

The H8/3857, H8/3856, H8/3855, H8/3854, H8/3853, and H8/3852 are available in mask ROM versions, and the H8/3857 and H8/3854 are also available in an F-ZTATTM* version which allows programs to be written after the chip is mounted on a board.

Note: * F-ZTAT (Flexible Zero Turn-Around Time) is a trademark of Renesas Technology Corp.

This manual describes the hardware of the H8/3857 Group and H8/3854 Group. For details on the H8/3857 Group and H8/3854 Group instruction set, refer to the H8/300L Series Software Manual.

Renesas

List of Functions

Group		H8/3857 Group				H8/3854 Group			
		F-ZTAT Version	Mask R0	OM Versio	on	F-ZTAT Version	Mask RC	OM Versio	on
Part No.		H8/3857F	H8/3857	H8/3856	H8/3855	H8/3854F	H8/3854	H8/3853	H8/3852
ROM size	(kbytes)	60	60	48	40	60*	32*	24	16
RAM size	(kbytes)	2	2	2	2	2*	1*	1*	1*
I/O ports	Input/output ports	35	35	35	35	24	24	24	24
	Input ports	9	9	9	9	5	5	5	5
Interrupts	External interrupts	13 sources	13 sources	13 sources	13 sources	12 sources	12 sources	12 sources	12 sources
	Internal interrupts	16 sources	16 sources	16 sources	16 sources	14 sources	14 sources	14 sources	14 sources
Timer A (for realtime clock)		0	0	0	0	0	0	0	0
Timer B (8 bits)		0	0	0	0	0	0	0	0
Timer C (8	bits)	0	0	0	0	_	_	_	
Timer F (1	6 bits)	0	0	0	0	0	0	0	0
Watchdog	timer	0	_	_	_	0	_	_	
14-bit PW	N	0	0	0	0	_	_		_
Serial com interface (S	munication SCI)	× 2	× 2	× 2	× 2	× 1	× 1	× 1	× 1
A/D conve	rter	8 ch	8 ch	8 ch	8 ch	4 ch	4 ch	4 ch	4 ch
LCD controller	Max. display dots	1280 dots	1280 dots	1280 dots	1280 dots	640 dots	640 dots	640 dots	640 dots
	Display RAM size	2048 bits	2048 bits	2048 bits	2048 bits	640 bits	640 bits	640 bits	640 bits
Packages	Pins	144	144	144	144	100	100	100	100
Shipping form		FP-144H (20 × 20 mm) TFP-144 (16 × 16 mm) Die (F-ZTAT version: 7.08 × 7.31 mm / mask ROM version: 6.21 × 6.21 mm)			FP-100B (14 \times 14 mm) TFP-100G (12 \times 12 mm) Die (F-ZTAT version: 6.34 \times 6.34 mm / mask ROM version: 4.69 \times 4.69 mm)				

Note: * Note that the H8/3854F (F-ZTAT version) and H8/3854 (mask ROM version) have different ROM and RAM sizes.

When carrying out program development using the H8/3854F with the intention of mask ROM implementation, care must be taken with ROM and RAM sizes since the maximum sizes for the mask ROM version are 32 kbytes of ROM and 1 kbyte of RAM.

Main Revisions for This Edition

Item	Page	Revision (See Manual for Details)
All	—	 Company name and brand names amended (Before) Hitachi, Ltd. → (After) Renesas Technology Corp. Designation for categories amended (Before) H8/3857 Series → (After) H8/3857 Group (Before) H8/3854 Series → (After) H8/3854 Group
2.2.1 General Registers Figure 2.2 Stack Pointer	29	Figure amended Lower address side [H'0000] Unused area SP (R7) → Stack area
4.3 Subclock Generator Table 4.2 DC Characteristics and Timing	98	Upper address side [H'FFFF]Table condition amended $(V_{cc} = 2.7 V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, V_{cc} = 3.0 V to 5.5 V of H8/3854F and H8/3857 Group, AV_{cc} = 3.0 V to 5.5 V, V_{ss} = AV_{ss} = 0.0 V, T_a = -20°C to + 75°C*, unless otherwise specified, including subactive mode)Table note amendedNote: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.$
6.2.1 Features 6.5.4 Erase-Verify Mode	120 143	Description amended • Programming/erase methods The flash memory is programmed 32 bytes at a time. Erasing is performed in block units. To erase multiple blocks, each block must be erased in turn. In block erasing, 1-kbyte, 28-kbyte, 16- kbyte, and 12-kbyte blocks can be set arbitrarily. Description amended After the elapse of the erase time, erase mode is exited (the E bit in FLMCR1 is cleared, then the ESU bit in FLMCR2 is cleared at least (α) μ s later).

Item	Page	Revision (See Manual for Details)		
8.3 Port 2	182	Description amended The UD function multiplexed with the P2, pin is provided only in the H8/3857 Group, and not in the H8/3854 Group.		
11.3 Operation Figure 11.2 PWM Output Waveform	314	Figure amended $T_H = t_{H1} + t_{H2} + t_{H3} + \dots t_{H64}$ $t_{f1} = t_{f2} = t_{f3} \dots = t_{f64}$		
15.2.2 DC Characteristics Table15.2 DC Characteristics of H8/3855, H8/3856, and H8/3857 (1)	409	Table note amended Notes: 4. The guaranteed temperature as an electrical characteristic for die type products is 75°C.		
Table15.3 DC Characteristics of	410	Table amended		
H8/3855, H8/3856, and H8/3857 (2)		Allowable I _{oL} output low current (per pin)		
		Allowable Σl _{oL} output low current (total)		
		Allowable –I _{oH} output high current (per pin)		
		Allowable Σ–I _{οн} output high current (total)		
		Table note amendedNotes: 2. The guaranteed temperature as an electrical characteristic for die type products is 75°C.		

Item	Page	Revision (See Manual for Details)
15.2.3 AC Characteristics Table15.4 Control Signal Timing of H8/3855, H8/3856, and H8/3857	412	Table note amended Notes: 3. The guaranteed temperature as an electrical characteristic for die type products is 75°C.
Table15.5 Serial Interface (SCI1) Timing of H8/3855, H8/3856, and H8/3857	413	Table note amended Note: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.
Table15.6 Serial Interface (SCI3) Timing of H8/3855, H8/3856, and H8/3857	414	Table note amended Note: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.
15.2.4 A/D Converter Characteristics Table15.7 A/D Converter Characteristics of H8/3855, H8/3856, and H8/3857	415	Table note amended Notes: 4. The guaranteed temperature as an electrical characteristic for die type products is 75°C.
15.2.5 LCD Characteristics Table15.8 LCD Characteristics of H8/3855, H8/3856, and H8/3857	416	Table note amended Notes: 4. The guaranteed temperature as an electrical characteristic for die type products is 75°C.
Table15.9 Step-Up Circuit Characteristics o H8/3855, H8/3856, and H8/3857	417 f	Table note amendedNotes: 2. The guaranteed temperature as an electrical characteristic for die type products is 75°C.
15.4 Output Load Circuit Figure 15.10 Output Load Conditions	422	Figure amended V _{CC} 2.4 kΩ LSI Chip Output pin 30 pF 12 kΩ π

Rev.3.00 Jul. 19, 2007 Page x of xxiv REJ09B0397-0300

Item	Page	Revision (See Manual for Details)			
16.2.2 DC Characteristics Table 16.2 DC Characteristics of H8/3852, H8/3853, and H8/3854 (1)	426	Table condition amended $V_{cc} = 2.7$ V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0$ V to 5.5 V of H8/3854F, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C* ⁴ , including subactive mode, unless otherwise specified. Table note amended			
	429	Notes: 4. The guaranteed temperature as an electrical characteristic for die type products is 75°C.			
Table 16.3 DC Characteristics of H8/3852, H8/3853, and H8/3854 (2)	430	Table condition amended $V_{cc} = 2.7$ V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0$ V to 5.5 V of H8/3854F, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C* ² , including subactive mode, unless otherwise specified. Table amended			
		ItemSymbolAllowable output lowI oLcurrent (per pin)I DAllowable output lowDI OL			
		current (total) Allowable –I _{он} output high current (per pin) Allowable Σ–I _{он} output high current (total)			
		Table note amended Notes: 2. The guaranteed temperature as an electrical abare statistic for dia ture			

characteristic for die type products is 75°C.

Item	Page	Revision (See Manual for Details)
16.2.3 AC Characteristics	431	Description amended Table 16.4 shows the control signal timing, and table 16.5 shows the serial interface timing, of the H8/3852, H8/3853, and H8/3854.
Table 16.4 Control Signal Timing of H8/3852, H8/3853, and H8/3854	-	Table condition amended $V_{cc} = 2.7$ V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_cC = 3.0$ V to 5.5 V of H8/3854F, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}C$ to $+75^{\circ}C^{*3}$, including subactive mode,
	432	unless otherwise specified. Table note amended
	-	Notes: 3. The guaranteed temperature as an electrical characteristic for die type products is 75°C.
Table 16.5 Serial	433	Table condition amended
Interface (SCI3) Timing of H8/3852, H8/3853, and H8/3854		$V_{cc} = 2.7$ V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0$ V to 5.5 V of H8/3854F, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to +75°C*, unless otherwise specified.
		Table note amended
		Note: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.
16.2.4 A/D Converter	434	Table condition amended
Characteristics Table 16.6 A/D Converter		$V_{cc} = 2.7$ V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0$ V to 5.5 V of H8/3854F, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to +75°C*, unless otherwise specified.
Characteristics of H8/3852, H8/3853, and		Table note amended
H8/3854		Note: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.
16.2.5 LCD	435	Table condition amended
Characteristics Table 16.7 LCD Characteristics of H8/3852, H8/3853, and H8/3854	, and	$V_{\rm cc}$ = 2.7 V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{\rm cc}$ = 3.0 V to 5.5 V of H8/3854F, $V_{\rm ss}$ = 0.0 V, $T_{\rm a}$ = -20°C to +75°C* ² , including subactive mode, unless otherwise specified.
10,000-		Table note amended
		Notes: 2. The guaranteed temperature as an electrical characteristic for die type products is 75°C.

Item	Page	Revision (See Manual for Details)
B.2 Register	492	Bit table amended
Descriptions		P4 ₃ /IRQ ₀ pin function switch
PMR2—Port mode		0 Functions as P4 ₃ input pin
register 2		1 Functions as \overline{IRQ}_0 input pin

All trademarks and registered trademarks are the property of their respective owners.

Contents

Secti	on 1	Overview	1		
1.1	Overvi	ew	1		
1.2	Interna	l Block Diagram	6		
1.3	Pin Arrangement and Functions				
	1.3.1	Pin Arrangement	8		
	1.3.2	Pin Functions	20		
Secti	on 2	CPU	27		
2.1		ew	27		
2.1	2.1.1	Features	27		
	2.1.2	Address Space	28		
	2.1.2	Register Configuration	28		
2.2		er Descriptions	29		
2.2	2.2.1	General Registers	29		
	2.2.2	Control Registers	29		
	2.2.3	Initial Register Values	31		
2.3	Data F	ormats	31		
	2.3.1	Data Formats in General Registers	32		
	2.3.2	Memory Data Formats	33		
2.4	Addres	ssing Modes	34		
	2.4.1	Addressing Modes	34		
	2.4.2	Effective Address Calculation	36		
2.5	Instruc	tion Set	40		
	2.5.1	Data Transfer Instructions	42		
	2.5.2	Arithmetic Operations	44		
	2.5.3	Logic Operations	45		
	2.5.4	Shift Operations	45		
	2.5.5	Bit Manipulations	47		
	2.5.6	Branching Instructions	51		
	2.5.7	System Control Instructions	53		
	2.5.8	Block Data Transfer Instruction	54		
2.6	Basic (Dperational Timing	55		
	2.6.1	Access to On-Chip Memory (RAM, ROM)	55		
	2.6.2	Access to On-Chip Peripheral Modules	56		
2.7	CPU S	tates	57		
	2.7.1	Overview	57		
	2.7.2	Program Execution State	59		

	2.7.3	Program Halt State	59
	2.7.4	Exception-Handling State	59
2.8	Memor	у Мар	60
	2.8.1	Memory Map	60
2.9	Applica	ation Notes	62
	2.9.1	Notes on Data Access	62
	2.9.2	Notes on Bit Manipulation	64
	2.9.3	Notes on Use of the EEPMOV Instruction	70
Secti	ion 3 1	Exception Handling	71
3.1		ew	71
3.2			71
	3.2.1	Overview	71
	3.2.2	Reset Sequence	71
	3.2.3	Interrupt Immediately after Reset	72
3.3	Interru	Dts	73
	3.3.1	Overview	73
	3.3.2	Interrupt Control Registers	75
	3.3.3	External Interrupts	83
	3.3.4	Internal Interrupts	84
	3.3.5	Interrupt Operations	84
	3.3.6	Interrupt Response Time	89
3.4	Applica	ation Notes	89
	3.4.1	Notes on Stack Area Use	89
	3.4.2	Notes on Rewriting Port Mode Registers	90
Secti	ion 4	Clock Pulse Generators	93
4.1	Overvie	ew	93
	4.1.1	Block Diagram	93
	4.1.2	System Clock and Subclock	93
4.2	System	Clock Generator	94
4.3	Subclo	ck Generator	96
4.4	Prescal	ers	99
4.5	Note or	n Oscillators	100
Secti	ion 5 1	Power-Down Modes	101
5.1	Overvie	ew	101
	5.1.1	System Control Registers	
5.2	Sleep N	10de	
	5.2.1	Transition to Sleep Mode	

	5.2.2	Clearing Sleep Mode	107
5.3	Standb	y Mode	108
	5.3.1	Transition to Standby Mode	108
	5.3.2	Clearing Standby Mode	108
	5.3.3	Oscillator Settling Time after Standby Mode Is Cleared	108
	5.3.4	Transition to Standby Mode and Port Pin States	109
	5.3.5	Notes on External Input Signal Changes before/after Standby Mode	110
5.4	Watch	Mode	111
	5.4.1	Transition to Watch Mode	111
	5.4.2	Clearing Watch Mode	
	5.4.3	Oscillator Settling Time after Watch Mode Is Cleared	112
	5.4.4	Notes on External Input Signal Changes before/after Watch Mode	112
5.5	Subslee	ep Mode	112
	5.5.1	Transition to Subsleep Mode	112
	5.5.2	Clearing Subsleep Mode	
5.6	Subacti	ive Mode	
	5.6.1	Transition to Subactive Mode	113
	5.6.2	Clearing Subactive Mode	113
	5.6.3	Operating Frequency in Subactive Mode	114
5.7	Active	(medium-speed) Mode	
	5.7.1	Transition to Active (medium-speed) Mode	114
	5.7.2	Clearing Active (medium-speed) Mode	
	5.7.3	Operating Frequency in Active (medium-speed) Mode	114
5.8	Direct '	Transfer	
	5.8.1	Direct Transfer Overview	
	5.8.2	Calculation of Direct Transfer Time before Transition	
	5.8.3	Notes on External Input Signal Changes before/after Direct Transition	118
C			110
		ROM	
6.1			
()	6.1.1	Block Diagram	
6.2		ew of Flash Memory	
	6.2.1	Features	
	6.2.2	Block Diagram	
	6.2.3	Flash Memory Operating Modes	
	6.2.4	Pin Configuration	
62	6.2.5	Register Configuration	
6.3		Aemory Register Descriptions	
	6.3.1	Flash Memory Control Register 1 (FLMCR1)	
	6.3.2	Flash Memory Control Register 2 (FLMCR2)	129

	6.3.3	Erase Block Register (EBR)	130
	6.3.4	Mode Control Register (MDCR)	131
	6.3.5	System Control Register 3 (SYSCR3)	131
6.4	On-Boa	rd Programming Modes	132
	6.4.1	Boot Mode	133
	6.4.2	User Program Mode	138
6.5	Flash M	Iemory Programming/Erasing	140
	6.5.1	Program Mode	140
	6.5.2	Program-Verify Mode	141
	6.5.3	Erase Mode	143
	6.5.4	Erase-Verify Mode	143
6.6	Flash M	Iemory Protection	145
	6.6.1	Hardware Protection	145
	6.6.2	Software Protection	146
	6.6.3	Error Protection	146
6.7	Interrup	ot Handling during Flash Memory Programming and Erasing	148
6.8	Flash M	Iemory Writer Mode	149
	6.8.1	Writer Mode Setting	149
	6.8.2	Socket Adapter and Memory Map	149
	6.8.3	Writer Mode Operation	153
	6.8.4	Memory Read Mode	154
	6.8.5	Auto-Program Mode	158
	6.8.6	Auto-Erase Mode	160
	6.8.7	Status Read Mode	161
	6.8.8	Status Polling	162
	6.8.9	Writer Mode Transition Time	163
	6.8.10	Notes on Memory Programming	163
6.9	Flash M	Iemory Programming and Erasing Precautions	164
6.10	Notes v	when Converting the F-ZTAT Application Software to the Mask-ROM Versions	166
Secti	on 7 l	RAM	167
7.1	Overvie	2W	167
	7.1.1	Block Diagram	167
Secti	on Q I	/O Ports	160
8.1		2W	
8.2		Q	
	8.2.1	Overview	
	8.2.2	Register Configuration and Description	
	8.2.3	Pin Functions	1/8

	8.2.4	Pin States	181
	8.2.5	MOS Input Pull-Up	182
8.3	Port 2		182
	8.3.1	Overview	182
	8.3.2	Register Configuration and Description	183
	8.3.3	Pin Functions	187
	8.3.4	Pin States	188
8.4	Port 3 (H8/3857 Group Only)	189
	8.4.1	Overview	189
	8.4.2	Register Configuration and Description	189
	8.4.3	Pin Functions	192
	8.4.4	Pin States	193
	8.4.5	MOS Input Pull-Up	193
8.5	Port 4		194
	8.5.1	Overview	194
	8.5.2	Register Configuration and Description	194
	8.5.3	Pin Functions	196
	8.5.4	Pin States	197
8.6	Port 5		197
	8.6.1	Overview	197
	8.6.2	Register Configuration and Description	198
	8.6.3	Pin Functions	200
	8.6.4	Pin States	200
	8.6.5	MOS Input Pull-Up	200
8.7	Port 9 [Chip-Internal I/O port]	201
	8.7.1	Overview	201
	8.7.2	Register Configuration and Description	201
	8.7.3	Pin Functions	202
	8.7.4	Pin States	203
8.8	Port A	[Chip-Internal I/O port]	203
	8.8.1	Overview	203
	8.8.2	Register Configuration and Description	
	8.8.3	Pin Functions	205
	8.8.4	Pin States	205
8.9	Port B.		206
	8.9.1	Overview	206
	8.9.2	Register Configuration and Description	207
Secti	on 9	Гimers	209
9.1		2W	

9.2	Timer A	4	210
	9.2.1	Overview	210
	9.2.2	Register Descriptions	212
	9.2.3	Timer Operation	214
	9.2.4	Timer A Operation States	215
9.3	Timer l	В	215
	9.3.1	Overview	215
	9.3.2	Register Descriptions	217
	9.3.3	Timer Operation	219
	9.3.4	Timer B Operation States	220
9.4	Timer (C (H8/3857 Group Only)	220
	9.4.1	Overview	220
	9.4.2	Register Descriptions	222
	9.4.3	Timer Operation	224
	9.4.4	Timer C Operation States	226
9.5	Timer l	F	226
	9.5.1	Overview	226
	9.5.2	Register Descriptions	229
	9.5.3	Interface with the CPU	235
	9.5.4	Timer Operation	238
	9.5.5	Application Notes	240
9.6	Watchc	log Timer [H8/3857F and H8/3854F Only]	241
	9.6.1	Overview	241
	9.6.2	Register Descriptions	243
	9.6.3	Operation	246
	9.6.4	Watchdog Timer Operating Modes	247
Secti	on 10	Serial Communication Interface	249
10.1		ew	
10.2		18/3857 Group Only)	
	10.2.1	Overview	250
	10.2.2	Register Descriptions	
	10.2.3	Operation	256
	10.2.4	Interrupts	259
	10.2.5	Application Notes	259
10.3			
		Overview	
		Register Descriptions	
		Operation	
	10.3.4	Operation in Asynchronous Mode	283

	10.3.5	Operation in Synchronous Mode	292
	10.3.6	Multiprocessor Communication Function	299
	10.3.7	Interrupts	305
	10.3.8	Application Notes	306
Secti	on 11	14-Bit PWM (H8/3857 Group Only)	311
11.1	Overvie	2W	311
	11.1.1	Features	311
	11.1.2	Block Diagram	311
	11.1.3	Pin Configuration	312
	11.1.4	Register Configuration	312
11.2	Registe	r Descriptions	312
	11.2.1	PWM Control Register (PWCR)	312
	11.2.2	PWM Data Registers U and L (PWDRU, PWDRL)	313
11.3	Operati	on	314
Secti	on 12	A/D Converter	315
12.1	Overvie	2W	315
	12.1.1	Features	315
	12.1.2	Block Diagram	316
	12.1.3	Pin Configuration	317
	12.1.4	Register Configuration	317
12.2	Registe	r Descriptions	318
	12.2.1	A/D Result Register (ADRR)	318
	12.2.2	A/D Mode Register (AMR)	318
	12.2.3	A/D Start Register (ADSR)	320
12.3	Operati	on	321
	12.3.1	A/D Conversion Operation	321
	12.3.2	Start of A/D Conversion by External Trigger Input	321
12.4	Interrup	pts	322
12.5	Typical	Use	322
12.6	Applica	ation Notes	325
Secti		Dot Matrix LCD Controller (H8/3857 Group)	
13.1	Overvie	2W	327
		Features	
	13.1.2	Block Diagram	328
	13.1.3	Pin Configuration	
	13.1.4	6 6	
13.2	Registe	r Descriptions	330

	13.2.1	Index Register (IR)	330
	13.2.2	Control Register 1 (LR0)	331
	13.2.3	Control Register 2 (LR1)	333
	13.2.4	Address Register (LR2)	335
	13.2.5	Frame Frequency Setting Register (LR3)	336
	13.2.6	Display Data Register (LR4)	338
	13.2.7	Display Start Line Register (LR5)	338
	13.2.8	Blink Register (LR6)	339
	13.2.9	Blink Start Line Register (LR8)	339
	13.2.10	Blink End Line Register (LR9)	340
	13.2.11	Contrast Control Register (LRA)	340
13.3	Operati	on	342
	13.3.1	System Overview	342
	13.3.2	CPU Interface	343
	13.3.3	LCD Drive Pin Functions	346
	13.3.4	Display Memory Configuration and Display	347
	13.3.5	Display Data Output	349
	13.3.6	Register and Display Memory Access	353
	13.3.7	Scroll Function	356
	13.3.8	Blink Function	358
	13.3.9	Module Standby Mode	360
	13.3.10	Power-On and Power-Off Procedures	361
	13.3.11	Power Supply Circuit	362
	13.3.12	LCD Drive Power Supply Voltages	363
	13.3.13	LCD Voltage Generation Circuit	365
	13.3.14	Contrast Control Circuit	373
	13.3.15	LCD Drive Bias Selection Circuit	374
Secti	on 14	Dot Matrix LCD Controller (H8/3854 Group)	375
14.1	Overvie	2W	375
	14.1.1	Features	375
	14.1.2	Block Diagram	376
	14.1.3	Pin Configuration	377
	14.1.4	Register Configuration	377
14.2	Registe	r Descriptions	378
	14.2.1	Index Register (IR)	378
	14.2.2	Control Register 1 (LR0)	378
	14.2.3	Control Register 2 (LR1)	379
	14.2.4	Address Register (LR2)	381
	14.2.5	Frame Frequency Setting Register (LR3)	382

	14.2.6	Display Data Register (LR4)	383
14.3	Operati	on	384
	14.3.1	System Overview	384
	14.3.2	CPU Interface	385
	14.3.3	LCD Drive Pin Functions	388
	14.3.4	Display Memory Configuration and Display	389
	14.3.5	Display Data Output	390
	14.3.6	Register and Display Memory Access	391
	14.3.7	Module Standby Mode	395
	14.3.8	Power-On and Power-Off Procedures	396
	14.3.9	Power Supply Circuit	396
	14.3.10	LCD Drive Power Supply Voltages	397
	14.3.11	LCD Voltage Generation Circuit	399
	14.3.12	LCD Drive Bias Selection Circuit	402
Secti	on 15	Electrical Characteristics (H8/3857 Group)	403
15.1	H8/385	5, H8/3856, and H8/3857 Absolute Maximum Ratings	
	(Standa	rd Specifications)	403
15.2		5, H8/3856, and H8/3857 Electrical Characteristics (Standard Specifications)	
		Power Supply Voltage and Operating Range	
	15.2.2	DC Characteristics	406
	15.2.3	AC Characteristics	411
	15.2.4	A/D Converter Characteristics	415
	15.2.5	LCD Characteristics	416
	15.2.6	Flash Memory Characteristics	418
15.3	Operati	on Timing	419
15.4	Output	Load Circuit	422
15.5	Usage 1	Note	422
Secti	on 16	Electrical Characteristics (H8/3854 Group)	423
16.1	H8/385	2, H8/3853, and H8/3854 Absolute Maximum Ratings	
		rd Specifications)	
16.2		2, H8/3853, and H8/3854 Electrical Characteristics (Standard Specifications)	
		Power Supply Voltage and Operating Range	
	16.2.2	DC Characteristics	426
	16.2.3	AC Characteristics	431
	16.2.4	A/D Converter Characteristics	434
	16.2.5	LCD Characteristics	435
	16.2.6	Flash Memory Characteristics	436
16.3	Operati	on Timing	437

16.4	Output Load Circuit	438
16.5	Usage Note	439
Appe	endix A CPU Instruction Set	441
A.1	Instructions	441
A.2	Operation Code Map	450
A.3	Number of Execution States	452
Δnne	endix B Internal I/O Registers	150
B.1	Register Addresses	
D.1	B.1.1 H8/3857 Group Addresses	
	B.1.1 H8/3854 Group Addresses	
B.2	Register Descriptions	
D .2	Register Descriptions	-00
Appe	endix C I/O Port Block Diagrams	508
C.1	Block Diagram of Port 1	
C.2	Block Diagram of Port 2	513
C.3	Block Diagram of Port 3 (H8/3857 Group Only)	516
C.4	Block Diagram of Port 4	520
C.5	Block Diagram of Port 5	523
C.6	Block Diagram of Port 9	524
C.7	Block Diagram of Port A	525
C.8	Block Diagram of Port B	526
Appe	endix D Port States in the Different Processing States	527
Appe	endix E List of Product Codes	528
Appe	endix F Package Dimensions	529

Section 1 Overview

1.1 Overview

The H8/300L Series is a series of single-chip microcomputers (MCU: microcomputer unit), built around the high-speed H8/300L CPU and equipped with peripheral system functions on-chip.

Within the H8/300L Series, the H8/3857 Group and H8/3854 Group feature on-chip liquid crystal display (LCD) controllers. Other on-chip peripheral functions include a LCD controller, timers, serial communication interface, and an analog-to-digital (A/D) converter. Together these functions make the H8/3857 Group and H8/3854 Group ideally suited for embedded control of systems requiring an LCD display.

The H8/3857 Group comprises the H8/3855, with 40 kbytes of ROM and 2 kbytes of RAM onchip, the H8/3856, with 48 kbytes of ROM and 2 kbytes of RAM, and the H8/3857, with 60 kbytes of ROM and 2 kbytes of RAM. H8/3854 Group mask ROM versions are the H8/3852, with 16 kbytes of ROM and 1 kbyte of RAM on-chip, the H8/3853, with 24 kbytes of ROM and 1 kbyte of RAM, and the H8/3854, with 32 kbytes of ROM and 1 kbyte of RAM.

Two F-ZTAT versions—the H8/3857F and H8/3854F—are also available, with userprogrammable on-chip flash ROM. These models have 60 kbytes of ROM and 2 kbytes of RAM.

Note that the H8/3854 mask ROM and F-ZTAT versions have different ROM and RAM sizes.

Table 1.1 summarizes the features of the H8/3857 Group and H8/3854 Group.

Renesas

Table 1.1 Features

Item	Description			
CPU	High-speed H8/300L CPU			
	General-register architecture			
	General registers: Sixteen 8-bit registers (can be used as eight 16-bit registers)			
	Operating speed			
	 Max. operating speed: 5 MHz 			
	— Add/subtract: 0.4 μ s (operating at 5 MHz)			
	— Multiply/divide: 2.8 μ s (operating at 5 MHz)			
	 — Can run on 32.768 kHz subclock 			
	 Instruction set compatible with H8/300 CPU 			
	 Instruction length of 2 bytes or 4 bytes 			
	 Basic arithmetic operations between registers 			
	 MOV instruction for data transfer between memory and registers 			
	Typical instructions			
	• Multiply (8 bits × 8 bits)			
	• Divide (16 bits ÷ 8 bits)			
	Bit accumulator			
	Register-indirect designation of bit position			
Interrupts	H8/3857 Group: 29 interrupt sources			
	 13 external interrupt sources: IRQ₄ to IRQ₀, WKP₇ to WKP₀ 			
	16 internal interrupt sources			
	H8/3854 Group: 26 interrupt sources			
	• 12 external interrupt sources: IRQ_4 , IRQ_3 , IRQ_1 , IRQ_0 , WKP_7 to WKP_0			
	14 internal interrupt sources			
Clock pulse generators	Two on-chip clock pulse generators			
	System clock pulse generator: 1 to 10 MHz			
	Subclock pulse generator: 32.768 kHz			
Power-down modes	Six power-down modes			
	Sleep mode			
	Standby mode			
	Watch mode			
	Subsleep mode			
	Subactive mode			
	Active (medium-speed) mode			

Item	Description
Memory	H8/3857 Group
	 H8/3855: 40-kbyte ROM, 2-kbyte RAM
	 H8/3856: 48-kbyte ROM, 2-kbyte RAM
	 H8/3857: 60-kbyte ROM, 2-kbyte RAM
	 H8/3857F: 60-kbyte ROM, 2-kbyte RAM
	H8/3854 Group
	 H8/3852: 16-kbyte ROM, 1-kbyte RAM
	 H8/3853: 24-kbyte ROM, 1-kbyte RAM
	 H8/3854: 32-kbyte ROM, 1-kbyte RAM
	 H8/3854F: 60-kbyte ROM, 2-kbyte RAM
	Note that the H8/3854 (mask ROM version) and H8/3854F (F-ZTAT version) have different ROM and RAM sizes.
I/O ports	H8/3857 Group: 44 I/O port pins
	• I/O pins: 35
	Input pins: 9
	H8/3854 Group: 29 I/O port pins
	• I/O pins: 24
	Input pins: 5
Timers	Four on-chip timers (three in the H8/3854 Group)
	Timer A: 8-bit timer
	Count-up timer with selection of eight internal clock signals divided from the system clock $(\phi)^{*^1}$ and four clock signals divided from the watch clock $(\phi_w)^{*^1}$
	Timer B: 8-bit timer
	 Count-up timer with selection of seven internal clock signals or event input from external pin
	— Auto-reloading
	Timer C: 8-bit timer (in H8/3857 Group only)
	 Count-up/count-down timer with selection of seven internal clock signals or event input from external pin
	— Auto-reloading
	Timer F: 16-bit timer
	 Can be used as two independent 8-bit timers.
	 Count-up timer with selection of four internal clock signals or event input from external pin
	 Compare-match function with toggle output

1. Overview

Item	Description		
Serial communication	H8/3857 Group: Two channels on chip		
interface	SCI1: synchronous serial interface		
	Choice of 8-bit or 16-bit data transfer		
	SCI3: 8-bit synchronous or asynchronous serial interface		
	Built-in function for multiprocessor communication		
	H8/3854 Group: One channel on chip		
	SCI3: 8-bit synchronous or asynchronous serial interface		
	Built-in function for multiprocessor communication		
14-bit PWM	Pulse-division PWM output for reduced ripple		
(in H8/3857 Group only)	Can be used as a 14-bit D/A converter by connecting to an external low-pass filter.		
A/D converter	H8/3857 Group		
	 Successive approximations using a resistance ladder resolution: 8 bits 		
	8-channel analog input port		
	 Conversion time: 31/		
	H8/3854 Group		
	 Successive approximations using a resistance ladder resolution: 8 bits 		
	4-channel analog input port		
	• Conversion time: $31/\phi$ or $62/\phi$ per channel		
LCD controller	H8/3857 Group: Up to 64 segment pins and 32 common pins		
	Choice of three duty cycles (1/8, 1/16, 1/32)		
	With 1/8 duty selected: 64 SEG \times 8 COM, 40 SEG \times 8 COM		
	With 1/16 duty selected: 56 SEG \times 16 COM, 40 SEG \times 16 COM		
	With 1/32 duty selected: 40 SEG × 32 COM		
	Built-in 2048-bit display data RAM		
	Built-in 2× or 3× LCD step-up circuit		
	Built-in contrast control circuit		
	Built-in LCD power supply bleeder resistance and voltage follower op- amp circuits		
	H8/3854 Group: 40 segment pins and up to 16 common pins		
	Choice of two duty cycles (1/8, 1/16)		
	With 1/8 duty selected: 40 SEG \times 8 COM		
	With 1/16 duty selected: 40 SEG × 16 COM		
	Built-in 640-bit display data RAM		
	Built-in LCD power supply bleeder resistance		

Item

Description

Product lineup

H8/3857 Group

Part No.

i un no.			
Mask ROM Version	F-ZTAT Version	– Package	ROM/RAM Size
HD6433855FQ	_	144-pin QFP (FP-144H)	ROM: 40 kbytes
HD6433855TG	_	144-pin TQFP (TFP-144)	RAM: 2 kbytes
HCD6433855	—	Die	_
HD6433856FQ	—	144-pin QFP (FP-144H)	ROM: 48 kbytes
HD6433856TG	—	144-pin TQFP (TFP-144)	RAM: 2 kbytes
HCD6433856	—	Die	_
HD6433857FQ	HD64F3857FQ	144-pin QFP (FP-144H)	ROM: 60 kbytes
HD6433857TG	HD64F3857TG	144-pin TQFP (TFP-144)	RAM: 2 kbytes
HCD6433857	HCD64F3857	Die	

H8/3854 Group

Pa	rt No.		
Mask ROM Version* ²	F-ZTAT Version	– Package	ROM/RAM Size
HD6433852H	—	100-pin QFP (FP-100B)	ROM: 16 kbytes
HD6433852W	—	100-pin TQFP (TFP-100G)	RAM: 1 kbyte
HCD6433852	—	Die	-
HD6433853H	_	100-pin QFP (FP-100B)	ROM: 24 kbytes
HD6433853W	—	100-pin TQFP (TFP-100G)	RAM: 1 kbyte
HCD6433853	_	Die	-
HD6433854H	_	100-pin QFP (FP-100B)	ROM: 32 kbytes
HD6433854W	—	100-pin TQFP (TFP-100G)	RAM: 1 kbyte
HCD6433854	_	Die	-
	HD64F3854H	100-pin QFP (FP-100B)	ROM: 60 kbytes
	HD64F3854W	100-pin TQFP (TFP-100G)	RAM: 2 kbytes
	HCD64F3854	Die	-

Notes: 1. ϕ and ϕ_w are defined in section 4, Clock Pulse Generators.

2. Under development

1.2 Internal Block Diagram

Figures 1.1 and 1.2 show internal block diagrams of the H8/3857 Group and H8/3854 Group.

Figure 1.1 H8/3857 Group Internal Block Diagram

Rev.3.00 Jul. 19, 2007 page 6 of 532 REJ09B0397-0300

1. Overview

Figure 1.2 H8/3854 Group Internal Block Diagram

1.3 Pin Arrangement and Functions

1.3.1 Pin Arrangement

The pin arrangements of the H8/3857 Group and H8/3854 Group are shown in figures 1.3 and 1.4. The HCD64F3857 pad layout is shown in figure 1.5, and the pad coordinates in table 1.2; the HCD6433855, HCD6433856, and HCD6433857 pad layout is shown in figure 1.6, and the pad coordinates in table 1.3; the HCD64F3854 pad layout is shown in figure 1.7, and the pad coordinates in table 1.4; and the HCD6433852, HCD6433853, and HCD6433854 pad layout is shown in figure 1.8, and the pad coordinates in table 1.5.

Figure 1.3 H8/3857 Group Pin Arrangement (FP-144H, TFP-144: Top View)

Rev.3.00 Jul. 19, 2007 page 8 of 532 REJ09B0397-0300

Figure 1.4 H8/3854 Group Pin Arrangement (FP-100B, TFP-100G: Top View)

1. Overview

Figure 1.5 Pad Layout of HCD64F3857 (F-ZTAT Version) (Top View)
Pad		Coord	inates*1	Pad		Coordinates*1		Pad		Coord	inates*1
	Pad Name	Χ (μm)	Υ (μm)	No.	Pad Name	X (μm)	Υ (μm)	No.	Pad Name	X (μm)	Υ (μm)
1	P5 ₇ /WKP ₇	-3348	2928	32	TEST	-3348	-2264	67	SEG15	2032	-3463
2	P5 ₆ /WKP ₆	-3348	2784	33	TEST2	-3348	-2404	68	SEG16	2196	-3463
3	$P5_{5}/\overline{WKP}_{5}$	-3348	2640	34	V _{cc}	-3348	-2599	69	SEG17	2360	-3463
4	$P5_4/\overline{WKP}_4$	-3348	2506	35	RES	-3348	-2794	70	SEG18	2522	-3463
4-2	NC4* ²	-3348	2372	36	FWE	-3348	-2944	71	SEG19	2686	-3463
5	P5 ₃ /WKP ₃	-3348	2238	37	COM1	-2862	-3463	72	SEG20	2848	-3463
5-2	NC3* ²	-3348	2044	38	COM2	-2700	-3463	73	SEG21	3348	-2907
6	$P5_2/\overline{WKP}_2$	-3348	1854	39	COM3	-2536	-3463	74	SEG22	3348	-2747
6-2	NC2* ²	-3348	1720	40	COM4	-2374	-3463	75	SEG23	3348	-2587
7	P5,/WKP	-3348	1590	41	COM5	-2210	-3463	76	SEG24	3348	-2427
7-2	NC1* ²	-3348	1456	42	COM6	-2046	-3463	77	SEG25	3348	-2267
8	$P5_{o}/\overline{WKP}_{o}$	-3348	1316	43	COM7	-1884	-3463	78	SEG26	3348	-2107
9	P2 ₇	-3348	1173	44	COM8	-1720	-3463	79	SEG27	3348	-1947
10	P2 ₆	-3348	1039	45	COM9/SEG64	-1556	-3463	80	SEG28	3348	-1787
11	P2 ₅	-3348	905	46	COM10/SEG63	-1394	-3463	81	SEG29	3348	-1627
12	P2 ₄	-3348	771	47	COM11/SEG62	-1231	-3463	82	SEG30	3348	-1467
13	P2 ₃	-3348	637	48	COM12/SEG61	-1069	-3463	83	SEG31	3348	-1307
14	P2 ₂	-3348	503	49	COM13/SEG60	-905	-3463	84	SEG32	3348	-1148
15	P2,/UD	-3348	369	50	COM14/SEG59	-741	-3463	85	SEG33	3348	-988
16	$P2_0/\overline{IRQ}_4/\overline{ADTRG}$	-3348	235	51	COM15/SEG58	-579	-3463	86	SEG34	3348	-828
17	AV _{cc}	-3348	22	52	COM16/SEG57	-415	-3463	87	SEG35	3348	-668
18	PB ₀ /AN ₀	-3348	-143	53	SEG1	-251	-3463	88	SEG36	3348	-508
19	PB ₁ /AN ₁	-3348	-273	54	SEG2	-89	-3463	89	SEG37	3348	-348
20	PB ₂ /AN ₂	-3348	-403	55	SEG3	75	-3463	90	SEG38	3348	-188
21	PB_{3}/AN_{3}	-3348	-533	56	SEG4	237	-3463	91	SEG39	3348	-28
22	PB_4/AN_4	-3348	-663	57	SEG5	401	-3463	92	SEG40	3348	132
23	PB_{s}/AN_{s}	-3348	-793	58	SEG6	565	-3463	93	COM32/SEG41	3348	292
24	PB_{6}/AN_{6}	-3348	-923	59	SEG7	727	-3463	94	COM31/SEG42	3348	452
25	PB ₇ /AN ₇	-3348	-1053	60	SEG8	891	-3463	95	COM30/SEG43	3348	612
26	AV _{ss}	-3348	-1228	61	SEG9	1055	-3463	96	COM29/SEG44	3348	772
27	X ₂	-3348	-1438	62	SEG10	1217	-3463	97	COM28/SEG45	3348	932
28	X,	-3348	-1568	63	SEG11	1380	-3463	98	COM27/SEG46	3348	1092
29	V _{ss}	-3348	-1763	64	SEG12	1542	-3463	99	COM26/SEG47	3348	1252
30		-3348	-1981	65	SEG13	1706	-3463	100	COM25/SEG48	3348	1411
31	OSC,	-3348	-2134	66	SEG14	1870	-3463	101	COM24/SEG49	3348	1571

Table 1.2 HCD64F3857 Pad Coordinates

Rev.3.00 Jul. 19, 2007 page 11 of 532 REJ09B0397-0300

Pad		Coord	linates*1	Pad		Coordinates*1		Pad		Coordinates*1	
No.	Pad Name	X (μm)	Υ (μm)	No.	Pad Name	X (μm)	Υ (μm)	No.	Pad Name	X (μm)	Υ (μm)
102	COM23/SEG50	3348	1731	117	V _{ci}	1471	3463	132	P3 ₀ /SCK ₁	-982	3463
103	COM22/SEG51	3348	2063	118	C ₂ -	1341	3463	133	$P1_7/\overline{IRQ}_3/TMIF$	-1116	3463
104	COM21/SEG52	3348	2223	119	C ₂ +	1125	3463	134	P1 ₆ /IRQ ₂ /TMIC	-1250	3463
105	COM20/SEG53	3348	2383	120	C,-	925	3463	135	$P1_{5}/\overline{IRQ}_{1}/TMIB$	-1383	3463
106	COM19/SEG54	3348	2543	121	C ₁ +	747	3463	136	P1₄/PWM	-1611	3463
107	COM18/SEG55	3348	2703	122	VLOUT	569	3463	137	P1 ₃	-1761	3463
108	COM17/SEG56	3348	2863	123	V	395	3463	138	P1 ₂ /TMOFH	-1911	3463
109	V5OUT	2776	3463	124	V _{ss}	226	3463	139	P1,/TMOFL	-2045	3463
110	V4OUT	2616	3463	125	P3 ₇	74	3463	140	P1 ₀ /TMOW	-2180	3463
111	V3OUT	2456	3463	126	P3 ₆	-78	3463	141	$P4_{3}/\overline{IRQ}_{0}$	-2447	3463
112	V2OUT	2296	3463	127	P3₅	-234	3463	142	P4 ₂ /TXD	-2587	3463
113	V1OUT	2136	3463	128	P3 ₄	-386	3463	143	P4,/RXD	-2737	3463
114	V ₄	1976	3463	129	P3 ₃	-538	3463	144	P4 ₀ /SCK ₃	-2888	3463
115	V ₃₄	1816	3463	130	P3 ₂ /SO ₁	-690	3463				
116	V ₃	1656	3463	131	P3, /SI,	-848	3463	-			

Notes: 1. Numbers indicate coordinates at the center of the pad area, with an accuracy of ±5 μm. The origin is the center of the chip, and the center is at a point halfway between pads, horizontally and vertically.

2. NC1 to NC4 are test pads; they should be left open.

1. Overview

Table 1.3 HCD6433855, HCD6433856, and HCD6433857 Pad Coordinates
--

No. Pad Name X (µm) Y (µm) No. Pad Name X (µm) Y (µm) 1 P5,/WKP, -2913 2355 36 FWE** -2913 -2534 71 SEG19 2305 -2913 2 P5,/WKP, -2913 2355 37 COM1 -2495 -2913 73 SEG21 2913 -2495 3 P5,/WKP, -2913 200 39 COM2 -2913 75 SEG21 2913 -2495 5 P5,/WKP, -2913 1000 40 COM4 -1955 -2913 76 SEG21 2913 -1755 7 P5,/WKP, -2913 1600 42 COM6 -1645 -2913 70 SEG26 2913 -1755 10 P2, -2913 1100 44 COM10/SEG8 -1105 -2913 80 SEG27 2913 -1655 11 P2, -2913 1011 47 COM10/SEG80	Pad		Coord	linates*1	Pad		Coordinates*1		Pad		Coordinates*1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Pad Name	X (μm)	Υ (μm)		Pad Name	X (μm)	Υ (μm)		Pad Name	X (μm)	Υ (μm)
3 P5,/WKP ₁ -2913 2215 38 COM2 -2905 -2913 73 SEG21 2913 -2495 4 P5,/WKP ₁ -2913 2070 39 COM3 -2125 -2913 74 SEG22 2913 -2305 5 P5,/WKP ₁ -2913 1930 40 COM4 -1955 -2913 76 SEG24 2913 -2125 6 P5,/WKP ₁ -2913 1560 42 COM6 -1645 -2913 77 SEG24 2913 -1645 9 P2, -2913 1400 44 COM7 -1505 -2913 78 SEG27 2913 -1645 9 P2, -2913 1011 47 COM10/SEG64 -1235 -2913 80 SEG29 2913 -1305 10 P2, -2913 1011 47 COM13/SEG64 -2913 83 SEG31 2913 -1105 13 P2, -2	1	P5 ₇ /WKP ₇	-2913	2515	36	FWE* ²	-2913	-2534	71	SEG19	2305	-2913
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	P5 ₆ /WKP ₆	-2913	2365	37	COM1	-2495	-2913	72	SEG20	2495	-2913
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	$P5_{5}/\overline{WKP}_{5}$	-2913	2215	38	COM2	-2305	-2913	73	SEG21	2913	-2495
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	$P5_4/\overline{WKP}_4$	-2913	2070	39	COM3	-2125	-2913	74	SEG22	2913	-2305
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	P5 ₃ /WKP ₃	-2913	1930	40	COM4	-1955	-2913	75	SEG23	2913	-2125
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	P5 ₂ /WKP ₂	-2913	1795	41	COM5	-1795	-2913	76	SEG24	2913	-1955
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	P5,/WKP,	-2913	1660	42	COM6	-1645	-2913	77	SEG25	2913	-1795
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	P5 ₀ /WKP ₀	-2913	1530	43	COM7	-1505	-2913	78	SEG26	2913	-1645
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	P2 ₇	-2913	1400	44	COM8	-1365	-2913	79	SEG27	2913	-1505
* -2913 1011 47 COM11/SEG62 -975 -2913 82 SEG30 2913 -1105 13 P2_a -2913 881 48 COM11/SEG62 -975 -2913 83 SEG31 2913 -975 14 P2_a -2913 751 49 COM13/SEG60 -715 -2913 84 SEG32 2913 -845 15 P2_a/IRQ_/ADTRG -2913 621 50 COM14/SEG59 -585 -2913 86 SEG32 2913 -715 16 P2_a/IRQ_/ADTRG -2913 491 51 COM15/SEG58 -455 -2913 86 SEG34 2913 -565 17 AV _{cc} -2913 125 53 SEG1 -195 -2913 88 SEG36 2913 -325 19 PB_/AN_a -2913 125 53 SEG3 65 -2913 89 SEG37 2913 -155 20 PB_A/AN_a<	10	P2 ₆	-2913	1271	45	COM9/SEG64	-1235	-2913	80	SEG28	2913	-1365
13 P2, -2913 881 48 COM12/SEG61 -845 -2913 83 SEG31 2913 -975 14 P2, -2913 751 49 COM13/SEG60 -715 -2913 84 SEG32 2913 -845 15 P2, //IRQ, /ADTRG -2913 621 50 COM14/SEG69 -585 -2913 86 SEG34 2913 -585 16 P2, //IRQ, /ADTRG -2913 491 51 COM15/SEG68 -455 -2913 86 SEG34 2913 -585 17 AV _{cc} -2913 290 52 COM16/SEG57 -325 -2913 88 SEG36 2913 -325 19 PB, /AN, -2913 125 53 SEG1 -195 -2913 88 SEG37 2913 -195 20 PB, /AN, -2913 -135 55 SEG3 65 -2913 90 SEG38 2913 -65 21<	11	P2₅	-2913	1141	46	COM10/SEG63	-1105	-2913	81	SEG29	2913	-1235
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	P2 ₄	-2913	1011	47	COM11/SEG62	-975	-2913	82	SEG30	2913	-1105
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	P2 ₃	-2913	881	48	COM12/SEG61	-845	-2913	83	SEG31	2913	-975
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	P2 ₂	-2913	751	49	COM13/SEG60	-715	-2913	84	SEG32	2913	-845
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	P2, /UD	-2913	621	50	COM14/SEG59	-585	-2913	85	SEG33	2913	-715
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	$P2_0/\overline{IRQ}_4/\overline{ADTRG}$	-2913	491	51	COM15/SEG58	-455	-2913	86	SEG34	2913	-585
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	AV _{cc}	-2913	290	52	COM16/SEG57	-325	-2913	87	SEG35	2913	-455
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18	PB ₀ /AN ₀	-2913	125	53	SEG1	-195	-2913	88	SEG36	2913	-325
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	PB ₁ /AN ₁	-2913	-5	54	SEG2	-65	-2913	89	SEG37	2913	-195
22 PB ₄ /AN ₄ -2913 -395 57 SEG5 325 -2913 92 SEG40 2913 195 23 PB ₅ /AN ₅ -2913 -525 58 SEG6 455 -2913 93 COM32/SEG41 2913 325 24 PB ₆ /AN ₆ -2913 -655 59 SEG7 585 -2913 94 COM31/SEG42 2913 455 25 PB ₇ /AN ₇ -2913 -785 60 SEG8 715 -2913 95 COM30/SEG43 2913 585 26 AV _{ss} -2913 -785 60 SEG9 845 -2913 96 COM29/SEG44 2913 715 27 X ₂ -2913 -1169 62 SEG10 975 -2913 97 COM28/SEG45 2913 845 28 X ₁ -2913 -1169 63 SEG11 1105 -2913 98 COM27/SEG46 2913 975 29 V _{ss} -2913 -11428 64 SEG12 1235 -2913 100<	20	PB ₂ /AN ₂	-2913	-135	55	SEG3	65	-2913	90	SEG38	2913	-65
23 PB _s /AN _s -2913 -525 58 SEG6 455 -2913 93 COM32/SEG41 2913 325 24 PB _s /AN _s -2913 -655 59 SEG7 585 -2913 94 COM31/SEG42 2913 455 25 PB _r /AN _r -2913 -785 60 SEG8 715 -2913 96 COM30/SEG43 2913 585 26 AV _{ss} -2913 -960 61 SEG9 845 -2913 96 COM29/SEG44 2913 715 27 X ₂ -2913 -1169 62 SEG10 975 -2913 97 COM28/SEG45 2913 845 28 X ₁ -2913 -1169 63 SEG11 1105 -2913 98 COM27/SEG46 2913 975 29 V _{ss} -2913 -1428 64 SEG12 1235 -2913 99 COM26/SEG47 2913 1105 30	21	PB ₃ /AN ₃	-2913	-265	56	SEG4	195	-2913	91	SEG39	2913	65
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	PB ₄ /AN ₄	-2913	-395	57	SEG5	325	-2913	92	SEG40	2913	195
25 PB ₇ /AN ₇ -2913 -785 60 SEG8 715 -2913 95 COM30/SEG43 2913 585 26 AV _{ss} -2913 -960 61 SEG9 845 -2913 96 COM29/SEG44 2913 715 27 X ₂ -2913 -1169 62 SEG10 975 -2913 97 COM28/SEG45 2913 845 28 X ₁ -2913 -1169 62 SEG11 1105 -2913 98 COM27/SEG46 2913 975 29 V _{ss} -2913 -11299 63 SEG12 1235 -2913 99 COM27/SEG46 2913 1105 30 OSC ₂ -2913 -1581 65 SEG13 1365 -2913 100 COM25/SEG48 2913 1235 31 OSC ₁ -2913 -1734 66 SEG14 1505 -2913 101 COM24/SEG49 2913 1365 3	23	PB_{5}/AN_{5}	-2913	-525	58	SEG6	455	-2913	93	COM32/SEG41	2913	325
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	PB ₆ /AN ₆	-2913	-655	59	SEG7	585	-2913	94	COM31/SEG42	2913	455
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	PB ₇ /AN ₇	-2913	-785	60	SEG8	715	-2913	95	COM30/SEG43	2913	585
28 X1 -2913 -1299 63 SEG11 1105 -2913 98 COM27/SEG46 2913 975 29 V _{ss} -2913 -1428 64 SEG12 1235 -2913 99 COM26/SEG47 2913 1105 30 OSC2 -2913 -1581 65 SEG13 1365 -2913 100 COM26/SEG47 2913 1235 31 OSC1 -2913 -1734 66 SEG14 1505 -2913 101 COM24/SEG49 2913 1365 32 TEST -2913 -1874 67 SEG15 1645 -2913 102 COM23/SEG50 2913 1505 33 TEST2 -2913 -2024 68 SEG16 1795 -2913 103 COM22/SEG51 2913 1645 34 V _{cc} -2913 -2189 69 SEG17 1955 -2913 104 COM21/SEG52 2913 1795	26	AV_{ss}	-2913	-960	61	SEG9	845	-2913	96	COM29/SEG44	2913	715
29 V _{ss} -2913 -1428 64 SEG12 1235 -2913 99 COM26/SEG47 2913 1105 30 OSC2 -2913 -1581 65 SEG13 1365 -2913 100 COM26/SEG47 2913 1235 31 OSC1 -2913 -1734 66 SEG14 1505 -2913 101 COM24/SEG49 2913 1365 32 TEST -2913 -1874 67 SEG15 1645 -2913 102 COM23/SEG50 2913 1505 33 TEST2 -2913 -2024 68 SEG16 1795 -2913 103 COM22/SEG51 2913 1645 34 V _{cc} -2913 -2189 69 SEG17 1955 -2913 104 COM21/SEG52 2913 1795	27	X ₂	-2913	-1169	62	SEG10	975	-2913	97	COM28/SEG45	2913	845
30 OSC2 -2913 -1581 65 SEG13 1365 -2913 100 COM25/SEG48 2913 1235 31 OSC, -2913 -1734 66 SEG14 1505 -2913 101 COM25/SEG48 2913 1365 32 TEST -2913 -1874 67 SEG15 1645 -2913 102 COM23/SEG50 2913 1505 33 TEST2 -2913 -2024 68 SEG16 1795 -2913 103 COM22/SEG51 2913 1645 34 V _{cc} -2913 -2189 69 SEG17 1955 -2913 104 COM21/SEG52 2913 1795	28	X ₁	-2913	-1299	63	SEG11	1105	-2913	98	COM27/SEG46	2913	975
31 OSC, -2913 -1734 66 SEG14 1505 -2913 101 COM24/SEG49 2913 1365 32 TEST -2913 -1874 67 SEG15 1645 -2913 102 COM23/SEG50 2913 1505 33 TEST2 -2913 -2024 68 SEG16 1795 -2913 103 COM22/SEG51 2913 1645 34 V _{cc} -2913 -2189 69 SEG17 1955 -2913 104 COM21/SEG52 2913 1795	29	V _{ss}	-2913	-1428	64	SEG12	1235	-2913	99	COM26/SEG47	2913	1105
32 TEST -2913 -1874 67 SEG15 1645 -2913 102 COM23/SEG50 2913 1505 33 TEST2 -2913 -2024 68 SEG16 1795 -2913 103 COM23/SEG50 2913 1645 34 V _{cc} -2913 -2189 69 SEG17 1955 -2913 104 COM21/SEG52 2913 1795	30	OSC ₂	-2913	-1581	65	SEG13	1365	-2913	100	COM25/SEG48	2913	1235
33 TEST2 -2913 -2024 68 SEG16 1795 -2913 103 COM22/SEG51 2913 1645 34 V _{cc} -2913 -2189 69 SEG17 1955 -2913 104 COM21/SEG52 2913 1795	31	OSC,	-2913	-1734	66	SEG14	1505	-2913	101	COM24/SEG49	2913	1365
34 V _{cc} -2913 -2189 69 SEG17 1955 -2913 104 COM21/SEG52 2913 1795	32	TEST	-2913	-1874	67	SEG15	1645	-2913	102	COM23/SEG50	2913	1505
	33	TEST2	-2913	-2024	68	SEG16	1795	-2913	103	COM22/SEG51	2913	1645
35 RES -2913 -2384 70 SEG18 2125 -2913 105 COM20/SEG53 2913 1955	34	V _{cc}	-2913	-2189	69	SEG17	1955	-2913	104	COM21/SEG52	2913	1795
	35	RES	-2913	-2384	70	SEG18	2125	-2913	105	COM20/SEG53	2913	1955

Rev.3.00 Jul. 19, 2007 page 14 of 532 REJ09B0397-0300

Pad		Coordinates*1		Pad		Coord	inates*1	^{s*1} Pad		Coordinates*1	
No.	Pad Name	X (μm)	Υ (μm)	No.	Pad Name	Χ (μm)	Υ (μm)	No.	Pad Name	X (μm)	Υ (μm)
106	COM19/SEG54	2913	2125	119	C ₂ +	995	2913	132	P3, /SCK,	-715	2913
107	COM18/SEG55	2913	2305	120	C ₁ -	865	2913	133	P1,/IRQ,/TMIF	-845	2913
108	COM17/SEG56	2913	2495	121	C1+	735	2913	134	P1 ₆ /IRQ ₂ /TMIC	-975	2913
109	V5OUT	2435	2913	122	VLOUT	605	2913	135	$P1_{s}/\overline{IRQ}_{I}/TMIB$	-1105	2913
110	V4OUT	2275	2913	123	V	475	2913	136	P1₄/PWM	-1235	2913
111	V3OUT	2125	2913	124	V _{ss}	325	2913	137	P1 ₃	-1365	2913
112	V2OUT	1975	2913	125	P3,	195	2913	138	P1 ₂ /TMOFH	-1505	2913
113	V1OUT	1825	2913	126	P3 ₆	65	2913	139	P1 ₁ /TMOFL	-1645	2913
114	V ₄	1675	2913	127	P3₅	-65	2913	140	P1 ₀ /TMOW	-1795	2913
115	V ₃₄	1520	2913	128	P3 ₄	-195	2913	141	$P4_{3}/\overline{IRQ}_{0}$	-1955	2913
116	V ₃	1385	2913	129	P3 ₃	-325	2913	142	P4 ₂ /TXD	-2125	2913
117	V _{ci}	1255	2913	130	P3 ₂ /SO ₁	-455	2913	143	P4 ₁ /RXD	-2305	2913
118	C ₂ -	1125	2913	131	P3,/SI,	-585	2913	144	P4 ₀ /SCK ₃	-2495	2913

Notes: 1. Numbers indicate coordinates at the center of the pad area, with an accuracy of $\pm 5 \mu m$. The origin is the center of the chip, and the center is at a point halfway between pads, horizontally and vertically.

2. Connect FWE to V_{ss}.

Figure 1.7 Pad Layout of HCD64F3854 (F-ZTAT Version) (Top View)

Pad		Coord	inates*1	Pad		Coord	linates*1	Pad		Coord	inates*1
	Pad Name	X (μm)	Υ (μm)	No.	Pad Name	X (μm)	Υ (μm)	No.	Pad Name	X (μm)	Υ (μm)
1	$P5_{6}/\overline{WKP}_{6}$	-2985	2494	31	COM2	-1413	-2985	66	SEG21	2985	627
2	P5 ₅ /WKP ₅	-2985	2333	32	COM3	-1210	-2985	67	SEG22	2985	831
2-2	NC1* ²	-2985	2139	33	COM4	-1006	-2985	68	SEG23	2985	1036
3	P5 ₄ /WKP ₄	-2985	1950	34	COM5	-801	-2985	69	SEG24	2985	1240
4	P5 ₃ /WKP ₃	-2985	1788	35	COM6	-597	-2985	70	SEG25	2985	1443
5	$P5_2/\overline{WKP}_2$	-2985	1626	36	COM7	-393	-2985	71	SEG26	2985	1647
5-2	NC2* ²	-2985	1419	37	COM8	-189	-2985	72	SEG27	2985	1851
6	P5 ₁ /WKP ₁	-2985	1215	38	COM9	16	-2985	73	SEG28	2985	2055
6-2	NC3* ²	-2985	1054	39	COM10	219	-2985	74	SEG29	2985	2259
7	P5 ₀ /WKP ₀	-2985	897	40	COM11	423	-2985	75	SEG30	2985	2463
8	P2 ₇	-2985	735	41	COM12	627	-2985	76	SEG31	2435	2985
9	P2 ₆	-2985	573	42	COM13	831	-2985	77	SEG32	2234	2985
10	P2 ₅	-2985	412	43	COM14	1035	-2985	78	SEG33	2032	2985
11	P2 ₄	-2985	250	44	COM15	1240	-2985	79	SEG34	1830	2985
12	P2 ₃	-2985	88	45	COM16	1443	-2985	80	SEG35	1629	2985
13	P2 ₂	-2985	-73	46	SEG1	1647	-2985	81	SEG36	1427	2985
14	P2,	-2985	-234	47	SEG2	1851	-2985	82	SEG37	1226	2985
15	$P2_0/\overline{IRQ}_4/\overline{ADTRG}$	-2985	-396	48	SEG3	2055	-2985	83	SEG38	1025	2985
16	TEST2	-2985	-558	49	SEG4	2259	-2985	84	SEG39	823	2985
17	X ₂	-2985	-716	50	SEG5	2463	-2985	85	SEG40	621	2985
18	X,	-2985	-873	51	SEG6	2985	-2433	86	V5OUT	434	2985
19-1	$V_{ss}^{*^3}$	-2985	-1031	52	SEG7	2985	-2229	87	V4OUT	233	2985
19-2	$V_{ss}^{*^3}$	-2985	-1267	53	SEG8	2985	-2025	88	V3OUT	31	2985
20	OSC ₂	-2985	-1526	54	SEG9	2985	-1821	89	V2OUT	-171	2985
21	OSC ₁	-2985	-1707	55	SEG10	2985	-1617	90	V1OUT	-372	2985
22	TEST	-2985	-1864	56	SEG11	2985	-1413	91	P1 ₇ /ĪRQ ₃ /TMIF	-574	2985
23	V _{cc}	-2985	-2101	57	SEG12	2985	-1210	92	$P1_{5}/\overline{IRQ}_{1}/TMIB$	-780	2985
24	RES	-2985	-2336	58	SEG13	2985	-1005	93	P1 ₂ /TMOFH	-985	2985
25	FWE	-2985	-2494	59	SEG14	2985	-801	94	P1,/TMOFL	-1191	2985
26	PB ₄ /AN ₄	-2448	-2985	60	SEG15	2985	-597	95	P1 ₀ /TMOW	-1396	2985
27	PB_{5}/AN_{5}	-2244	-2985	61	SEG16	2985	-393	96	$P4_{3}/\overline{IRQ}_{0}$	-1618	2985
28	PB ₆ /AN ₆	-2040	-2985	62	SEG17	2985	-189	97	P4 ₂ /TXD	-1820	2985
29	PB ₇ /AN ₇	-1836	-2985	63	SEG18	2985	15	98	P4 ₁ /RXD	-2022	2985
30	COM1	-1617	-2985	64	SEG19	2985	219	99	P4 ₀ /SCK ₃	-2234	2985
				65	SEG20	2985	423	100	P5,/WKP,	-2446	2985

Table 1.4 HCD64F3854 Pad Coordinates

Notes: 1. Numbers indicate coordinates at the center of the pad area, with an accuracy of $\pm 5 \mu m$. The origin is the center of the chip, and the center is at a point halfway between pads, horizontally and vertically.

- 2. NC1 to NC3 are test pads; they should be left open.
- 3. Connect both 19-1 and 19-2 to $\rm V_{ss}.$

Renesas

Figure 1.8 Pad Layout of HCD6433854, HCD6433853, and HCD6433852 (Mask ROM Version) (Top View)

Pad		Coordi	nates*1	Pad		Coordi	Coordinates*1			Coordinates*1	
	Pad Name	X (μm)	Υ (μm)	No.	Pad Name	Χ (μm)	Υ (μm)	Pad No.	Pad Name	X (μm)	Υ (μm)
1	P5 ₆ /WKP ₆	-2161	1738	35	COM6	-390	-2161	68	SEG23	2161	650
2	$P5_{s}/\overline{WKP}_{s}$	-2161	1590	36	COM7	-260	-2161	69	SEG24	2161	780
3	P5 ₄ /WKP ₄	-2161	1445	37	COM8	-130	-2161	70	SEG25	2161	910
4	$P5_{3}/\overline{WKP}_{3}$	-2161	1305	38	COM9	0	-2161	71	SEG26	2161	1060
5	$P5_2/\overline{WKP}_2$	-2161	1171	39	COM10	130	-2161	72	SEG27	2161	1213
6	P5,/WKP	-2161	1041	40	COM11	260	-2161	73	SEG28	2161	1383
7	P5 ₀ /WKP ₀	-2161	911	41	COM12	390	-2161	74	SEG29	2161	1551
8	P2,	-2161	781	42	COM13	520	-2161	75	SEG30	2161	1721
9	P2 ₆	-2161	651	43	COM14	650	-2161	76	SEG31	1716	2161
10	P2₅	-2161	521	44	COM15	780	-2161	77	SEG32	1565	2161
11	P2 ₄	-2161	391	45	COM16	910	-2161	78	SEG33	1422	2161
12	P2 ₃	-2161	261	46	SEG1	1060	-2161	79	SEG34	1282	2161
13	P2 ₂	-2161	131	47	SEG2	1213	-2161	80	SEG35	1150	2161
14	P2,	-2161	1	48	SEG3	1383	-2161	81	SEG36	1020	2161
15	$P2_0/\overline{IRQ}_4/\overline{ADTRG}$	-2161	-129	49	SEG4	1551	-2161	82	SEG37	890	2161
16	TEST2	-2161	-259	50	SEG5	1721	-2161	83	SEG38	760	2161
17	X ₂	-2161	-389	51	SEG6	2161	-1721	84	SEG39	630	2161
18	X ₁	-2161	-519	52	SEG7	2161	-1551	85	SEG40	500	2161
19	V _{ss}	-2161	-764	53	SEG8	2161	-1383	86	V5OUT	197	2161
20	OSC ₂	-2161	-1020	54	SEG9	2161	-1213	87	V4OUT	67	2161
21	OSC,	-2161	-1173	55	SEG10	2161	-1060	88	V3OUT	-63	2161
22	TEST	-2161	-1312	56	SEG11	2161	-910	89	V2OUT	-193	2161
23	V _{cc}	-2161	-1497	57	SEG12	2161	-780	90	V1OUT	-323	2161
24	RES	-2161	-1657	58	SEG13	2161	-650	91	$P1_7/\overline{IRQ}_3/TMIF$	-453	2161
25	FWE* ²	-2161	-1821	59	SEG14	2161	-520	92	$P1_{5}/\overline{IRQ}_{1}/TMIB$	-583	2161
26	PB ₄ /AN ₄	-1722	-2161	60	SEG15	2161	-390	93	P1 ₂ /TMOFH	-713	2161
27	PB ₅ /AN ₅	-1552	-2161	61	SEG16	2161	-260	94	P1,/TMOFL	-843	2161
28	PB ₆ /AN ₆	-1395	-2161	62	SEG17	2161	-130	95	P1 ₀ /TMOW	-973	2161
29	PB ₇ /AN ₇	-1236	-2161	63	SEG18	2161	0	96	P4 ₃ /IRQ ₀	-1104	2161
30	COM1	-1060	-2161	64	SEG19	2161	130	97	P4 ₂ /TXD	-1244	2161
31	COM2	-910	-2161	65	SEG20	2161	260	98	P4,/RXD	-1383	2161
32	COM3	-780	-2161	66	SEG21	2161	390	99	P4 ₀ /SCK ₃	-1534	2161
33	COM4	-650	-2161	67	SEG22	2161	520	100	P5,/WKP,	-1698	2161
34	COM5	-520	-2161								

Table 1.5HCD6433852, HCD6433853, and HCD6433854 Pad Coordinates

34 COM5 -520 -2161

Notes: 1. Numbers indicate coordinates at the center of the pad area, with an accuracy of $\pm 5 \ \mu m$. The origin is the center of the chip, and the center is at a point halfway between pads, horizontally and vertically.

2. Connect FWE to V_{ss} .

1.3.2 Pin Functions

Table 1.6 outlines the pin functions of the H8/3857 Group.

Table 1.6Pin Functions

	H8/3857 Group H8/3854 Group		4 Group				
		Pin No.		Pin No.		_	
Туре	Symbol	FP-144H TFP-144	Pad No.	FP-100B TFP-100G	- Pad No.	I/O	Name and Functions
Power source pins	V _{cc}	34	34	23	23	Input	Power supply: All V_{cc} pins should be connected to the system power supply (+5 V)
	V _{ss}	29, 124	29, 124	19	19-1, 19-2	Input	Ground: All V_{ss} pins should be connected to the system power supply (0 V)
	AV _{cc}	17	17	_	_	Input	Analog power supply (H8/3857 Group only): This is the power supply pin for the A/D converter. When the A/D converter is not used, connect this pin to the system power supply (+5 V).
	AV _{ss}	26	26	—	_	Input	Analog ground (H8/3857 Group only): This is the A/D converter ground pin. It should be connected to the system power supply (0 V).
Clock pins	OSC ₁	31	31	21	21	Input	This pin connects to a crystal or ceramic oscillator.
	OSC ₂	30	30	20	20	Output	See section 4, Clock Pulse Generators, for a typical connection diagram.
	X,	28	28	18	18	Input	This pin connects to a 32.768-kHz crystal oscillator, or can be used to input an external clock.
	X ₂	27	27	17	17	Output	See section 4, Clock Pulse Generators, for a typical connection diagram.

		H8/385	7 Group	H8/385	4 Group		
		Pin No.		Pin No.		_	
Туре	Symbol	FP-144H TFP-144	Pad No.	FP-100B TFP-100G	Pad No.	I/O	Name and Functions
System control	RES	35	35	24	24	Input	Reset: When this pin is driven low, the chip is reset
	FWE	36	36	25	25	Input	Flash write enable: This pin enables or disables flash memory programming. In the mask ROM version, ground this pin to the V _{ss} potential.
	TEST	32	32	22	22	Input	Test: This is a test pin, not for use in application systems. It should be connected to V_{ss} .
	TEST2	33	33	16	16	Input	Test pin: This pin sets the flash memory operating mode. In the mask ROM version, ground this pin to the V_{ss} potential.
Interrupt pins	IRQ₀ IRQ₁	141 135	141 135	96 92	96 92	Input	External interrupt request 4 to 0 (H8/3857 Group)
			134 133 16	91	91		External interrupt request 4, 3, 1, 0 (H8/3854 Group)
	InQ₄	10	16	15	15		These are input pins for external interrupts for which there is a choice between rising and falling edge sensing.
	\overline{WKP}_7 to \overline{WKP}_0	1 to 8	1 to 8	100, 1 to 7	100, 1 to 7	Input	Wakeup interrupt request 0 to 7: These are input pins for external interrupts that are detected at the falling edge
Timer pins	TMOW	140	140	95	95	Output	Clock output: This is an output pin for waveforms generated by the timer A output circuit
	TMIB	135	135	92	92	Input	Timer B event counter input: This is an event input pin for input to the timer B counter
	TMIC	134	134	—	_	Input	Timer C event counter input (H8/3857 Group only): This is an event input pin for input to the timer C counter

		H8/385	7 Group	H8/385	4 Group		
		Pin No.		Pin No.		_	
Туре	Symbol	FP-144H TFP-144	Pad No.	FP-100B TFP-100G	Pad No.	I/O	Name and Functions
Timer pins	UD	15	15	_		Input	Timer C up/down select (H8/3857 Group only): This pin selects whether the timer C counter is used for up- or down-counting. At high level it selects up- counting, and at low level down-counting.
	TMIF	133	133	91	91	Input	Timer F event counter input: This is an event input pin for input to the timer F counter
	TMOFL	139	139	94	94	Output	Timer FL output: This is an output pin for waveforms generated by the timer FL output compare function
	TMOFH	138	138	93	93	Output	Timer FH output: This is an output pin for waveforms generated by the timer FH output compare function
14-bit PWM pin	PWM	136	136	_	_	Output	14-bit PWM output (H8/3857 Group only): This is an output pin for waveforms generated by the 14-bit PWM
I/O ports	PB_7 to PB_4 PB_3 to PB_0	25 to 22 21 to 18	25 to 22 21 to 18	29 to 26 —	29 to 26 —	Input	Port B: This is an 8-bit input port in the H8/3857 Group, and a 4-bit input port in the H8/3854 Group
	P4 ₃	141	141	96	96	Input	Port 4 (bit 3): This is a 1-bit input port
	P4 ₂ to P4 ₀	142 to 144	142 to 144	97 to 99	97 to 99	I/O	Port 4 (bits 2 to 0): This is a 3-bit I/O port. Input or output can be designated for each bit by means of port control register 4 (PCR4).
	P1 ₇ , P1 ₆ , P1 ₅ , P1 ₄ , P1 ₃ , P1 ₂ to P1 ₀	133 134 135 136, 137 138 to 140	133 134 135 136, 137 138 to 140	91 92 93 to 95	91 — 92 — 93 to 95	I/O	Port 1: This is an 8-bit I/O port in the H8/3857 Group, and a 5-bit I/O port in the H8/3854 Group. Input or output can be designated for each bit by means of port control register 1 (PCR1).

1. Overview

	H8/3857 Group H8/3854 Group						
		Pin No.		Pin No.		-	
Туре	Symbol	FP-144H TFP-144	Pad No.	FP-100B TFP-100G	Pad No.	I/O	Name and Functions
I/O ports	$P2_7$ to $P2_0$	9 to 16	9 to 16	8 to 15	8 to 15	I/O	Port 2: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 2 (PCR2).
	P3, to P3,	125 to 132	125 to 132	_	_	I/O	Port 3 (H8/3857 Group only): This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 3 (PCR3).
	P5, to P5,	1 to 8	1 to 8	100, 1 to 7	100, 1 to 7	I/O	Port 5: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 5 (PCR5).
Internal I/O ports	PA_3 to PA_0	_	_			I/O	Port A: This is a 4-bit I/O port. Input or output can be designated for each bit by means of port control register A (PCRA). PA_2 to PA_0 are connected internally to LCD pins RS, R/W , and STRB.
	P9 ₇ to P9 ₀	_	_			I/O	Port 9: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 9 (PCR9). P9, to P9, are connected internally to LCD pins DB, to DB,.
Serial commu- nication	SI	131	131	_	_	Input	SCI1 receive data input (H8/3857 Group only): This is the SCI1 data input pin
interface (SCI)	SO,	130	130	_	_	Output	SCI1 send data output (H8/3857 Group only): This is the SCI1 data output pin
	SCK	132	132	_	—	I/O	SCI1 clock I/O (H8/3857 Group only): This is the SCI1 clock I/O pin
	RXD	143	143	98	98	Input	SCI3 receive data input: This is the SCI3 data input pin

	H8/3857 Group H8/3854 Group		4 Group				
		Pin No.		Pin No.		-	
Туре	Symbol	FP-144H TFP-144	Pad No.	FP-100B TFP-100G	- Pad No.	I/O	Name and Functions
Serial commu- nication	TXD	142	142	97	97	Output	SCI3 send data output: This is the SCI3 data output pin
interface (SCI)	SCK₃	144	144	99	99	I/O	SCI3 clock I/O : This is the SCI3 clock I/O pin
A/D converter	AN_7 to AN_4 AN_3 to AN_0		25 to 22 21 to 18	29 to 26	29 to 26 —	Input	Analog input (channels 7 to 0 in H8/3857 Group, channels 7 to 4 in H8/3854 Group): These are analog data input channels to the A/D converter
	ADTRG	16	16	15	15	Input	A/D converter trigger input: This is the external trigger input pin to the A/D converter
LCD	COM32 to	93 to 108	93 to 108			Output	LCD common output:
controller	COM17 COM16 to COM1	52 to 37	52 to 37	45 to 30	45 to 30		These are LCD common output pins. The maximum number of pins is 32 in the H8/3857 Group, and 16 in the H8/3854 Group. In standby mode and module standby mode, all pins output the V _{ss} level.
	SEG64 to SEG41	45 to 52 108 to 93,	45 to 52 108 to 93,	—	—	Output	LCD segment output: These are LCD segment
	SEG40 to SEG1	92 to 53	92 to 53	85 to 46	85 to 46		output pins. The maximum number of pins is 64 in the H8/3857 Group, and 40 in the H8/3854 Group. In standby mode and module standby mode, all pins output the V_{ss} level.
	V3, V4	116, 114	116, 114		_	Input	LCD bias setting pins (H8/3857 Group only): 1/4 bias drive is selected when V3 and V4 are shorted, and 1/5 bias drive when V3 and V4 are left open.
	V34	115	115	_	_	Input	LCD test pin (H8/3857 Group only): This is the LCD built-in resistance test pin. V3 and V34 must be shorted.

1. Overview

		H8/3857 Group		H8/385	4 Group			
		Pin No.		Pin No.		_		
Туре	Symbol	FP-144H TFP-144	Pad No.	FP-100B TFP-100G	Pad No.	I/O	Name and Functions	
LCD controller	C1+, C1–, C2+, C2–	121 to 118	121 to 118	_		_	LCD step-up circuit capacitance connection pins (H8/3857 Group only): These pins connect external capacitances for LCD step-up. Connect capacitances according to the step-up factor.	
H8/3857 Group LCD power supply	V1OUT to V5OUT	113 to 109	113 to 109	_	_	I/O	LCD drive power supply level (H8/3857 Group): When the OPON bit is set high, these bits output LCD drive power supply levels V1 to V5. If the built-in op-amp drive capacity is inadequate, connect a capacitor to provide stabilization. If levels V1 to V5 are input from an external source, set the OPON bit low.	
	V _{ci}	117	117	_	_	Input	LCD step-up circuit reference power supply (H8/3857 Group only): This pin doubles as the LCD step-up circuit reference input voltage and step-up circuit power supply, and provides the LCD drive voltage. Set 1.6 V \leq V _{cl} \leq V _{cc} . If the step-up circuit is not used, connect V _{cl} to V _{cc} .	
	VLOUT	122	122	_	_	Output	LCD step-up voltage output (H8/3857 Group only): This is the LCD step- up voltage output pin. Connect a capacitance.	
	V _{LCD}	123	123			Input	LCD drive power supply (H8/3857 Group only): This is the LCD drive power supply input pin. If the built- in step-up circuit output voltage is used for the LCD drive power supply, short this pin to VLOUT. Set $V_{cc} \le V_{LCD} \le 7.0$ V.	

		H8/3857 Group		H8/385	4 Group		
		Pin No.		Pin No.			
Туре	Symbol	FP-144H TFP-144	Pad No.	FP-100B TFP-100G	Pad No.	I/O	Name and Functions
H8/3854 Group LCD power supply	V1OUT to V5OUT			90 to 86	90 to 86	I/O	LCD drive power supply level (H8/3854 Group): When the LPS1 and LPS0 bits are set high, these pins output LCD drive power supply levels V1 to V5. If the drive capacity is inadequate, connect a capacitor to provide stabilization. If levels V1 to V5 are input from an external source, set the LPS1 and LPS0 bits low. The V1 to V5 levels must not exceed V_{cc} . When driving with a 1/4 bias, short V3OUT and V4OUT.

1. Overview

Section 2 CPU

2.1 Overview

The H8/300L CPU has sixteen 8-bit general registers, which can also be paired as eight 16-bit registers. Its concise, optimized instruction set is designed for high-speed operation.

2.1.1 Features

Features of the H8/300L CPU are listed below.

- General-register architecture Sixteen 8-bit general registers, also usable as eight 16-bit general registers
- Instruction set with 55 basic instructions, including:
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct
 - Register indirect
 - Register indirect with displacement
 - Register indirect with post-increment or pre-decrement
 - Absolute address
 - Immediate
 - Program-counter relative
 - Memory indirect
- 64-kbyte address space
- High-speed operation
 - All frequently used instructions are executed in two to four states
 - High-speed arithmetic and logic operations
 - 8- or 16-bit register-register add or subtract: 0.4 μs^*
 - 8×8 -bit multiply: 2.8 μs^*
 - $16 \div 8$ -bit divide: $2.8 \ \mu s^*$
- Note: * These values are at $\phi = 5$ MHz.
- Low-power operation modes

SLEEP instruction for transfer to low-power operation

Renesas

2.1.2 Address Space

The H8/300L CPU supports an address space of up to 64 kbytes for storing program code and data.

See section 2.8, Memory Map, for details of the memory map.

2.1.3 Register Configuration

Figure 2.1 shows the register structure of the H8/300L CPU. There are two groups of registers: the general registers and control registers.

Figure 2.1 CPU Registers

2.2 Register Descriptions

2.2.1 General Registers

All the general registers can be used as both data registers and address registers.

When used as data registers, they can be accessed as 16-bit registers (R0 to R7), or the high bytes (R0H to R7H) and low bytes (R0L to R7L) can be accessed separately as 8-bit registers.

When used as address registers, the general registers are accessed as 16-bit registers (R0 to R7).

R7 also functions as the stack pointer (SP), used implicitly by hardware in exception processing and subroutine calls. When it functions as the stack pointer, as indicated in figure 2.2, SP (R7) points to the top of the stack.

Figure 2.2 Stack Pointer

2.2.2 Control Registers

The CPU control registers include a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

Program Counter (PC): This 16-bit register indicates the address of the next instruction the CPU will execute. All instructions are fetched 16 bits (1 word) at a time, so the least significant bit of the PC is ignored (always regarded as 0).

Condition Code Register (CCR): This 8-bit register contains internal status information, including the interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. These bits can be read and written by software (using the LDC, STC, ANDC,

Renesas

ORC, and XORC instructions). The N, Z, V, and C flags are used as branching conditions for conditional branching (Bcc) instructions.

Bit 7—Interrupt Mask Bit (I): When this bit is set to 1, interrupts are masked. This bit is set to 1 automatically at the start of exception handling. The interrupt mask bit may be read and written by software. For further details, see section 3.3, Interrupts.

Bit 6—User Bit (U): Can be used freely by the user.

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and is cleared to 0 otherwise.

The H flag is used implicitly by the DAA and DAS instructions.

When the ADD.W, SUB.W, or CMP.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and is cleared to 0 otherwise.

Bit 4—User Bit (U): Can be used freely by the user.

Bit 3—Negative Flag (N): Indicates the most significant bit (sign bit) of the result of an instruction.

Bit 2—Zero Flag (Z): Set to 1 to indicate a zero result, and cleared to 0 to indicate a non-zero result.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0—Carry Flag (C): Set to 1 when operation execution generates a carry, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged.

Refer to the H8/300L Series Software Manual for the action of each instruction on the flag bits.

2.2.3 Initial Register Values

When the CPU is reset, the program counter (PC) is initialized to the value stored at address H'0000 in the vector table, and the I bit in the CCR is set to 1. The other CCR bits and the general registers are not initialized. In particular, the stack pointer (R7) is not initialized. To prevent program crashes the stack pointer should be initialized by software, by the first instruction executed after a reset.

2.3 Data Formats

The H8/300L CPU can process 1-bit data, 4-bit (BCD) data, 8-bit (byte) data, and 16-bit (word) data.

- Bit manipulation instructions operate on 1-bit data specified as bit n in a byte operand (n = 0, 1, 2, ..., 7).
- All arithmetic and logic instructions except ADDS and SUBS can operate on byte data.
- The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and DIVXU (16 bits ÷ 8 bits) instructions operate on word data.
- The DAA and DAS instructions perform decimal arithmetic adjustments on byte data in packed BCD form. Each nibble of the byte is treated as a decimal digit.

Renesas

2.3.1 Data Formats in General Registers

The general register data formats are shown in figure 2.3.

Data Type	Register No.		lo. Data Format														
		7							0								
1-bit data	RnH	7	6	5	4	3	2	1	0				don't	care	;		
1-bit data	RnL				don't	care				7	6	5	4	3	2	1	0
ו-טוג טמנמ	RIL	7			doni	care				_ /	0	5	4	3	2	I	0
Byte data	RnH	MSB	I	1	1	1	I		LSB]			don't	care	••••••		
		:								7			1				0
Byte data	RnL				don'i	care				MSB	I	1					LSB
		15		1	I	1				1	1	1	1	1	1		0
Word data	Rn	MSB		1	1												LSB
4-bit BCD data	RnH	7	Uppe	er digit	4	3	Lowe	r digit	0]			don't	care	•		
										7	1	1	4	3			0
4-bit BCD data	RnL				don't	care					Uppe	r digit			Lowe	r digit	
Legend: RnH: Upper byte of general register RnL: Lower byte of general register MSB: Most significant bit LSB: Least significant bit																	

Figure 2.3 Register Data Formats

2.3.2 Memory Data Formats

Figure 2.4 indicates the data formats in memory. For access by the H8/300L CPU, word data stored in memory must always begin at an even address. In word access the least significant bit of the address is regarded as 0. If an odd address is specified, the access is performed at the preceding even address. This rule affects the MOV.W instruction, and also applies to instruction fetching.

Data Type	Address	Data Format
		7 0
1-bit data	Address n	7 6 5 4 3 2 1 0
Byte data	Address n	MSB LSB
Word data	Even address	MSB Upper 8 bits
Word data	Odd address	Lower 8 bits LSB
Byte data (CCR) on stack	Even address Odd address	
Word data on stack	Even address Odd address	
Legend: CCR: Condition code register		
Note: * Ignored on return		

When the stack is accessed using R7 as an address register, word access should always be performed. For the CCR, the same value is stored in the upper 8 bits and lower 8 bits as word data. On return, the lower 8 bits are ignored.

Renesas

2.4 Addressing Modes

2.4.1 Addressing Modes

The H8/300L CPU supports the eight addressing modes listed in table 2.1. Each instruction uses a subset of these addressing modes.

Table 2.1 Addressing Modes

No.	Address Modes	Symbol
1	Register direct	Rn
2	Register indirect	@Rn
3	Register indirect with displacement	@(d:16, Rn)
4	Register indirect with post-increment	@Rn+
	Register indirect with pre-decrement	@-Rn
5	Absolute address	@aa:8 or @aa:16
6	Immediate	#xx:8 or #xx:16
7	Program-counter relative	@(d:8, PC)
8	Memory indirect	@@aa:8

1. Register Direct—Rn: The register field of the instruction specifies an 8- or 16-bit general register containing the operand.

Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits \times 8 bits), and DIVXU (16 bits \div 8 bits) instructions have 16-bit operands.

2. Register Indirect—@**Rn:** The register field of the instruction specifies a 16-bit general register containing the address of the operand in memory.

3. Register Indirect with Displacement—@(**d:16**, **Rn**): The instruction has a second word (bytes 3 and 4) containing a 16-bit displacement which is added to the contents of the specified general register (16-bit) to obtain the operand address in memory.

This mode is used only in MOV instructions. For the MOV.W instruction, the resulting address must be even.

4. Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @-Rn:

• Register indirect with post-increment—@Rn+

The @Rn+ mode is used with MOV instructions that load registers from memory. The register field of the instruction specifies a 16-bit general register containing the address of the operand. After the operand is accessed, the register is incremented by 1 for MOV.B or 2 for MOV.W. For MOV.W, the original contents of the 16-bit general register must be even.

Register indirect with pre-decrement—@-Rn
The @-Rn mode is used with MOV instructions that store register contents to memory.
The register field of the instruction specifies a 16-bit general register which is decremented by
1 or 2 to obtain the address of the operand in memory. The register retains the decremented
value. The size of the decrement is 1 for MOV.B or 2 for MOV.W. For MOV.W, the original
contents of the register must be even.

5. Absolute Address—@aa:8 or @aa:16: The instruction specifies the absolute address of the operand in memory.

The absolute address may be 8 bits long (@aa:8) or 16 bits long (@aa:16). The MOV.B and bit manipulation instructions can use 8-bit absolute addresses. The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute addresses.

For an 8-bit absolute address, the upper 8 bits are assumed to be 1 (H'FF). The address range is H'FF00 to H'FFFF (65280 to 65535).

6. Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand (#xx:8) in its second byte, or a 16-bit operand (#xx:16) in its third and fourth bytes. Only MOV.W instructions can contain 16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data. Some bit manipulation instructions contain 3-bit immediate data in the second or fourth byte of the instruction, specifying a bit number.

7. **Program-Counter Relative**—@(**d:8**, **PC**): This mode is used in the Bcc and BSR instructions. An 8-bit displacement in byte 2 of the instruction code is sign-extended to 16 bits and added to the program counter contents to generate a branch destination address. The possible branching range is -126 to +128 bytes (-63 to +64 words) from the current address. The displacement should be an even number.

Renesas

8. Memory Indirect—@@**aa:8:** This mode can be used by the JMP and JSR instructions. The second byte of the instruction code specifies an 8-bit absolute address. The word located at this address contains the branch destination address.

The upper 8 bits of the absolute address are assumed to be 0 (H'00), so the address range is from H'0000 to H'00FF (0 to 255). Note that with the H8/300L Series, the lower end of the address area is also used as a vector area. See section 3.3, Interrupts, for details on the vector area.

If an odd address is specified as a branch destination or as the operand address of a MOV.W instruction, the least significant bit is regarded as 0, causing word access to be performed at the address preceding the specified address. See section 2.3.2, Memory Data Formats, for further information.

2.4.2 Effective Address Calculation

Table 2.2 shows how effective addresses are calculated in each of the addressing modes.

Arithmetic and logic instructions use register direct addressing (1). The ADD.B, ADDX, SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing (6).

Data transfer instructions can use all addressing modes except program-counter relative (7) and memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute addressing (8bit) (5) to specify a byte operand, and 3-bit immediate addressing (6) to specify a bit position in that byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct addressing (1) to specify the bit position.

Table 2.2 Effective Address Calculation

2. CPU

Legend:

rm, rn: Register field

- op: Operation field
- disp: Displacement
- IMM: Immediate data
- abs: Absolute address

2.5 Instruction Set

The H8/300L Series can use a total of 55 instructions, which are grouped by function in table 2.3.

Table 2.3Instruction Set

Function	Instructions	Number
Data transfer	MOV, PUSH* ¹ , POP* ¹	1
Arithmetic operations	ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, DAA, DAS, MULXU, DIVXU, CMP, NEG	14
Logic operations	AND, OR, XOR, NOT	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST	14
Branch	Bcc* ² , JMP, BSR, JSR, RTS	5
System control	RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	8
Block data transfer	EEPMOV	1
		Total: 55

Notes: 1. PUSH Rn is equivalent to MOV.W Rn, @-SP. POP Rn is equivalent to MOV.W @SP+, Rn. The machine language is also the same.

2. Bcc is the generic term for conditional branch instructions.

The functions of the instructions are shown in tables 2.4 to 2.11. The meaning of the operation symbols used in the tables is as follows.

Operation Notation

Rd	General register (destination)
Rs	General register (source)
Rn	General register
(EAd), <ead></ead>	Destination operand
(EAs), <eas></eas>	Source operand
CCR	Condition code register
N	N (negative) flag of CCR
Z	Z (zero) flag of CCR
V	V (overflow) flag of CCR
С	C (carry) flag of CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	AND logical
\vee	OR logical
\oplus	Exclusive OR logical
\rightarrow	Move
~	Logical negation (logical complement)
:3	3-bit length
:8	8-bit length
:16	16-bit length
(), < >	Contents of operand indicated by effective address

2.5.1 Data Transfer Instructions

Table 2.4 describes the data transfer instructions. Figure 2.5 shows their object code formats.

Instruction	n Size*	Function
MOV	B/W	$(EAs) \rightarrow Rd, Rs \rightarrow (EAd)$
		Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.
		The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:16, @-Rn, and @Rn+ addressing modes are available for byte or word data. The @aa:8 addressing mode is available for byte data only.
		The @-R7 and @R7+ modes require word operands. Do not specify byte size for these two modes.
POP	W	$@SP+ \rightarrow Rn$
		Pops a 16-bit general register from the stack. Equivalent to MOV.W @SP+, Rn.
PUSH	W	$Rn \rightarrow @-SP$
		Pushes a 16-bit general register onto the stack. Equivalent to MOV.W Rn, @-SP.
Note: *	Size: Operand	1 size
	B: Byte	
	W: Word	

Table 2.4Data Transfer Instructions

Certain precautions are required in data access. See section 2.9.1, Notes on Data Access, for details.

2.5.2 Arithmetic Operations

Table 2.5 describes the arithmetic instructions.

Table 2.5 Arithmetic Instructions

Instructio	n Size*	Function
ADD	B/W	$Rd \pm Rs \to Rd, Rd + \#IMM \to Rd$
SUB		Performs addition or subtraction on data in two general registers, or addition on immediate data and data in a general register. Immediate data cannot be subtracted from data in a general register. Word data can be added or subtracted only when both words are in general registers.
ADDX	В	$Rd\pmRs\pmC\toRd,Rd\pm\texttt{\#IMM}\pmC\toRd$
SUBX		Performs addition or subtraction with carry or borrow on byte data in two general registers, or addition or subtraction on immediate data and data in a general register.
INC	В	$Rd \pm 1 \rightarrow Rd$
DEC		Increments or decrements a general register by 1.
ADDS	W	$Rd \pm 1 \to Rd, Rd \pm 2 \to Rd$
SUBS		Adds or subtracts immediate data to or from data in a general register. The immediate data must be 1 or 2.
DAA	В	Rd decimal adjust \rightarrow Rd
DAS		Decimal-adjusts (adjusts to packed 4-bit BCD) an addition or subtraction result in a general register by referring to the CCR
MULXU	В	$Rd \times Rs \to Rd$
		Performs 8-bit \times 8-bit unsigned multiplication on data in two general registers, providing a 16-bit result
DIVXU	В	$Rd \div Rs \to Rd$
		Performs 16-bit ÷ 8-bit unsigned division on data in two general registers, providing an 8-bit quotient and 8-bit remainder
CMP	B/W	Rd – Rs, Rd – #IMM
		Compares data in a general register with data in another general register or with immediate data, and the result is stored in the CCR. Word data can be compared only between two general registers.
NEG	В	$0 - Rd \rightarrow Rd$
		Obtains the two's complement (arithmetic complement) of data in a general register
Note: *	Size: Operar	nd size
	B: Byte	
	W: Word	

2.5.3 Logic Operations

Table 2.6 describes the four instructions that perform logic operations.

Instruction	n S	ize*	Function
AND	В		$Rd \land Rs \rightarrow Rd, Rd \land \#IMM \rightarrow Rd$
			Performs a logical AND operation on a general register and another general register or immediate data
OR	В		$Rd \lor Rs \to Rd, Rd \lor \#IMM \to Rd$
			Performs a logical OR operation on a general register and another general register or immediate data
XOR	В		$Rd \oplus Rs \to Rd, \ Rd \oplus \#IMM \to Rd$
			Performs a logical exclusive OR operation on a general register and another general register or immediate data
NOT	В		$\sim \mathrm{Rd} \to \mathrm{Rd}$
			Obtains the one's complement (logical complement) of general register contents
Note: *	Size: B:	Operand Byte	size

Table 2.6 Logic Operation Instructions

2.5.4 Shift Operations

Table 2.7 describes the eight shift instructions.

Table 2.7Shift Instructions

Instructio	n Size*	Function
SHAL	В	$Rd shift \rightarrow Rd$
SHAR		Performs an arithmetic shift operation on general register contents
SHLL	В	$Rd shift \rightarrow Rd$
SHLR		Performs a logical shift operation on general register contents
ROTL	В	Rd rotate \rightarrow Rd
ROTR		Rotates general register contents
ROTXL	В	Rd rotate \rightarrow Rd
ROTXR		Rotates general register contents through the carry flag.
Note: *	Size: Opera	nd size
	B: Byte	

Figure 2.6 shows the instruction code format of arithmetic, logic, and shift instructions.

Figure 2.6 Arithmetic, Logic, and Shift Instruction Codes
2.5.5 Bit Manipulations

Table 2.8 describes the bit-manipulation instructions. Figure 2.7 shows their object code formats.

Instructior	n Size*	Function
BSET	В	$1 \rightarrow (\text{-bit-No.> of -EAd>})$
		Sets a specified bit to 1 in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BCLR	В	$0 \rightarrow (\text{ of })$
		Clears a specified bit to 0 in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BNOT	В	~ (<bit-no.> of <ead>) \rightarrow (<bit-no.> of <ead>)</ead></bit-no.></ead></bit-no.>
		Inverts a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BTST	В	~ (<bit-no.> of <ead>) \rightarrow Z</ead></bit-no.>
		Tests a specified bit in a general register or memory operand and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BAND	В	$C \land (<\!bit\text{-}No.\!> of < EAd>) \to C$
		ANDs the C flag with a specified bit in a general register or memory operand, and stores the result in the C flag.
BIAND	В	$C \land [\sim (<\!bit-\!No.\!> of <\!\mathsf{EAd\!\!>})] \!\rightarrow C$
		ANDs the C flag with the inverse of a specified bit in a general register or memory operand, and stores the result in the C flag. The bit number is specified by 3-bit immediate data.
BOR	В	$C \lor (of < EAd>) \to C$
		ORs the C flag with a specified bit in a general register or memory operand, and stores the result in the C flag.
BIOR	В	$C \lor [\sim (<\!bit-\!No.\!> of <\!\mathsf{E\!Ad\!\!>})] \to C$
		ORs the C flag with the inverse of a specified bit in a general register or memory operand, and stores the result in the C flag.
		The bit number is specified by 3-bit immediate data.
Note: *	Size: Opera B: Byte	ind size

 Table 2.8
 Bit-Manipulation Instructions

Instruction	n Size*	Function
BXOR	В	$C \oplus (<\!bit-No.\!> of <\!EAd\!>) \to C$
		XORs the C flag with a specified bit in a general register or memory operand, and stores the result in the C flag.
BIXOR	В	$C \oplus \ [\sim(<\!\text{bit-No.}\!> \text{of } <\!\text{EAd}\!>)] \rightarrow C$
		XORs the C flag with the inverse of a specified bit in a general register or memory operand, and stores the result in the C flag.
		The bit number is specified by 3-bit immediate data.
BLD	В	$(\text{sbit-No.} \text{ of } \text{$
		Copies a specified bit in a general register or memory operand to the C flag.
BILD	В	~ (<bit-no.> of <ead>) \rightarrow C</ead></bit-no.>
		Copies the inverse of a specified bit in a general register or memory operand to the C flag.
		The bit number is specified by 3-bit immediate data.
BST	В	$C \rightarrow (\text{-bit-No.> of -EAd>})$
		Copies the C flag to a specified bit in a general register or memory operand.
BIST	В	~ C \rightarrow (<bit-no.> of <ead>)</ead></bit-no.>
		Copies the inverse of the C flag to a specified bit in a general register or memory operand.
		The bit number is specified by 3-bit immediate data.
Note: *	Size: Opera B: Byte	nd size

Certain precautions are required in bit manipulation. See section 2.9.2, Notes on Bit Manipulation, for details.

2. CPU

Figure 2.7 Bit Manipulation Instruction Codes (2)

2.5.6 Branching Instructions

Table 2.9 describes the branching instructions. Figure 2.8 shows their object code formats.

Instruction	Size	Function						
Bcc	—		Branches to the designated address if the specified condition is true. The branching conditions are given below.					
		Mnemonic	Description	Condition				
		BRA (BT)	Always (true)	Always				
		BRN (BF)	Never (false)	Never				
		BHI	High	$C \lor Z = 0$				
		BLS	Low or same	C ∨ Z = 1				
		BCC (BHS)	Carry clear (high or same)	C = 0				
		BCS (BLO)	Carry set (low)	C = 1				
		BNE	Not equal	Z = 0				
		BEQ	Equal	Z = 1				
		BVC	Overflow clear	V = 0				
		BVS	Overflow set	V = 1				
		BPL	Plus	N = 0				
		BMI	Minus	N = 1				
		BGE	Greater or equal	$N \oplus V = 0$				
		BLT	Less than	N ⊕ V = 1				
		BGT	Greater than	$Z \lor (N \oplus V) = 0$				
		BLE	Less or equal	$Z \lor (N \oplus V) = 1$				
JMP		Branches unco	onditionally to a specified address	3				
BSR		Branches to a	subroutine at a specified address	3				
JSR		Branches to a	subroutine at a specified address	6				
RTS		Returns from a	asubroutine					

Table 2.9Branching Instructions

2. CPU

Figure 2.8 Branching Instruction Codes

2.5.7 System Control Instructions

Table 2.10 describes the system control instructions. Figure 2.9 shows their object code formats.

Instructio	n Size*	Function				
RTE		Returns from an exception-handling routine				
SLEEP	—	Causes a transition from active mode to a power-down mode. See section 5, Power-Down Modes, for details				
LDC	В	$Rs \to CCR, \#IMM \to CCR$				
		Moves immediate data or general register contents to the condition code register				
STC	В	$CCR \rightarrow Rd$				
		Copies the condition code register to a specified general register				
ANDC	В	$CCR \land \#IMM \rightarrow CCR$				
		Logically ANDs the condition code register with immediate data				
ORC	В	$CCR \lor \#IMM \rightarrow CCR$				
		Logically ORs the condition code register with immediate data				
XORC	В	$CCR \oplus \#IMM \to CCR$				
		Logically exclusive-ORs the condition code register with immediate data				
NOP	_	$PC + 2 \rightarrow PC$				
		Only increments the program counter				
Note: *	Size: Opera B: Byte	and size				

 Table 2.10
 System Control Instructions

2. CPU

2.5.8 Block Data Transfer Instruction

Table 2.11 describes the block data transfer instruction. Figure 2.10 shows its object code format.

Table 2.11	Block Data	Transfer	Instruction
-------------------	------------	----------	-------------

Instruction	Size	Function
EEPMOV		if R4L ≠ 0 then
		repeat @R5+ \rightarrow @R6+
		$R4L - 1 \rightarrow R4L$
		until R4L = 0
		else next;
		Block transfer instruction. Transfers the number of bytes specified by R4L, from locations starting at the address specified by R5, to locations starting at the address specified by R6. On completion of the transfer, the next instruction is executed.

Certain precautions are required in using the EEPMOV instruction. See section 2.9.3, Notes on Use of the EEPMOV Instruction, for details.

2.6 Basic Operational Timing

CPU operation is synchronized by a system clock (ϕ) or a subclock (ϕ_{SUB}). For details on these clock signals see section 4, Clock Pulse Generators. The period from a rising edge of ϕ or ϕ_{SUB} to the next rising edge is called one state. A bus cycle consists of two states or three states. The cycle differs depending on whether access is to on-chip memory or to on-chip peripheral modules.

2.6.1 Access to On-Chip Memory (RAM, ROM)

Access to on-chip memory takes place in two states. The data bus width is 16 bits, allowing access in byte or word size. Figure 2.11 shows the on-chip memory access cycle.

Figure 2.11 On-Chip Memory Access Cycle

2.6.2 Access to On-Chip Peripheral Modules

On-chip peripheral modules are accessed in two states or three states. The data bus width is 8 bits, so access is by byte size only. This means that for accessing word data, two instructions must be used. Figures 2.12 and 2.13 show the on-chip peripheral module access cycle.

Two-State Access to On-Chip Peripheral Modules

Figure 2.12 On-Chip Peripheral Module Access Cycle (2-State Access)

Three-State Access to On-Chip Peripheral Modules

Figure 2.13 On-Chip Peripheral Module Access Cycle (3-State Access)

2.7 CPU States

2.7.1 Overview

There are four CPU states: the reset state, program execution state, program halt state, and exception-handling state. The program execution state includes active (high-speed or medium-speed) mode and subactive mode. In the program halt state there are a sleep mode, standby mode, watch mode, and sub-sleep mode. These states are shown in figure 2.14. Figure 2.15 shows the state transitions.

Figure 2.14 CPU Operation States

2. CPU

Figure 2.15 State Transitions

2.7.2 Program Execution State

In the program execution state the CPU executes program instructions in sequence.

There are three modes in this state, two active modes (high speed and medium speed) and one subactive mode. Operation is synchronized with the system clock in active mode (high speed and medium speed), and with the subclock in subactive mode. See section 5, Power-Down Modes for details on these modes.

2.7.3 Program Halt State

In the program halt state there are four modes: sleep mode, standby mode, watch mode, and subsleep mode. See section 5, Power-Down Modes for details on these modes.

2.7.4 Exception-Handling State

The exception-handling state is a transient state occurring when exception handling is started by a reset or interrupt and the CPU changes its normal processing flow. In exception handling caused by an interrupt, SP (R7) is referenced and the PC and CCR values are saved on the stack.

For details on interrupt handling, see section 3.3 Interrupts.

2.8 Memory Map

2.8.1 Memory Map

The memory maps of the H8/3857 Group and H8/3854 Group are shown in figures 2.16 (a) and (b).

Figure 2.16 (a) H8/3857 Group Memory Map

Rev.3.00 Jul. 19, 2007 page 60 of 532 REJ09B0397-0300

Figure 2.16 (b) H8/3854 Group Memory Map

2.9 Application Notes

2.9.1 Notes on Data Access

Access to Empty Areas: The address space of the H8/300L CPU includes empty areas in addition to the RAM, registers, and ROM areas available to the user. If these empty areas are mistakenly accessed by an application program, the following results will occur.

- Data transfer from CPU to empty area The transferred data will be lost. This action may also cause the CPU to misoperate.
- Data transfer from empty area to CPU Unpredictable data is transferred.

Access to Internal I/O Registers: Internal data transfer to or from on-chip modules other than the ROM and RAM areas makes use of an 8-bit data width. If word access is attempted to these areas, the following results will occur.

- Word access from CPU to I/O register area Upper byte: Will be written to I/O register. Lower byte: Transferred data will be lost.
- Word access from I/O register to CPU
 Upper byte: Will be written to upper part of CPU register.
 Lower byte: Unpredictable data will be written to lower part of CPU register.

Byte size instructions should therefore be used when transferring data to or from I/O registers other than the on-chip ROM and RAM areas. Figure 2.17 shows the data size and number of states in which on-chip peripheral modules can be accessed.

Notes: The above example is a description of the H8/3857, H8/3857F, and H8/3854F.

- The H8/3855 has 40 kbytes of on-chip ROM, ending at address H'9FFF, the H8/3856 has 48 kbytes, ending at address H'BFFF, the H8/3852 has 16 kbytes, ending at address H'3FFF, the H8/3853 has 24 kbytes, ending at address H'5FFF, and the H8/3854 (mask ROM version) has 32 kbytes, ending at address H'7FFF.
- 2. The H8/3857 Group and the H8/3854F have 2,048 bytes of on-chip RAM, and the H8/3854 Group (mask ROM version) has 1,024 bytes, starting at address H'FB80.

Figure 2.17 Data Size and Number of States for Access to and from On-Chip Peripheral Modules

2.9.2 Notes on Bit Manipulation

The BSET, BCLR, BNOT, BST, and BIST instructions read one byte of data, modify the data, then write the data byte again. Special care is required when using these instructions in cases where two registers are assigned to the same address, in the case of registers that include write-only bits, and when the instruction accesses an I/O.

Order of Operation		Operation				
1	Read	Read byte data at the designated address				
2	Modify	Modify a designated bit in the read data				
3	Write	Write the altered byte data to the designated address				

Bit Manipulation in Two Registers Assigned to the Same Address

Example 1: Timer load register and timer count bit manipulation

Figure 2.18 shows an example in which two timer registers share the same address. When a bit manipulation instruction accesses the timer load register and timer counter of a reloadable timer, since these two registers share the same address, the following operations take place.

Order of Operation		Operation
1	Read	Timer counter data is read (one byte)
2	Modify	The CPU modifies (sets or resets) the bit designated in the instruction
3	Write	The altered byte data is written to the timer load register

The timer counter is counting, so the value read is not necessarily the same as the value in the timer load register. As a result, bits other than the intended bit in the timer load register may be modified to the timer counter value.

Figure 2.18 Timer Configuration Example

Example 2: When a BSET instruction is executed on port 3

 $P3_7$ and $P3_6$ are designated as input pins, with a low-level signal input at $P3_7$ and a high-level signal at $P3_6$. The remaining pins, $P3_5$ to $P3_0$, are output pins and output low-level signals. In this example, the BSET instruction is used to change pin $P3_0$ to high-level output.

	P3 ₇	P3 ₆	P3₅	P3₄	P3 ₃		P3 ,	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	0

[A: Prior to executing BSET]

[B: BSET instruction executed]

BSET #0 , @PDR3

The BSET instruction is executed designating port 3.

[C: After executing BSET]

	P3,	P3 ₆	P3₅	P3 ₄	P3 ₃	P3 ₂	P3 1	P3,
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR3	0	0	1	1	1	1	1	1
PDR3	0	1	0	0	0	0	0	1

[D: Explanation of how BSET operates]

When the BSET instruction is executed, first the CPU reads port 3.

Since $P3_7$ and $P3_6$ are input pins, the CPU reads the pin states (low-level and high-level input). $P3_5$ to $P3_0$ are output pins, so the CPU reads the value in PDR3. In this example PDR3 has a value of H'80, but the value read by the CPU is H'40.

Next, the CPU sets bit 0 of the read data to 1, changing the PDR3 data to H'41. Finally, the CPU writes this value (H'41) to PDR3, completing execution of BSET.

As a result of this operation, bit 0 in PDR3 becomes 1, and $P3_0$ outputs a high-level signal. However, bits 7 and 6 of PDR3 end up with different values.

To avoid this problem, store a copy of the PDR3 data in a work area in memory. Perform the bit manipulation on the data in the work area, then write this data to PDR3.

[A: Prior to executing BSET]

MOV. 1	B #8	30,	ROL
MOV. 1	B R	ЭL,	@RAM0
MOV. 1	B R	ЭL,	@PDR3

The PDR3 value (H'80) is written to a work area in memory (RAM0) as well as to PDR3.

	P3,	P3 ₆	P3₅	P3₄	P3 ₃	P3 ₂	P3 ,	P3,
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0	0

[B: BSET instruction executed]

BSET	#0	,	@RAM0

The BSET instruction is executed designating the PDR3 work area (RAM0).

[C: After executing BSET]

MOV.	В	@RAM0	, ROL
MOV.	В	ROL,	@PDR3

The work area (RAM0) value is written to PDR3.

	P3,	P3 ₆	P3₅	P3₄	P3 ₃	P3 ₂	P3 ,	P3,
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	1
RAM0	1	0	0	0	0	0	0	1

Bit Manipulation in a Register Containing a Write-Only Bit

Example 3: When a BCLR instruction is executed on PCR3 of port 3

As in the examples above, $P3_7$ and $P3_6$ are input pins, with a low-level signal input at $P3_7$ and a high-level signal at $P3_6$. The remaining pins, $P3_5$ to $P3_0$, are output pins that output low-level signals. In this example, the BCLR instruction is used to change pin $P3_0$ to an input port. It is assumed that a high-level signal will be input to this input pin.

	P3 ₇	P3 ₆	P3₅	P3₄	P3 ₃		P3 ,	P3,
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	0

[A: Prior to executing BCLR]

[B: BCLR instruction executed]

	BCLR	#0	,	@PCR3
--	------	----	---	-------

The BCLR instruction is executed designating PCR3.

[C: After executing BCLR]

	P3,	P3 ₆	P3₅	P3₄	P3 ₃	P3 ₂	P3 ,	P3,
Input/output	Output	Output	Output	Output	Output	Output	Output	Input
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR3	1	1	1	1	1	1	1	0
PDR3	1	0	0	0	0	0	0	0

[D: Explanation of how BCLR operates]

When the BCLR instruction is executed, first the CPU reads PCR3. Since PCR3 is a write-only register, the CPU reads a value of H'FF, even though the PCR3 value is actually H'3F.

Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE. Finally, this value (H'FE) is written to PCR3 and BCLR instruction execution ends.

As a result of this operation, bit 0 in PCR3 becomes 0, making $P3_0$ an input port. However, bits 7 and 6 in PCR3 change to 1, so that $P3_7$ and $P3_6$ change from input pins to output pins.

To avoid this problem, store a copy of the PCR3 data in a work area in memory. Perform the bit manipulation on the data in the work area, then write this data to PCR3.

[A: Prior to executing BCLR]

MOV.	В	#3F,	ROL
MOV.	В	ROL,	@RAM0
MOV.	В	ROL,	@PCR3

The PCR3 value (H'3F) is written to a work area in memory (RAM0) as well as to PCR3.

	P3,	P3 ₆	P3₅	P3₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR3	0	0	1	1	1	1	1	1
PDR3	1	0	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1	1

[B: BCLR instruction executed]

BCLR	#0	,	@RAM0	

The BCLR instruction is executed designating the PCR3 work area (RAM0).

[C: After executing BCLR]

MOV.	В	@RAM0	, ROL
MOV.	В	ROL,	@PCR3

The work area (RAM0) value is written to PCR3.

	P3,	P3 ₆	P3₅	P3₄	P3 ₃	P3 ₂	P3,	P3,
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	High level
PCR3	0	0	1	1	1	1	1	0
PDR3	1	0	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1	0

Table 2.12 lists registers that share the same address, and table 2.13 lists registers that contain write-only bits.

Table 2.12	Registers	with shared	addresses
-------------------	-----------	-------------	-----------

Register Name	Abbreviation	Address
Timer counter B and timer load register B	TCB/TLB	H'FFB3
Timer counter C and timer load register C* ²	TCC/TLC	H'FFB5
Port data register 1*1*3	PDR1	H'FFD4
Port data register 2*1	PDR2	H'FFD5
Port data register 3*1*2	PDR3	H'FFD6
Port data register 4*1	PDR4	H'FFD7
Port data register 5 ^{*1}	PDR5	H'FFD8
Port data register 9*1	PDR9	H'FFDC
Port data register A*1	PDRA	H'FFDD

Notes: 1. These port registers are used also for pin input.

2. A function of the H8/3857 Group only; not provided in the H8/3854 Group.

3. Some bits are not present in the H8/3854 Group.

Table 2.13 Registers with write-only bits

Register Name	Abbreviation	Address
Port control register 1*1	PCR1	H'FFE4
Port control register 2	PCR2	H'FFE5
Port control register 3* ²	PCR3	H'FFE6
Port control register 4	PCR4	H'FFE7
Port control register 5	PCR5	H'FFE8
Port control register 9	PCR9	H'FFEC
Port control register A	PCRA	H'FFED
Timer control register F	TCRF	H'FFB6
PWM control register* ²	PWCR	H'FFD0
PWM data register U* ²	PWDRU	H'FFD1
PWM data register L*2	PWDRL	H'FFD2

Notes: 1. Some bits are not present in the H8/3854 Group.

2. A function of the H8/3857 Group only; not provided in the H8/3854 Group.

2.9.3 Notes on Use of the EEPMOV Instruction

• The EEPMOV instruction is a block data transfer instruction. It moves the number of bytes specified by R4L from the address specified by R5 to the address specified by R6.

• When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during execution of the instruction.

Section 3 Exception Handling

3.1 Overview

Exception handling is performed in the H8/3857 Group when a reset or interrupt occurs. Table 3.1 shows the priorities of these two types of exception handling.

Priority	Exception Source	Time of Start of Exception Handling
High	Reset	Exception handling starts as soon as the reset state is cleared
Low	Interrupt	When an interrupt is requested, exception handling starts after execution of the present instruction or the exception handling in progress is completed

 Table 3.1
 Exception Handling Types and Priorities

3.2 Reset

3.2.1 Overview

A reset is the highest-priority exception. The internal state of the CPU and the registers of the onchip peripheral modules are initialized.

3.2.2 Reset Sequence

As soon as the $\overline{\text{RES}}$ pin goes low, all processing is stopped and the H8/3857 enters the reset state.

To make sure the chip is reset properly, observe the following precautions.

- At power on: Hold the $\overline{\text{RES}}$ pin low until the clock pulse generator output stabilizes.
- Resetting during operation: Hold the $\overline{\text{RES}}$ pin low for at least 10 system clock cycles.

When the $\overline{\text{RES}}$ pin goes high again after being held low for a given period, reset exception handling begins. Reset exception handling takes place as follows:

- The CPU internal state and the registers of on-chip peripheral modules are initialized, with the I bit of the condition code register (CCR) set to 1.
- The PC is loaded from the reset exception handling vector address (H'0000 to H'0001), after which the program starts executing from the address indicated in PC.

When system power is turned on or off, the $\overline{\text{RES}}$ pin should be held low.

Figure 3.1 shows the reset sequence.

Figure 3.1 Reset Sequence

3.2.3 Interrupt Immediately after Reset

After a reset, if an interrupt were to be accepted before the stack pointer (SP: R7) was initialized, PC and CCR would not be pushed onto the stack correctly, resulting in program runaway. To prevent this, immediately after reset exception handling all interrupts are masked. For this reason, the initial program instruction is always executed immediately after a reset. This instruction should initialize the stack pointer (e.g. MOV.W #xx: 16, SP).

3.3 Interrupts

3.3.1 Overview

In the H8/3857 Group, sources that initiate interrupt exception handling include 13 external interrupts (WKP₇ to WKP₀, and IRQ₄ to IRQ₀), and 16 internal interrupts from on-chip peripheral modules. In the H8/3854 Group, sources that initiate interrupt exception handling include 12 external interrupts (WKP₇ to WKP₀, IRQ₄, IRQ₃, IRQ₁, and IRQ₀), and 14 internal interrupts from on-chip peripheral modules. Table 3.2 shows the interrupt sources, their priorities, and their vector addresses. When more than one interrupt is requested, the interrupt with the highest priority is processed.

The interrupts have the following features:

- Both internal and external interrupts can be masked by the I bit of CCR. When this bit is set to 1, interrupt request flags are set but interrupts are not accepted.
- The external interrupt pins IRQ₀ to IRQ₄ can each be set independently to either rising edge sensing or falling edge sensing.

Priority	Interrupt Source	Interrupt	Vector Number	Vector Address*1
High	RES	Reset	0	H'0000 to H'0001
≜	IRQ ₀	IRQ₀	4	H'0008 to H'0009
	IRQ,	IRQ,	5	H'000A to H'000B
	$\overline{IRQ}_{2}^{*^{2}}$	IRQ ₂	6	H'000C to H'000D
	IRQ ₃	IRQ₃	7	H'000E to H'000F
	IRQ ₄	IRQ₄	8	H'0010 to H'0011
	WKP ₀	WKP₀	9	H'0012 to H'0013
	WKP ₁	WKP,		
		WKP ₂		
	WKP ₃	WKP₃		
	WKP ₄	WKP ₄		
	\overline{WKP}_{5}	WKP₅		
	$\overline{WK}P_{6}$	WKP ₆		
	WKP ₇	WKP ₇		
	SCI1*2	SCI1 transfer complete	10	H'0014 to H'0015
	Timer A	Timer A overflow	11	H'0016 to H'0017
	Timer B	Timer B overflow	12	H'0018 to H'0019
	Timer C* ²	Timer C overflow or underflow	13	H'001A to H'001B
	Timer FL	Timer FL compare match	14	H'001C to H'001D
		Timer FL overflow		
	Timer FH	Timer FH compare match	15	H'001E to H'001F
		Timer FH overflow		
	SCI3	SCI3 transmit end	18	H'0024 to H'0025
		SCI3 transmit data empty		
		SCI3 receive data full		
		SCI3 overrun error		
		SCI3 framing error		
		SCI3 parity error		
	A/D converter	A/D conversion end	19	H'0026 to H'0027
↓ Low	(SLEEP instruction executed)	Direct transfer	20	H'0028 to H'0029
	used.	002 to H'0007 and H'0020 to H'00		
2.	Applies to the H8/385 reserved.	7 Group. In the H8/3854 Group, th	nese vector	addresses are

Table 3.2 Interrupt Sources and Priorities

Rev.3.00 Jul. 19, 2007 page 74 of 532 REJ09B0397-0300

3.3.2 Interrupt Control Registers

Table 3.3 lists the registers that control interrupts.

Table 3.3 Interrupt Control Registers

Register Name	Abbreviation	R/W	Initial Value	Address
IRQ edge select register*2	IEGR	R/W	H'E0	H'FFF2
Interrupt enable register 1*2	IENR1	R/W	H'00	H'FFF3
Interrupt enable register 2*2	IENR2	R/W	H'00	H'FFF4
Interrupt request register 1*2	IRR1	R/W * ¹	H'20	H'FFF6
Interrupt request register 2*2	IRR2	R/W * ¹	H'00	H'FFF7
Wakeup interrupt request register	IWPR	R/W* ¹	H'00	H'FFF9

Notes: 1. Write is enabled only for writing of 0 to clear a flag.

2. There are some differences in functions between the H8/3857 Group and the H8/3854 Group. For details, see the individual register descriptions.

IRQ Edge Select Register (IEGR)

Bit	7	6	5	4	3	2	1	0
				IEG4	IEG3	IEG2*	IEG1	IEG0
Initial value	1	1	1	0	0	0	0	0
Read/Write	—		—	R/W	R/W	R/W	R/W	R/W
Note: * Applies to the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to								

Note: * Applies to the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to 0.

IEGR is an 8-bit read/write register, used to designate whether pins \overline{IRQ}_0 to \overline{IRQ}_4 are set to rising edge sensing or falling edge sensing.

Bits 7 to 5—Reserved Bits: Bits 7 to 5 are reserved; they are always read as 1, and cannot be modified.

Bit 4—IRQ₄ Edge Select (IEG4): Bit 4 selects the input sensing of pin $\overline{IRQ_4}/\overline{ADTRG}$.

Bit 4: IEG4	Description	
0	Falling edge of IRQ / ADTRG pin input is detected	(initial value)
1	Rising edge of $\overline{IRQ}_4/\overline{ADTRG}$ pin input is detected	

Bit 3—IRQ₃ Edge Select (IEG3): Bit 3 selects the input sensing of pin $\overline{IRQ_3}$ /TMIF.

Bit 3: IEG3	Description	
0	Falling edge of IRQ ₃ /TMIF pin input is detected	(initial value)
1	Rising edge of \overline{IRQ}_{3} /TMIF pin input is detected	

Bit 2—IRQ, **Edge Select (IEG2):** Bit 2 is used in the H8/3857 Group to select the input sensing of pin IRQ,/TMIC. In the H8/3854 Group, this bit must always be cleared to 0.

Bit 2: IEG2	Description	
0	Falling edge of $\overline{IRQ}_2/TMIC$ pin input is detected	(initial value)
1	Rising edge of IRQ ₂ /TMIC pin input is detected	

Bit 1—IRQ, **Edge Select (IEG1):** Bit 1 selects the input sensing of pin \overline{IRQ} ,/TMIB.

Bit 1: IEG1	Description	
0	Falling edge of IRQ,/TMIB pin input is detected	(initial value)
1	Rising edge of $\overline{IRQ}_{1}/TMIB$ pin input is detected	

Bit 0—IRQ Edge Select (IEG0): Bit 0 selects the input sensing of pin \overline{IRQ}_0 .

Bit 0: IEG0	Description	
0	Falling edge of \overline{IRQ}_{0} pin input is detected	(initial value)
1	Rising edge of $\overline{\text{IRQ}}_{_0}$ pin input is detected	

Interrupt Enable Register 1 (IENR1)

Bit	7	6	5	4	3	2	1	0
	IENTA	IENS1*	IENWP	IEN4	IEN3	IEN2*	IEN1	IEN0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Note: * Applies to the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to 0.								

IENR1 is an 8-bit read/write register that enables or disables interrupt requests.

Bit 7—Timer A Interrupt Enable (IENTA): Bit 7 enables or disables timer A overflow interrupt requests.

Bit 7: IENTA	Description	
0	Disables timer A interrupts	(initial value)
1	Enables timer A interrupts	

Bit 6—SCI1 Interrupt Enable (IENS1): Bit 6 is used in the H8/3857 Group to enable or disable SCI1 transfer complete interrupt requests. In the H8/3854 Group, this bit must always be cleared to 0.

Bit 6: IENS1	Description	
0	Disables SCI1 interrupts	(initial value)
1	Enables SCI1 interrupts	

Bit 5—Wakeup Interrupt Enable (IENWP): Bit 5 enables or disables WKP_7 to WKP_0 interrupt requests.

Bit 5: IENWP	Description	
0	Disables interrupt requests from $\overline{WKP}_{_7}$ to $\overline{WKP}_{_0}$	(initial value)
1	Enables interrupt requests from $\overline{WKP}_{_7}$ to $\overline{WKP}_{_0}$	

Bits 4, 3, 1, and 0—IRQ₄, IRQ₃, IRQ₁, and IRQ₀ Interrupt Enable (IEN4, IEN3, IEN1,

IEN0): Bits 4 to 0 enable or disable \overline{IRQ}_4 , \overline{IRQ}_3 , \overline{IRQ}_1 , and \overline{IRQ}_0 interrupt requests.

Bit n: IENn	Description	
0	Disables interrupt request IRQn	(initial value)
1	Enables interrupt request IRQn	
Noto: p 4.0	1	

Note: n = 4, 3, 1, or 0

Bit 2—IRQ, **Interrupt Enable (IEN2):** Bit 2 is used in the H8/3857 Group to enable or disable \overline{IRQ} , interrupt requests. In the H8/3854 Group, this bit must always be cleared to 0.

Bit 2: IEN2	Description	
0	Disables interrupt request \overline{IRQ}_2	(initial value)
1	Enables interrupt request IRQ ₂	

0.

Interrupt Enable Register 2 (IENR2)

Bit	7	6	5	4	3	2	1	0
	IENDT	IENAD	_		IENTFH	IENTFL	IENTC*	IENTB
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Note: * Applies to the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to								

IENR2 is an 8-bit read/write register that enables or disables interrupt requests.

Bit 7—Direct Transfer Interrupt Enable (IENDT): Bit 7 enables or disables direct transfer interrupt requests.

Bit 7: IENDT	Description	
0	Disables direct transfer interrupt requests	(initial value)
1	Enables direct transfer interrupt requests	

Bit 6—A/D Converter Interrupt Enable (IENAD): Bit 6 enables or disables A/D converter interrupt requests.

Bit 6: IENAD	Description	
0	Disables A/D converter interrupt requests	(initial value)
1	Enables A/D converter interrupt requests	

Bits 5 and 4—Reserved Bits: Bits 5 and 4 are reserved; they should always be cleared to 0.

Bit 3—Timer FH Interrupt Enable (IENTFH): Bit 3 enables or disables timer FH compare match and overflow interrupt requests.

Bit 3: IENTFH	Description	
0	Disables timer FH interrupts	(initial value)
1	Enables timer FH interrupts	

Bit 2—Timer FL Interrupt Enable (IENTFL): Bit 2 enables or disables timer FL compare match and overflow interrupt requests.

Bit 2: IENTFL	Description	
0	Disables timer FL interrupts	(initial value)
1	Enables timer FL interrupts	

Bit 1—Timer C Interrupt Enable (IENTC): Bit 1 is used in the H8/3857 Group to enable or disable timer C overflow or underflow interrupt requests. In the H8/3854 Group, this bit must always be cleared to 0.

Bit 1: IENTC	Description	
0	Disables timer C interrupts	(initial value)
1	Enables timer C interrupts	

Bit 0—Timer B Interrupt Enable (IENTB): Bit 0 enables or disables timer B overflow or underflow interrupt requests.

Bit 0: IENTB	Description	
0	Disables timer B interrupts	(initial value)
1	Enables timer B interrupts	

SCI3 interrupt control is covered in 10.4.2, in the description of serial control register 3 (SCR3).

Interrupt request register 1 (IRR1)

Bit	7	6	5	4	3	2	1	0
	IRRTA	IRRS1* ²		IRRI4	IRRI3	IRRI2* ²	IRRI1	IRRI0
Initial value	0	0	1	0	0	0	0	0
Read/Write	R/W * ¹	R/W* ¹		R/W * ¹	R/W* ¹	R/W* ¹	R/W*1	R/W* ¹

Notes: 1. Only a write of 0 for flag clearing is possible.

2. Applies to the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to 0.

IRR1 is an 8-bit read/write register, in which the corresponding bit is set to 1 when a timer A, SCI1, or IRQ_4 to IRQ_0 interrupt is requested. The flags are not cleared automatically when an interrupt is accepted. It is necessary to write 0 to clear each flag.

Bit 7—Timer A Interrupt Request Flag (IRRTA)

Bit 7: IRRTA	Description	
0	Clearing condition: When IRRTA = 1, it is cleared by writing 0	(initial value)
1	Setting condition: When the timer A counter value overflows (goes from H'FF to H'0)0)

Bit 6—SCI1 Interrupt Request Flag (IRRS1): Bit 6 is used in the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to 0.

Bit 6: IRRS1	Description	
0	Clearing condition: When IRRS1 = 1, it is cleared by writing 0	(initial value)
1	Setting condition: When an SCI1 transfer is completed	

Bit 5—Reserved Bit: Bit 5 is reserved; it is always read as 1, and cannot be modified.

Bits 4, 3, 1, and 0—IRQ₄, IRQ₃, IRQ₁, and IRQ₀ Interrupt Request Flags (IRRI4, IRRI3, IRRI1, IRRI0)

Bit n: IRRIn	Description	
0	Clearing condition: When IRRIn = 1, it is cleared by writing 0 to IRRIn	(initial value)
1	Setting condition: IRRIn is set when pin \overline{IRQ}_n is set to interrupt input, and the design edge is detected	nated signal

Note: n = 4, 3, 1, or 0

Bit 2—IRQ₂ **Interrupt Request Flag (IRRI2):** Bit 2 is used in the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to 0.

Bit 2: IRRI2	Description	
0	Clearing condition: When IRRI2 = 1, it is cleared by write 0 to IRRI2	(initial value)
1	Setting condition: IRRI2 is set when pin \overline{IRQ}_2 is set to interrupt input, and the design edge is detected	nated signal

Interrupt Request Register 2 (IRR2)

Bit	7	6	5	4	3	2	1	0
	IRRDT	IRRAD		_	IRRTFH	IRRTFL	IRRTC* ²	IRRTB
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*1	R/W* ¹	—	_	R/W* ¹	R/W * ¹	R/W* ¹	R/W * ¹

Notes: 1. Only a write of 0 for flag clearing is possible.

IRR2 is an 8-bit read/write register, in which the corresponding bit is set to 1 when a direct transfer, A/D converter, timer FH, timer FL, timer C, or timer B interrupt is requested. The flags are not cleared automatically when an interrupt is accepted. It is necessary to write 0 to clear each flag.

Bit 7—Direct Transfer Interrupt Request Flag (IRRDT)

Bit 7: IRRDT	Description	
0	Clearing condition: When IRRDT = 1, it is cleared by writing 0	(initial value)
1	Setting condition: When DTON = 1 and a direct transfer is made immediately after a instruction is executed	a SLEEP

Bit 6—A/D Converter Interrupt Request Flag (IRRAD)

Bit 6: IRRAD	Description	
0	Clearing condition: When IRRAD = 1, it is cleared by writing 0	(initial value)
1	Setting condition: When A/D conversion is completed and ADSF is reset	

Bits 5 and 4—Reserved Bits: Bits 5 and 4 are reserved; they should always be cleared to 0.

^{2.} Applies to the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to 0.

Bit 3—Timer FH Interrupt Request Flag (IRRTFH)

Bit 3: IRRTFH	Description
0	Clearing condition: When IRRTFH = 1, it is cleared by writing 0 (initial value)
1	Setting condition: When counter FH matches output compare register FH in 8-bit timer mode, or when 16-bit counter F (TCFL, TCFH) matches output compare register F (OCRFL, OCRFH) in 16-bit timer mode

Bit 2—Timer FL Interrupt Request Flag (IRRTFL)

Bit 2: IRRTFL	Description	
0	Clearing condition When IRRTFL = 1, it is cleared by writing 0	(initial value)
1	Setting condition: When counter FL matches output compare register FL in 8-bit ti	mer mode

Bit 1—Timer C Interrupt Request Flag (IRRTC): Bit 1 is used in the H8/3857 Group. In the H8/3854 Group, this bit must always be cleared to 0.

Bit 1: IRRTC	Description	
0	Clearing condition: When IRRTC = 1, it is cleared by writing 0	(initial value)
1	Setting condition: When the timer C counter value overflows (goes from H'FF to H'00) underflows (goes from H'00 to H'FF)	or

Bit 0—Timer B Interrupt Request Flag (IRRTB)

Bit 0: IRRTB	Description	
0	Clearing condition: When IRRTB = 1, it is cleared by writing 0	(initial value)
1	Setting condition: When the timer B counter value overflows (goes from H'FF to H'0	00)
Wakeup Interrupt Request Register (IWPR)

Bit	7	6	5	4	3	2	1	0
	IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*							
Note: * Only a write of 0 for flag clearing is possible.								

IWPR is an 8-bit read/write register, in which the corresponding bit is set to 1 when pins \overline{WKP} , to \overline{WKP}_0 are set to wakeup input and a pin receives a falling edge input. The flags are not cleared automatically when an interrupt is accepted. It is necessary to write 0 to clear each flag.

Bits 7 to 0—Wakeup Interrupt Request Flags (WKPF7 to WKPF0)

Bit n: IWPFn	Description
0	Clearing condition: When IWPFn = 1, it is cleared by writing 0 to IWPFn
1	Setting condition: IWPFn is set when pin \overline{WKP}_n is set to wakeup interrupt input, and a falling edge input is detected at the pin
Natas a 744.0	

Note: n = 7 to 0

3.3.3 External Interrupts

The H8/3857 Group has 13 external interrupt sources, WKP_7 to WKP_0 , and IRQ_4 to IRQ_0 . The H8/3854 Group has 12 external interrupt sources, WKP_7 to WKP_0 , IRQ_4 , IRQ_3 , IRQ_1 , and IRQ_0 .

Interrupts WKP₀ to WKP₇: Interrupts WKP₀ to WKP₇ are requested by falling edge inputs at pins \overline{WKP}_0 to \overline{WKP}_7 . When these pins are designated as \overline{WKP}_0 to \overline{WKP}_7 pins in port mode register 5 (PMR5) and falling edge input is detected, the corresponding bit in the wakeup interrupt request register (IWPR) is set to 1, requesting an interrupt. Wakeup interrupt requests can be disabled by clearing the IENWP bit in IENR1 to 0. It is also possible to mask all interrupts by setting the CCR I bit to 1.

When an interrupt exception handling request is received for interrupts WKP_0 to WKP_7 , the CCR I bit is set to 1. The vector number for interrupts WKP_0 to WKP_7 is 9. Since all eight interrupts are assigned the same vector number, the interrupt source must be determined by the exception handling routine.

Interrupts IRQ₀ **to IRQ**₄: Interrupts IRQ₀ to IRQ₄ are requested by into pins inputs to $\overline{\text{IRQ}}_0$ to $\overline{\text{IRQ}}_4$. These interrupts are detected by either rising edge sensing or falling edge sensing, depending on the settings of bits IEG0 to IEG4 in the edge select register (IEGR). The IRQ₂ interrupt is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

When these pins are designated as pins \overline{IRQ}_0 to \overline{IRQ}_4 in port mode registers 1 and 2 (PMR1 and PMR2) and the designated edge is input, the corresponding bit in IRR1 is set to 1, requesting an interrupt. Interrupts IRQ_0 to IRQ_4 can be disabled by clearing bits IEN0 to IEN4 in IENR1 to 0. All interrupts can be masked by setting the I bit in CCR to 1.

When IRQ_0 to IRQ_4 interrupt exception handling is initiated, the I bit is set to 1. Vector numbers 4 to 8 are assigned to interrupts IRQ_0 to IRQ_4 . The order of priority is from IRQ_0 (high) to IRQ_4 (low). Table 3.2 gives details. In the H8/3854 Group, exception handling vector number 6 is reserved.

3.3.4 Internal Interrupts

There are 16 internal interrupts that can be requested by the on-chip peripheral modules in the H8/3857 Group, and 14 in the H8/3854 Group. When a peripheral module requests an interrupt, the corresponding bit in IRR1 or IRR2 is set to 1. Individual interrupt requests can be disabled by clearing the corresponding bit in IENR1 or IENR2 to 0. All interrupts can be masked by setting the I bit in CCR to 1. When an internal interrupt request is accepted, the I bit is set to 1. Vector numbers 10 to 20 are assigned to these interrupts. Table 3.2 shows the order of priority of interrupts from on-chip peripheral modules. In the H8/3854 Group, exception handling vector numbers 10 and 13 are reserved.

3.3.5 Interrupt Operations

Interrupts are controlled by an interrupt controller. Figure 3.2 shows a block diagram of the interrupt controller. Figure 3.3 shows the flow up to interrupt acceptance.

Interrupt operation is described as follows.

- When an interrupt condition is met while the interrupt enable register bit is set to 1, an interrupt request signal is sent to the interrupt controller.
- When the interrupt controller receives an interrupt request, it sets the interrupt request flag.
- From among the interrupts with interrupt request flags set to 1, the interrupt controller selects the interrupt request with the highest priority and holds the others pending. (Refer to table 3.2 for a list of interrupt priorities.)
- The interrupt controller checks the I bit of CCR. If the I bit is 0, the selected interrupt request is accepted; if the I bit is 1, the interrupt request is held pending.

- If the interrupt is accepted, after processing of the current instruction is completed, both PC and CCR are pushed onto the stack. The state of the stack at this time is shown in figure 3.4. The PC value pushed onto the stack is the address of the first instruction to be executed upon return from interrupt handling.
- The I bit of CCR is set to 1, masking all further interrupts.
- The vector address corresponding to the accepted interrupt is generated, and the interrupt handling routine located at the address indicated by the contents of the vector address is executed.
- Notes: 1. When disabling interrupts by clearing bits in an interrupt enable register, or when clearing bits in an interrupt request register, always do so while interrupts are masked (I = 1).
 - 2. If the above clear operations are performed while I = 0, and as a result a conflict arises between the clear instruction and an interrupt request, exception processing for the interrupt will be executed after the clear instruction has been executed.

Figure 3.2 Block Diagram of Interrupt Controller

Figure 3.3 Flow up to Interrupt Acceptance

Rev.3.00 Jul. 19, 2007 page 86 of 532 REJ09B0397-0300

Figure 3.4 Stack State after Completion of Interrupt Exception Handling

Figure 3.5 shows a typical interrupt sequence where the program area is in the on-chip ROM and the stack area is in the on-chip RAM.

3.3.6 Interrupt Response Time

Table 3.4 shows the number of wait states after an interrupt request flag is set until the first instruction of the interrupt handler is executed.

Table 3.4	Interrupt Wait States	\$
-----------	-----------------------	----

Item	States
Waiting time for completion of executing instruction*	1 to 13
Saving of PC and CCR to stack	4
Vector fetch	2
Instruction fetch	4
Internal processing	4
Total	15 to 27

Note: * Not including EEPMOV instruction.

3.4 Application Notes

3.4.1 Notes on Stack Area Use

When word data is accessed in the H8/3857 Group, the least significant bit of the address is regarded as 0. Access to the stack always takes place in word size, so the stack pointer (SP: R7) should never indicate an odd address. Use PUSH Rn (MOV.W Rn, @–SP) or POP Rn (MOV.W @SP+, Rn) to save or restore register values.

Setting an odd address in SP may cause a program to crash. An example is shown in figure 3.6.

Figure 3.6 Operation when Odd Address Is Set in SP

When CCR contents are saved to the stack during interrupt exception handling or restored when RTE is executed, this also takes place in word size. Both the upper and lower bytes of word data are saved to the stack; on return, the even address contents are restored to CCR while the odd address contents are ignored.

3.4.2 Notes on Rewriting Port Mode Registers

When a port mode register is rewritten to switch the functions of external interrupt pins, the following points should be observed.

When an external interrupt pin function is switched by rewriting the port mode register that controls these pins (\overline{IRQ}_4 , \overline{IRQ}_3 , \overline{IRQ}_2^* , \overline{IRQ}_1 , \overline{IRQ}_0 , and \overline{WKP}_7 to \overline{WKP}_0), the interrupt request flag may be set to 1 at the time the pin function is switched, even if no valid interrupt is input at the pin. Be sure to clear the interrupt request flag to 0 after switching pin functions. Table 3.5 shows the conditions under which interrupt request flags are set to 1 in this way.

Note: * Applies to the H8/3857 Group; not provided in the H8/3854 Group.

Interru Flags S	ot Request Set to 1	Conditions
IRR1	IRRI4	 When PMR2 bit IRQ4 is changed from 0 to 1 while pin IRQ₄ is low and IEGR bit IEG4 = 0.
		 When PMR2 bit IRQ4 is changed from 1 to 0 while pin IRQ₄ is low and IEGR bit IEG4 = 1.
	IRRI3	 When PMR1 bit IRQ3 is changed from 0 to 1 while pin IRQ₃ is low and IEGR bit IEG3 = 0.
		• When PMR1 bit IRQ3 is changed from 1 to 0 while pin $\overline{IRQ}_{_3}$ is low and IEGR bit IEG3 = 1.
	IRRI2*	 When PMR1 bit IRQ2 is changed from 0 to 1 while pin IRQ₂ is low and IEGR bit IEG2 = 0.
		 When PMR1 bit IRQ2 is changed from 1 to 0 while pin IRQ₂ is low and IEGR bit IEG2 = 1.
	IRRI1	 When PMR1 bit IRQ1 is changed from 0 to 1 while pin IRQ, is low and IEGR bit IEG1 = 0.
		 When PMR1 bit IRQ1 is changed from 1 to 0 while pin IRQ, is low and IEGR bit IEG1 = 1.
	IRRI0	• When PMR2 bit IRQ0 is changed from 0 to 1 while pin \overline{IRQ}_0 is low and IEGR bit IEG0 = 0.
		 When PMR2 bit IRQ0 is changed from 1 to 0 while pin IRQ₀ is low and IEGR bit IEG0 = 1.
IWPR	IWPF7	When PMR5 bit WKP7 is changed from 0 to 1 while pin $\overline{\text{WKP}}_7$ is low
	IWPF6	When PMR5 bit WKP6 is changed from 0 to 1 while pin $\overline{\text{WKP}}_{6}$ is low
	IWPF5	When PMR5 bit WKP5 is changed from 0 to 1 while pin $\overline{\text{WKP}}_{\scriptscriptstyle S}$ is low
	IWPF4	When PMR5 bit WKP4 is changed from 0 to 1 while pin $\overline{\text{WKP}}_4$ is low
	IWPF3	When PMR5 bit WKP3 is changed from 0 to 1 while pin $\overline{\text{WKP}}_{\!_3}$ is low
	IWPF2	When PMR5 bit WKP2 is changed from 0 to 1 while pin $\overline{\text{WKP}}_2$ is low
	IWPF1	When PMR5 bit WKP1 is changed from 0 to 1 while pin $\overline{\text{WKP}}_1$ is low
	IWPF0	When PMR5 bit WKP0 is changed from 0 to 1 while pin $\overline{\text{WKP}}_{_0}$ is low
Note:	* Applies	to the H8/3857 Group. In the H8/3854 Group, this flag must always be cleared

Table 3.5 Conditions under which Interrupt Request Flag Is Set to 1

Note: * Applies to the H8/3857 Group. In the H8/3854 Group, this flag must always be cleared to 0.

Figure 3.7 shows the procedure for setting a bit in a port mode register and clearing the interrupt request flag.

When switching a pin function, mask the interrupt before setting the bit in the port mode register. After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the interrupt request flag from 1 to 0. If the instruction to clear the flag is executed immediately after the port mode register access without executing an intervening instruction, the flag will not be cleared.

An alternative method is to avoid the setting of interrupt request flags when pin functions are switched by keeping the pins at the high level so that the conditions in table 3.5 do not occur.

Figure 3.7 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure

Section 4 Clock Pulse Generators

4.1 Overview

Clock oscillator circuitry (CPG: clock pulse generator) is provided on-chip, including both a system clock pulse generator and a subclock pulse generator. The system clock pulse generator consists of a system clock oscillator and system clock dividers. The subclock pulse generator consists of a subclock oscillator circuit and a subclock divider.

4.1.1 Block Diagram

Figure 4.1 shows a block diagram of the clock pulse generators.

Figure 4.1 Block Diagram of Clock Pulse Generators

4.1.2 System Clock and Subclock

The basic clock signals that drive the CPU and on-chip peripheral modules are ϕ and ϕ_{sub} . Four of the clock signals have names: ϕ is the system clock, ϕ_{sub} is the subclock, ϕ_{osc} is the oscillator clock, and ϕ_w is the watch clock.

The clock signals available for use by peripheral modules are $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, $\phi/64$, $\phi/128$, $\phi/256$, $\phi/512$, $\phi/1024$, $\phi/2048$, $\phi/4096$, $\phi/8192$, ϕ_w , $\phi_w/2$, $\phi_w/4$, $\phi_w/8$, $\phi_w/16$, $\phi_w/32$, $\phi_w/64$, and $\phi_w/128$. The clock requirements differ from one module to another.

4.2 System Clock Generator

Clock pulse can be supplied to the system clock divider either by connecting a crystal or ceramic oscillator, or by providing external clock input.

Connecting a Crystal Oscillator: Figure 4.2 shows a typical method of connecting a crystal oscillator.

Figure 4.3 shows the equivalent circuit of a crystal oscillator. An oscillator having the characteristics given in table 4.1 should be used.

Figure 4.3 Equivalent Circuit of Crystal Oscillator

Table 4.1 Crystal Oscillator Parameters

Frequency (MHz)	2	4	8	10
R _s (max)	500 Ω	100 Ω	50 Ω	30 Ω
C _o (max)	7 pF	7 pF	7 pF	7 pF

Connecting a Ceramic Oscillator: Figure 4.4 shows a typical method of connecting a ceramic oscillator.

Notes on Board Design: When generating clock pulses by connecting a crystal or ceramic oscillator, pay careful attention to the following points.

Avoid running signal lines close to the oscillator circuit, since the oscillator may be adversely affected by induction currents. (See figure 4.5.)

The board should be designed so that the oscillator and load capacitors are located as close as possible to pins OSC_1 and OSC_2 .

Figure 4.5 Board Design of Oscillator Circuit

Inputting an External Clock: When inputting an external clock, connect it to the OSC_1 pin via a resistance R, and leave the OSC_2 pin open.

An example of the connection in this case is shown in figure 4.6.

Figure 4.6 Example of Connection when Inputting an External Clock

Frequency	OSC clock (ϕ_{osc})
Duty	45% to 55%

4.3 Subclock Generator

Connecting a 32.768-kHz Crystal Oscillator: Clock pulses can be supplied to the subclock divider by connecting a 32.768-kHz crystal oscillator, as shown in figure 4.7. Following the same connection precautions as mentioned in Notes on Board Design in section 4.2, System Clock Generator.

Figure 4.7 Typical Connection to 32.768-kHz Crystal Oscillator

Figure 4.8 shows the equivalent circuit of the 32.768-kHz crystal oscillator.

Inputting an External Clock

• Circuit configuration

An external clock is input to the X_1 pin. The X_2 pin should be left open.

An example of the connection in this case is shown in figure 4.9.

Figure 4.9 Example of Connection when Inputting an External Clock

External clock

Input a square waveform to the X1 pin. When using the CPU, timer A, timer C*, or an LCD, with a subclock (ϕ w) clock selected, do not stop the clock supply to the X₁ pin.

Note: * This is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

Figure 4.10 External Subclock Timing

The DC characteristics and timing of an external clock input to the X₁ pin are shown in table 4.2.

Table 4.2 DC Characteristics and Timing

 $(V_{cc} = 2.7 \text{ V to } 5.5 \text{ V of the mask ROM version of H8/3852, H8/3853, and H8/3854,} V_{cc} = 3.0 \text{ V to } 5.5 \text{ V of H8/3854F and H8/3857 Group, } AV_{cc} = 3.0 \text{ V to } 5.5 \text{ V,} V_{ss} = AV_{ss} = 0.0 \text{ V}, T_a = -20^{\circ}\text{C to } + 75^{\circ}\text{C*}, \text{ unless otherwise specified, including subactive mode})$

		Annliaghla	Test		Values	;		
Item	Symbol	Applicable Pin	Conditions	Min	Тур	Max	Unit	Notes
Input high voltage	V_{IH}	X ₁		$V_{\rm cc}$ –0.3		V _{cc} +0.3	V	Figure 4.10
Input low voltage	V	_		-0.3	_	0.3	_	
External subclock rise time	t _{xr}	_		_		100	ns	Figure 4.10
External subclock fall time	t _{xf}	_		_		100	_	
External subclock oscillation frequency	f _x	_	fx = 32.768 kHz	_	32.768	_	kHz	
External subclock high width	t _{xH}	_		12.0	—	_	μs	Figure 4.10
External subclock low width	t _{xL}	_		12.0			_	
External subclock oscillation frequency	f _x	-	fx = 38.4 kHz	—	38.4		kHz	
External subclock high width	\mathbf{t}_{xH}	-		10.0			μS	Figure 4.10
External subclock low width	t _{xL}	_		10.0	_			

75°C.

4.4 Prescalers

The H8/3857 Group and H8/3854 Group are equipped with two on-chip prescalers having different input clocks (prescaler S and prescaler W). Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. Its prescaled outputs provide internal clock signals for on-chip peripheral modules. Prescaler W is a 5-bit counter using a 32.768-kHz signal divided by 4 ($\phi_w/4$) as its input clock. Its prescaled outputs are used by timer A as a time base for timekeeping.

Prescaler S (PSS): Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. It is incremented once per clock period.

Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state.

In standby mode, watch mode, subactive mode, and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is initialized to H'0000.

The CPU cannot read or write prescaler S.

The output from prescaler S is shared by timer A, timer B, timer C*, timer F, SCI1*, SCI3, the A/D converter, LCD controller, and 14-bit PWM*. The divider ratio can be set separately for each on-chip peripheral function.

In active (medium-speed) mode the clock input to prescaler S is $\phi_{osc}/16$.

Note: * This is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

Prescaler W (PSW): Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 ($\phi_w/4$) as its input clock.

Prescaler W is initialized to H'00 by a reset, and starts counting on exit from the reset state.

Even in standby mode, watch mode, subactive mode, or subsleep mode, prescaler W continues functioning so long as clock signals are supplied to pins X_1 and X_2 .

Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register A (TMA).

Output from prescaler W can be used to drive timer A, in which case timer A functions as a time base for timekeeping.

4.5 Note on Oscillators

Oscillator characteristics of both the mask ROM and F-ZTAT versions are closely related to board design and should be carefully evaluated by the user, referring to the examples shown in this section. Oscillator circuit constants will differ depending on the oscillator element, stray capacitance in its interconnecting circuit, and other factors. Suitable constants should be determined in consultation with the oscillator element manufacturer. Design the circuit so that the oscillator element never receives voltages exceeding its maximum rating.

Section 5 Power-Down Modes

5.1 Overview

The H8/3857 Group and H8/3854 Group have seven modes of operation after a reset. These include six power-down modes, in which power dissipation is significantly reduced.

Table 5.1 gives a summary of the seven operation modes.

Operating Mode	Description
Active (high-speed) mode	The CPU runs on the system clock, executing program instructions at high speed
Active (medium-speed) mode	The CPU runs on the system clock, executing program instructions at reduced speed
Subactive mode	The CPU runs on the subclock, executing program instructions at reduced speed
Sleep mode	The CPU halts. On-chip peripheral modules continue to operate on the system clock.
Subsleep mode	The CPU halts. Timer A, timer C*, and the LCD controller continue to operate on the subclock.
Watch mode	The CPU halts. The time-base function of timer A and the LCD controller continue to operate on the subclock.
Standby mode	The CPU and all on-chip peripheral modules stop operating

Table 5.1Operation Modes

Note: * This is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

All the above operating modes except active (high-speed) mode are referred to as power-down modes.

In this section the two active modes (high-speed and medium-speed) are referred to collectively as active mode.

Figure 5.1 shows the transitions among these operation modes. Table 5.2 indicates the internal states in each mode.

The timer C, SCI1, and IRQ₂ interrupts are functions of the H8/3857 Group only, and are not provided in the H8/3854 Group.

Figure 5.1 Operation Mode Transition Diagram

Rev.3.00 Jul. 19, 2007 page 102 of 532 REJ09B0397-0300

		Activ	ve Mode					
Function		High Speed	Medium Speed	Sleep Mode	Watch Mode	Subactive Mode	Subsleep Mode	Standby Mode
System clo	ck oscillator	Functions	Functions	Functions	Halted	Halted	Halted	Halted
Subclock o	scillator	Functions	Functions	Functions	Functions	Functions	Functions	Functions
CPU	Instructions	Functions	Functions	Halted	Halted	Functions	Halted	Halted
operation	RAM	_		Retained	Retained	_	Retained	Retained
	Registers	_						
	I/O	_						Retained*1
External	IRQ₀	Functions	Functions	Functions	Functions	Functions	Functions	Functions
interrupts	IRQ,	_			Retained*4	-		
	IRQ ₂ *6	_						Retained*4
	IRQ ₃	_						
	IRQ_4	_						
	WKP₀	Functions	Functions	Functions	Functions	Functions	Functions	Functions
	WKP ₁	_						
	WKP ₂	_						
	WKP ₃	_						
	WKP ₄	_						
	WKP₅	_						
	WKP ₆	_						
	WKP ₇	_						
Peripheral	Timer A	Functions	Functions	Functions	Functions*3	Functions*3	Functions*3	Retained
module functions	Timer B	_			Retained	Retained	Retained	-
TUTICUOTIS	Timer C*6	-				Functions/ Retained* ²	Functions/ Retained* ²	_
	Timer F	_				Retained	Retained	-
	SCI1*6	Functions	Functions	Functions	Retained	Retained	Retained	Retained
	SCI3	_			Reset	Reset	Reset	Reset
	PWM* ⁶	Functions	Functions	Retained	Retained	Retained	Retained	Retained
	A/D	Functions	Functions	Functions	Retained	Retained	Retained	Retained
	LCD* ⁵	Functions	Functions	Functions	Functions	Functions	Functions	Retained

Table 5.2 Internal State in Each Operation Mode

3. Functions when timekeeping time-base function is selected.

4. External interrupt requests are ignored. The interrupt request register contents are not affected.

5. In module standby mode, only the clock supplied to the LCD controller is stopped. Register values are retained, and all outputs go to the V_{ss} potential.

6. This is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

5. Power-Down Modes

5.1.1 System Control Registers

The operation mode is selected using the system control registers described in table 5.3.

Tuble 5.5 Bystem Control Register	Table 5.3	System	Control	Register
-----------------------------------	-----------	--------	---------	----------

Name	Abbreviation	R/W	Initial Value	Address
System control register 1	SYSCR1	R/W	H'07	H'FFF0
System control register 2	SYSCR2	R/W	H'E0	H'FFF1

System Control Register 1 (SYSCR1)

Bit	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STS0	LSON	—	_	—
Initial value	0	0	0	0	0	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	_	_	_

SYSCR1 is an 8-bit read/write register for control of the power-down modes.

Bit 7—Software Standby (SSBY): This bit designates transition to standby mode or watch mode.

Bit 7: SSBY	Description
0	• When a SLEEP instruction is executed in active mode, a transition is made to sleep mode (initial value)
	 When a SLEEP instruction is executed in subactive mode, a transition is made to subsleep mode.
1	• When a SLEEP instruction is executed in active mode, a transition is made to standby mode or watch mode.
	 When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode.

Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits designate the time the CPU and peripheral modules wait for stable clock operation after exiting from standby mode or watch mode to active mode due to an interrupt. The designation should be made according to the clock frequency so that the waiting time is at least 10 ms.

DIL 0. 3132	DIL 5: 5151	DIL 4: 5150	Description	
0	0	0	Wait time = 8,192 states	(initial value)
		1	Wait time = 16,384 states	
	1	0	Wait time = 32,768 states	
		1	Wait time = 65,536 states	
1	*	*	Wait time = 131,072 states	

Bit 6: STS2	Bit 5: STS1	Bit 4: STS0	Description

Legend: * Don't care

Bit 3—Low Speed on Flag (LSON): This bit chooses the system clock (ϕ) or subclock (ϕ_{SUB}) as the CPU operating clock when watch mode is cleared. The resulting operation mode depends on the combination of other control bits and interrupt input.

Bit 3: LSON	Description	
0	The CPU operates on the system clock (ϕ)	(initial value)
1	The CPU operates on the subclock (ϕ_{sub})	

Bits 2 to 0—Reserved Bits: These bits are reserved; they are always read as 1, and cannot be modified.

System Control Register 2 (SYSCR2)

Bit	7	6	5	4	3	2	1	0
	_	_	_	NESEL	DTON	MSON	SA1	SA0
Initial value	1	1	1	0	0	0	0	0
Read/Write	—	—	—	R/W	R/W	R/W	R/W	R/W

SYSCR2 is an 8-bit read/write register for power-down mode control.

Bits 7 to 5—Reserved Bits: These bits are reserved; they are always read as 1, and cannot be modified.

5. Power-Down Modes

Bit 4—Noise Elimination Sampling Frequency Select (NESEL): This bit selects the frequency at which the watch clock signal (ϕ_w) generated by the subclock pulse generator is sampled, in relation to the oscillator clock (ϕ_{osc}) generated by the system clock pulse generator. When $\phi_{osc} = 2$ to 10 MHz, clear NESEL to 0.

Bit 4: NESEL	Description	
0	Sampling rate is $\phi_{osc}/16$	(initial value)
1	Sampling rate is $\phi_{osc}/4$	

Bit 3—Direct Transfer on Flag (DTON): This bit designates whether or not to make direct transitions among active (high-speed), active (medium-speed) and subactive mode when a SLEEP instruction is executed. The mode to which the transition is made after the SLEEP instruction is executed depends on a combination of this and other control bits.

Bit 3: DTON	Description
0	When a SLEEP instruction is executed in active mode, a transition is made to standby mode, watch mode, or sleep mode. (initial value)
	When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode or subsleep mode.
1	When a SLEEP instruction is executed in active (high-speed) mode, a direct transition is made to active (medium-speed) mode if SSBY = 0, MSON = 1, and LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1.
	When a SLEEP instruction is executed in active (medium-speed) mode, a direct transition is made to active (high-speed) mode if SSBY = 0, MSON = 0, and LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1.
	When a SLEEP instruction is executed in subactive mode, a direct transition is made to active (high-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON = 0, or to active (medium-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON = 1.

Bit 2—Medium Speed on Flag (MSON): After standby, watch, or sleep mode is cleared, this bit selects active (high-speed) or active (medium-speed) mode.

Bit 2: MSON	Description	
0	Operation is in active (high-speed) mode	(initial value)
1	Operation is in active (medium-speed) mode	

Bits 1 and 0—Subactive Mode Clock Select (SA1, SA0): These bits select the CPU clock rate $(\phi_w/2, \phi_w/4, \text{ or } \phi_w/8)$ in subactive mode. SA1 and SA0 cannot be modified in subactive mode.

Bit 1: SA1	Bit 0: SA0	Description	
0	0	φ _w /8	(initial value)
	1	φ _w /4	
1	*	φ _w /2	

Legend: * Don't care

5.2 Sleep Mode

5.2.1 Transition to Sleep Mode

The system goes from active mode to sleep mode when a SLEEP instruction is executed while the SSBY and LSON bits in system control register 1 (SYSCR1) are cleared to 0. In sleep mode CPU operation is halted but the on-chip peripheral functions other than PWM* are operational. The CPU register contents are retained.

Note: * This is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

5.2.2 Clearing Sleep Mode

Sleep mode is cleared by an interrupt (timer A, timer B, timer C*, timer F, IRQ₀, IRQ₁, IRQ₂*, IRQ₃, IRQ₄, WKP₀ to WKP₇, SCI1*, SCI3, A/D converter) or by input at the RES pin.

Note: * The timer C, SCI1, and IRQ₂ interrupts are functions of the H8/3857 Group only, and are not provided in the H8/3854 Group.

Clearing by Interrupt: When an interrupt is requested, sleep mode is cleared and interrupt exception handling starts. Operation resumes in active (high-speed) mode if MSON = 0 in SYSCR2, or active (medium-speed) mode if MSON = 1. Sleep mode is not cleared if the I bit of the condition code register (CCR) is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Clearing by $\overline{\text{RES}}$ **Input:** When the $\overline{\text{RES}}$ pin goes low, the CPU goes into the reset state and sleep mode is cleared.

5.3 Standby Mode

5.3.1 Transition to Standby Mode

The system goes from active mode to standby mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1, the LSON bit is cleared to 0, and bit TMA3 in timer register A (TMA) is cleared to 0. In standby mode the clock pulse generator stops, so the CPU and on-chip peripheral modules stop functioning. As long as a minimum required voltage is applied, the contents of CPU registers and some on-chip peripheral registers, and data in the on-chip RAM, are retained. Data in the on-chip RAM will be retained as long as the specified RAM data retention voltage is supplied. The I/O ports go to the high-impedance state.

5.3.2 Clearing Standby Mode

Standby mode is cleared by an interrupt (IRQ₀, IRQ₁, WKP₀ to WKP₇) or by input at the $\overline{\text{RES}}$ pin.

Clearing by Interrupt: When an interrupt is requested, the system clock pulse generator starts. After the time set in bits STS2–STS0 in SYSCR1 has elapsed, a stable system clock signal is supplied to the entire chip, standby mode is cleared, and interrupt exception handling starts. Operation resumes in active (high-speed) mode if MSON = 0 in SYSCR2, or active (medium-speed) mode if MSON = 1. Standby mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Clearing by \overline{\text{RES}} Input: When the $\overline{\text{RES}}$ pin goes low, the system clock pulse generator starts. After the pulse generator output has stabilized, if the $\overline{\text{RES}}$ pin is driven high, the CPU starts reset exception handling.

Since system clock signals are supplied to the entire chip as soon as the system clock pulse generator starts functioning, the $\overline{\text{RES}}$ pin should be kept at the low level until the pulse generator output stabilizes.

5.3.3 Oscillator Settling Time after Standby Mode Is Cleared

Bits STS2 to STS0 in SYSCR1 should be set as follows.

• When a Crystal Oscillator is Used

The table below gives settings for various operating frequencies. Set bits STS2 to STS0 for a waiting time of at least 10 ms.

STS2	STS1	STS0	Waiting Time	5 MHz	4 MHz	2 MHz	1 MHz	0.5 MHz
0	0	0	8,192 states	1.6	2.0	4.1	8.2	16.4
		1	16,384 states	3.2	4.1	8.2	16.4	32.8
	1	0	32,768 states	6.6	8.2	16.4	32.8	65.5
		1	65,536 states	13.1	16.4	32.8	65.5	131.1
1	*	*	131,072 states	26.2	32.8	65.5	131.1	262.1

 Table 5.4
 Clock Frequency and Settling Time (Times are in ms)

Legend: * Don't care

• When an External Clock is Used

Any values may be set. Normally the minimum time (STS2 = STS1 = STS0 = 0) should be set.

5.3.4 Transition to Standby Mode and Port Pin States

The system goes from active (high-speed or medium-speed) mode to standby mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1, the LSON bit is cleared to 0, and bit TMA3 in TMA is cleared to 0. Port pins (except those with their MOS pull-up turned on) enter high-impedance state when the transition to standby mode is made. This timing is shown in figure 5.2.

Figure 5.2 Transition to Standby Mode and Port Pin States

5.3.5 Notes on External Input Signal Changes before/after Standby Mode

- 1. When external input signal changes before/after standby mode or watch mode When an external input signal such as \overline{IRQ} or \overline{WKP} is input, both the high- and low-level widths of the signal must be at least two cycles of system clock ϕ or subclock ϕ_{SUB} (referred to together in this section as the internal clock). As the internal clock stops in standby mode and watch mode, the width of external input signals requires careful attention when a transition is made via these operating modes. Ensure that external input signals conform to the conditions stated in 3, Recommended timing of external input signals, below
- When external input signals cannot be captured because internal clock stops The case of falling edge capture is illustrated in figure 5.3

As shown in the case marked "Capture not possible," when an external input signal falls immediately after a transition to active (high-speed or medium-speed) mode or subactive mode, after oscillation is started by an interrupt via a different signal, the external input signal cannot be captured if the high-level width at that point is less than 2 t_{evc} or 2 t_{subcvc} .

3. Recommended timing of external input signals

To ensure dependable capture of an external input signal, high- and low-level signal widths of at least 2 t_{eye} or 2 t_{subcye} are necessary before a transition is made to standby mode or watch mode, as shown in "Capture possible: case 1."

External input signal capture is also possible with the timing shown in "Capture possible: case 2" and "Capture possible: case 3," in which a 2 t_{eve} or 2 t_{subcve} level width is secured.

Figure 5.3 External Input Signal Capture when Signal Changes before/after Standby Mode or Watch Mode

- 4. Input pins to which these notes apply: \overline{IRQ}_4 , \overline{IRQ}_3 , \overline{IRQ}_2^* , \overline{IRQ}_1 , \overline{IRQ}_0 , \overline{WKP}_7 to \overline{WKP}_0 , \overline{ADTRG} , TMIB, TMIC*, TMIF
- Note: * H8/3857 Group pin, not provided in the H8/3854 Group.

5.4 Watch Mode

5.4.1 Transition to Watch Mode

The system goes from active or subactive mode to watch mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1 and bit TMA3 in TMA is set to 1.

In watch mode, operation of on-chip peripheral modules other than timer A and the LCD controller is halted. The LCD controller can be selected to operate or to halt. As long as a minimum required voltage is applied, the contents of CPU registers and some registers of the on-chip peripheral modules, and the on-chip RAM contents, are retained. I/O ports keep the same states as before the transition.

5.4.2 Clearing Watch Mode

Watch mode is cleared by an interrupt (timer A, IRQ_0 , WKP_0 to WKP_7) or by a input at the \overline{RES} pin.

Clearing by Interrupt: Watch mode is cleared when an interrupt is requested. The mode to which a transition is made depends on the settings of LSON in SYSCR1 and MSON in SYSCR2. If both LSON and MSON are cleared to 0, transition is to active (high-speed) mode; if LSON = 0 and MSON = 1, transition is to active (medium-speed) mode; if LSON = 1, transition is to subactive mode. When the transition is to active mode, after the time set in SYSCR1 bits STS2–STS0 has elapsed, a stable clock signal is supplied to the entire chip, and interrupt exception handling starts. Watch mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Clearing by $\overline{\text{RES}}$ **Input:** Clearing by $\overline{\text{RES}}$ pin is the same as for standby mode; see section 5.3.2, Clearing Standby Mode.

5.4.3 Oscillator Settling Time after Watch Mode Is Cleared

The waiting time is the same as for standby mode; see section 5.3.3, Oscillator Settling Time after Standby Mode is Cleared.

5.4.4 Notes on External Input Signal Changes before/after Watch Mode

See section 5.3.5, Notes on External Input Signal Changes before/after Standby Mode.

5.5 Subsleep Mode

5.5.1 Transition to Subsleep Mode

The system goes from subactive mode to subsleep mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is cleared to 0, LSON bit in SYSCR1 is set to 1, and TMA3 bit in TMA is set to 1.

In subsleep mode, operation of on-chip peripheral modules other than timer A, timer C*, and the LCD controller is halted. As long as a minimum required voltage is applied, the contents of CPU registers and some registers of the on-chip peripheral modules, and the on-chip RAM contents, are retained. I/O ports keep the same states as before the transition.

Note: * This is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

5.5.2 Clearing Subsleep Mode

Subsleep mode is cleared by an interrupt (timer A, timer C*, IRQ_0 , IRQ_1 , IRQ_2 *, IRQ_3 , IRQ_4 , WKP_0 to WKP_7) or by a low input at the \overline{RES} pin.

Note: * The timer C and IRQ₂ interrupts are functions of the H8/3857 Group only, and are not provided in the H8/3854 Group.

Clearing by Interrupt: When an interrupt is requested, subsleep mode is cleared and interrupt exception handling starts. Subsleep mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Clearing by $\overline{\text{RES}}$ **Input:** Clearing by $\overline{\text{RES}}$ pin is the same as for standby mode; see section 5.3.2, Clearing Standby Mode.

5.6 Subactive Mode

5.6.1 Transition to Subactive Mode

Subactive mode is entered from watch mode if a timer A, IRQ_0 , or WKP_0 to WKP_7 interrupt is requested while the LSON bit in SYSCR1 is set to 1. From subsleep mode, subactive mode is entered if a timer A, timer C*, IRQ_0 , IRQ_1 , IRQ_2^* , IRQ_3 , IRQ_4 , or WKP_0 to WKP_7 interrupt is requested. A transition to subactive mode does not take place if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Note: * The timer C and IRQ₂ interrupts are functions of the H8/3857 Group only, and are not provided in the H8/3854 Group.

5.6.2 Clearing Subactive Mode

Subactive mode is cleared by a SLEEP instruction or by a input at the $\overline{\text{RES}}$ pin.

Clearing by SLEEP Instruction: If a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1 and TMA3 bit in TMA is set to 1, subactive mode is cleared and watch mode is entered. If a SLEEP instruction is executed while SSBY = 0 and LSON = 1 in SYSCR1 and TMA3 = 1 in TMA, subsleep mode is entered. Direct transfer to active mode is also possible; see section 5.8, Direct Transfer, below.

Clearing by RES Pin: Clearing by $\overline{\text{RES}}$ pin is the same as for standby mode; see Clearing by $\overline{\text{RES}}$ pin in section 5.3.2, Clearing Standby Mode.

5.6.3 Operating Frequency in Subactive Mode

The operating frequency in subactive mode is set in bits SA1 and SA0 in SYSCR2. The choices are $\phi_w/2$, $\phi_w/4$, and $\phi_w/8$.

5.7 Active (medium-speed) Mode

5.7.1 Transition to Active (medium-speed) Mode

If the MSON bit in SYSCR2 is set to 1 while the LSON bit in SYSCR1 is cleared to 0, a transition to active (medium-speed) mode results from IRQ_0 , IRQ_1 , or WKP_0 to WKP_7 interrupts in standby mode, timer A, IRQ_0 , or WKP_0 to WKP_7 interrupts in watch mode, or any interrupt in sleep mode. A transition to active (medium-speed) mode does not take place if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

5.7.2 Clearing Active (medium-speed) Mode

Active (medium-speed) mode is cleared by a SLEEP instruction or by a input at the $\overline{\text{RES}}$ pin.

Clearing by SLEEP Instruction: A transition to standby mode takes place if a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, and TMA3 bit in TMA is cleared to 0. The system goes to watch mode if the SSBY bit in SYSCR1 is set to 1 and TMA3 bit in TMA is set to 1 when a SLEEP instruction is executed. Sleep mode is entered if both SSBY and LSON are cleared to 0 when a SLEEP instruction is executed. Direct transfer to active (high-speed) mode or to subactive mode is also possible. See section 5.8, Direct Transfer, below for details.

Clearing by \overline{\text{RES}} Pin: When the $\overline{\text{RES}}$ pin goes low, the CPU enters the reset state and active (medium-speed) mode is cleared.

5.7.3 Operating Frequency in Active (medium-speed) Mode

In active (medium-speed) mode, the CPU is clocked at 1/8 the frequency in active (high-speed) mode.

5.8 Direct Transfer

5.8.1 Direct Transfer Overview

The CPU can execute programs in three modes: active (high-speed) mode, active (medium-speed) mode, and subactive mode. A direct transfer is a transition among these three modes without the stopping of program execution. A direct transfer can be made by executing a SLEEP instruction while the DTON bit in SYSCR2 is set to 1. After the mode transition, direct transfer interrupt exception handling starts.

If the direct transfer interrupt is disabled in interrupt enable register 2 (IENR2), a transition is made instead to sleep mode or watch mode. Note that if a direct transition is attempted while the I bit in CCR is set to 1, sleep mode or watch mode will be entered, and it will be impossible to clear the resulting mode by means of an interrupt.

Direct Transfer from Active (High-Speed) Mode to Active (Medium-Speed) Mode: When a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is set to 1, and the DTON bit in SYSCR2 is set to 1, a transition is made to active (medium-speed) mode via sleep mode.

Direct Transfer from Active (Medium-Speed) Mode to Active (High-Speed) Mode: When a SLEEP instruction is executed in active (medium-speed) mode while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is cleared to 0, and the DTON bit in SYSCR2 is set to 1, a transition is made to active (high-speed) mode via sleep mode.

Direct Transfer from Active (High-Speed) Mode to Subactive Mode: When a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON bits in SYSCR1 are set to 1, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made to subactive mode via watch mode.

Direct Transfer from Subactive Mode to Active (High-Speed) Mode: When a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is cleared to 0, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made directly to active (high-speed) mode via watch mode after the waiting time set in SYSCR1 bits STS2 to STS0 has elapsed.

Direct Transfer from Active (Medium-Speed) Mode to Subactive Mode: When a SLEEP instruction is executed in active (medium-speed) while the SSBY and LSON bits in SYSCR1 are set to 1, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made to subactive mode via watch mode.

Direct Transfer from Subactive Mode to Active (Medium-Speed) Mode: When a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is set to 1, the DTON bit in SYSCR2 is set to 1, and TMA3 bit in TMA is set to 1, a transition is made directly to active (medium-speed) mode via watch mode after the waiting time set in SYSCR1 bits STS2 to STS0 has elapsed.

5.8.2 Calculation of Direct Transfer Time before Transition

Time Required before Direct Transfer from Active (High-speed) Mode to Active (Medium-Speed) Mode: A direct transfer is made from active (high-speed) mode to active (medium-speed) mode when a SLEEP instruction is executed in active (high-speed) mode while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is set to 1, and the DTON bit in SYSCR2 is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt exception handling completion is calculated by expression (1) below.

Direct transfer time = (number of states for SLEEP instruction execution + number of states for internal processing) × tcyc before transition + number of states for interrupt exception handling execution × tcyc after transition (1)

Example: Direct transfer time for the H8/3857 Group and H8/3854 Group = $(2 + 1) \times 2tosc + 14 \times 16tosc = 230 tosc$

Legend: tosc: OSC clock cycle time tcyc: System clock (ϕ) cycle time

Time Required before Direct Transfer from Active (Medium-Speed) Mode to Active (High-Speed) Mode: A direct transfer is made from active (medium-speed) mode to active (high-speed) mode when a SLEEP instruction is executed in active (medium-speed) mode while the SSBY and LSON bits in SYSCR1 are cleared to 0, the MSON bit in SYSCR2 is cleared to 0, and the DTON bit in SYSCR2 is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt exception handling completion is calculated by expression (2) below.

Direct transfer time = (number of states for SLEEP instruction execution + number of states for internal processing) × tcyc before transition + number of states for interrupt exception handling execution × tcyc after transition (2)

Example: Direct transfer time for the H8/3857 Group and H8/3854 Group = $(2 + 1) \times 16$ tosc + 14×2 tosc = 76 tosc

Time Required before Direct Transfer from Subactive Mode to Active (High-Speed) Mode:

A direct transfer is made from subactive mode to active (high-speed) mode when a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON bit in SYSCR2 is cleared to 0, the DTON bit in SYSCR2 is set to 1, and the TMA3 bit in TMA is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt exception handling completion is calculated by expression (3) below.

Direct transfer time = (number of states for SLEEP instruction execution + number of states for internal processing) × tsubcyc before transition + (wait time designated by STS2 to STS0 bits in SCR + number of states for interrupt exception handling execution) × tcyc after transition(3)

Example: Direct transfer time for the H8/3857 Group and H8/3854 Group (when CPU clock frequency is $\phi w/8$ and wait time is 8192 states) = (2 + 1) × 8tw + (8192 + 14) × 2tosc = 24tw + 16412tosc

> Legend: tosc: OSC clock cycle time tw: Watch clock cycle time tcyc: System clock (\$\operatorname{0}\$) cycle time tsubcyc: Subclock (\$\operatorname{0}\$_{sup}\$) cycle time

Time Required before Direct Transfer from Subactive Mode to Active (Medium-Speed)

Mode: A direct transfer is made from subactive mode to active (medium-speed) mode when a SLEEP instruction is executed in subactive mode while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, the MSON and DTON bits in SYSCR2 are set to 1, and the TMA3 bit in TMA is set to 1. A direct transfer time, that is, the time from SLEEP instruction execution to interrupt exception handling completion is calculated by expression (4) below.

Direct transfer time = (number of states for SLEEP instruction execution + number of states for internal processing) × tsubcyc before transition + (wait time designated by STS2 to STS0 bits in SCR + number of states for interrupt exception handling execution) × tcyc after transition (4)

Example: Direct transfer time for the H8/3857 Group and H8/3854 Group (when CPU clock frequency is ϕ w/8 and wait time is 8192 states) = (2 + 1) × 8tw + (8192 + 14) × 16tosc = 24tw + 131296tosc

> Legend: tosc: OSC clock cycle time tw: Watch clock cycle time tcyc: System clock (ϕ) cycle time tsubcyc: Subclock (ϕ_{SUB}) cycle time

5.8.3 Notes on External Input Signal Changes before/after Direct Transition

- Direct transition from active (high-speed) mode to subactive mode Since the mode transition is performed via watch mode, see section 5.3.5, Notes on External Input Signal Changes before/after Standby Mode.
- Direct transition from active (medium-speed) mode to subactive mode Since the mode transition is performed via watch mode, see section 5.3.5, Notes on External Input Signal Changes before/after Standby Mode.
- Direct transition from subactive mode to active (high-speed) mode Since the mode transition is performed via watch mode, see section 5.3.5, Notes on External Input Signal Changes before/after Standby Mode.
- Direct transition from subactive mode to active (medium-speed) mode Since the mode transition is performed via watch mode, see section 5.3.5, Notes on External Input Signal Changes before/after Standby Mode.

Section 6 ROM

6.1 Overview

The H8/3857 has 60 kbytes of on-chip flash memory or mask ROM, while the H8/3856 has 48 kbytes, and the H8/3855 40 kbytes, of on-chip mask ROM. The H8/3854 has 60 kbytes of on-chip flash memory or 32 kbytes of on-chip mask ROM, while the H8/3853 has 24 kbytes, and the H8/3852 16 kbytes, of on-chip mask ROM. Note that the H8/3854 flash memory and mask ROM versions have different ROM sizes. The ROM is connected to the CPU by a 16-bit data bus, allowing high-speed 2-state data access for both byte data and word data.

With the flash memory versions (H8/3857F, H8/3854F), programs can be written and erased and programmed either with a general-purpose PROM programmer or on-board.

When carrying out program development using the H8/3854F with the intention of mask ROM implementation, care must be taken with ROM and RAM sizes since the maximum sizes for the mask ROM version are 32 kbytes of ROM and 1 kbyte of RAM.

6.1.1 Block Diagram

Figure 6.1 ROM Block Diagram (60 kbytes)

6.2 Overview of Flash Memory

6.2.1 Features

Features of the flash memory are summarized below.

- Four flash memory operating modes
 - Program mode
 - Erase mode
 - Program-verify mode
 - Erase-verify mode
- Programming/erase methods

The flash memory is programmed 32 bytes at a time. Erasing is performed in block units. To erase multiple blocks, each block must be erased in turn. In block erasing, 1-kbyte, 28-kbyte, 16-kbyte, and 12-kbyte blocks can be set arbitrarily.

• Programming/erase times

The flash memory programming time is 10 ms (typ.)^{*1} for simultaneous 32-byte programming, equivalent to 300 μ s (typ.)^{*1} per byte, and the erase time is 100 ms (typ.)^{*2} per block.

• Reprogramming capability

The flash memory can be reprogrammed up to 100 times.

• On-board programming modes

There are two modes in which flash memory can be programmed/erased/verified on-board:

- Boot mode
- User program mode
- Automatic bit rate adjustment

For data transfer in boot mode, the chip's bit rate can be automatically adjusted to match the transfer bit rate of the host (9600, 4800, or 2400 bps).

• Protect modes

There are three protect modes—hardware, software, and error—which allow protected status to be designated for flash memory program/erase/verify operations.

• Writer mode

Flash memory can be programmed/erased in Writer mode, using a PROM programmer, as well as in on-board programming mode.

Notes: 1. Shows the total time during which the P bit in flash memory control register 1 (FLMCR1) is set. The program-verify time is not included.

2. Shows the total time during which the E bit in flash memory control register 1 (FLMCR1) is set. The erase-verify time is not included.

6.2.2 Block Diagram

Figure 6.2 Block Diagram of Flash Memory

6.2.3 Flash Memory Operating Modes

Mode Transition Diagram: When the TEST_2 , TEST, and FWE pins are set in the reset state and a reset start is effected, the chip enters one of the operating modes shown in figure 6.3. In user mode, the flash memory can be read but cannot be programmed or erased.

Modes in which the flash memory can be programmed and erased are boot mode, user program mode, and Writer mode.

Figure 6.3 Flash Memory Related State Transitions

On-Board Programming Modes

Boot Mode

1. Initial state

The flash memory is in the erased state when shipped. The procedure for rewriting an old version of an application program or data is described here. The user should prepare a programming control program and the new application program beforehand in the host.

3. Flash memory initialization

The erase program in the boot program area (in RAM) is executed, and the flash memory is initialized (to H'FF). In boot mode, total flash memory erasure is performed, without regard to blocks.

Host Host Programming control program New application program H8/3857F or H8/3854F H8/3857F or H8/3854F SCI SCI Boot program Boot program Flash memory (RAM) Flash memory (RAM) Programming Boot program area control program Flash memory erase New application program

RENESAS

Rev.3.00 Jul. 19, 2007 page 123 of 532 REJ09B0397-0300

Program execution state

Pav

2. Programming control program transfer

When boot mode is entered, the boot program in the chip (already incorporated in the chip) is started, an SCI communication check is carried out, and the boot program required for flash memory erasing is automatically transferred to the RAM boot program area.

4. Writing new application program The programming control program in the host is

transferred to RAM by SCI commination and executed, and the new application program in the host is written into the flash memory.

• User Program Mode

1. Initial state

The FWE assessment program that confirms that a high level has been applied to the FWE pin, and the program that will transfer the programming/erase control program from flash memory to on-chip RAM, should be written into the flash memory by the user beforehand. The programming/erase control program should be prepared in the host or in the flash memory.

 Programming/erase control program transfer When a high level is applied to the FWE pin, user software confirms this fact, executes the transfer program in the flash memory, and transfers the programming/erase control program to RAM.

 Flash memory initialization The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be

performed in block units, but not in byte units.

 Writing new application program Next, the new application program in the host is written into the erased flash memory blocks. Do not write to unerased blocks.

Figure 6.5 User Program Mode (Example)

Differences between Boot Mode and User Program Mode

Table 6.1	Differences between Boot Mode and User Program Mode
-----------	---

	Boot Mode	User Program Mode
Total erase	Possible	Possible
Block erase	Not possible	Possible
Programming control program*	Program/program-verify	Erase/erase-verify
		Program/program-verify

Note: * To be provided by the user, in accordance with the recommended algorithm.

Block Configuration: The flash memory is divided into one 12-kbyte block, one 16-kbyte block, one 28-kbyte block, and four 1-kbyte blocks.

Figure 6.6 Flash Memory Blocks

6.2.4 Pin Configuration

The flash memory is controlled by means of the pins shown in table 6.2.

Table 6.2Flash Memory Pins

Pin Name	Abbr.	I/O	Function
Reset	RES	Input	Reset
Flash write enable	FWE	Input	Flash program/erase protection by hardware
Test 2	TEST2	Input	Sets H8/3857F operating mode
Test	TEST	Input	Sets H8/3857F operating mode
Transmit data*	TXD	Output	SCI3 transmit data output
Receive data*	RXD	Input	SCI3 receive data input

Note: * The transmit data pin and receive data pin are used in boot mode.

6.2.5 Register Configuration

The registers used to control the on-chip flash memory when enabled are shown in table 6.3. In order to access these registers, the FLSHE bit in SYSCR3 must be set to 1.

Register Name	Abbr.	R/W	Initial Value	Address
Flash memory control register 1	FLMCR1*⁵	R/W* ²	H'00* ³	H'FF80*1
Flash memory control register 2	FLMCR2* ⁵	R/W* ²	H'00* ⁴	H'FF81* ¹
Erase block register	EBR* ⁵	R/W* ²	H'00* ⁴	H'FF83* ¹
Mode control register	MDCR	R	Undefined	H'FF89
System control register 3	SYSCR3	R/W	H'00	H'FF8F

Table 6.3 Flash Memory Registers

Notes: 1. Flash memory register selection is performed by means of the FLSHE bit in system control register 3 (SYSCR3).

2. When the FWE bit in FLMCR1 is cleared to 0, writes are invalid.

- 3. When a high level is input to the FWE pin, the initial value is H'80.
- 4. When a low level is input to the FWE pin, or if a high level is input and the SWE bit in FLMCR1 is not set, these registers are initialized to H'00.
- 5. FLMCR1, FLMCR2, and EBR are 8-bit registers. Only byte accesses are valid for these registers, the access requiring 2 states.

The registers shown in table 6.3 are for use exclusively by the flash memory version. In the mask ROM version, a read access to the address of a register other than MDCR will always return 0, a read access to the MDCR address will return an undefined value, and writes are invalid.

6.3 Flash Memory Register Descriptions

6.3.1 Flash Memory Control Register 1 (FLMCR1)

Bit	7	6	5	4	3	2	1	0
	FWE	SWE			EV	PV	E	Р
Initial value	*	0	0	0	0	0	0	0
Read/Write	R	R/W	_	_	R/W	R/W	R/W	R/W
Note: * Determined by the state of the FWE pin.								

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode is entered by setting SWE to 1 when FWE = 1, then setting the corresponding bit. Program mode is entered by setting SWE to 1 when FWE = 1, then setting the PSU bit in FLMCR2, and finally setting the P bit. Erase mode is entered by setting SWE to 1

when FWE = 1, then setting the ESU bit in FLMCR2, and finally setting the E bit. FLMCR1 is initialized by a reset and in standby mode. Its initial value is H'80 when a high level is input to the FWE pin, and H'00 when a low level is input.

Writes to the SWE bit in FLMCR1 are enabled only when FWE = 1; writes to the EV and PV bits only when FWE = 1 and SWE = 1; writes to the E bit only when FWE = 1, SWE = 1, and ESU = 1; and writes to the P bit only when FWE = 1, SWE = 1, and PSU = 1.

Bit 7—Flash Write Enable (FWE): Bit 7 sets hardware protection against flash memory programming/erasing. See section 6.9, Flash Memory Programming and Erasing Precautions, for more information on the use of this bit.

Bit 7: FWE Description

0	When a low level is input to the FWE pin (hardware-protected state)
1	When a high level is input to the FWE pin

Bit 6—Software Write Enable (SWE)*¹*²**:** Bit 6 enables or disables flash memory programming and erasing. (This bit should be set before setting bits ESU, PSU, EV, PV, E, P, and EB6 to EB0, and should not be cleared at the same time as these bits.)

Bit 6: SWE Description

0	Programming/erasing disabled	(initial value)
1	Programming/erasing enabled	
	[Setting condition]	
	When FWE = 1	

Bits 5 and 4—Reserved Bits: Bits 5 and 4 are reserved; they are always read as 0 and cannot be modified.

Bit 3—Erase-Verify (**EV**)*¹: Bit 3 selects erase-verify mode transition or clearing. (Do not set the SWE, ESU, PSU, PV, E, or P bit at the same time.)

Bit 3: EV	Description	
0	Erase-verify mode cleared	(initial value)
1	Transition to erase-verify mode	
	[Setting condition]	
	When $FWE = 1$ and $SWE = 1$	

Bit 2—Program-Verify (PV)*¹: Bit 2 selects program-verify mode transition or clearing. (Do not set the SWE, ESU, PSU, EV, E, or P bit at the same time.)

Bit 2: PV	Description	
0	Program-verify mode cleared	(initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When $FWE = 1$ and $SWE = 1$	

Bit 1—Erase (E)^{*1*3}: Bit 1 selects erase mode transition or clearing. (Do not set the SWE, ESU, PSU, EV, PV, or P bit at the same time.)

Bit 1: E	Description	
0	Erase mode cleared	(initial value)
1	Transition to erase mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and ESU = 1	

Bit 0—Program (\mathbf{P})*¹*³: Bit 0 selects program mode transition or clearing. (Do not set the SWE, ESU, PSU, EV, PV, or E bit at the same time.)

Bit 0: P	Description	
0	Program mode cleared	(initial value)
1	Transition to program mode	
	[Setting condition]	
	When FWE = 1, SWE = 1, and $PSU = 1$	

Notes: 1. Do not set multiple bits simultaneously. Do not cut V_{cc} while a bit is set.

- 2. The SWE bit must not be set or cleared at the same time as other bits (bits EV, PV, E, and P in FLMCR1, and bits ESU and PSU in FLMCR2).
- 3. P bit and E bit setting should be carried out in accordance with the program/erase algorithms shown in section 6.5, Flash Memory Programming/Erasing. Before setting either of these bits, a watchdog timer setting should be made to prevent program runaway. See section 6.9, Flash Memory Programming and Erasing Precautions, for more information on the use of these bits.

6.3.2 Flash Memory Control Register 2 (FLMCR2)

Bit 7. ELEB Description

Bit	7	6	5	4	3	2	1	0
	FLER						ESU	PSU
Initial value	0	0	0	0	0	0	0	0
Read/Write	R						R/W	R/W

FLMCR2 is an 8-bit register used for monitoring of flash memory program/erase protection (error protection) and for flash memory program/erase mode setup. FLMCR2 is initialized to H'00 by a reset. The ESU and PSU bits are cleared to 0 in standby mode, hardware protect mode, and software protect mode.

Bit 7—Flash Memory Error (FLER): Bit 7 indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.

DIL /: FLER	Description	
0	Flash memory is operating normally	
	Flash memory program/erase protection (error protection) is disabled	
	[Clearing condition]	
	Reset	(initial value)
1	An error occurred during flash memory programming/erasing	
	Flash memory program/erase protection (error protection) is enabled	
	[Setting condition]	
	See section 6.6.3, Error Protection	

Bits 6 to 2—Reserved Bits: Bits 6 to 2 are reserved; they are always read as 0 and cannot be modified.

Bit 1—Erase Setup (ESU)*: Bit 1 prepares for a transition to erase mode. Set this bit to 1 before setting the E bit in FLMCR1. (Do not set the SWE, PSU, EV, PV, E, or P bit at the same time.)

Bit 1: ESU	Description	
0	Erase setup cleared	(initial value)
1	Erase setup	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Bit 0—Program Setup (PSU)*: Bit 0 prepares for a transition to program mode. Set this bit to 1 before setting the P bit in FLMCR1. (Do not set the SWE, ESU, EV, PV, E, or P bit at the same time.)

Bit 0: PSU Description

0	Program setup cleared	(initial value)
1	Program setup	
	[Setting condition]	
	When FWE = 1 and SWE = 1	

Note: * Do not set multiple bits simultaneously. Do not cut V_{cc} while a bit is set.

6.3.3 Erase Block Register (EBR)

Bit	7	6	5	4	3	2	1	0
	_	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value	0	0	0	0	0	0	0	0
Read/Write		R/W						

EBR is a register that specifies the flash memory erase area, block by block. Bits 6 to 0 of EBR are read/write bits. EBR is initialized to H'00 by a reset, in standby mode, when a low level is input to the FWE pin, and when a high level is input to the FWE pin while the SWE bit in FLMCR1 is cleared to 0. When a bit in EBR is set to 1, the corresponding block can be erased. Other blocks are erase-protected. As erasing is carried out on a block-by-block basis, only one bit in EBR should be set at a time (more than one bit must not be set).

The flash memory block configuration is shown in table 6.4. To erase the entire flash memory, individual blocks must be erased in succession.

Block (Size)	Addresses
EB0 (1 kbyte)	H'0000 to H'03FF
EB1 (1 kbyte)	H'0400 to H'07FF
EB2 (1 kbyte)	H'0800 to H'0BFF
EB3 (1 kbyte)	H'0C00 to H'0FFF
EB4 (28 kbytes)	H'1000 to H'7FFF
EB5 (16 kbytes)	H'8000 to H'BFFF
EB6 (12 kbytes)	H'C000 to H'EDFF

Table 6.4 Flash Memory Erase Blocks

6.3.4 Mode Control Register (MDCR)

Bit	7	6	5	4	3	2	1	0
			—	_	—	_	TSDS2	TSDS1
Initial value	0	0	0	0	0	0	*	*
Read/Write	_	_	_		_	_	R	R
Note: * Deter	mined by t	he TEST2	and TEST	pins.				

MDCR is an 8-bit read-only register used to monitor the current operating mode of the H8/3857F.

Bits 7 to 2—Reserved Bits: Bits 7 to 2 are reserved; they are always read as 0 and cannot be modified.

Bits 1 and 0—Test Pin Monitor 2 and 1 (TSDS2, TSDS1): Bits 1 and 0 show values that reflect the input levels at the test pins (TEST2 and TEST) (i.e. they indicate the current operating mode). Bits TSDS2 and TSDS1 correspond to pins TEST2 and TEST, respectively. These bits are read-only, and cannot be modified.

6.3.5 System Control Register 3 (SYSCR3)

Bit	7	6	5	4	3	2	1	0
					FLSHE			
Initial value	0	0	0	0	0	0	0	0
Read/Write	_	_	_		R/W	_	_	_

SYSCR3 is an 8-bit read/write register that controls the on-chip flash memory.

SYSCR3 is initialized to H'00 by a reset.

Bits 7 to 4—Reserved Bits: Bits 7 to 4 are reserved; they are always read as 0 and cannot be modified.

Bit 3—Flash Memory Control Register Enable (FLSHE): Bit 3 controls CPU access to the flash memory control registers (FLMCR1, FLMCR2, and EBR). When the FLSHE bit is set to 1, the flash memory control registers can be read and written to. When FLSHE is cleared to 0, the flash memory control registers are unselected. In this case, the contents of the flash memory control registers are retained.

Bit 3: FLSHE Description

0	Flash memory control registers are unselected for addresses H'FF80 to H'FF83
	(initial value)
1	Flash memory control registers are selected for addresses H'FF80 to H'FF83

Bits 2 to 0—Reserved Bits: Bits 2 to 0 are reserved; they are always read as 0 and cannot be modified.

6.4 On-Board Programming Modes

When an on-board programming mode is selected, the on-chip flash memory can be programmed, erased, and verified. There are two on-board programming modes: boot mode and user program mode. Table 6.5 shows the pin settings for transition to each mode. A state transition diagram for flash memory related modes is shown in figure 6.3.

Table 6.5 On-Board Programming Mode Selection

Mode	Pins				
MCU Mode	FWE	TEST2	TEST		
Boot mode	1 * ²	0	0		
User program mode*1	1	1	0		

Notes: 1. The FWE pin should normally be set to 0. Before performing programming, erasing, or verifying, set the FWE pin to 1 and make a transition to user program mode.

2. For the high level application timing, see items (f) and (g) under (3) Notes on Use of Boot Mode in section 6.4.1, Boot Mode.

6.4.1 Boot Mode

To use boot mode, a user program for programming and erasing the flash memory must be provided in advance in the host. SCI3 is used in asynchronous mode.

When a reset start is executed after the chip's pins have been set to boot mode, the built-in boot program is activated, and the programming control program provided in the host is transferred sequentially to the chip using SCI3. The chip writes the programming control program received via SCI3 to the programming control program area in the on-chip RAM. After the transfer is completed, execution branches to the start address (H'FB80) of the programming control program area, and the programming control program execution state is entered (flash memory programming is performed).

Therefore, a routine conforming to the programming algorithm described later must be provided in the programming control program transferred from the host.

Figure 6.7 shows the system configuration in boot mode, and figure 6.8 shows the boot mode execution procedure.

Figure 6.7 System Configuration when Using Boot Mode

Figure 6.8 Boot Mode Execution Procedure

Rev.3.00 Jul. 19, 2007 page 134 of 532 REJ09B0397-0300

Automatic SCI Bit Rate Adjustment

Figure 6.9 RXD Input Signal in Automatic SCI Bit Rate Adjustment

When boot mode is initiated, the chip measures the low period of the asynchronous SCI communication data (H'00) transmitted continuously from the host . The SCI transmit/receive format should be set as 8-bit data, 1 stop bit, no parity. The chip calculates the bit rate of the transmission from the host from the measured low period, and transmits one H'00 byte to the host to indicate the end of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the chip. If reception cannot be performed normally, initiate boot mode again (reset), and repeat the above operations. Depending on the host's transmission bit rate and the chip's system clock frequency, there will be a discrepancy between the bit rates of the host and the chip. To ensure correct SCI operation, the host's transfer bit rate should be set to 2400, 4800, or 9600 bps*¹.

Table 6.6 shows typical host transfer bit rates and system clock frequencies for which automatic adjustment of the chip's bit rate is possible. The boot program should be executed within this system clock oscillation frequency range $*^2$.

- Notes: 1. Use a host bit rate setting of 2400, 4800, or 9600 bps only. No other setting should be used.
 - 2. Although the chip may also perform automatic bit rate adjustment with bit rate and system clock combinations other than those shown in table 6.6, a degree of error will arise between the bit rates of the host and the chip, and subsequent transfer will not be performed normally. Therefore, only a combination of bit rate and system clock oscillation frequency within one of the ranges shown in table 6.6 can be used for boot mode execution.

	System Clock Oscillation Frequencies for which Automatic Adjustment of Chip's Bit Rate is Possible
Host Bit Rate	System Clock Oscillation Frequencies (f _{osc}) for which Automatic Adjustment of Chip's Bit Rate is Possible
9600bps	1.2288 MHz, 2.4576 MHz, 4.9152 MHz, 6 MHz to 10 MHz
4800bps	1.2288 MHz, 2.4576 MHz, 4 MHz to 10 MHz
2400bps	1.2288 MHz, 2 MHz to 10 MHz

On-Chip RAM Area Divisions in Boot Mode: In boot mode, the 1-kbyte area from H'F780 to H'FB7F is reserved as an area for use by the boot program, as shown in figure 6.10. The area to which the programming control program is transferred comprises addresses H'FB80 to H'FF7F. The boot program area becomes available when the programming control program transferred to RAM switches to the execution state. A stack area should be set up as necessary.

Figure 6.10 RAM Areas in Boot Mode

Notes on Use of Boot Mode

- 1. When the chip comes out of reset in boot mode, it measures the low period of the input at the SCI3's RXD pin. The reset should end with RXD high. After the reset ends, it takes about 100 states for the chip to get ready to measure the low period of the RXD input.
- 2. In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all flash memory blocks are erased. Boot mode is for use when user program mode is unavailable, such as the first time on-board programming is performed, or if the program activated in user program mode is accidentally erased.
- 3. Interrupts cannot be used while the flash memory is being programmed or erased.
- 4. The RXD and TXD lines should be pulled up on the board.
- 5. Before branching to the programming control program (RAM area address H'FB80), the chip terminates transmit and receive operations by the on-chip SCI3 (by clearing the RE and TE bits to 0 in SCR3), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TXD, goes to the high-level output state (PCR4₂ = 1 in port control register 4, P4₂ = 1 in port data register 4).

The contents of the CPU's internal general registers are undefined at this time, so these registers must be initialized immediately after branching to the programming control program. In particular, since the stack pointer (SP) is used implicitly in subroutine calls, etc., a stack area must be specified for use by the programming control program.

The initial values of other on-chip registers are not changed.

6. Boot mode can be entered by making the pin settings shown in table 6.5, and then executing a reset start.

Boot mode can be exited by waiting at least 10 system clock cycles after driving the reset pin low*², then setting the FWE, TEST2, and TEST pins to execute reset release*¹. Boot mode can also be exited when a WDT overflow reset occurs.

Do not change the input levels at the FWE, TEST2, and TEST pins while in boot mode. The FWE pin must not be driven low while the boot program is running or flash memory is being programmed or erased*³.

- 7. If the input level of the TEST2, TEST, or FWE pin is changed (for example, from low to high) during a reset, the MCU's operating mode will change, and as a result, the port states will also change. Therefore, care must be taken to make pin settings to prevent these pins from becoming output signal pins during a reset, or to prevent collision with signals outside the MCU.
- Notes: 1. TEST2, TEST, and FWE pin input must satisfy the mode programming setup time (t_{MDS} = 4 states) with respect to the reset release timing.
 - 2. See section 3.2.2, Reset Sequence, and section 6.9, Flash Memory Programming and Erasing Precautions.

3. For further information on FWE application and disconnection, see section 6.9, Flash Memory Programming and Erasing Precautions.

6.4.2 User Program Mode

When set to user program mode, the chip can program and erase its flash memory by executing a user programming/erase control program. Therefore, on-board reprogramming of the on-chip flash memory can be carried out by providing on-board means of FWE control and supply of programming data, and incorporating a programming/erase control program in part of the program area as necessary.

To select user program mode, start up in user program mode (TEST2 = 1, TEST = 0), and apply a high level to the FWE pin. In this mode, on-chip supporting modules other than flash memory operate as they normally would in user mode.

The flash memory itself cannot be read while the SWE bit is set to 1 to carry out flash memory programming or erasing, so the control program that performs programming and erasing must be executed in on-chip RAM.

Figure 6.11 shows the execution procedure when the programming/erase control program is transferred to on-chip RAM.

* For further information on FWE application and disconnection, see section 6.9, Flash Memory Programming and Erasing Precautions.

Figure 6.11 User Program Mode Execution Procedure

6.5 Flash Memory Programming/Erasing

A software method, using the CPU, is employed to program and erase flash memory in the onboard programming modes. There are four flash memory operating modes: program mode, erase mode, program-verify mode, and erase-verify mode. Transitions to these modes are made by setting the PSU and ESU bits in FLMCR2, and the P, E, PV, and EV bits in FLMCR1.

The flash memory cannot be read while being programmed or erased. Therefore, the program that controls flash memory programming/erasing (the programming control program) should be placed in on-chip RAM, and executed there.

See section 6.9, Flash Memory Programming and Erasing Precautions, for points to note concerning programming and erasing, and section 15.2.6, Flash Memory Characteristics, for the wait times after setting or clearing FLMCR1 and FLMCR2 bits.

- Notes: 1. Operation is not guaranteed if setting/resetting of the SWE, EV, PV, E, and P bits in FLMCR1 and the ESU and PSU bits in FLMCR2 is executed by a program in flash memory.
 - 2. When programming or erasing, set FWE to 1 (programming/erasing will not be executed if FWE = 0).
 - 3. Programming should be performed in the erased state. Do not perform additional programming on addresses that have already been programmed.

6.5.1 Program Mode

When writing data or programs to flash memory, the program/program-verify flowchart shown in figure 6.12 should be followed. Performing programming operations according to this flowchart will enable data or programs to be written to flash memory without subjecting the device to voltage stress or sacrificing programming data reliability. Programming should be carried out 32 bytes at a time.

The wait times (x, y, z, α , β , γ , ϵ , η) after bits are set or cleared in flash memory control register 1 (FLMCR1) and flash memory control register 2 (FLMCR2), and the maximum number of programming operations (N), are shown in table 15.10 in section 15.2.6, Flash Memory Characteristics.

Following the elapse of (x) μ s or more after the SWE bit is set to 1 in FLMCR1, 32-byte programming data is stored in the programming data area and the reprogramming data area, and the 32 bytes of data in the reprogramming data area in RAM are written consecutively to the write addresses. The lower 8 bits of the first address written to must be H'00, H'20, H'40, H'60, H'80, H'A0, H'C0, or H'E0. Thirty-two consecutive byte data transfers are performed. The programming address and programming data are latched in the flash memory. A 32-byte data transfer must be

performed even if writing fewer than 32 bytes; in this case, H'FF data must be written to the extra addresses.

Next, the watchdog timer is set to prevent overprogramming in the event of program runaway, etc. Set a value greater than $(y + z + \alpha + \beta) \mu s$ as the WDT overflow period. After this, preparation for program mode (program setup) is carried out by setting the PSU bit in FLMCR2, and after the elapse of (y) μs or more, the operating mode is switched to program mode by setting the P bit in FLMCR1. The time during which the P bit is set is the flash memory programming time. Make a program setting so that the time for one programming operation is within the range of (z) μs .

6.5.2 Program-Verify Mode

In program-verify mode, the data written in program mode is read to check whether it has been correctly written in the flash memory.

After the elapse of the given programming time, the programming mode is exited (the P bit in FLMCR1 is cleared, then the PSU bit in FLMCR2 is cleared at least (α) μ s later). The watchdog timer is cleared following the elapse of more than ($y + z + \alpha + \beta$) μ s after being set, and the operating mode is switched to program-verify mode by setting the PV bit in FLMCR1. Before reading in program-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (γ) μ s or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (ϵ) μ s after the dummy write before performing this read operation. Next, the originally written data is compared with the verify data, and reprogramming data is computed (see figure 6.12) and transferred to the reprogramming data area. After 32 bytes of data have been verified, exit program-verify mode, wait for at least (η) μ s, then clear the SWE bit in FLMCR1. If reprogramming is necessary, set program mode again, and repeat the program/program-verify sequence is not repeated more than (N) times on the same bits.

Note: A 32-byte area for storing programming data and a 32-byte area for storing reprogramming data must be provided in RAM.

Figure 6.12 Program/Program-Verify Flowchart

Rev.3.00 Jul. 19, 2007 page 142 of 532 REJ09B0397-0300

6.5.3 Erase Mode

To erase an individual flash memory block, follow the erase/erase-verify flowchart (single-block erase) shown in figure 6.13.

The wait times (x, y, z, α , β , γ , ε , η) after bits are set or cleared in flash memory control register 1 (FLMCR1) and flash memory control register 2 (FLMCR2), and the maximum number of erase operations (N), are shown in table 15.10 in section 15.2.6, Flash Memory Characteristics.

To perform data or program erasure, make a 1-bit setting for the flash memory area to be erased in the erase block register (EBR) at least (x) μ s after setting the SWE bit to 1 in flash memory control register 1 (FLMCR1). Next, set up the watchdog timer to prevent overerasing in the event of program runaway, etc. Set a value greater than (y + z + α + β) μ s as the WDT overflow period. After this, preparation for erase mode (erase setup) is carried out by setting the ESU bit in FLMCR2, and after the elapse of (y) μ s or more, the operating mode is switched to erase mode by setting the E bit in FLMCR1. The time during which the E bit is set is the flash memory erase time. Ensure that the erase time does not exceed (z) ms.

Note: With flash memory erasing, prewriting (setting memory data in the memory to be erased to all 0) is not necessary before starting the erase procedure.

6.5.4 Erase-Verify Mode

In erase-verify mode, data is read after memory has been erased to check whether it has been correctly erased.

After the elapse of the erase time, erase mode is exited (the E bit in FLMCR1 is cleared, then the ESU bit in FLMCR2 is cleared at least (α) μ s later). The watchdog timer is cleared following the elapse of more than ($y + z + \alpha + \beta$) μ s after being set, and the operating mode is switched to erase-verify mode by setting the EV bit in FLMCR1. Before reading in erase-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (y) μ s or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (ε) μ s after the dummy write before performing this read operation. If the read data has been erased (all 1), execute a dummy write to the next address, and perform an erase-verify sequence as before. However, ensure that the erase/erase-verify sequence is not repeated more than (N) times.

When verification is completed, exit erase-verify mode, and wait for at least (η) µs. If erasure has been completed on all the erase blocks, clear the SWE bit in FLMCR1. If there are any unerased blocks, make a 1-bit setting in EBR for the flash memory block to be erased, and repeat the erase/erase-verify sequence as before.

Figure 6.13 Erase/Erase-Verify Flowchart (Single-Block Erase)

Rev.3.00 Jul. 19, 2007 page 144 of 532 REJ09B0397-0300

6.6 Flash Memory Protection

There are three kinds of flash memory program/erase protection: hardware, software, and error protection.

6.6.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted. In this state, the settings in flash memory control registers 1 and 2 (FLMCR1, FLMCR2) and the erase block register (EBR) are reset. (See table 6.7.)

			Functions	6
Item	Description	Program	Erase	Verify*1
FWE pin protection	 When a low level is input to the FWE pin, FLMCR1, FLMCR2 (except the FLER bit), and EBR are initialized, and the program/erase-protected state is entered.** 	Not possible	Not possible* ²	Not possible
Reset/standby protection	 and in standby mode, FLMCR1, FLMCR2, and EBR are initialized, and the program/ erase-protected state is entered. In a reset via the RES pin, the reset state is not entered unless the RES pin is held low for a minimum of 40 ms (oscillation 		Not possible* ²	Not possible
	stabilization time)* ⁴ after powering on. In the case of a reset during operation, hold the RES pin low for a minimum of 10 system clock cycles (10φ).	e		

Table 6.7 Hardware Protection

Notes: 1. Two modes: program-verify and erase-verify.

2. All blocks are unerasable and block-by-block specification is not possible.

3. For details see section 6.9, Flash Memory Programming and Erasing Precautions.

4. For details see the AC characteristics in sections 15.2.3 and 16.2.3, Electrical Characteristics.

6.6.2 Software Protection

Software protection can be implemented by setting the SWE bit in flash memory control register 1 (FLMCR1), and the erase block register (EBR). With software protection, setting the P or E bit in FLMCR1 does not cause a transition to program mode or erase mode. (See table 6.8.)

		Function	S
Description	Program	Erase	Verify*1
• Clearing the SWE bit to 0 in FLMCR1 sets the program/erase-protected state for all blocks. (Execute in on-chip RAM.)	Not possible	Not possible	Not possible
 Individual blocks can be protected from erasing and programming by settings in the erase block register (EBR)*². If H'00 is set in EBR, all blocks are protected from erasing and programming. 	 I	Not possible	Possible
modes: program-verify and erase-verify.			
	 Clearing the SWE bit to 0 in FLMCR1 sets the program/erase-protected state for all blocks. (Execute in on-chip RAM.) Individual blocks can be protected from erasing and programming by settings in the erase block register (EBR)*². If H'00 is set in EBR, all blocks are protected from erasing and programming. 	 Clearing the SWE bit to 0 in FLMCR1 sets the program/erase-protected state for all blocks. (Execute in on-chip RAM.) Individual blocks can be protected from erasing and programming by settings in the erase block register (EBR)*². If H'00 is set in EBR, all blocks are protected from erasing and programming. 	Description Program Erase • Clearing the SWE bit to 0 in FLMCR1 sets the program/erase-protected state for all blocks. (Execute in on-chip RAM.) Not possible Not possible • Individual blocks can be protected from erasing and programming by settings in the erase block register (EBR)* ² . — Not possible • If H'00 is set in EBR, all blocks are protected from erasing and programming. If H'00 is set in EBR, all blocks are protected from erasing and programming. If H'00 is set in EBR, all blocks are protected from erasing and programming.

Software Protection Table 6.8

2. When not erasing, clear all EBR bits to 0.

6.6.3 **Error Protection**

In error protection, an error is detected when MCU runaway occurs during flash memory programming/erasing^{*1}, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

If the MCU malfunctions during flash memory programming/erasing, the FLER bit is set to 1 in FLMCR2 and the error protection state is entered. FLMCR1, FLMCR2, and EBR settings*² are retained, but program mode or erase mode is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition can be made to verify mode.

FLER bit setting conditions are as follows:

- 1. When flash memory is read*³ during programming/erasing (including a vector read or instruction fetch)
- 2. Immediately after the start of exception handling (excluding a reset) during programming/erasing*4

Rev.3.00 Jul. 19, 2007 page 146 of 532 REJ09B0397-0300

3. When a SLEEP instruction (including software standby) is executed during programming/erasing

Error protection is released only by a reset.

Figure 6.14 shows the flash memory state transition diagram.

Notes: 1. This is the state in which the P bit or E bit is set to 1 in FLMCR1.

- 2. FLMCR1, FLMCR2, and EBR can be written to. However, registers will be initialized if a transition is made to software standby mode in the error protection state.
- 3. The read value is undefined.
- 4. Before exception handling stack and vector read operations are performed.

Figure 6.14 Flash Memory State Transitions

The error protection function is invalid for abnormal operations other than the FLER bit setting conditions. Also, if a certain time has elapsed before this protection state is entered, damage may already have been caused to the flash memory. Consequently, this function cannot provide complete protection against damage to flash memory.

6. ROM

To prevent such abnormal operations, therefore, it is necessary to ensure correct operation in accordance with the program/erase algorithm, with the flash write enable (FWE) voltage applied, and to conduct constant monitoring for MCU errors, internally and externally, using the watchdog timer or other means. There may also be cases where the flash memory is in an erroneous programming or erroneous erasing state at the point of transition to the protect mode, or where programming or erasing is not properly carried out because of an abort. In cases such as these, a forced recovery (program rewrite) must be executed using boot mode. However, it may also happen that boot mode cannot be normally initiated because of overprogramming or overerasing.

6.7 Interrupt Handling during Flash Memory Programming and Erasing

All interrupts should be disabled when flash memory is being programmed or erased (while the P or E bit is set in FLMCR1) and while the boot program is executing in boot mode*¹, to give priority to the program or erase operation. There are three reasons for this:

- 1. Interrupt occurrence during programming or erasing might cause a violation of the programming or erasing algorithm, with the result that normal operation could not be assured.
- 2. In the interrupt exception handling sequence during programming or erasing, the vector would not be read correctly*², possibly resulting in MCU runaway.
- 3. If an interrupt occurred during boot program execution, it would not be possible to execute the normal boot mode sequence.

For these reasons, there are conditions for disabling interrupts in the on-board programming modes alone, as an exception to the general rule. However, this provision does not guarantee normal erasing and programming or MCU operation.

All interrupt requests must therefore be disabled inside and outside the MCU when flash memory is programmed or erased.

- Notes: 1. Interrupt requests must be disabled inside and outside the MCU until programming by the programming control program has been completed.
 - 2. The vector may not be read correctly in this case for the following two reasons:
 - If flash memory is read while being programmed or erased (while the P or E bit is set in FLMCR1), correct read data will not be obtained (undefined values will be returned).
 - If a value has not yet been written in the interrupt vector table, interrupt exception handling will not be executed correctly.

6.8 Flash Memory Writer Mode

6.8.1 Writer Mode Setting

Programs and data can be written and erased in Writer mode as well as in the on-board programming modes. In Writer mode, the on-chip ROM can be freely programmed using a PROM programmer that supports the Renesas Technology microcomputer device type with 64-kbyte on-chip flash memory. Flash memory read mode, auto-program mode, auto-erase mode, and status read mode are supported with this device type. In auto-program mode, auto-erase mode, and status read mode, a status polling procedure is used, and in status read mode, detailed internal signals are output after execution of an auto-program or auto-erase operation.

6.8.2 Socket Adapter and Memory Map

In Writer mode, a socket adapter for the relevant kind of package is attached to the PROM programmer. The socket adapter performs 144-pin to 32-pin conversion for the HD64F3857, and 100-pin to 32-pin conversion for the HD64F3854. The socket adaptor ptoduct code is given in table 6.9.

Figure 6.15 shows the memory map in Writer mode, and figures 6.16 (a) and (b) show the socket adapter pin interconnections for the HD64F3857 and the HD64F3854.

Part No.	Package	Socket Adapter Part No.
HD64F3857	144-pin TQFP (TFP-144)	Details available from Renesas Sales
	144-pin QFP (FP-144H)	
HD64F3854	100-pin TQFP (TFP-100G)	_
	100-pin QFP (FP-100B)	_

Table 6.9Socket Adapter Part No.

Figure 6.15 Memory Map in Writer Mode

HD64F3857		Socket Adapter (32-Pin Conversion) HN28F10	HN28F101P (32 Pins)		
P-144H, TFP-144	Pin Name	1	Pin Name	Pin No.		
36	FWE -	1	FWE	1		
16	P20 -	1 	FO0	13		
15	P21 -	1	F01	14		
14	P22 -	1	FO2	15		
13	P23 -		FO3	17		
12	P24 -		FO4	18		
11	P25 -		F05	19		
10	P26 -		FO6	20		
9	P27 -		F07	21		
53	SEG1		FA0	12		
54	SEG2		FA1	11		
55	SEG3		FA2	10		
56	SEG4	1	FA3	9		
57	SEG5		FA3	8		
58	SEG5	1	FA5	7		
59	SEG7	1	FA6	6		
60	SEG8		FA7	5		
61	SEG9		FA8	27		
62	SEG10		FA9	26		
63	SEG11	 	FA10	23		
64	SEG12		FA11	25		
65	SEG13 -	1	FA12	4		
66	SEG14		FA13	28		
67	SEG15	1	FA14	29		
68	SEG16	1	FA15	3		
75	SEG23	 	CE	22		
74	SEG22	1		24		
73	SEG21 -	I I	WE	31		
34	V _{cc} -	•	V _{cc}	32		
17	AV _{cc}	+				
32	TEST -					
28	X1 -	•				
4	P54 -					
23	PB5 -					
24	PB6					
117	Vci					
123	VLCD					
29, 124	VLOD V _{ss}		V _{SS}	16		
29, 124	AV _{SS}		V SS	10		
33	TEST2	I				
22	PB4	Ī				
35	RES -			0.00		
		Power-on reset circ		2, 30		
31	OSC1	Coscillation circuit	Legend: FWE : Flas	h write enable		
30	OSC2		FO7 to FO0 : Data			
Other pins	NC (OPEN)		FA15 to FA0 : Add			

Figure 6.16 (a) HD64F3857 Socket Adapter Pin Interconnections

HD64F3854		(32-Pin Conversion)	HN28F101	P (32 Pins)		
FP-100B, TFP-100G	Pin Name		Pin Name	Pin No.		
25	FWE	1	— FWE	1		
15	P20		— FO0	13		
14	P21		— FO1	14		
13	P22	· · · · · · · · · · · · · · · · · · ·	— FO2	15		
12	P23		— FO3	17		
11	P24		— FO4	18		
10	P25 —	· · · · · · · · · · · · · · · · · · ·	— FO5	19		
9	P26 —	1	— FO6	20		
8	P27 —		— F07	21		
46	SEG1 —		— FA0	12		
47	SEG2 —	1	— FA1	11		
48	SEG3 —	1	— FA2	10		
49	SEG4		— FA3	9		
50	SEG5 —		— FA4	8		
51	SEG6		FA5	7		
52	SEG7		FA6	6		
53	SEG8		FA7	5		
54	SEG9 —		— FA8	27		
55	SEG10		— FA9	26		
56	SEG11 -		— FA10	23		
57	SEG12		FA11	25		
58	SEG13		FA12	4		
59	SEG14		FA13	28		
60	SEG15		FA14	29		
61	SEG16	· · · · · · · · · · · · · · · · · · ·	FA15	3		
68	SEG23		CE	22		
67	SEG22 —		— OE	24		
66	SEG21 -		— WE	31		
23	V _{cc}	•	– V _{cc}	32		
22	TEST					
18	X1					
3	P54					
27	PB5					
28	PB6 —					
19	V _{ss}	•	- V _{ss}	16		
16	TEST2	•				
26	PB4 —	<u> </u>	NC (OPEN)	2, 30		
24	RES -	Power-on reset circuit	Legend:			
21	OSC1 -	Oscillation circuit	FWE : Flash	write enable		
20	OSC2 —			FO7 to FO0 : Data input/output		
			FA15 to FA0 : Addres	t enable		

Figure 6.16 (b) HD64F3854 Socket Adapter Pin Interconnections

Rev.3.00 Jul. 19, 2007 page 152 of 532 REJ09B0397-0300

6.8.3 Writer Mode Operation

Table 6.10 shows how the different operating modes are set when using Writer mode, and table 6.11 lists the commands used in Writer mode. Details of each mode are given below.

Memory Read Mode: Memory read mode supports byte reads.

Auto-Program Mode: Auto-program mode supports programming of 128 bytes at a time. Status polling is used to confirm the end of auto-programming.

Auto-Erase Mode: Auto-erase mode supports automatic erasing of the entire flash memory. Status polling is used to confirm the end of auto-erasing.

Status Read Mode: Status polling is used for auto-programming and auto-erasing, and normal termination can be confirmed by reading the FO_7 signal. In status read mode, error information is output if an error occurs.

	Pin Names* ⁴						
Mode	FWE	CE	ŌĒ	WE	FO0 to FO7	FA0 to FA15	
Read	H/L	L	L	Н	Data output	Ain	
Output disable	H/L	L	Н	Н	Hi-Z	Х	
Command write	H/L* ³	L	Н	L	Data input	Ain* ²	
Chip disable*1	H/L	Н	Х	Х	Hi-Z	Х	

Table 6.10 Settings for Operating Modes In Writer Mode

Legend:

L: Low level

H: High level

X: Undefined

Hi-Z: High impedance

Notes: 1. Chip disable is not a standby state; internally, it is an operation state.

- 2. Ain indicates that there is also address input in auto-program mode.
- 3. For command writes in auto-program and auto-erase modes, input a high level to the FWE pin.
- 4. Pin names are those assigned in Writer mode. See figure 6.16 (a) for the H8/3857F, and figure 6.16 (b) for the H8/3854F.

	Number of Cycles	1st Cycle			2nd Cycle		
Command Name		Mode	Address	Data	Mode	Address	Data
Memory read mode	1 + n	write	Х	H'00	read	RA	Dout
Auto-program mode	129	write	Х	H'40	write	WA	Din
Auto-erase mode	2	write	Х	H'20	write	Х	H'20
Status read mode	3	write	Х	H'71	write	Х	H'71

Table 6.11 Writer Mode Commands

Legend:

RA: Read address

WA: Programming address

Dout: Read data

Din: Programming data

- Notes: 1. In auto-program mode, 129 cycles are required for command writing by means of a simultaneous 128-byte write.
 - 2. In memory read mode, the number of cycles depends on the number of address write cycles (n).

6.8.4 Memory Read Mode

- 1. After the end of an auto-program, auto-erase, or status read operation, the command wait state is entered. To read memory contents, a transition must be made to memory read mode by means of a command write before the read is executed.
- 2. Command writes can be performed in memory read mode, just as in the command wait state.
- 3. Once memory read mode has been entered, consecutive reads can be performed.
- 4. After power-on, memory read mode is entered.
- 5. Do not make a setting outside the valid address range.

Table 6.12 AC Characteristics in Memory Read Mode (1)

(Conditions: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{ss} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Max	Unit	Notes
Command write cycle	t _{nxtc}	20	_	μS	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50		ns	
Data setup time	t _{ds}	50		ns	
Write pulse width	t _{wep}	70		ns	
WE rise time	t,	_	30	ns	
WE fall time	t _r		30	ns	

Figure 6.17 Timing Waveforms for Memory Read after Command Write

Table 6.13 AC Characteristics in Transition from Memory Read Mode to Another Mode

(Conditions: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{ss} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Max	Unit	Notes
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50		ns	
Write pulse width	t _{wep}	70	_	ns	
WE rise time	t,		30	ns	
WE fall time	t _r		30	ns	

Figure 6.18 Timing Waveforms in Transition from Memory Read Mode to Another Mode

Table 6.14 AC Characteristics in Memory Read Mode (2)

(Conditions: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{ss} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Max	Unit	Notes
Access time	t _{acc}		20	μs	
CE output delay time	t _{ce}	_	150	ns	
OE output delay time	t _{oe}	_	150	ns	
Output disable delay time	t _{df}	_	100	ns	
Data output hold time	t _{oh}	5		ns	

Figure 6.19 Timing Waveforms for $\overline{\text{CE}}$, $\overline{\text{OE}}$ Enable State Read

Figure 6.20 Timing Waveforms for CE, OE Clocked Read

6.8.5 Auto-Program Mode

AC Characteristics

Table 6.15 AC Characteristics in Auto-Program Mode

(Conditions: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{ss} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Max	Unit	Notes
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
Status polling start time	t _{wsts}	1	_	ms	
Status polling access time	t _{spa}	_	150	ns	
Address setup time	t _{as}	0	_	ns	
Address hold time	t _{ah}	60	_	ns	
Memory write time	t _{write}	1	3000	ms	
WE rise time	t,	_	30	ns	
WE fall time	t,	_	30	ns	
Write setup time	t _{pns}	100	_	ns	
Write end setup time	t _{pnh}	100		ns	

Figure 6.21 Auto-Program Mode Timing Waveforms

Notes on Use of Auto-Program Mode

- 1. In auto-program mode, 128 bytes are programmed simultaneously. This should be carried out by executing 128 consecutive byte transfers.
- 2. A 128-byte data transfer is necessary even when programming fewer than 128 bytes. In this case, H'FF data must be written to the extra addresses.
- 3. The lower 8 bits of the transfer address must be H'00 or H'80. If a value other than a valid address is input, processing will switch to a memory write operation but a write error will be flagged.
- 4. Memory address transfer is performed in the second cycle (figure 6.20). Do not perform transfer after the second cycle.
- 5. Do not perform a command write during a programming operation.
- 6. Perform one auto-programming operation for a 128-byte block for each address. Characteristics cannot be guaranteed for two or more programming operations.
- 7. Confirm normal end of auto-programming by checking FO_6 . Alternatively, status read mode can also be used for this purpose (the FO_7 status polling pin is used to identify the end of an auto-program operation).
- 8. Status polling FO_6 and FO_7 pin information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling \overline{CE} and \overline{OE} .

6.8.6 Auto-Erase Mode

AC Characteristics

Table 6.16 AC Characteristics in Auto-Erase Mode

(Conditions: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{ss} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Max	Unit	Notes
Command write cycle	t _{nxtc}	20	_	μS	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0		ns	
Data hold time	t _{dh}	50		ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
Status polling start time	t _{ests}	1	_	ms	
Status polling access time	t _{spa}		150	ns	
Memory erase time	t _{erase}	100	40000	ms	
WE rise time	t _r		30	ns	
WE fall time	t,		30	ns	
Erase setup time	t _{ens}	100	_	ns	
Erase end setup time	t _{enh}	100		ns	

Figure 6.22 Auto-Erase Mode Timing Waveforms

Rev.3.00 Jul. 19, 2007 page 160 of 532 REJ09B0397-0300

Notes on Use of Auto-Erase Mode

- 1. Auto-erase mode supports only total memory erasing.
- 2. Do not perform a command write during auto-erasing.
- 3. Confirm normal end of auto-erasing by checking FO_6 . Alternatively, status read mode can also be used for this purpose (the FO_7 status polling pin is used to identify the end of an auto-erase operation).
- 4. Status polling FO_6 and FO_7 pin information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling \overline{CE} and \overline{OE} .

6.8.7 Status Read Mode

- 1. Status read mode is used to identify what type of abnormal end has occurred. Use this mode when an abnormal end occurs in auto-program mode or auto-erase mode.
- 2. The return code is retained until a command write for other than status read mode is performed.

Table 6.17 AC Characteristics in Status Read Mode

(Conditions: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{ss} = 0 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Max	Unit	Notes
Command write cycle	t _{nxtc}	20	—	μS	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
OE output delay time	t _{oe}	_	150	ns	
Disable delay time	t _{df}	_	100	ns	
CE output delay time	t _{ce}	_	150	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _r		30	ns	

Figure 6.23 Status Read Mode Timing Waveforms

Table 6.18 Status Read Mode Return Codes

Pin Name	F07	FO6	FO5	FO4	FO3	FO2	FO1	FO0
Attribute	Normal end identification	Command error	Programming error	Erase error	_		Programming or erase count exceeded	Valid address error
Initial value	0	0	0	0	0	0	0	0
Indications	Normal end: 0 Abnormal end: 1	Command error: 1 Otherwise: 0	Programming error: 1 Otherwise: 0	Erase error: 1 Otherwise: 0	_		Count exceeded: 1 Otherwise: 0	Valid address error: 1 Otherwise: 0

Note: FO_2 and FO_3 are undefined.

6.8.8 Status Polling

- 1. The FO_7 status polling flag indicates the operating status in auto-program or auto-erase mode.
- 2. The FO₆ status polling flag indicates a normal or abnormal end in auto-program or auto-erase mode.

Table 6.19	Status Polling Output Truth Table
-------------------	-----------------------------------

Pin Names	Internal Operation in Progress	Abnormal End	Normal Status Indication	Normal End
FO7	0	1	0	1
FO6	0	0	1	1
FO0 to FO5	0	0	0	0

6.8.9 Writer Mode Transition Time

Commands cannot be accepted during the oscillation stabilization period or the Writer mode setup period. A transition is made to memory read mode after the Writer mode setup time.

Table 6.20	Stipulated Transition Times to Command Wait State
-------------------	---

Item	Symbol	Min	Max	Unit	Notes
Standby release (oscillation stabilization time)	t _{osc1}	40		ms	
Writer mode setup time	t _{bmv}	10	_	ms	
V_{cc} hold time	t _{dwn}	0	_	ms	

Figure 6.24 Oscillation Stabilization Time, Writer Mode Setup, and Power-Down Sequence

6.8.10 Notes on Memory Programming

- 1. When programming addresses which have previously been programmed, carry out autoerasing before auto-programming.
- 2. When performing programming using a PROM programmer on a chip that has been programmed/erased in an on-board programming mode, auto-erasing is recommended before carrying out auto-programming.
- Notes: 1. The memory is initially in the erased state when the device is shipped by Renesas. For other chips for which the erasure history is unknown, it is recommended that autoerasing be executed to check and supplement the initialization (erase) level.
 - 2. Auto-programming should be performed once only on a particular address block.

6.9 Flash Memory Programming and Erasing Precautions

Precautions concerning the use of on-board programming mode and Writer mode are summarized below.

1. Use the specified voltages and timing for programming and erasing.

Applying a voltage in excess of the rating can permanently damage the device. Use a PROM programmer that supports the Renesas Technology microcomputer device type with 64-kbyte on-chip flash memory.

Do not select the HN28F101 setting for the PROM programmer, and only use the specified socket adapter. Incorrect use may damage the device.

2. Powering on and off

Do not apply a high level to the FWE pin until $V_{\rm cc}$ has stabilized. Also, drive the FWE pin low before turning off $V_{\rm cc}$.

When applying or disconnecting V_{cc} , fix the FWE pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery. Failure to do so may result in overprogramming or overerasing due to MCU runaway, and loss of normal memory cell operation.

3. FWE application/disconnection

FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

- a. Apply FWE when the $V_{\rm cc}$ voltage has stabilized within its rated voltage range.
- b. Apply FWE when oscillation has stabilized (after the elapse of the oscillation stabilization time).
- c. In boot mode, apply and disconnect FWE during a reset.
- d. In user program mode, FWE can be switched between high and low level regardless of the reset state. FWE input can also be switched during program execution in flash memory.
- e. Do not apply FWE if program runaway has occurred.
- f. Disconnect FWE only when the SWE, ESU, PSU, EV, PV, P, and E bits in FLMCR1 and FLMCR2 are cleared.

Make sure that the SWE, ESU, PSU, EV, PV, P, and E bits are not set by mistake when applying or disconnecting FWE.

4. Do not apply a constant high level to the FWE pin

To prevent erroneous programming or erasing due to program runaway, etc., apply a high level to the FWE pin only when programming or erasing flash memory. A system configuration in which a high level is constantly applied to the FWE pin should be avoided. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc.

- 5. Use the recommended algorithm when programming and erasing flash memory The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P or E bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc.
- 6. Do not set or clear the SWE bit during program execution in flash memory Clear the SWE bit before executing a program or reading data in flash memory. When the SWE bit is set, data in flash memory can be rewritten, but flash memory should only be accessed for verify operations (verification during programming/erasing).
- 7. Do not use interrupts while flash memory is being programmed or erased All interrupt requests should be disabled during FWE application to give priority to program/erase operations.
- 8. Do not perform additional programming. Erase the memory before reprogramming. In on-board programming, perform only one programming operation on a 32-byte programming unit block. In Writer mode, perform only one programming operation on a 128byte programming unit block. Programming should be carried out with the entire programming unit block erased.
- 9. Before programming, check that the chip is correctly mounted in the PROM programmer. Overcurrent damage to the device can result if the index marks on the PROM programmer socket, socket adapter, and chip are not correctly aligned.
- Do not touch the socket adapter or chip during programming. Touching either of these can cause contact faults and write errors.

6.10 Notes when Converting the F-ZTAT Application Software to the Mask-ROM Versions

Please note the following when converting the F-ZTAT application software to the mask-ROM versions.

The values read from the internal registers for the flash ROM or the mask-ROM version and F-ZTAT version differ as follows.

		St	atus
Register	Bit	F-ZTAT Version	Mask-ROM Version
FLMCR1	FWE	0: Application software running 1: Programming	0: Application software running 1: (Not read)

Note: This difference applies to all the F-ZTAT versions and all the mask-ROM versions that have different ROM size.

Section 7 RAM

7.1 Overview

The H8/3857 Group and the H8/3854 flash memory version have 2 kbytes of high-speed on-chip static RAM, and the H8/3854 Group mask ROM version has 1 kbyte. The RAM is connected to the CPU by a 16-bit data bus, allowing high-speed 2-state access for both byte data and word data.

Note that the H8/3854 flash memory and mask ROM versions have different ROM and RAM sizes.

7.1.1 Block Diagram

Figure 7.1 RAM Block Diagram

Section 8 I/O Ports

8.1 Overview

The H8/3857 Group is provided with four 8-bit I/O ports, one 3-bit I/O port, one 8-bit input-only port, and one 1-bit input-only port. The H8/3854 Group is provided with two 8-bit I/O ports, one 3-bit I/O port, one 5-bit I/O port, one 4-bit input-only port, and one 1-bit input-only port. In addition, both group have an I/O port capable of interfacing with the on-chip LCD controller.

H8/3857 Group port functions are listed in table 8.1 (a), and H8/3854 Group port functions in table 8.1 (b).

Each port has a port control register (PCR) that controls input and output, and a port data register (PDR) for storing output data. Input or output can be assigned to individual bits. See section 2.9.2, Notes on Bit Manipulation, for information on executing bit-manipulation instructions to write data in PCR or PDR.

Block diagrams of each port are given in appendix C, I/O Port Block Diagrams.

Port	Description	Pins	Other Functions	Function Switching Register
Port 1	8-bit I/O port	P1 ₇ to P1 ₅ /	External interrupts 3 to 1	PMR1
	 Input pull-up MOS option 	IRQ₃ to IRQ₁/ TMIF, TMIC, TMIB	Timer event input TMIF, TMIC, TMIB	TCRF, TMC, TMB
		P1₄/PWM	14-bit PWM output	PMR1
		P1 ₃	None	
		P1 ₂ , P1 ₁ / TMOFH, TMOFL	Timer F output compare	PMR1
		P1 ₀ /TMOW	Timer A clock output	PMR1
Port 2	8-bit I/O port	P2 ₇ to P2 ₂	None	
	Open drain output option	P2,/UD	Timer C count-up/down selection	PMR2
	 High-current port 	P2 ₀ /IRQ₄/ ADTRG	External interrupt 4 and A/D converter external trigger	PMR2 AMR
Port 3	• 8-bit I/O port	P3 ₇ to P3 ₃	None	
	Input pull-up MOS optionHigh-current port	P3 ₂ /SO ₁ P3 ₁ /SI ₁ P3 ₀ /SCK ₁	SCI1 data output (SO ₁), data input (SI ₁), clock input/output (SCK ₁)	PMR3
Port 4	1-bit input-only port	P4 ₃ /IRQ ₀	External interrupt 0	PMR2
	• 3-bit I/O port	P4 ₂ /TXD P4 ₁ /RXD P4 ₀ /SCK ₃	SCI3 data output (TXD), data input (RXD), clock input/output (SCK ₃)	SCR3 SMR
Port 5	 8-bit I/O port Input pull-up MOS option	$\frac{P5_{7} \text{ to } P5_{0}}{WKP_{7} \text{ to } WKP_{0}}$	Wakeup input (\overline{WKP}_7 to \overline{WKP}_0)	PMR5
Port 9*	• 8-bit I/O port	P9 ₇ to P9 ₀	None	
Port A*	• 4-bit I/O port	PA_{3} to PA_{0}	None	
Port B	8-bit input port	$PB_7 \text{ to } PB_0/$ AN ₇ to AN ₀	A/D converter analog input	AMR

Table 8.1 (a) H8/3857 Group Port Functions

Note: * This I/O port is used to interface to the LCD controller.

Port	Description	Pins	Other Functions	Function Switching Register
Port 1	 5-bit I/O port 	P1 ₇ , P1 ₅ /	External interrupts 3, 1	PMR1
	 Input pull-up MOS option 	ĪRQ₃, ĪRQ₁/ TMIF, TMIB	Timer event input TMIF, TMIB	TCRF, TMB
		P1 ₂ , P1 ₁ / TMOFH, TMOFL	Timer F output compare	PMR1
		P1 ₀ /TMOW	Timer A clock output	PMR1
Port 2	8-bit I/O port	P2 ₇ to P2 ₁	None	
	 Open drain output 	P2₀/ĪRQ₄/	External interrupt 4 and A/D	PMR2
	option	ADTRG	converter external trigger	AMR
	 High-current port 			
Port 4	• 1-bit input-only port	P4 ₃ /IRQ ₀	External interrupt 0	PMR2
	 3-bit I/O port 	P4 ₂ /TXD	SCI3 data output (TXD), data input	SCR3
		P4 ₁ /RXD	(RXD), clock input/output (SCK $_{3}$)	SMR
		P4 ₀ /SCK ₃		
Port 5	8-bit I/O port	P5, to P5,/	Wakeup input (\overline{WKP}_7 to \overline{WKP}_0)	PMR5
	 Input pull-up MOS 	\overline{WKP}_{7} to \overline{WKP}_{0}		
_	option			
Port 9*	 8-bit I/O port 	$P9_7$ to $P9_0$	None	
Port A*	• 4-bit I/O port	PA ₃ to PA ₀	None	
Port B	• 4-bit input port	$PB_7 \text{ to } PB_4/$ AN ₇ to AN ₄	A/D converter analog input	AMR

 Table 8.1 (b)
 H8/3854 Group Port Functions

Note: * This I/O port is used to interface to the LCD controller.

8.2 Port 1

Some port 1 functions differ between the H8/3857 Group and the H8/3854 Group.

The P1_{$6}/IRQ_{2}$ /TMIC, P1₄/PWM, and P1₃ pins are provided only in the H8/3857 Group, and not in the H8/3854 Group.</sub>

8.2.1 Overview

Port 1 is an 8-bit I/O port. The H8/3857 Group port 1 pin configuration is shown in figure 8.1 (a), and the H8/3854 Group port 1 pin configuration in figure 8.1 (b).

Figure 8.1 (a) H8/3857 Group Port 1 Pin Configuration

Figure 8.1 (b) H8/3854 Group Port 1 Pin Configuration

8.2.2 Register Configuration and Description

Table 8.2 shows the port 1 register configuration.

Table 8.2	Port 1 Registers
-----------	------------------

Name	Abbr.	R/W	Initial Value	Address
Port data register 1	PDR1	R/W	H'00	H'FFD4
Port control register 1	PCR1	W	H'00	H'FFE4
Port pull-up control register 1	PUCR1	R/W	H'00	H'FFE0
Port mode register 1	PMR1	R/W	H'00	H'FFC8

Port Data Register 1 (PDR1)

H8/3857 Group

PDR1 is an 8-bit register that stores data for pins $P1_7$ through $P1_0$. If port 1 is read while PCR1 bits are set to 1, the values stored in PDR1 are read, regardless of the actual pin states. If port 1 is read while PCR1 bits are cleared to 0, the pin states are read.

Upon reset, PDR1 is initialized to H'00 (H8/3857 Group) or H'58 (H8/3854 Group).

Bit	7	6	5	4	3	2	1	0
	P1,	P1 ₆	P1₅	P1 ₄	P1₃	P1 ₂	P1,	P1₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
H8/3854 Group								
Bit	7	6	5	4	3	2	1	0
	P1,	_	P1₅			P1 ₂	P1,	P1₀
Initial value	0	1	0	1	1	0	0	0
Read/Write	R/W		R/W		_	R/W	R/W	R/W

In the H8/3854 Group, bits 6, 4, and 3 are reserved, and must always be set to 1.

Port Control Register 1 (PCR1)

PCR1 is an 8-bit register for controlling whether each of the port 1 pins $P1_7$ to $P1_0$ functions as an input pin or output pin. Setting a PCR1 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR1 and in PDR1 are valid only when the corresponding pin is designated in PMR1 as a general I/O pin.

Upon reset, PCR1 is initialized to H'00.

PCR1 is a write-only register. All bits are read as 1.

H8/3857 Group

Bit	7	6	5	4	3	2	1	0
	PCR1 ₇	PCR1 ₆	PCR1₅	$PCR1_4$	PCR1 ₃	PCR1 ₂	PCR1 ₁	PCR1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
H8/3854 Group								
Bit	7	6	5	4	3	2	1	0
	PCR1 ₇		$PCR1_{5}$		_	$PCR1_2$	PCR1,	$PCR1_{0}$
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	_	W	_	_	W	W	W

In the H8/3854 Group, bits 6, 4, and 3 are reserved, and must always be set to 0.

Port Pull-Up Control Register 1 (PUCR1)

PUCR1 controls whether the MOS pull-up of each port 1 pin is on or off. When a PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR1 is initialized to H'00.

Bit	7	6	5	4	3	2	1	0
	PUCR1 ₇	$PUCR1_6$	$PUCR1_{5}$	$PUCR1_{_4}$	$PUCR1_3$	$PUCR1_2$	PUCR1,	$PUCR1_{0}$
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
H8/3854 Group								
Bit	7	6	5	4	3	2	1	0
	PUCR1 ₇		$PUCR1_{5}$			$PUCR1_2$	PUCR1,	$PUCR1_{0}$
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	—	R/W		—	R/W	R/W	R/W

In the H8/3854 Group, bits 6, 4, and 3 are reserved, and must always be set to 0.

8. I/O Ports

Port Mode Register 1 (PMR1)

PMR1 is an 8-bit read/write register, controlling the selection of pin functions for port 1 pins.

Upon reset, PMR1 is initialized to H'00.

H8/3857 Group

Bit	7	6	5	4	3	2	1	0
	IRQ3	IRQ2	IRQ1	PWM	_	TMOFH	TMOFL	TMOW
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W		R/W	R/W	R/W
H8/3854 Group								
Bit	7	6	5	4	3	2	1	0
	IRQ3		IRQ1			TMOFH	TMOFL	TMOW
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	_	R/W	_		R/W	R/W	R/W

In the H8/3854 Group, bits 6, 4, and 3 are reserved, and must always be set to 0.

Bit 7—P1,/\overline{IRQ},/TMIF Pin Function Switch (IRQ3): This bit selects whether pin P1,/ \overline{IRQ} ,/TMIF is used as P1, or as \overline{IRQ} ,/TMIF.

Bit 7:	IRQ3	Description	
0		Functions as P1, I/O pin	(initial value)
1		Functions as IRQ ₃ /TMIF input pin	
Note:	For details	alling edge sensing can be designated for IRQ ₃ /TMIF. on TMIF pin settings, see Timer Control Register F (TCRF) in s escriptions.	section 9.5.2,

Bit 6—P1₆/ \overline{IRQ} ₂/ \overline{TMIC} **Pin Function Switch (IRQ2):** This bit selects whether pin P1₆/ \overline{IRQ} ₂/ \overline{TMIC} is used as P1₆ or as \overline{IRQ} ₂/ \overline{TMIC} .

Bit 6:	IRQ2 Description	
0	Functions as P1 ₆ I/O pin	(initial value)
1	Functions as IRQ ₂ /TMIC input pin	
	Rising or falling edge sensing can be designated for \overline{IRQ}_2 /TMIC. For details on TMIC pin settings, see Timer Mode Register C (TMC) in sec	tion 9.4.2,

Register Descriptions.

In the H8/3854 Group, bit 6 is reserved, and must always be cleared to 0.

Bit 5—P1₃/ \overline{IRQ}_i /TMIB Pin Function Switch (IRQ1): This bit selects whether pin P1₃/ \overline{IRQ}_i /TMIB is used as P1₅ or as \overline{IRQ}_i /TMIB.

Bit 5:	IRQ1	Description	
0		Functions as $P1_{5}$ I/O pin	(initial value)
1		Functions as $\overline{IRQ}_{I}/TMIB$ input pin	
Note:		lling edge sensing can be designated for IRQ,/TMIB. on TMIB pin settings, see Timer Mode Register B (TMB) in section escriptions.	9.3.2,

Bit 4—P1₄/PWM Pin Function Switch (PWM): This bit selects whether pin P1₄/PWM is used as P1₄ or as PWM.

Bit 4: PWM	Description	
0	Functions as $P1_4$ I/O pin	(initial value)
1	Functions as PWM output pin	

In the H8/3854 Group, bit 4 is reserved, and must always be cleared to 0.

Bit 3—Reserved Bit: Bit 3 is reserved; it should always be cleared to 0.

Bit 2—P1_/TMOFH Pin Function Switch (TMOFH): This bit selects whether pin P1_/TMOFH is used as P1, or as TMOFH.

Bit 2: TMOFH	Description	
0	Functions as $P1_2$ I/O pin	(initial value)
1	Functions as TMOFH output pin	

Bit 1—P1₁/TMOFL Pin Function Switch (TMOFL): This bit selects whether pin P1₁/TMOFL is used as P1₁ or as TMOFL.

Bit 1: TMOFL	Description	
0	Functions as P1, I/O pin	(initial value)
1	Functions as TMOFL output pin	

Bit 0—P1₀/TMOW Pin Function Switch (TMOW): This bit selects whether pin P1₀/TMOW is used as P1₀ or as TMOW.

Bit 0: TMOW	Description	
0	Functions as $P1_{o}$ I/O pin	(initial value)
1	Functions as TMOW output pin	

8.2.3 Pin Functions

H8/3857 Group port 1 pin functions are shown in figure 8.3 (a), and H8/3854 Group port 1 pin functions in figure 8.3 (b).

Table 8.3 (a)H8/3857 Group Port 1 Pin Functions

P1_/IRQ_/TMIF

The pin function depends on bit IRQ3 in PMR1, bits CKSL2 to CKSL0 in TCRF,

and bit PCR1, in PCR1.

IRQ3	()	1		
PCR1 ₇	0 1		*		
CKSL2 to CKSL0	***		Not 0**	0**	
Pin function	P1, input pin	P1, output pin	\overline{IRQ}_{3} input pin	IRQ₃/TMIF input pin	

Note: When using as TMIF input pin, clear bit IEN3 in IENR1 to 0, disabling IRQ_3 interrupts.

 $P1_{e}/\overline{IRQ_{2}}/TMIC$ The pin function depends on bit IRQ2 in PMR1, bits TMC2 to TMC0 in TMC, and bit PCR1_e in PCR1.

IRQ2	(0 1				
PCR1 ₆	0 1 *					
TMC2 to TMC0	*;	**	Not 111	111		
Pin function	$\begin{array}{c c} P1_6 \text{ input pin} & P1_6 \text{ output pin} & \overline{IRQ}_2 \text{ input pin} & \overline{IRQ}_2/TMIC \\ & \text{input pin} \end{array}$					
Note: When using IRQ, interru		pin, clear bit IE	N2 in IENR1 to	0, disabling		

Pin	Pin Functions and Selection Method						
P1 ₅ /IRQ ₁ /TMIB	The pin function de bit PCR1₅ in PCR1	e pin function depends on bit IRQ1 in PMR1, bits TMB2 to TMB0 in TMB, and PCR1, in PCR1.					
	IRQ1	(0	1			
	PCR1₅	0	1	*			
	TMB2 to TMB0	*:	**	Not 111	111		
	Pin function	P1₅ input pin	P1₅ output pin	\overline{IRQ}_1 input pin	IRQ ₁ /TMIB input pin		
	Note: When usin IRQ1 interr		pin, clear bit IE	N1 in IENR1 to (), disabling		
P1₄/PWM	The pin function de	epends on bit P	WM in PMR1 ar	nd bit PCR1 ₄ in F	PCR1.		
	PWM	0 1					
	PCR1₄	0	1	*	:		
	Pin function	P1₄ input pin	$P1_4$ output pin	PWM output pin			
P1 ₃	The pin function de	depends on bit $PCR1_3$ in PCR1.					
	PCR1 ₃	(0	1			
	Pin function	P1 ₃ input pin P1		P1 ₃ out	output pin		
P1 ₂ /TMOFH	The pin function de	depends on bit TMOFH in PMR1 and bit PCR1 ₂ in PCR1.			n PCR1.		
	TMOFH	(D	1			
	PCR1 ₂	0	1	*	:		
	Pin function $P1_2$ input pin $P1_2$ output		P1 ₂ output pin	TMOFH output pin			
P1,/TMOFL	The pin function de	epends on bit Tl	MOFL in PMR1	and bit PCR1, ir	PCR1.		
	TMOFL	0		1			
	PCR1,	0	1	*	:		
	Pin function	P1, input pin	P1, output pin	TMOFL o	utput pin		
P1 ₀ /TMOW	The pin function de	epends on bit Tl	MOW in PMR1 a	and bit PCR1 $_{\circ}$ in	PCR1.		
	TMOW	(C	1			
	PCR1 ₀	0	1	*	:		
	Pin function	$P1_0$ input pin	$P1_{0}$ output pin	TMOW o	utput pin		

Legend: * Don't care

Table 8.3 (b)	H8/3854 Group Port 1 Pin Functions						
Pin	Pin Functions an	d Selection Me	thod				
P1,/IRQ ₃ /TMIF	The pin function de and bit PCR1, in P		Q3 in PMR1, bi	ts CKSL2 to CK	SL0 in TCRF,		
	IRQ3	()	1			
	PCR1 ₇	0	1	*	:		
	CKSL2 to CKSL0	*:	**	Not 0**	0**		
	Pin function	P1, input pin	P1, output pin	\overline{IRQ}_{3} input pin	IRQ ₃ /TMIF input pin		
	Note: When usin IRQ ₃ interre		pin, clear bit IE	N3 in IENR1 to (), disabling		
P1₅/ĪRQ₁/TMIB	The pin function de bit PCR1₅ in PCR1		Q1 in PMR1, bi	ts TMB2 to TME	30 in TMB, and		
	IRQ1	0 1					
	PCR1₅	0	1	*			
	TMB2 to TMB0	*:	**	Not 111 111			
	Pin function	$P1_{5}$ input pin	P1₅ output pin	\overline{IRQ}_1 input pin	IRQ₁/TMIB input pin		
		ote: When using as TMIB input pin, clear bit IEN1 in IENR1 to 0, disabling IRQ1 interrupts.					
P1 ₂ /TMOFH	The pin function de	epends on bit T	MOFH in PMR1	1 and bit PCR1 ₂ in PCR1.			
	TMOFH	(0	1			
	PCR1 ₂	0	1	*			
	Pin function	P1 ₂ input pin	$P1_{2}$ output pin	TMOFH output pin			
P1,/TMOFL	The pin function depends on bit TMOFL in PMR1 and bit PCR1, in PCR1.						
	TMOFL	()	1			
	PCR1 ₁	0	1	*			
	Pin function	P1, input pin	P1, output pin	TMOFL output pin			
P1 ₀ /TMOW	The pin function de	epends on bit T	MOW in PMR1 a	and bit PCR1 $_{\circ}$ in	PCR1.		
	TMOW	(0	1			
	PCR1 ₀	0	1	*	:		
	Pin function	$P1_0$ input pin	$P1_{0}$ output pin	TMOW o	utput pin		

Legend: * Don't care

8.2.4 Pin States

H8/3857 Group port 1 pin states in each operating mode are shown in table 8.4 (a), and H8/3854 Group port 1 pin states in each operating mode in table 8.4 (b).

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P1 ₇ /IRQ ₃ /TMIF	High-	Retains	Retains	High-	Retains	Functional	Functional
P1 ₆ /IRQ ₂ /TMIC	impedance	•	previous	impedance*	previous		
P1₅/ĪRQ₁/TMIB		state	state		state		
P1₄/PWM							
P1 ₃							
P1 ₂ /TMOFH							
P1₁/TMOFL							
P1 ₀ /TMOW							

Table 8.4 (a)H8/3857 Group Port 1 Pin States

Note: * A high-level signal is output when the MOS pull-up is in the on state.

Table 8.4 (b)H8/3854 Group Port 1 Pin States

P1/IRQ,/TMIF High- P1/IRQ,/TMIB impedance previous previous state state state previous state previous state previous state previous state previous state previous state state previous state pre	Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
	P1₅∕ĪRQ₁́/TMIB P1₂∕TMOFH	0	previous	previous	3	previous	Functional	Functional

Note: * A high-level signal is output when the MOS pull-up is in the on state.

8.2.5 MOS Input Pull-Up

Port 1 has a built-in MOS input pull-up function that can be controlled by software. When a PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS input pull-up for that pin. The MOS input pull-up function is in the off state after a reset.

PCR1 _n	0		1
PUCR1 _n	0	1	*
MOS input pull-up	Off	On	Off

Legend: * Don't care

Notes: H8/3857 Group: n = 7 to 0 H8/3854 Group: n = 7, 5, 2 to 0

8.3 Port 2

Some port 2 functions differ between the H8/3857 Group and the H8/3854 Group.

The UD function multiplexed with the $P2_1$ pin is provided only in the H8/3857 Group, and not in the H8/3854 Group.

POF1 in PMR2 is also a function of the H8/3857 Group only.

8.3.1 Overview

Port 2 is an 8-bit I/O port. The H8/3857 Group port 2 pin configuration is shown in figure 8.2 (a), and the H8/3854 Group port 2 pin configuration in figure 8.2 (b).

8.3.2 Register Configuration and Description

Table 8.5 shows the port 2 register configuration.

Table 8.5Port 2 Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register 2	PDR2	R/W	H'00	H'FFD5
Port control register 2	PCR2	W	H'00	H'FFE5
Port mode register 2	PMR2	R/W	H'C0	H'FFC9
Port mode register 4	PMR4	R/W	H'00	H'FFCB

Port Data Register 2 (PDR2)

Bit	7	6	5	4	3	2	1	0
	P2 ₇	P2 ₆	P2₅	P2 ₄	P2 ₃	P2 ₂	P2,	P2 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PDR2 is an 8-bit register that stores data for pins $P2_7$ through $P2_0$. If port 2 is read while PCR2 bits are set to 1, the values stored in PDR2 are read, regardless of the actual pin states. If port 2 is read while PCR2 bits are cleared to 0, the pin states are read.

Upon reset, PDR2 is initialized to H'00.

Port Control Register 2 (PCR2)

Bit	7	6	5	4	3	2	1	0
	PCR2 ₇	$PCR2_{_6}$	PCR2₅	$PCR2_4$	PCR2 ₃	PCR2 ₂	PCR2 ₁	PCR2 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR2 is an 8-bit register for controlling whether each of the port 2 pins $P2_7$ to $P2_0$ functions as an input pin or output pin. Setting a PCR2 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR2 and in PDR2 are valid only when the corresponding pin is designated in PMR2 as a general I/O pin.

Upon reset, PCR2 is initialized to H'00.

PCR2 is a write-only register. All bits are read as 1.

Port Mode Register 2 (PMR2)

PMR2 is an 8-bit read/write register, controlling the selection of pin functions for pins $P2_0$, $P2_1^*$, and $P4_3$, controlling the PMOS on/off option for pins $P3_0/SO_1^*$.

Upon reset, PMR2 is initialized to H'CO.

Note: * $P2_1$ pin function switching and the $P3_2/SO_1$ pin are H8/3857 Group functions only, and are not provided in the H8/3854 Group.

H8/3857 Group

Bit	7	6	5	4	3	2	1	0
					IRQ0	POF1	UD	IRQ4
Initial value	1	1	0	0	0	0	0	0
Read/Write			R/W	R/W	R/W	R/W	R/W	R/W
H8/3854 Group								
Bit	7	6	5	4	3	2	1	0
	_	_	—	_	IRQ0	_	_	IRQ4
Initial value	1	1	0	0	0	0	0	0
Read/Write					R/W			R/W

In the H8/3854 Group, bits 2 and 1 are reserved, and must always be cleared to 0.

Bits 7 and 6—Reserved Bits: Bits 7 and 6 are reserved; they are always read as 1, and cannot be modified.

Bits 5 and 4—Reserved Bits: Bits 5 and 4 are reserved; they should always be cleared to 0.

Bit 3—P4₃/ \overline{IRQ}_0 **Pin Function Switch (IRQ0):** This bit selects whether pin P4₃/ \overline{IRQ}_0 is used as P4₃ or as \overline{IRQ}_0 .

Bit 3: IRQ0	Description	
0	Functions as $P4_{_3}$ input pin	(initial value)
1	Functions as \overline{IRQ}_0 input pin	

Note: Rising or falling edge sensing can be selected for the \overline{IRQ}_0 pin.

Bit 2—P3₂/SO₁ Pin PMOS Control (POF1): This bit controls the on/off state of the PMOS transistor in the P3₂/SO₁ pin output buffer.

Bit 2: POF1	Description	
0	CMOS output	(initial value)
1	NMOS open-drain output	

In the H8/3854 Group, bit 2 is reserved, and must always be cleared to 0.

Bit 1—P2₁/UD Pin Function Switch (UD): This bit selects whether pin $P2_1/UD$ is used as $P2_1$ or as UD.

Bit 1: UD	Description	
0	Functions as P2, I/O pin	(initial value)
1	Functions as UD input pin	

In the H8/3854 Group, bit 1 is reserved, and must always be cleared to 0.

Bit 0: P2₀/ $\overline{IRQ_4}$ / \overline{ADTRG} Pin Function Switch (IRQ4): This bit selects whether pin P2₀/ $\overline{IRQ_4}$ / \overline{ADTRG} is used as P2₀ or as $\overline{IRQ_4}$ / \overline{ADTRG} .

Bit 0:	IRQ4	Description	
0		Functions as $P2_0$ I/O pin	(initial value)
1		Functions as \overline{IRQ}_4 /ADTRG input pin	
Note:	Rising or fa	alling edge sensing can be selected for the \overline{IRQ}_4 pin.	
	See sectior setting.	n 12.3.2, Start of A/D Conversion by External Trigger Input, for the	ADTRG pin

Port Mode Register 4 (PMR4)

Bit	7	6	5	4	3	2	1	0
	NMOD7	NMOD6	NMOD5	NMOD4	NMOD3	NMOD2	NMOD1	NMOD0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

PMR4 is an 8-bit read/write register, used to select CMOS output or NMOS open drain output for each port 2 pin.

Upon reset, PMR4 is initialized to H'00.

Bit n—NMOS Open-Drain Output Select (NMODn): This bit selects NMOS open-drain output when pin P2, is used as an output pin.

Bit n: NMODn Description

0	CMOS output	(initial value)
1	NMOS open-drain output	
Note: $n = 7 \text{ to } 0$		

Rev.3.00 Jul. 19, 2007 page 186 of 532 REJ09B0397-0300

8.3.3 Pin Functions

Table 8.6 (a)

H8/3857 Group port 2 pin functions are shown in figure 8.6 (a), and H8/3854 Group port 2 pin functions in figure 8.6 (b).

H8/3857 Group Port 2 Pin Functions

1 able 0.0 (a)	110/303/ Gloup I	110/3037 Group 1 of t 2 1 m Functions					
Pin	Pin Functions ar	nd Selection M	ethod				
P2 ₇ to P2 ₂	Input or output is	selected as follo	ows by the bit se	ettings in PCR2.			
	PCR2n		0		1		
	Pin function	P2 _n in	put pin	P2 _n ou	tput pin		
	Note: $n = 7$ to 2	2					
P2,/UD	The pin function of	lepends on bit l	JD in PMR2 and	bit PCR2, in P	CR2.		
	UD		0		1		
	PCR2 ₁	0	1	*			
	Pin function	P2, input pin	P2, output pin	UD in	put pin		
P2 ₀ /IRQ ₄ /ADTRG	The pin function c $PCR2_0$ in PCR2.	lepends on bit I	RQ4 in PMR2, b	it TRGE in AMF	R, and bit		
	IRQ4		0		1		
	PCR2₀	0	1	:	*		
	TRGE	:	*	0	1		
	Pin function	$P2_0$ input pin	$P2_0$ output pin	IRQ₄ input pin	IRQ₄/ADTRG input pin		
	Note: When usir IRQ₄ inter	•	put pin, clear bi	t IEN4 in IENR1	to 0, disabling		

Legend: * Don't care

Table 8.6 (b)H8/3854 Group Port 2 Pin Functions

Pin Pin Functions and Selection Method

 P2, to P2,
 Input or output is selected as follows by the bit settings in PCR2.

 PCR2n
 0

 Pin function
 P2, input pin

 Note:
 n = 7 to 1

 $P2_{0}/\overline{IRQ_{4}}/\overline{ADTRG}$ The pin function depends on bit IRQ4 in PMR2, bit TRGE in AMR, and bit PCR2_{0} in PCR2.

IRQ4	()	1			
PCR2 ₀	0	1	*			
TRGE	•	k	0	1		
Pin function	$P2_0$ input pin	P2 ₀ output pin	IRQ₄ input pin IRQ₄/ADTRG input pin			
Note: When using as ADTRG input pin, clear bit IEN4 in IENR1 to 0, disabling						

IRQ₄ interrupts.

Legend: * Don't care

8.3.4 Pin States

H8/3857 Group port 2 pin states in each operating mode are shown in table 8.7 (a), and H8/3854 Group port 2 pin states in each operating mode in table 8.7 (b).

Table 8.7 (a)H8/3857 Group Port 2 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
$P2_7 \text{ to } P2_2$ $P2_1/UD$ $P2_0/\overline{IRQ}_4/$ ADTRG	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

Table 8.7 (b)H8/3854 Group Port 2 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
$P2_7 \text{ to } P2_1$ $P2_0/\overline{IRQ}_4/$ ADTRG	High- impedance	Retains previous state	Retains previous state	High- impedance		Functional	Functional

8.4 Port 3 (H8/3857 Group Only)

Port 3 is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

8.4.1 Overview

Port 3 is an 8-bit I/O port, configured as shown in figure 8.3.

8.4.2 Register Configuration and Description

Table 8.8 shows the port 3 register configuration.

Table 8.8Port 3 Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register 3	PDR3	R/W	H'00	H'FFD6
Port control register 3	PCR3	W	H'00	H'FFE6
Port pull-up control register 3	PUCR3	R/W	H'00	H'FFE1
Port mode register 3	PMR3	R/W	H'00	H'FFCA

Port Data Register 3 (PDR3)

Bit	7	6	5	4	3	2	1	0
	P3 ₇	P3 ₆	P3₅	P3 ₄	P3₃	P3 ₂	P3,	P3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PDR3 is an 8-bit register that stores data for port 3 pins $P3_7$ to $P3_0$. If port 3 is read while PCR3 bits are set to 1, the values stored in PDR3 are read, regardless of the actual pin states. If port 3 is read while PCR3 bits are cleared to 0, the pin states are read.

Upon reset, PDR3 is initialized to H'00.

Port Control Register 3 (PCR3)

Bit	7	6	5	4	3	2	1	0
	PCR3 ₇		PCR3₅	PCR3 ₄	PCR3 ₃		PCR3 ₁	PCR3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR3 is an 8-bit register for controlling whether each of the port 3 pins $P3_7$ to $P3_0$ functions as an input pin or output pin. Setting a PCR3 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR3 and in PDR3 are valid only when the corresponding pin is designated in PMR3 as a general I/O pin.

Upon reset, PCR3 is initialized to H'00.

PCR3 is a write-only register. All bits are read as 1.

Port Pull-Up Control Register 3 (PUCR3)

Bit	7	6	5	4	3	2	1	0
	PUCR3 ₇	PUCR3 ₆	$PUCR3_{5}$	PUCR3 ₄	$PUCR3_3$	$PUCR3_2$	PUCR3 ₁	PUCR3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PUCR3 bits control the on/off state of pin $P3_7 - P3_0$ MOS pull-ups. When a PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.
Upon reset, PUCR3 is initialized to H'00.

Port Mode Register 3 (PMR3)

Bit	7	6	5	4	3	2	1	0
			_	_	_	SO1	SI1	SCK1
Initial value	0	0	0	0	0	0	0	0
Read/Write	—	—	—	—	—	R/W	R/W	R/W

PMR3 is an 8-bit read/write register, controlling the selection of pin functions for port 3 pins.

Upon reset, PMR3 is initialized to H'00.

Bits 7 to 3—Reserved Bits: Bits 7 to 3 are reserved; they should always be cleared to 0.

Bit 2—P3₂/SO₁ Pin Function Switch (SO1): This bit selects whether pin P3₂/SO₁ is used as P3₂ or as SO₁.

Bit 2: SO1	Description	
0	Functions as $P3_2$ I/O pin	(initial value)
1	Functions as SO, output pin	

Bit 1—P3₁/SI₁ **Pin Function Switch (SI1):** This bit selects whether pin P3₁/SI₁ is used as P3₁ or as SI₁.

Bit 1: SI1	Description	
0	Functions as $P3_1$ I/O pin	(initial value)
1	Functions as SI, input pin	

Bit 0—P3/SCK₁ **Pin Function Switch (SCK1):** This bit selects whether pin P3₀/SCK₁ is used as P3₀ or as SCK₁.

Bit 0:	SCK1	Description
		Becomption

0	Functions as $P3_0 I/O$ pin	(initial value)
1	Functions as SCK, I/O pin	

8.4.3 Pin Functions

Table 8.9 shows the port 3 pin functions.

Table 8.9Port 3 Pin Functions

Pin	Pin Functions and Selection Method						
P3 ₇ to P3 ₃	The pin function de	epends on the c	orresponding bi	t in PCR3.			
	PCR3 _n	()	1			
	Pin function	P3 _n in	put pin	P3 _n out	put pin		
	Note: $n = 7$ to 3	3					
P3 ₂ /SO ₁	The pin function de	epends on bit S	O1 in PMR3 and	d bit PCR3 ₂ in P	CR3.		
	SO1	(0	-	1		
	PCR3 ₂	0	1	*	k		
	Pin function	P3 ₂ input pin	P3 ₂ output pin	² output pin SO ₁ out			
P3,/SI,	The pin function de	epends on bit S	I1 in PMR3 and	bit PCR3, in PC	R3.		
	SI1 0			1			
	PCR3 ₁	0	1	\$	k		
	Pin function	P3, input pin	P3, output pin	SI, inp	out pin		
P3 ₀ /SCK ₁	The pin function de PCR3, in PCR3.	epends on bit S	CK1 in PMR3, b	it CKS3 in SCR	1, and bit		
	SCK1	(0	1			
	CKS3	:	*	0	1		
	PCR3 ₀	0	1	*	*		
	Pin function	P3₀ input pin	P3₀ output pin	SCK₁ output pin	SCK, input pin		

Legend: * Don't care

8.4.4 Pin States

Table 8.10 shows the port 3 pin states in each operating mode.

Table 8.10	Port 3 Pin States
-------------------	-------------------

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P3, to P3, P3,/SO, P3,/SI, P3,/SCK,	High- impedance	Retains previous state	Retains previous state	High- impedance*	Retains previous state	Functional	Functional
Note: *	A high-level sig	gnal is outp	ut when the I	MOS pull-up is	in the on	state.	

8.4.5 MOS Input Pull-Up

Port 3 has a built-in MOS input pull-up function that can be controlled by software. When a PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for that pin. The MOS pull-up function is in the off state after a reset.

PCR3 _n	0		1
PUCR3 _n	0	1	*
MOS input pull-up	Off	On	Off

Legend: * Don't care Note: n = 7 to 0

8.5 Port 4

Port 4 functions are common to the H8/3857 Group and H8/3854 Group.

8.5.1 Overview

Port 4 consists of a 3-bit I/O port and a 1-bit input port, and is configured as shown in figure 8.4.

8.5.2 Register Configuration and Description

Table 8.11 shows the port 4 register configuration.

Table 8.11Port 4 Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register 4	PDR4	R/W	H'F8	H'FFD7
Port control register 4	PCR4	W	H'F8	H'FFE7

Port Data Register 4 (PDR4)

Bit	7	6	5	4	3	2	1	0
					P4 ₃	P4 ₂	P4,	P4 ₀
Initial value	1	1	1	1	Undefined	0	0	0
Read/Write	—	—	—	—	R	R/W	R/W	R/W

PDR4 is an 8-bit register that stores data for port 4 pins $P4_2$ to $P4_0$. If port 4 is read while PCR4 bits are set to 1, the values stored in PDR4 are read, regardless of the actual pin states. If port 4 is read while PCR4 bits are cleared to 0, the pin states are read.

The pin state is always read from bit 3 ($P4_3$).

Upon reset, PDR4 is initialized to H'F8.

Port Control Register 4 (PCR4)

Bit	7	6	5	4	3	2	1	0
			_		_	PCR4 ₂	PCR4 ₁	$PCR4_{0}$
Initial value	1	1	1	1	1	0	0	0
Read/Write	_	_	_	_	_	W	W	W

PCR4 controls whether each of the port 4 pins $P4_2$ to $P4_0$ functions as an input pin or output pin. Setting a PCR4 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR4 and in PDR4 are valid only when the corresponding pin is designated in SCR3 as a general I/O pin.

Upon reset, PCR4 is initialized to H'F8.

PCR4 is a write-only register. All bits are read as 1.

8.5.3 Pin Functions

Table 8.12 shows the port 4 pin functions.

Table 8.12Port 4 Pin Functions

Pin	Pin Functions an	Pin Functions and Selection Method							
$P4_3/\overline{IRQ}_0$	The pin function de	The pin function depends on the IRQ0 bit setting in PMR2.							
	IRQ0	(0	1					
	Pin function	P4 ₃ in	put pin		$\overline{IRQ}_{_0}$ in	iput pin			
P4 ₂ /TXD	The pin function de	epends on bit T	E in SCR3 and b	oit PCR4		R4.			
	TE	(0			1			
	PCR4 ₂	0	1		;	k			
	Pin function	P4 ₂ input pin	P4 ₂ output pin		TXD ou	Itput pin			
P4,/RXD	The pin function de	epends on bit R	E in SCR3 and I	bit PCR	4, in PC	R4.			
	RE	(0		-	1			
	PCR4,	0	1		;	k			
	Pin function	P4, input pin	P4, output pin		RXD in	iput pin			
P4 ₀ /SCK ₃	The pin function de and bit PCR4, in F		CKE1 and CKE0) in SCF	R3, bit C	OM in SMR,			
	CKE1		0			1			
	CKE0		0		1	*			
	СОМ	0 1 * *							
	PCR4 ₀	0	1	;	*	*			
	Pin function	P4₀ input P4₀ output SCK₃ output SCK₃ input pin pin pin pin							

Legend: * Don't care

8.5.4 Pin States

Table 8.13 shows the port 4 pin states in each operating mode.

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P4 ₃ /IRQ ₀ P4 ₂ /TXD P4 ₁ /RXD P4 ₀ /SCK ₃	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

8.6 Port 5

Port 5 functions are common to the H8/3857 Group and H8/3854 Group.

8.6.1 Overview

Port 5 is an 8-bit I/O port, configured as shown in figure 8.5.

Figure 8.5 Port 5 Pin Configuration

8.6.2 Register Configuration and Description

Table 8.14 shows the port 5 register configuration.

Table 8.14Port 5 Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register 5	PDR5	R/W	H'00	H'FFD8
Port control register 5	PCR5	W	H'00	H'FFE8
Port pull-up control register 5	PUCR5	R/W	H'00	H'FFE2
Port mode register 5	PMR5	R/W	H'00	H'FFCC

Port Data Register 5 (PDR5)

Bit	7	6	5	4	3	2	1	0
	P5 ₇	P5 ₆	P5₅	P5₄	P5₃	P5 ₂	P5,	P5₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PDR5 is an 8-bit register that stores data for port 5 pins $P5_7$ to $P5_0$. If port 5 is read while PCR5 bits are set to 1, the values stored in PDR5 are read, regardless of the actual pin states. If port 5 is read while PCR5 bits are cleared to 0, the pin states are read.

Upon reset, PDR5 is initialized to H'00.

Port Control Register 5 (PCR5)

Bit	7	6	5	4	3	2	1	0
	PCR5 ₇	$PCR5_{_6}$	PCR5₅	$PCR5_4$	PCR5 ₃	PCR5 ₂	PCR5 ₁	PCR5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR5 is an 8-bit register for controlling whether each of the port 5 pins $P5_7$ to $P5_0$ functions as an input pin or output pin. Setting a PCR5 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin.

Upon reset, PCR5 is initialized to H'00.

PCR5 is a write-only register. All bits are read as 1.

Port Pull-up Control Register 5 (PUCR5)

Bit	7	6	5	4	3	2	1	0
	PUCR5 ₇	PUCR5 ₆	PUCR5₅	$PUCR5_4$	$PUCR5_3$	$PUCR5_2$	PUCR5 ₁	PUCR5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PUCR5 bits control the on/off state of pin $P5_7-P5_0$ MOS pull-ups. When a PCR5 bit is cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR5 is initialized to H'00.

Port Mode Register 5 (PMR5)

Bit	7	6	5	4	3	2	1	0
	WKP ₇	$WKP_{_6}$	WKP_{s}	WKP_4	$WKP_{\mathfrak{g}}$	WKP ₂	WKP ₁	WKP₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PMR5 is an 8-bit read/write register, controlling the selection of pin functions for port 5 pins.

Upon reset, PMR5 is initialized to H'00.

Bit n—P5_n/ \overline{WKP}_n **Pin Function Switch (WKPn):** This bit selects whether pin P5_n/ \overline{WKP}_n is used as P5_n or as \overline{WKP}_n .

Bit n: WKPn	Description	
0	Functions as P5 _n I/O pin	(initial value)
1	Functions as \overline{WKP}_n input pin	
N		

Note: n = 7 to 0

8.6.3 Pin Functions

Table 8.15 shows the port 5 pin functions.

Table 8.15 Port 5 Pin Functions

Pin Pin Functions and Selection Method

P5 ₇ /WKP ₇ to P5 ₀ /WKP ₀	The pin function de	The pin function depends on bit WKPn in PMR5 and bit PCR5, in PCR5.							
	WKPn	(0 1						
	PCR5 _n	0	0 1						
	Pin function	P5 _, input pin	P5 _n output pin	\overline{WKP}_n input pin					

Legend: * Don't care Note: n = 7 to 0

8.6.4 Pin States

Table 8.16 shows the port 5 pin states in each operating mode.

Table 8.16 Port 5 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
$P5_{7}/\overline{WKP}_{7}$ to $P5_{0}/\overline{WKP}_{0}$	High- impedance	Retains previous state	Retains previous state	High- impedance*		Functional	Functional

Note: * A high-level signal is output when the MOS pull-up is in the on state.

8.6.5 MOS Input Pull-Up

Port 5 has a built-in MOS input pull-up function that can be controlled by software. When a PCR5 bit is cleared to 0, setting the corresponding PUCR5 bit to 1 turns on the MOS pull-up for that pin. The MOS pull-up function is in the off state after a reset.

PCR5 _n	0		1
PUCR5 _n	0 1		*
MOS input pull-up	Off	On	Off

Legend: * Don't care Note: n = 7 to 0

8.7 Port 9 [Chip-Internal I/O port]

Port 9 functions are common to the H8/3857 Group and H8/3854 Group.

8.7.1 Overview

Port 9 is an 8-bit I/O port that interfaces to the on-chip LCD controller. The port 9 pin configuration is shown in figure 8.6.

Figure 8.6 Port 9 Pin Configuration

8.7.2 Register Configuration and Description

Table 8.17 shows the port 9 register configuration.

Table 8.17 Port 9 Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register 9	PDR9	R/W	H'00	H'FFDC
Port control register 9	PCR9	W	H'00	H'FFEC

Port Data Register 9 (PDR9)

Bit	7	6	5	4	3	2	1	0
	P9 ₇	P9 ₆	P9₅	P9 ₄	P9 ₃	P9 ₂	P9 ₁	P9 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PDR9 is an 8-bit register that stores data for port 9 pins $P9_7$ to $P9_0$. If port 9 is read while PCR9 bits are set to 1, the values stored in PDR9 are read. If port 9 is read while PCR9 bits are cleared to 0, the pin states are read.

Upon reset, PDR9 is initialized to H'00.

Port Control Register 9 (PCR9)

Bit	7	6	5	4	3	2	1	0
	PCR9 ₇	$PCR9_{_6}$	PCR9₅	PCR9 ₄	PCR9 ₃	PCR9 ₂	PCR9 ₁	PCR9 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR9 is an 8-bit register for controlling whether each of the port 9 pins $P9_7$ to $P9_0$ functions as an input or output pin. Setting a PCR9 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin.

Upon reset, PCR9 is initialized to H'00.

PCR9 is a write-only register. All bits are read as 1.

8.7.3 Pin Functions

Table 8.18 shows the port 9 pin functions.

Table 8.18 Port 9 Pin Functions

Pin	Pin Functions and Selection Method						
$P9_7$ to $P9_0$	The pin function de	he pin function depends on the corresponding bit in PCR9.					
	PCR9 _n	0	1				
	Pin function	P9 _n input pin	P9 _n output pin				

Note: n = 7 to 0

8.7.4 Pin States

Table 8.19 shows the port 9 pin states in each operating mode.

Table 8.19	Port 9 Pin States
-------------------	-------------------

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P9, to P9 ₀	High- impedance	Retains previous state		High- impedance	Retains previous state	Functional	Functional

8.8 Port A [Chip-Internal I/O port]

Port A functions are common to the H8/3857 Group and H8/3854 Group.

8.8.1 Overview

Port A is a 4-bit I/O port that interfaces to the on-chip LCD controller. The port A pin configuration is shown in figure 8.7.

Figure 8.7 Port A Pin Configuration

8.8.2 Register Configuration and Description

Table 8.20 shows the port A register configuration.

Table 8.20Port A Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register A	PDRA	R/W	H'F0	H'FFDD
Port control register A	PCRA	W	H'F0	H'FFED

Port Data Register A (PDRA)

Bit	7	6	5	4	3	2	1	0
		_	—		PA_{3}	PA_{2}	PA ₁	PA ₀
Initial value	1	1	1	1	0	0	0	0
Read/Write	_	_	_	_	R/W	R/W	R/W	R/W

PDRA is an 8-bit register that stores data for port A pins PA_3 to PA_0 . If port A is read while PCRA bits are set to 1, the values stored in PDRA are read. If port A is read while PCRA bits are cleared to 0, the pin states are read.

Upon reset, PDRA is initialized to H'F0.

Port Control Register A (PCRA)

Bit	7	6	5	4	3	2	1	0
			_	_	PCRA ₃	PCRA ₂	PCRA ₁	$PCRA_{0}$
Initial value	1	1	1	1	0	0	0	0
Read/Write	_	_	_		W	W	W	W

PCRA is an 8-bit register for controlling whether each of the port A pins PA_3 to PA_0 functions as an input or output pin. Setting a PCRA bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin.

Upon reset, PCRA is initialized to H'F0.

PCRA is a write-only register. All bits are read as 1.

8.8.3 Pin Functions

Table 8.21 gives the port A pin functions.

Table 8.21 Port A Pin Functions

Pin	Pin Functions and Selection Method							
$PA_{_3}$ to $PA_{_0}$	The pin function d	The pin function depends on the corresponding bit in PCRA.						
	PCRA _n	0	1					
	Pin function	PA, input pin	PA _n output pin					

Note: n = 3 to 0

8.8.4 Pin States

Table 8.22 shows the port A pin states in each operating mode.

Table 8.22Port A Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
$PA_{_3}$ to $PA_{_0}$	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

8.9 Port B

Some port B functions differ between the H8/3857 Group and the H8/3854 Group.

Pins PB₃ to PB₀/AN₃ to AN₀ are provided only in the H8/3857 Group, and not in the H8/3854 Group.

8.9.1 Overview

Port B is an 8-bit input-only port. The H8/3857 Group port B pin configuration is shown in figure 8.8 (a), and the H8/3854 Group port B pin configuration in figure 8.8 (b).

Figure 8.8 (a) H8/3857 Group Port B Pin Configuration

Figure 8.8 (b) H8/3854 Group Port B Pin Configuration

8.9.2 Register Configuration and Description

Table 8.23 shows the port B register configuration.

Table 8.23Port B Register

Name	Abbr.	R/W	Address
Port data register B	PDRB	R	H'FFDE

Port Data Register B (PDRB)

Reading PDRB always gives the pin states. However, if a port B pin is selected as an analog input channel for the A/D converter by AMR bits CH3 to CH0, that pin reads 0 regardless of the input voltage.

H8/3857 Group

Bit	7	6	5	4	3	2	1	0
	PB ₇	PB_6	PB₅	PB_4	PB_{3}	PB_{2}	PB ₁	PB₀
Read/Write	R	R	R	R	R	R	R	R
H8/3854 Group								
Bit	7	6	5	4	3	2	1	0
	PB ₇	$PB_{_6}$	PB₅	PB_4				
	_		-					
Read/Write	R	R	R	R				

In the H8/3854 Group, bits 3 to 0 are reserved.

Section 9 Timers

9.1 Overview

The H8/3857 Group is provided with four timers (timers A, B, C, and F), and the H8/3854 Group with three (timers A, B, and F). The H8/3857F and H8/3854F also have an on-chip watchdog timer for flash memory programming control.

Table 9.1 outlines the functions of timers A, B, C, F, and the watchdog timer.

Name	Functions	Internal Clock	Event Input Pin	Waveform Output Pin	Remarks
Timer A	8-bit timer	φ/8 to φ/8192			
	 Interval timer 	(8 choices)			
	8-bit timer	φ _w /128			
	• Time base	(choice of 4 overflow periods)			
	8-bit timer	φ/4 to φ/32,		TMOW	
	 Clock output 	$\phi_w/4$ to $\phi_w/32$ (8 choices)			
Timer B	8-bit timer	φ/4 to φ/8192	TMIB		
	 Interval timer 	(7 choices)			
	 Event counter 				
Timer C*1	 8-bit timer 	φ/4 to φ/8192,	TMIC	_	Counting
	 Interval timer 	$\phi_w/4$ (7 choices)			direction can be
	 Event counter 				controlled by software or
	Choice of up- or down- counting				hardware
Timer F	 16-bit timer 	φ/2 to φ/32	TMIF	TMOFL	
	 Event counter 	(4 choices)		TMOFH	
	Can be used as two independent 8-bit timers				
	 Output compare 				
Watchdog timer* ²	Generates reset signal on overflow of 8-bit counter	φ/64 to φ/8192 (8 choices)	_		Provided only in H8/3857F and H8/3854F
Notes: 1.	Timer C is a function of the Group.	ne H8/3857 Group	only, and is r	not provided in	the H8/3854
2.	The watchdog timer is us	ed by the flash me	mory prograr	mming control	program.
			Rev.3.00	Jul. 19, 2007	page 209 of 532

Table 9.1Timer Functions

Rev.3.00 Jul. 19, 2007 page 209 of 532 REJ09B0397-0300

9.2 Timer A

9.2.1 Overview

Timer A is an 8-bit timer with interval timing and real-time clock time-base functions. The clock time-base function is available when a 32.768-kHz crystal oscillator is connected. A clock signal divided from 32.768 kHz or from the system clock can be output at the TMOW pin.

Features

Features of timer A are given below.

- Choice of eight internal clock sources (φ/8192, φ/4096, φ/2048, φ/512, φ/256, φ/128, φ/32, φ/8).
- Choice of four overflow periods (1 s, 0.5 s, 0.25 s, 31.25 ms) when timer A is used as a clock time base (using a 32.768 kHz crystal oscillator).
- An interrupt is requested when the counter overflows.
- Any of eight clock signals can be output from pin TMOW: 32.768 kHz divided by 32, 16, 8, or 4 (1 kHz, 2 kHz, 4 kHz, 8 kHz), or the system clock divided by 32, 16, 8, or 4.

Block Diagram

Figure 9.1 shows a block diagram of timer A.

Figure 9.1 Block Diagram of Timer A

Pin Configuration

Table 9.2 shows the timer A pin configuration.

Table 9.2Pin Configuration

Name	Abbr.	I/O	Function
Clock output	TMOW	Output	Output of waveform generated by timer A output circuit

9. Timers

Register Configuration

Table 9.3 shows the register configuration of timer A.

Table 9.3Timer A Registers

Name	Abbr.	R/W	Initial Value	Address
Timer mode register A	TMA	R/W	H'10	H'FFB0
Timer counter A	TCA	R	H'00	H'FFB1

9.2.2 Register Descriptions

Timer Mode Register A (TMA)

Bit	7	6	5	4	3	2	1	0
	TMA7	TMA6	TMA5		TMA3	TMA2	TMA1	TMA0
Initial value	0	0	0	1	0	0	0	0
Read/Write	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W

TMA is an 8-bit read/write register for selecting the prescaler, input clock, and output clock.

Upon reset, TMA is initialized to H'10.

Bits 7 to 5—Clock Output Select (TMA7 to TMA5): Bits 7 to 5 choose which of eight clock signals is output at the TMOW pin. The system clock divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A 32.768 kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and subactive mode.

Bit 7: TMA7	Bit 6: TMA6	Bit 5: TMA5	Clock Output	
0	0	0	ф/32	(initial value)
		1	ф/16	
	1	0	ф/8	
		1	ф/4	
1	0	0	φ _w /32	
		1	φ _w /16	
	1	0	φ _w /8	
		1	$\phi_w/4$	

Bit 4—Reserved Bit: Bit 4 is reserved; it is always read as 1, and cannot be modified.

Bits 3 to 0—Internal Clock Select (TMA3 to TMA0): Bits 3 to 0 select the clock input to TCA.

				Descriptio	n
Bit 3: TMA3	Bit 2: TMA2	Bit 1: TMA1	Bit 0: TMA0	Prescaler and Divider Ratio or Overflow Period	Function
0	0	0	0	PSS,	Interval timer
			1	PSS,	
		1	0	PSS,	
			1	PSS,	
	1	0	0	PSS,	
			1	PSS,	
		1	0	PSS,	
			1	PSS,	
1	0	0	0	PSW, 1 s	Clock time base
			1	PSW, 0.5 s	
		1	0	PSW, 0.25 s	
			1	PSW, 0.03125 s	
	1	0	0	PSW and TCA are reset	
			1		
		1	0		
			1		

Timer Counter A (TCA)

Bit	7	6	5	4	3	2	1	0
	TCA7	TCA6	TCA5	TCA4	TCA3	TCA2	TCA1	TCA0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TCA is an 8-bit read-only up-counter, which is incremented by internal clock input. The clock source for input to this counter is selected by bits TMA3 to TMA0 in timer mode register A (TMA). TCA values can be read by the CPU in active mode, but cannot be read in subactive mode. When TCA overflows, the IRRTA bit in interrupt request register 1 (IRR1) is set to 1.

TCA is cleared by setting bits TMA3 and TMA2 of TMA to 11.

Upon reset, TCA is initialized to H'00.

9.2.3 Timer Operation

Interval Timer Operation: When bit TMA3 in timer mode register A (TMA) is cleared to 0, timer A functions as an 8-bit interval timer.

Upon reset, TCA is cleared to H'00 and bit TMA3 is cleared to 0, so up-counting and interval timing resume immediately. The clock input to timer A is selected by bits TMA2 to TMA0 in TMA; any of eight internal clock signals output by prescaler S can be selected.

After the count value in TCA reaches H'FF, the next clock signal input causes timer A to overflow, setting bit IRRTA to 1 in interrupt request register 1 (IRR1). If IENTA = 1 in interrupt enable register 1 (IENR1), a CPU interrupt is requested.*

At overflow, TCA returns to H'00 and starts counting up again. In this mode timer A functions as an interval timer that generates an overflow output at intervals of 256 input clock pulses.

Note: * For details on interrupts, see section 3.3, Interrupts.

Real-Time Clock Time Base Operation: When bit TMA3 in TMA is set to 1, timer A functions as a real-time clock time base by counting clock signals output by prescaler W.

The overflow period of timer A is set by bits TMA1 and TMA0 in TMA. A choice of four periods is available. In time base operation (TMA3 = 1), setting bit TMA2 to 1 clears both TCA and prescaler W to their initial values of H'00.

Clock Output: Setting bit TMOW in port mode register 1 (PMR1) to 1 causes a clock signal to be output at pin TMOW. Eight different clock output signals can be selected by means of bits TMA7 to TMA5 in TMA. The system clock divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A 32.768 kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and subactive mode.

9.2.4 Timer A Operation States

Table 9.4 summarizes the timer A operation states.

Table 9.4Timer A Operation States

Oper	ation Mode	Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby
TCA	Interval	Reset	Functions	Functions	Halted	Halted	Halted	Halted
	Clock time base	Reset	Functions	Functions	Functions	Functions	Functions	Halted
TMA		Reset	Functions	Retained	Retained	Functions	Retained	Retained

Note: When real-time clock time base function is selected as the internal clock of TCA in active mode or sleep mode, the internal clock is not synchronous with the system clock, so it is synchronized by a synchronizing circuit. This may result in a maximum error of $1/\phi$ (s) in the count cycle.

9.3 Timer B

9.3.1 Overview

Timer B is an 8-bit timer that increments each time a clock pulse is input. This timer has two operation modes, interval and auto reload.

Features

Features of timer B are given below.

- Choice of seven internal clock sources (φ/8192, φ/2048, φ/512, φ/256, φ/64, φ/16, φ/4) or an external clock (can be used to count external events).
- An interrupt is requested when the counter overflows.

Block Diagram

Figure 9.2 shows a block diagram of timer B.

Pin Configuration

Table 9.5 shows the timer B pin configuration.

Table 9.5Pin Configuration

Name	Abbr.	I/O	Function
Timer B event input	TMIB	Input	Event input to TCB

Register Configuration

Table 9.6 shows the register configuration of timer B.

Table 9.6Timer B Registers

Name	Abbr.	R/W	Initial Value	Address
Timer mode register B	TMB	R/W	H'78	H'FFB2
Timer counter B	ТСВ	R	H'00	H'FFB3
Timer load register B	TLB	W	H'00	H'FFB3

9.3.2 Register Descriptions

Timer Mode Register B (TMB)

Bit	7	6	5	4	3	2	1	0
	TMB7	—	_		—	TMB2	TMB1	TMB0
Initial value	0	1	1	1	1	0	0	0
Read/Write	R/W	_	_		_	R/W	R/W	R/W

TMB is an 8-bit read/write register for selecting the auto-reload function and input clock.

Upon reset, TMB is initialized to H'78.

Bit 7—Auto-Reload Function Select (TMB7): Bit 7 selects whether timer B is used as an interval timer or auto-reload timer.

Bit 7: TMB7	Description	
0	Interval timer function selected	(initial value)
1	Auto-reload function selected	

Bits 6 to 3—Reserved Bits: Bits 6 to 3 are reserved; they always read 1, and cannot be modified.

Bits 2 to 0—Clock Select (TMB2 to TMB0): Bits 2 to 0 select the clock input to TCB. For external event counting, either the rising or falling edge can be selected.

Bit 2: TMB2	Bit 1: TMB1	Bit 0: TMB0	Description
0 0		0	Internal clock:
		1	Internal clock:
	1	0	Internal clock: 12</td
		1	Internal clock: 256</td
1	0	0	Internal clock:
		1	Internal clock:
	1	0	Internal clock: $\phi/4$
		1	External event (TMIB): rising or falling edge*

Note: * The edge of the external event signal is selected by bit IEG1 in the IRQ edge select register (IEGR). See section 3.3.2, Interrupt Control Registers, for details on the IRQ edge select register. Be sure to set bit IRQ1 in port mode register 1 (PMR1) to 1 before setting bits TMB2 to TMB0 to 111.

Timer Counter B (TCB)

Bit	7	6	5	4	3	2	1	0
	TCB7	TCB6	TCB5	TCB4	TCB3	TCB2	TCB1	TCB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TCB is an 8-bit read-only up-counter, which is incremented by internal clock or external event input. The clock source for input to this counter is selected by bits TMB2 to TMB0 in timer mode register B (TMB). TCB values can be read by the CPU at any time.

When TCB overflows from H'FF to H'00 or to the value set in TLB, the IRRTB bit in interrupt request register 2 (IRR2) is set to 1.

TCB is allocated to the same address as timer load register B (TLB).

Upon reset, TCB is initialized to H'00.

Timer Load Register B (TLB)

Bit	7	6	5	4	3	2	1	0
	TLB7	TLB6	TLB5	TLB4	TLB3	TLB2	TLB1	TLB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

TLB is an 8-bit write-only register for setting the reload value of timer counter B.

When a reload value is set in TLB, the same value is loaded into timer counter B (TCB) as well, and TCB starts counting up from that value. When TCB overflows during operation in auto-reload mode, the TLB value is loaded into TCB. Accordingly, overflow periods can be set within the range of 1 to 256 input clocks.

The same address is allocated to TLB as to TCB.

Upon reset, TLB is initialized to H'00.

9.3.3 Timer Operation

Interval timer Operation: When bit TMB7 in timer mode register B (TMB) is cleared to 0, timer B functions as an 8-bit interval timer.

Upon reset, TCB is cleared to H'00 and bit TMB7 is cleared to 0, so up-counting and interval timing resume immediately. The clock input to timer B is selected from seven internal clock signals output by prescaler S, or an external clock input at pin TMIB. The selection is made by bits TMB2 to TMB0 of TMB.

After the count value in TCB reaches H'FF, the next clock signal input causes timer B to overflow, setting bit IRRTB to 1 in interrupt request register 2 (IRR2). If IENTB = 1 in interrupt enable register 2 (IENR2), a CPU interrupt is requested.*

At overflow, TCB returns to H'00 and starts counting up again.

During interval timer operation (TMB7 = 0), when a value is set in timer load register B (TLB), the same value is set in TCB.

Note: * For details on interrupts, see section 3.3, Interrupts.

Auto-Reload Timer Operation: Setting bit TMB7 in TMB to 1 causes timer B to function as an 8-bit auto-reload timer. When a reload value is set in TLB, the same value is loaded into TCB, becoming the value from which TCB starts its count.

After the count value in TCB reaches H'FF, the next clock signal input causes timer B to overflow. The TLB value is then loaded into TCB, and the count continues from that value. The overflow period can be set within a range from 1 to 256 input clocks, depending on the TLB value.

The clock sources and interrupts in auto-reload mode are the same as in interval mode.

In auto-reload mode (TMB7 = 1), when a new value is set in TLB, the TLB value is also set in TCB.

Event Counter Operation: Timer B can operate as an event counter, counting rising or falling edges of an external event signal input at pin TMIB. External event counting is selected by setting bits TMB2 to TMB0 in timer mode register B to all 1s (111).

When timer B is used to count external event input, bit IRQ1 in port mode register 1 (PMR1) should be set to 1, and bit IEN1 in interrupt enable register 1 (IENR1) should be cleared to 0 to disable IRQ_1 interrupt requests.

9.3.4 Timer B Operation States

Table 9.7 summarizes the timer B operation states.

Table 9.7Timer B Operation States

Oper	ation Mode	Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby
TCB	Interval	Reset	Functions	Functions	Halted	Halted	Halted	Halted
	Auto reload	Reset	Functions	Functions	Halted	Halted	Halted	Halted
TMB		Reset	Functions	Retained	Retained	Retained	Retained	Retained

9.4 Timer C (H8/3857 Group Only)

9.4.1 Overview

Timer C is an 8-bit timer that increments or decrements each time a clock pulse is input. This timer has two operation modes, interval and auto reload.

Timer C is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

Features

The main features of timer C are given below.

- Choice of seven internal clock sources ($\phi/8192$, $\phi/2048$, $\phi/512$, $\phi/64$, $\phi/16$, $\phi/4$, $\phi_w/4$) or an external clock (can be used to count external events).
- An interrupt is requested when the counter overflows.
- Can be switched between up- and down-counting by software or hardware.
- When φ_w/4 is selected as the internal clock source, or when an external clock is selected, timer C can function in subactive mode and subsleep mode.

Block Diagram

Figure 9.3 shows a block diagram of timer C.

Pin Configuration

Table 9.8 shows the timer C pin configuration.

Table 9.8Pin Configuration

Name	Abbr.	I/O	Function
Timer C event input	TMIC	Input	Event input to TCC
Timer C up/down control	UD	Input	Selection of counting direction

Register Configuration

Table 9.9 shows the register configuration of timer C.

9. Timers

Name	Abbr.	R/W	Initial Value	Address
Timer mode register C	TMC	R/W	H'18	H'FFB4
Timer counter C	TCC	R	H'00	H'FFB5
Timer load register C	TLC	W	H'00	H'FFB5

Table 9.9 Timer C Registers

9.4.2 Register Descriptions

Timer Mode Register C (TMC)

Bit	7	6	5	4	3	2	1	0
	TMC7	TMC6	TMC5			TMC2	TMC1	TMC0
Initial value	0	0	0	1	1	0	0	0
Read/Write	R/W	R/W	R/W	_	_	R/W	R/W	R/W

TMC is an 8-bit read/write register for selecting the auto-reload function, counting direction, and input clock.

Upon reset, TMC is initialized to H'18.

Bit 7—Auto-Reload Function Select (TMC7): Bit 7 selects whether timer C is used as an interval timer or auto-reload timer.

Bit 7: TMC7	Description	
0	Interval timer function selected	(initial value)
1	Auto-reload function selected	

Bits 6 and 5—Counter Up/Down Control (TMC6, TMC5): These bits select the counting direction of timer counter C (TCC), or allow hardware to control the counting direction using pin UD.

Bit 6: TMC6	Bit 5: TMC5	Description
0	0	TCC is an up-counter (initial value)
	1	TCC is a down-counter
1	*	TCC up/down control is determined by input at pin UD. TCC is a down-counter if the UD input is high, and an up- counter if the UD input is low.
Legend: * Don'	t care	

Rev.3.00 Jul. 19, 2007 page 222 of 532 REJ09B0397-0300

Bits 4 and 3—Reserved Bits: Bits 4 and 3 are reserved; they are always read as 1, and cannot be modified.

Bits 2 to 0—Clock Select (TMC2 to TMC0): Bits 2 to 0 select the clock input to TCC. For external clock counting, either the rising or falling edge can be selected.

Bit 2: TMC2	Bit 1: TMC1	Bit 0: TMC0	Description
0	0	0	Internal clock: https://www.waternal.clock : (initial value)
		1	Internal clock: $\phi/2048$
	1	0	Internal clock: $\phi/512$
		1	Internal clock:
1	0	0	Internal clock: $\phi/16$
		1	Internal clock:
	1	0	Internal clock: $\phi_w/4$
		1	External event (TMIC): rising or falling edge*

Note: * The edge of the external event signal is selected by bit IEG2 in the IRQ edge select register (IEGR). See section 3.3.2, Interrupt Control Registers for details on the IRQ edge select register. Be sure to set bit IRQ2 in port mode register 1 (PMR1) to 1 before setting bits TMC2 to TMC0 to 111.

Timer Counter C (TCC)

Bit	7	6	5	4	3	2	1	0
	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TCC is an 8-bit read-only up-/down-counter, which is incremented or decremented by internal or external clock input. The clock source for input to this counter is selected by bits TMC2 to TMC0 in timer mode register C (TMC). TCC values can be read by the CPU at any time.

When TCC overflows (from H'FF to H'00 or to the value set in TLC) or underflows (from H'00 to H'FF or to the value set in TLC), the IRRTC bit in interrupt request register 2 (IRR2) is set to 1.

TCC is allocated to the same address as timer load register C (TLC).

Upon reset, TCC is initialized to H'00.

Timer Load Register C (TLC)

Bit	7	6	5	4	3	2	1	0
	TLC7	TLC6	TLC5	TLC4	TLC3	TLC2	TLC1	TLC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

TLC is an 8-bit write-only register for setting the reload value of TCC.

When a reload value is set in TLC, the same value is loaded into timer counter C (TCC) as well, and TCC starts counting up or down from that value. When TCC overflows or underflows during operation in auto-reload mode, the TLC value is loaded into TCC. Accordingly, overflow and underflow periods can be set within the range of 1 to 256 input clocks.

The same address is allocated to TLC as to TCC.

Upon reset, TLC is initialized to H'00.

9.4.3 Timer Operation

Interval Timer Operation: When bit TMC7 in timer mode register C (TMC) is cleared to 0, timer C functions as an 8-bit interval timer.

Upon reset, timer counter C (TCC) is initialized to H'00 and TMC to H'18. After a reset, the counter continues uninterrupted incrementing as an interval up-counter. The clock input to timer C is selected from seven internal clock signals output by prescalers S and W, or an external clock input at pin TMIC. The selection is made by bits TMC2 to TMC0 in TMC.

Either software or hardware can control whether TCC counts up or down. The selection is made by TMC bits TMC6 and TMC5.

After the count value in TCC reaches H'FF (H'00), the next clock signal input causes timer C to overflow (underflow), setting bit IRRTC to 1 in interrupt request register 2 (IRR2). If IENTC = 1 in interrupt enable register 2 (IENR2), a CPU interrupt is requested.*

At overflow or underflow, TCC returns to H'00 or H'FF and starts counting up or down again.

During interval timer operation (TMC7 = 0), when a value is set in timer load register C (TLC), the same value is set in TCC.

Note: * For details on interrupts, see section 3.3, Interrupts.

Auto-Reload Timer Operation: Setting bit TMC7 in TMC to 1 causes timer C to function as an 8-bit auto-reload timer. When a reload value is set in TLC, the same value is loaded into TCC, becoming the value from which TCC starts its count.

After the count value in TCC reaches H'FF (H'00), the next clock signal input causes timer C to overflow (underflow). The TLC value is then loaded TCC, and the count continues from that value. The overflow (underflow) period can be set within a range from 1 to 256 input clocks, depending on the TLC value.

The clock sources, up/down control, and interrupts in auto-reload mode are the same as in interval mode.

In auto-reload mode (TMC7 = 1), when a new value is set in TLC, the TLC value is also set in TCC.

Event Counter Operation: Timer C can operate as an event counter, counting an event signal input at pin TMIC. External event counting is selected by setting TMC bits TMC2 to TMC0 to all 1s (111). TCC counts up or down at the rising or falling edge of the input at pin TMIC.

When timer C is used to count external event inputs, bit IRQ2 in port mode register 1 (PMR1) should be set to 1, and bit IEN2 in interrupt enable register 1 (IENR1) should be cleared to 0 to disable IRQ₂ interrupt requests.

TCC Up/Down Control by Hardware: The counting direction of timer C can be controlled by input at pin UD. When bit TMC6 in TMC is set to 1, high-level input at the UD pin selects down-counting, while low-level input selects up-counting.

When using input at pin UD for this control function, set the UD bit in port mode register 2 (PMR2) to 1.

9.4.4 Timer C Operation States

Table 9.10 summarizes the timer C operation states.

Table 9.10 Timer C Operation States

Opera	ation Mode	Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby		
тсс	Interval	Reset	Functions	Functions	Halted	Functions/ Halted*	Functions/ Halted*	Halted		
тсс	Auto reload	Reset	Functions	Functions	Halted	Functions/ Halted*	Functions/ Halted*	Halted		
TMC		Reset	Functions	Retained	Retained	Functions	Retained	Retained		
Note:	* When $\phi_w/4$ is selected as the internal clock of TCC in active mode or sleep mode, the internal clock is not synchronous with the system clock, so it is synchronized by a synchronizing circuit. This may result in a maximum error of $1/\phi$ (s) in the count cycle. When timer C is operated in subactive mode or subsleep mode, either an external clock or the $\phi_w/4$ internal clock must be selected. The counter will not operate in these modes									

or the $\phi_w/4$ internal clock must be selected. The counter will not operate in these modes if another clock is selected. If the internal $\phi_w/4$ clock is selected when $\phi_w/8$ is being used as the subclock ϕ_{sub} , the lower 2 bits of the counter will operate on the same cycle, with the least significant bit not being counted.

9.5 Timer F

9.5.1 Overview

Timer F is a 16-bit timer with an output compare function. Compare match signals can be used to reset the counter, request an interrupt, or toggle the output. Timer F can also be used for external event counting, and can operate as two independent 8-bit timers, timer FH and timer FL.

Features

Features of timer F are given below.

- Choice of four internal clock sources ($\phi/32$, $\phi/16$, $\phi/4$, $\phi/2$) or an external clock (can be used as an external event counter).
- Output from pin TMOFH is toggled by one compare match signal (the initial value of the toggle output can be set).
- Counter can be reset by the compare match signal.
- Two interrupt sources: counter overflow and compare match.
- Can operate as two independent 8-bit timers (timer FH and timer FL) in 8-bit mode.
Timer FH

- 8-bit timer (clocked by timer FL overflow signals when timer F operates as a 16-bit timer).
- Choice of four internal clocks ($\phi/32$, $\phi/16$, $\phi/4$, $\phi/2$).
- Output from pin TMOFH is toggled by one compare match signal (the initial value of the toggle output can be set).
- Counter can be reset by the compare match signal.
- Two interrupt sources: counter overflow and compare match.

Timer FL

- 8-bit timer/event counter
- Choice of four internal clocks ($\phi/32$, $\phi/16$, $\phi/4$, $\phi/2$) or event input at pin TMIF.
- Output from pin TMOFL is toggled by one compare match signal (the initial value of the toggle output can be set).
- Counter can be reset by the compare match signal.
- Two interrupt sources: counter overflow and compare match.

Block Diagram

Figure 9.4 shows a block diagram of timer F.

Figure 9.4 Block Diagram of Timer F

Pin Configuration

Table 9.11 shows the timer F pin configuration.

Table 9.11Pin Configuration

Name	Abbr.	I/O	Function
Timer F event input	TMIF	Input	Event input to TCFL
Timer FH output	TMOFH	Output	Timer FH toggle output
Timer FL output	TMOFL	Output	Timer FL toggle output

Register Configuration:

Table 9.12 shows the register configuration of timer F.

Table 9.12Timer F Registers

Name	Abbr.	R/W	Initial Value	Address
Timer control register F	TCRF	W	H'00	H'FFB6
Timer control/status register F	TCSRF	R/W	H'00	H'FFB7
8-bit timer counter FH	TCFH	R/W	H'00	H'FFB8
8-bit timer counter FL	TCFL	R/W	H'00	H'FFB9
Output compare register FH	OCRFH	R/W	H'FF	H'FFBA
Output compare register FL	OCRFL	R/W	H'FF	H'FFBB

9.5.2 Register Descriptions

16-Bit Timer Counter (TCF)8-Bit Timer Counter (TCFH)8-Bit Timer Counter (TCFL)

TCF is a 16-bit read/write up-counter consisting of two cascaded 8-bit timer counters, TCFH and TCFL. TCF can be used as a 16-bit counter, with TCFH as the upper 8 bits and TCFL as the lower 8 bits of the counter, or TCFH and TCFL can be used as independent 8-bit counters.

TCFH and TCFL can be read and written by the CPU, but in 16-bit mode, data transfer with the CPU takes place via a temporary register (TEMP). For details see section 9.5.3, Interface with the CPU.

Upon reset, TCFH and TCFL are each initialized to H'00.

• 16-bit mode (TCF)

16-bit mode is selected by clearing bit CKSH2 to 0 in timer control register F (TCRF). The TCF input clock is selected by TCRF bits CKSL2 to CKSL0.

TCFH can be cleared by a compare match signal. This designation is made in bit CCLRH in TCSRF.

When TCF overflows from H'FFFF to H'0000, the overflow flag (OVFH) in TCSRF is set to 1. If bit OVIEH in TCSRF is set to 1 when an overflow occurs, bit IRRTFH in interrupt request register 2 (IRR2) will be set to 1; and if bit IENTFH in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt will be requested.

• 8-bit mode (TCFH, TCFL)

When bit CKSH2 in timer control register F (TCRF) is set to 1, timer F functions as two separate 8-bit counters, TCFH and TCFL. The TCFH (TCFL) input clock is selected by TCRF bits CKSH2 to CKSH0 (CKSL2 to CKSL0).

TCFH (TCFL) can be cleared by a compare match signal. This designation is made in bit CCLRH (CCLRL) in TCSRF.

When TCFH (TCFL) overflows from H'FF to H'00, the overflow flag OVFH (OVFL) in TCSRF is set to 1. If bit OVIEH (OVIEL) in TCSRF is set to 1 when an overflow occurs, bit IRRTFH (IRRTHL) in interrupt request register 2 (IRR2) will be set to 1; and if bit IENTFH (IENTFL) in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt will be requested.

16-Bit Output Compare Register (OCRF)8-Bit Output Compare Register (OCRFH)8-Bit Output Compare Register (OCRFL)

OCRF is a 16-bit read/write output compare register consisting of two 8-bit read/write registers OCRFH and OCRFL. It can be used as a 16-bit output compare register, with OCRFH as the upper 8 bits and OCRFL as the lower 8 bits of the register, or OCRFH and OCRFL can be used as independent 8-bit registers.

OCRFH and OCRFL can be read and written by the CPU, but in 16-bit mode, data transfer with the CPU takes place via a temporary register (TEMP). For details see section 9.5.3, Interface with the CPU.

Upon reset, OCRFH and OCRFL are each initialized to H'FF.

• 16-bit mode (OCRF)

16-bit mode is selected by clearing bit CKSH2 to 0 in timer control register F (TCRF). The OCRF contents are always compared with the 16-bit timer counter (TCF). When the contents match, the compare match flag (CMFH) in TCSRF is set to 1. Also, IRRTFH in interrupt request register 2 (IRR2) is set to 1. If bit IENTFH in interrupt enable register 2 (IENR2) is set to 1, a CPU interrupt is requested.

Output for pin TMOFH can be toggled by compare match. The output level can also be set to high or low by bit TOLH of timer control register F (TCRF).

• 8-bit mode (OCRFH, OCRFL)

Setting bit CKSH2 in TCRF to 1 results in two 8-bit registers, OCRFH and OCRFL.

The OCRFH contents are always compared with TCFH, and the OCRFL contents are always compared with TCFL. When the contents match, the compare match flag (CMFH or CMFL) in TCSRF is set to 1. Also, bit IRRTFH (IRRTFL) in interrupt request register 2 (IRR2) set to 1. If bit IENTFH (IENTFL) in interrupt enable register 2 (IENR2) is set to 1 at this time, a CPU interrupt is requested.

The output at pin TMOFH (TMOFL) can be toggled by compare match. The output level can also be set to high or low by bit TOLH (TOLL) of the timer control register (TCRF).

Timer Control Register F (TCRF)

Bit	7	6	5	4	3	2	1	0
	TOLH	CKSH2	CKSH1	CKSH0	TOLL	CKSL2	CKSL1	CKSL0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

TCRF is an 8-bit write-only register. It is used to switch between 16-bit mode and 8-bit mode, to select among four internal clocks and an external clock, and to select the output level at pins TMOFH and TMOFL.

Upon reset, TCRF is initialized to H'00.

Bit 7—Toggle Output Level H (TOLH): Bit 7 sets the output level at pin TMOFH. The setting goes into effect immediately after this bit is written.

Bit 7: TOLH	Description	
0	Low level	(initial value)
1	High level	

Bits 6 to 4—Clock Select H (CKSH2 to CKSH0): Bits 6 to 4 select the input to TCFH from four internal clock signals or the overflow of TCFL.

Bit 6: CKSH2	Bit 5: CKSH1	Bit 4: CKSH0	Description
0	*	*	16-bit mode selected. TCFL overflow signals are counted (initial value)
1	0	0	Internal clock: \$\phi/32
		1	Internal clock: \$\phi/16
	1	0	Internal clock: $\phi/4$
		1	Internal clock: $\phi/2$

Legend: * Don't care

Bit 3—Toggle Output Level L (TOLL): Bit 3 sets the output level at pin TMOFL. The setting goes into effect immediately after this bit is written.

Bit 3: TOLL Description

0	Low level	(initial value)
1	High level	

Bits 2 to 0—Clock Select L (CKSL2 to CKSL0): Bits 2 to 0 select the input to TCFL from four internal clock signals or external event input.

Bit 2: CKSL2	Bit 1: CKSL1	Bit 0: CKSL0	Description
0	*	*	External event (TMIF). Rising or falling edge is counted* ¹ (initial value)
1	0	0	Internal clock: ¢/32
		1	Internal clock:
	1	0	Internal clock: ¢/4
		1	Internal clock: $\phi/2$

Legend: * Don't care

Note: 1. The edge of the external event signal is selected by bit IEG3 in the IRQ edge select register (IEGR). See section 3.3.2, Interrupt Control Registers for details on the IRQ edge select register. Note that switching the TMIF pin function by changing bit IRQ3 in port mode register 1 (PMR1) from 0 to 1 or from 1 to 0 while the TMIF pin is at the low level may cause the timer F counter to be incremented.

Timer Control/Status Register F (TCSRF)

Bit	7	6	5	4	3	2	1	0
	OVFH	CMFH	OVIEH	CCLRH	OVFL	CMFL	OVIEL	CCLRL
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*	R/W*	R/W	R/W	R/W*	R/W*	R/W	R/W
Note: * Only 0 can be written to clear flag.								

TCSRF is an 8-bit read/write register. It is used for counter clear selection, overflow and compare match indication, and enabling of interrupts caused by timer overflow.

Upon reset, TCSRF is initialized to H'00.

Bit 7—Timer overflow flag H (OVFH): Bit 7 is a status flag indicating TCFH overflow (H'FF to H'00). This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 7: OVFH	Description	
0	Clearing condition: After reading OVFH = 1, cleared by writing 0 to OVFH	(initial value)
1	Setting condition: Set when the value of TCFH goes from H'FF to H'00	

Bit 6—Compare Match Flag H (CMFH): Bit 6 is a status flag indicating a compare match between TCFH and OCRFH. This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 6: CMFH	Description	
0	Clearing condition: After reading CMFH = 1, cleared by writing 0 to CMFH	(initial value)
1	Setting condition: Set when the TCFH value matches OCRFH value	

Bit 5—Timer Overflow Interrupt Enable H (OVIEH): Bit 5 enables or disables TCFH overflow interrupts.

Bit 5: OVIEH	Description	
0	TCFH overflow interrupt disabled	(initial value)
1	TCFH overflow interrupt enabled	

Bit 4—Counter Clear H (CCLRH): In 16-bit mode, bit 4 selects whether or not TCF is cleared when a compare match occurs between TCF and OCRF.

In 8-bit mode, bit 4 selects whether or not TCFH is cleared when a compare match occurs between TCFH and OCRFH.

Bit 4: CCLRH	Description	
0	16-bit mode: TCF clearing by compare match disabled	(initial value)
	8-bit mode: TCFH clearing by compare match disabled	
1	16-bit mode: TCF clearing by compare match enabled	
	8-bit mode: TCFH clearing by compare match enabled	

Bit 3—Timer Overflow Flag L (OVFL): Bit 3 is a status flag indicating TCFL overflow (H'FF to H'00). This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 3: OVFL	Description	
0	Clearing condition: After reading OVFL = 1, cleared by writing 0 to OVFL	(initial value)
1	Setting condition: Set when the value of TCFL goes from H'FF to H'00	

Bit 2—Compare Match Flag L (CMFL): Bit 2 is a status flag indicating a compare match between TCFL and OCRFL. This flag is set by hardware and cleared by software. It cannot be set by software.

Bit 2: CMFL	Description	
0	Clearing condition: After reading CMFL = 1, cleared by writing 0 to CMFL	(initial value)
1	Setting condition: Set when the TCFL value matches the OCRFL value	

Bit 1—Timer Overflow Interrupt Enable L (OVIEL): Bit 1 enables or disables TCFL overflow interrupts.

Bit 1: OVIEL	Description	
0	TCFL overflow interrupt disabled	(initial value)
1	TCFL overflow interrupt enabled	

Bit 0—Counter Clear L (CCLRL): Bit 0 selects whether or not TCFL is cleared when a compare match occurs between TCFL and OCRFL.

Bit 0: CCLRL	Description	
0	TCFL clearing by compare match disabled	(initial value)
1	TCFL clearing by compare match enabled	

9.5.3 Interface with the CPU

TCF and OCRF are 16-bit read/write registers, whereas the data bus between the CPU and on-chip peripheral modules has an 8-bit width. For this reason, when the CPU accesses TCF or OCRF, it makes use of an 8-bit temporary register (TEMP).

In 16-bit mode, when reading or writing TCF or writing OCRF, always use two consecutive byte size MOV instructions, and always access the upper byte first. Data will not be transferred properly if only the upper byte or only the lower byte is accessed. In 8-bit mode there is no such restriction on the order of access.

Write Access: When the upper byte is written, the upper-byte data is loaded into the TEMP register. Next when the lower byte is written, the data in TEMP goes to the upper byte of the register, and the lower-byte data goes directly to the lower byte of the register. Figure 9.5 shows a TCF write operation when H'AA55 is written to TCF.

Figure 9.5 TCF Write Operation (CPU \rightarrow TCF)

Read Access: When the upper byte of TCF is read, the upper-byte data is sent directly to the CPU, and the lower byte is loaded into TEMP. Next when the lower byte is read, the lower byte in TEMP is sent to the CPU.

When the upper byte of OCRF is read, the upper-byte data is sent directly to the CPU. Next when the lower byte is read, the lower-byte data is sent directly to the CPU.

Figure 9.6 shows a TCF read operation when H'AAFF is read from TCF.

Figure 9.6 TCF Read Operation (TCF \rightarrow CPU)

9.5.4 Timer Operation

Timer F is a 16-bit timer/counter that increments with each input clock. The value set in output compare register F is constantly compared with the value of timer counter F, and when they match the counter can be cleared, an interrupt can be requested, and the port output can be toggled. Timer F can also be used as two independent 8-bit timers.

Timer F Operation: Timer F can operate in either 16-bit timer mode or 8-bit timer mode. These modes are described below.

• 16-bit timer mode

Timer F operates in 16-bit timer mode when the CKSH2 bit in timer control register F (TCRF) is cleared to 0.

A reset initializes timer counter F (TCF) to H'0000, output compare register F (OCRF) to H'FFFF, and timer control register F (TCRF) and timer control status register F (TCSRF) to H'00. Timer F begins counting external event input signals (TMIF). The edge of the external event signal is selected by the IEG3 bit in the IRQ edge select register (IEGR).

Any of four internal clocks output by prescaler S, or an external clock, can be selected as the timer F operating clock by bits CKSL2 to CKSL0 in TCRF.

TCF is continuously compared with the contents of OCRF. When these two values match, the CMFH bit in TCSRF is set to 1. At this time if IENTFH of IENR2 is 1, a CPU interrupt is requested and the output at pin TMOFH is toggled. If the CCLRH bit in TCSRF is 1, timer F is cleared. The output at pin TMOFH can also be set by the TOLH bit in TCRF.

If timer F overflows (from H'FFFF to H'0000), the OVFH bit in TCSRF is set. At this time, if the OVIEH bit in TCSRF and the IENTFH bit in IENR2 are both 1, a CPU interrupt is requested.

• 8-bit timer mode

When the CKSH2 bit in TCRF is set to 1, timer F operates as two independent 8-bit timers, TCFH and TCFL. The input clock of TCFH/TCFL is selected by bits CKSH2 to CKSH0/CKSL2 to CKSL0 in TCRF.

When TCFH/TCFL and the contents of OCRFH/OCRFL match, the CMFH/CMFL bit in TCSRF is set to 1. If the IENTFH/IENTFL bit in IENR2 is 1, a CPU interrupt is requested and the output at pin TMOFH/TMOFL is toggled. If the CCLRH/CCLRL bit in TCRF is 1, TCFH/TCFL is cleared. The output at pin TMOFH/TMOFL can also be set by the TOLH/TOLL bit in TCRF.

When TCFH/TCFL overflows from H'FF to H'00, the OVFH/OVFL bit in TCSRF is set to 1. At this time, if the OVIEH/OVIEL bit in TCSRF and the IENTFH/IENTFL bit in IENR2 are both 1, a CPU interrupt is requested.

TCF Count Timing: TCF is incremented by each pulse of the input clock (internal or external clock).

Internal clock

The settings of bits CKSH2 to CKSH0 or bits CKSL2 to CKSL0 in TCRF select one of four internal clock signals divided from the system clock (ϕ), namely, $\phi/32$, $\phi/16$, $\phi/4$, or $\phi/2$.

• External clock

External clock input is selected by clearing bit CKSL2 to 0 in TCRF. Either rising or falling edges of the clock input can be counted. The edge of an external event is selected by bit IEG3 in the interrupt controller's IEGR register. An external event pulse width of at least two system clock (ϕ) cycles is necessary for correct operation of the counter.

TMOFH and TMOFL Output Timing: The outputs at pins TMOFH and TMOFL are the values set in bits TOLH and TOLL in TCRF. When a compare match occurs, the output value is inverted. Figure 9.7 shows the output timing.

Figure 9.7 TMOFH, TMOFL Output Timing

TCF Clear Timing: TCF can be cleared at compare match with OCRF.

9. Timers

Timer Overflow Flag (OVF) Set Timing: OVF is set to 1 when TCF overflows (goes from H'FFFF to H'0000).

Compare Match Flag Set Timing: The compare match flags (CMFH or CMFL) are set to 1 when a compare match occurs between TCF and OCRF. A compare match signal is generated in the final state in which the values match (when TCF changes from the matching count value to the next value). When TCF and OCRF match, a compare match signal is not generated until the next counter clock pulse.

Timer F Operation States: Table 9.13 summarizes the timer F operation states.

Operation Mode	Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby
TCF	Reset	Functions	Functions	Halted	Halted	Halted	Halted
OCRF	Reset	Functions	Retained	Retained	Retained	Retained	Retained
TCRF	Reset	Functions	Retained	Retained	Retained	Retained	Retained
TCSRF	Reset	Functions	Retained	Retained	Retained	Retained	Retained

Table 9.13 Timer F Operation States

9.5.5 Application Notes

The following conflicts can arise in timer F operation.

• 16-bit timer mode

The output at pin TMOFH toggles when all 16 bits match and a compare match signal is generated. If the compare match signal occurs at the same time as new data is written in TCRF by a MOV instruction, however, the new value written in bit TOLH will be output at pin TMOFH. The TMOFL output in 16-bit mode is indeterminate, so this output should not be used. Use the pin as a general input or output port.

If an OCRFL write occurs at the same time as a compare match signal, the compare match signal is inhibited. If a compare match occurs between the written data and the counter value, however, a compare match signal will be generated at that point. The compare match signal is output in synchronization with the TCFL clock, so if this clock is stopped no compare match signal will be generated, even if a compare match occurs.

Compare match flag CMFH is set when all 16 bits match and a compare match signal is generated; bit CMFL is set when the setting conditions are met for the lower 8 bits.

The overflow flag (OVFH) is set when TCF overflows; bit OVFL is set if the setting conditions are met when the lower 8 bits overflow. If a write to TCFL occurs at the same time as an overflow signal, the overflow signal is not output.

- 8-bit timer mode
 - TCFH and OCRFH

The output at pin TMOFH toggles when there is a compare match. If the compare match signal occurs at the same time as new data is written in TCRF by a MOV instruction, however, the new value written in bit TOLH will be output at pin TMOFH.

If an OCRFH write occurs at the same time as a compare match signal, the compare match signal is inhibited. If a compare match occurs between the written data and the counter value, however, a compare match signal will be generated at that point. The compare match signal is output in synchronization with the TCFH clock.

If a TCFH write occurs at the same time as an overflow signal, the overflow signal is not output.

- TCFL and OCRFL

The output at pin TMOFL toggles when there is a compare match. If the compare match signal occurs at the same time as new data is written in TCRF by a MOV instruction, however, the new value written in bit TOLL will be output at pin TMOFL.

If an OCRFL write occurs at the same time as a compare match signal, the compare match signal is inhibited. If a compare match occurs between the written data and the counter value, however, a compare match signal will be generated at that point. The compare match signal is output in synchronization with the TCFL clock, so if this clock is stopped no compare match signal will be generated, even if a compare match occurs.

If a TCFL write occurs at the same time as an overflow signal, the overflow signal is not output.

9.6 Watchdog Timer [H8/3857F and H8/3854F Only]

9.6.1 Overview

The watchdog timer (WDT) is equipped with an 8-bit counter that is incremented by an input clock. An internal chip reset can be executed if the counter overflows because it is not updated normally due to a system crash, etc.

This watchdog timer is used by the flash memory programming control program.

Features

Features of the watchdog timer are given below.

- Choice of eight internal clock sources (φ/64, φ/128, φ/256, φ/512, φ/1024, φ/2048, φ/4096, φ/8192)
- Reset signal generated on counter overflow

9. Timers

An overflow period of 1 to 256 times the selected clock can be set.

Block Diagram

Figure 9.8 shows a block diagram of the watchdog timer.

Figure 9.8 Block Diagram of Watchdog Timer

Register Configuration

Table 9.14 shows the watchdog timer register configuration. These registers are valid only in the F-ZTAT version. In the mask ROM version, read accesses to the corresponding addresses will always return 1, and writes are invalid.

Table 9.14 Watchdog Timer Registers

Name	Abbr.	R/W	Initial Value	Address
Timer control/status register W	TCSRW	R/W	H'AA	H'FF90
Timer counter W	TCW	R/W	H'00	H'FF91
Timer mode register W	TMW	R/W	H'FF	H'FF92

9.6.2 Register Descriptions

Timer Control/Status Register W (TCSRW)

Bit	7	6	5	4	3	2	1	0
	B6WI	TCWE	B4WI	TCSRWE	B2WI	WDON	BOWI	WRST
Initial value	1	0	1	0	1	0	1	0
Read/Write	R	R/(W)*	R	R/(W)*	R	R/(W)*	R	R/(W)*

Note: * Can be written to only when the write condition is satisfied. For the write conditions, see the individual bit descriptions.

TCSRW is an 8-bit read/write register that performs TCSRW and TCW write control and watchdog timer operation control, and indicates the operation status.

Bit 7-Bit 6 Write Inhibit (B6WI): Bit 7 controls writing of data to bit 6 of TCSRW.

Bit 7: B6WI Description

0	Writing to bit 6 is enabled	
1	Writing to bit 6 is disabled	(initial value)

This bit is always read as 1. Data is not stored if written to this bit.

Bit 6—Timer Counter W Write Enable (TCWE): Bit 6 controls writing of 8-bit data to TCW.

Bit 6: TCWE Description

0	Writing of 8-bit data to TCW is disabled	(initial value)
1	Writing of 8-bit data to TCW is enabled	

Bit 5—Bit 4 Write Inhibit (B4WI): Bit 5 controls writing of data to bit 4 of TCSRW.

Bit 5: B4WI	Description	
0	Writing to bit 4 is enabled	
1	Writing to bit 4 is disabled	(initial value)

This bit is always read as 1. Data is not stored if written to this bit.

Bit 4—Timer Control/Status Register W Write Enable (TCSRWE): Bit 4 controls writing of data to bits 2 and 0 of TCSRW.

Bit 4: TCSRWE Description

0	Writing to bits 2 and 0 is disabled	(initial valu
1	Writing to bits 2 and 0 is enabled	

Bit 3—Bit 2 Write Inhibit (B2WI): Bit 3 controls writing of data to bit 2 of TCSRW.

Bit 3: B2WI	Description	
0	Writing to bit 2 is enabled	
1	Writing to bit 2 is disabled	(initial value)

This bit is always read as 1. Data is not stored if written to this bit.

Bit 2-Watchdog Timer On (WDON): Bit 2 controls watchdog timer operation.

Bit 2: WDON Description

0	Watchdog timer operation is disabled	(initial value)
	[Clearing condition]	
	In a reset, or when 0 is written to WDON while writing 0 to B2WI when	n TCSRWE = 1
1	Watchdog timer operation is enabled	
	[Setting condition]	
	When 1 is written to WDON while writing 0 to B2WI when TCSRWE =	: 1

The count-up starts when this bit is set to 1, and stops when it is cleared to 0.

Bit 1—Bit 0 Write Inhibit (B0WI): Bit 1 controls writing of data to bit 0 of timer control/status register W.

Bit 1: B0WI Description

0	Writing to bit 0 is enabled	
1	Writing to bit 0 is disabled	(initial value)

This bit is always read as 1. Data is not stored if written to this bit.

Bit 0—Watchdog Timer Reset (WRST): Bit 0 indicates that TCW has overflowed and an internal reset signal has been generated. The internal reset signal generated by the overflow resets the entire chip.

WRST is cleared by a reset via the $\overline{\text{RES}}$ pin or by a 0 write by software.

Bit 0: WRST	Description	
0	[Clearing conditions] (initial va	lue)
	Reset by RES pin	
	• When 0 is written to WRST while writing 0 to B0WI when TCSRWE = 1	
1	[Setting condition]	
	When TCW overflows and an internal reset signal is generated	

Timer Counter W (TCW)

Bit	7	6	5	4	3	2	1	0
	TCW7	TCW6	TCW5	TCW4	TCW3	TCW2	TCW1	TCW0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

TCW is an 8-bit read/write up-counter that is incremented by an input internal clock. The TCW value can be read or written by the CPU at any time.

When TCW overflows (from H'FF to H'00), an internal reset signal is generated and WRST in TCSRW is set to 1. Upon reset, TCW is initialized to H'00.

Timer Mode Register W (TMW)

Bit	7	6	5	4	3	2	1	0
	_	_	—			CKS2	CKS1	CKS0
Initial value	1	1	1	1	1	1	1	1
Read/Write				_	_	R/W	R/W	R/W

TMW is an 8-bit read/write register that selects the input clock.

Upon reset, TMW is initialized to H'FF.

Bits 7 to 3—Reserved Bits: Bits 7 to 3 are reserved; they are always read as 1 and cannot be modified.

Bit 2: CKS2	Bit 1: CKS1	Bit 0: CKS0	Description	
0	0	0	Internal clock:	
		1	Internal clock:	
	1	0	Internal clock: 256</td <td></td>	
		1	Internal clock: 0/512	
1	0	0	Internal clock:	
		1	Internal clock:	
	1	0	Internal clock:	
		1	Internal clock: ø/8192	(initial value)

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): Bits 2 to 0 select the clock to be input to TCW.

9.6.3 Operation

The watchdog timer is provided with an 8-bit counter that increments with each input clock pulse. If 1 is written to WDON while writing 0 to B2WI when TCSRWE in TCSRW is set to 1, TCW begins counting up. When a clock pulse is input after the TCW count value has reached H'FF, the watchdog timer overflows and an internal reset signal is generated one base clock (ϕ) cycle later. The internal reset signal is output for a period of 512 ϕ_{osc} clock cycles. TCW is a writable counter, and when a value is set in TCW, the count-up starts from that value. An overflow period in the range of 1 to 256 input clock cycles can therefore be set, according to the TCW value.

Figure 9.9 shows an example of watchdog timer operation.

Figure 9.9 Example of Watchdog Timer Operation

9.6.4 Watchdog Timer Operating Modes

Watchdog timer operating modes are shown in table 9.15.

Table 9.15 Watchdog Timer Operating Modes

Operating mode	Reset	Active	Sleep	Watch	Subactive	Subsleep	Standby
TCW	Reset	Functions	Functions	Halted	Halted	Halted	Halted
TCSRW	Reset	Functions	Functions	Retained	Retained	Retained	Retained
TMW	Reset	Functions	Retained	Retained	Retained	Retained	Retained

Section 10 Serial Communication Interface

10.1 Overview

The H8/3857 Group is provided with a two-channel serial communication interface (SCI), and the H8/3854 Group with a single-channel SCI. Table 10.1 summarizes the functions and features of the SCI channels.

Table 10.1 Serial Communication Interface Functions

Channel	Functions	Features
SCI1*	 Synchronous serial transfer Choice of 8-bit or 16-bit data length Continuous clock output 	 Choice of 8 internal clocks (φ/1024 to φ/2) or external clock Open drain output possible Interrupt requested at completion of transfer
SCI3	 Synchronous serial transfer 8-bit data transfer Send, receive, or simultaneous send/receive Asynchronous serial transfer Multiprocessor communication function Choice of 7-bit or 8-bit data length Choice of 1-bit or 2-bit stop bit length Parity addition 	 Built-in baud rate generator Receive error detection Break detection Interrupt requested at completion of transfer or error
Note: *	SCI1 is a function of the H8/3857 Group Group.	o only, and is not provided in the H8/3854

10.2 SCI1 (H8/3857 Group Only)

10.2.1 Overview

Serial communication interface 1 (SCI1) performs synchronous serial transfer of 8-bit or 16-bit data.

SCI1 is a function of the H8/3857 Group only, and is not provided in the H8/3854 Group.

Features

Features of SCI1 are as follows.

- Choice of 8-bit or 16-bit transfer data length
- Choice of eight internal clock sources (φ/1024, φ/256, φ/64, φ/32, φ/16, φ/8, φ/4, φ/2) or an external clock
- Interrupt requested at completion of transfer

Block Diagram

Figure 10.1 shows a block diagram of SCI1.

Pin Configuration

Table 10.2 shows the SCI1 pin configuration.

Table 10.2Pin Configuration

Name	Abbr.	I/O	Function
SCI1 clock pin	SCK,	I/O	SCI1 clock input or output
SCI1 data input pin	SI,	Input	SCI1 receive data input
SCI1 data output pin	SO ₁	Output	SCI1 transmit data output

Register Configuration

Table 10.3 shows the SCI1 register configuration.

Table 10.3 SCI1 Registers

Name	Abbr.	R/W	Initial Value	Address
Serial control register 1	SCR1	R/W	H'00	H'FFA0
Serial control status register 1	SCSR1	R/W	H'80	H'FFA1
Serial data register U	SDRU	R/W	Undefined	H'FFA2
Serial data register L	SDRL	R/W	Undefined	H'FFA3

10.2.2 Register Descriptions

Serial Control Register 1 (SCR1)

Bit	7	6	5	4	3	2	1	0
	SNC1	SNC0	_		CKS3	CKS2	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SCR1 is an 8-bit read/write register for selecting the operation mode, the transfer clock source, and the prescaler division ratio.

Upon reset, SCR1 is initialized to H'00. Writing to this register during a transfer stops the transfer.

Bits 7 and 6—Operation Mode Select 1, 0 (SNC1, SNC0): Bits 7 and 6 select the operation mode.

Bit 7: SNC1	Bit 6: SNC0	Description	
0	0	8-bit synchronous transfer mode	(initial value)
	1	16-bit synchronous transfer mode	
1	0	Continuous clock output mode*1	
	1	Reserved* ²	

Notes: 1. Pins SI, and SO, should be used as general input or output ports. 2. Don't set bits SNC1 and SNC0 to 11.

Bits 5 and 4—Reserved Bits: Bits 5 and 4 are reserved; they should always be cleared to 0.

Bit 3—Clock Source Select 3 (CKS3): Bit 3 selects the clock source and sets pin SCK₁ as an input or output pin.

Bit 3: CKS3	Description	
0	Clock source is prescaler S, and pin SCK, is output pin	(initial value)
1	Clock source is external clock, and pin SCK_{1} is input pin	

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS 0): When CKS3 = 0, bits 2 to 0 select the prescaler division ratio and the serial clock cycle.

				Serial Clock Cycle		
Bit 2: CKS2	Bit 1: CKS1	Bit 0: CKS0	Prescaler Division	ϕ = 5 MHz	ϕ = 2.5 MHz	
0	0	0	♦/1024 (initial value)	204.8 μs	409.6 μs	
		1	ф/256	51.2 μs	102.4 μs	
	1	0	ф/64	12.8 μs	25.6 μs	
		1	ф/32	6.4 μs	12.8 μs	
1	0	0	ф/16	3.2 μs	6.4 μs	
		1	ф/8	1.6 μs	3.2 μs	
	1	0	ф/4	0.8 μs	1.6 μs	
		1	ф/2		0.8 μs	

Serial Control/Status Register 1 (SCSR1)

Bit	7	6	5	4	3	2	1	0
	_	SOL	ORER	_	—	_	_	STF
Initial value	1	0	0	0	0	0	0	0
Read/Write		R/W	R/(W)*		_		R/W	R/W
Note: * Only a write of 0 for flag clearing is possible.								

SCSR1 is an 8-bit read/write register indicating operation status and error status.

Upon reset, SCSR1 is initialized to H'80.

Do not read or write to SCSR1 during a transfer operation, as this will cause erroneous operation.

Bit 7—Reserved Bit: Bit 7 is reserved; it is always read as 1, and cannot be modified.

Bit 6—Extended Data Bit (SOL): Bit 6 sets the SO₁ output level. When read, SOL returns the output level at the SO₁ pin. After completion of a transmission, SO₁ continues to output the value of the last bit of transmitted data. The SO₁ output can be changed by writing to SOL before or after a transmission. The SOL bit setting remains valid only until the start of the next transmission. To control the level of the SO₁ pin after transmission ends, it is necessary to write to the SOL bit at the end of each transmission. Do not write to this register while transmission is in progress, because that may cause a malfunction.

Bit 6: SOL	Description	
0	Read: SO, pin output level is low	(initial value)
	Write: SO, pin output level changes to low	
1	Read: SO, pin output level is high	
	Write: SO, pin output level changes to high	

Bit 5—Overrun Error Flag (ORER): When an external clock is used, bit 5 indicates the occurrence of an overrun error. If a clock pulse is input after transfer completion, this bit is set to 1 indicating an overrun. If noise occurs during a transfer, causing an extraneous pulse to be superimposed on the normal serial clock, incorrect data may be transferred.

Bit 5: ORER	Description
0	Clearing condition: After reading ORER = 1, cleared by writing 0 to ORER (initial value)
1	Setting condition: Set if a clock pulse is input after transfer is complete, when an external clock is used

Bits 4 to 2—Reserved Bits: Bits 4 to 2 are reserved; they are always read as 0, and cannot be modified.

Bit 1—Reserved Bit: Bit 1 is reserved; it should always be cleared to 0.

Bit 0—Start Flag (STF): Bit 0 controls the start of a transfer. Setting this bit to 1 causes SCI1 to start transferring data.

This bit remains set to 1 during transfer or while waiting for a start bit, and is cleared to 0 upon completion of the transfer.

Bit 0: STF	Description	
0	Read: Indicates that transfer is stopped	(initial value)
	Write: Invalid	
1	Read: Indicates transfer in progress	
	Write: Starts a transfer operation	

Serial Data Register U (SDRU)

Bit	7	6	5	4	3	2	1	0
	SDRU7	SDRU6	SDRU5	SDRU4	SDRU3	SDRU2	SDRU1	SDRU0
Initial value	Undefined							
Read/Write	R/W							

SDRU is an 8-bit read/write register. It is used as the data register for the upper 8 bits in 16-bit transfer (SDRL is used for the lower 8 bits).

Data written to SDRU is output to SDRL starting from the least significant bit (LSB). This data is then replaced by LSB-first data input at pin SI_1 , which is shifted in the direction from the most significant bit (MSB) toward the LSB.

SDRU must be written or read only after data transmission or reception is complete. If this register is written or read while a data transfer is in progress, the data contents are not guaranteed.

The SDRU value upon reset is not fixed.

Serial Data Register L (SDRL)

Bit	7	6	5	4	3	2	1	0
	SDRL7	SDRL6	SDRL5	SDRL4	SDRL3	SDRL2	SDRL1	SDRL0
Initial value	Undefined							
Read/Write	R/W							

SDRL is an 8-bit read/write register. It is used as the data register in 8-bit transfer, and as the data register for the lower 8 bits in 16-bit transfer (SDRU is used for the upper 8 bits).

In 8-bit transfer, data written to SDRL is output from pin SO₁ starting from the least significant bit (LSB). This data is than replaced by LSB-first data input at pin SI₁, which is shifted in the direction from the most significant bit (MSB) toward the LSB.

In 16-bit transfer, operation is the same as for 8-bit transfer, except that input data is fed in via SDRU.

SDRL must be written or read only after data transmission or reception is complete. If this register is read or written while a data transfer is in progress, the data contents are not guaranteed.

The SDRL value upon reset is not fixed.

10.2.3 Operation

Data can be sent and received in an 8-bit or 16-bit format, synchronized to an internal or external serial clock. Overrun errors can be detected when an external clock is used.

Clock

The serial clock can be selected from a choice of eight internal clocks and an external clock. When an internal clock source is selected, pin SCK₁ becomes the clock output pin. When continuous clock output mode is selected (SCR1 bits SNC1 and SNC0 are set to 10), the clock signal (ϕ /1024

to $\phi/2$) selected in bits CKS2 to CKS0 is output continuously from pin SCK₁. When an external clock is used, pin SCK₁ is the clock input pin.

Data Transfer Format

Figure 10.2 shows the data transfer format. Data is sent and received starting from the least significant bit, in LSB-first format. Transmit data is output from one falling edge of the serial clock until the next falling edge. Receive data is latched at the rising edge of the serial clock.

SCK1	
SO1/SI1	

Figure 10.2 Transfer Format

Data Transfer Operations

Transmitting: A transmit operation is carried out as follows.

- Set bits SO1 and SCK1 in PMR3 TO 1 so that the respective pins function as SO₁ and SCK₁. If necessary, set bit POF1 in port mode register 2 (PMR2) for NMOS open drain output at pin SO₁.
- Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to SCR1 initializes the internal state of SCI1.
- Write transmit data in SDRL and SDRU, as follows.
 - 8-bit transfer mode: SDRL
 - 16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL
- Set the SCSR1 start flag (STF) to 1. SCI1 starts operating and outputs transmit data at pin SO₁.
- After data transmission is complete, bit IRRS1 in interrupt request register 1 (IRR1) is set to 1.

When an internal clock is used, a serial clock is output from pin SCK_1 in synchronization with the transmit data. After data transmission is complete, the serial clock is not output until the next time the start flag is set to 1. During this time, pin SO_1 continues to output the value of the last bit transmitted.

When an external clock is used, data is transmitted in synchronization with the serial clock input at pin SCK₁. After data transmission is complete, an overrun occurs if the serial clock continues to be input; no data is transmitted and the SCSR1 overrun error flag (bit ORER) is set to 1.

While transmission is stopped, the output value of pin SO_1 can be changed by rewriting bit SOL in SCSR1.

Receiving: A receive operation is carried out as follows.

- Set bits SI1 and SCK1 in PMR3 to 1 so that the respective pins function as SI₁ and SCK₁.
- Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to SCR1 initializes the internal state of SCI1.
- Set the SCSR1 start flag (STF) to 1. SCI1 starts operating and receives data at pin SI₁.
- After data reception is complete, bit IRRS1 in interrupt request register 1 (IRR1) is set to 1.
- Read the received data from SDRL and SDRU, as follows.
 - 8-bit transfer mode: SDRL
 - 16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL
- After data reception is complete, an overrun occurs if the serial clock continues to be input; no data is received and the SCSR1 overrun error flag (bit ORER) is set to 1.

Simultaneous transmit/receive: A simultaneous transmit/receive operation is carried out as follows.

- Set bits SO1, SI1, and SCK1 in PMR3 to 1 so that the respective pins function as SO₁, SI₁, and SCK₁. If necessary, set bit POF1 in port mode register 2 (PMR2) for NMOS open drain output at pin SO₁.
- Clear bit SNC1 in SCR1 to 0, and set bit SNC0 to 1 or 0, designating 8- or 16-bit synchronous transfer mode. Select the serial clock in bits CKS3 to CKS0. Writing data to SCR1 initializes the internal state of SCI1.
- Write transmit data in SDRL and SDRU, as follows.
 - 8-bit transfer mode: SDRL
 - 16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL
- Set the SCSR1 start flag (STF) to 1. SCI1 starts operating. Transmit data is output at pin SO₁. Receive data is input at pin SI₁.
- After data transmission and reception are complete, bit IRRS1 in IRR1 is set to 1.
- Read the received data from SDRL and SDRU, as follows.
 - 8-bit transfer mode: SDRL
 - 16-bit transfer mode: Upper byte in SDRU, lower byte in SDRL

When an internal clock is used, a serial clock is output from pin SCK_1 in synchronization with the transmit data. After data transmission is complete, the serial clock is not output until the next time the start flag is set to 1. During this time, pin SO₁ continues to output the value of the last bit transmitted.

When an external clock is used, data is transmitted and received in synchronization with the serial clock input at pin SCK_1 . After data transmission and reception are complete, an overrun occurs if the serial clock continues to be input; no data is transmitted or received and the SCSR1 overrun error flag (bit ORER) is set to 1.

While transmission is stopped, the output value of pin SO_1 can be changed by rewriting bit SOL in SCSR1.

10.2.4 Interrupts

SCI1 can generate an interrupt at the end of a data transfer.

When an SCI1 transfer is complete, bit IRRS1 in interrupt request register 1 (IRR1) is set to 1. SCI1 interrupt requests can be enabled or disabled by bit IENS1 of interrupt enable register 1 (IENR1).

For further details, see section 3.3, Interrupts.

10.2.5 Application Notes

Note the following points when using SCI1.

When an External Clock is Input to the SCK₁ **Pin:** When SCK₁ is designated as an input pin and an external clock is selected as the clock source, do not input the external clock before writing 1 to the STF bit in SCSR1 to start the transfer operation.

Confirming the End of Serial Transfer: Do not read or write to SCSR1 during serial transfer. The following two methods can be used to confirm the end of serial transfer:

- Using SCI1 interrupt exception handling Set the IENS1 bit to 1 in IENR1 and execute interrupt exception handling.
- Using IRR1 polling

With SCI1 interrupts disabled (IENS1 = 0 in IENR1), confirm that the IRRS1 bit in IRR1 has been set to 1.

10.3 SCI3

10.3.1 Overview

Serial communication interface 3 (SCI3) has both synchronous and asynchronous serial data communication capabilities. It also has a multiprocessor communication function for serial data communication among two or more processors.

Features

SCI3 features are listed below.

- Selection of asynchronous or synchronous mode
 - Asynchronous mode

Serial data communication is performed using an asynchronous method in which synchronization is established character by character.

SCI3 can communicate with a UART (universal asynchronous receiver/transmitter), ACIA (asynchronous communication interface adapter), or other chip that employs standard asynchronous serial communication. It can also communicate with two or more other processors using the multiprocessor communication function. There are twelve selectable serial data communication formats.

- Data length: seven or eight bits
- Stop bit length: one or two bits
- Parity: even, odd, or none
- Multiprocessor bit: one or none
- Receive error detection: parity, overrun, and framing errors
- Break detection: by reading the RXD level directly when a framing error occurs
- Synchronous mode

Serial data communication is synchronized with a clock signal. SCI3 can communicate with other chips having a clocked synchronous communication function.

- Data length: eight bits
- Receive error detection: overrun errors
- Full duplex communication

The transmitting and receiving sections are independent, so SCI3 can transmit and receive simultaneously. Both sections use double buffering, so continuous data transfer is possible in both the transmit and receive directions.

- Built-in baud rate generator with selectable bit rates.
- Internal or external clock may be selected as the transfer clock source.

• There are six interrupt sources: transmit end, transmit data empty, receive data full, overrun error, framing error, and parity error.

Block Diagram

Figure 10.3 shows a block diagram of SCI3.

Pin Configuration

Table 10.4 shows the SCI3 pin configuration.

Table 10.4Pin Configuration

Name	Abbr.	I/O	Function
SCI3 clock	SCK ₃	I/O	SCI3 clock input/output
SCI3 receive data input	RXD	Input	SCI3 receive data input
SCI3 transmit data output	TXD	Output	SCI3 transmit data output

Register Configuration

Table 10.5 shows the SCI3 internal register configuration.

Table 10.5 SCI3 Registers

Name	Abbr.	R/W	Initial Value	Address
Serial mode register	SMR	R/W	H'00	H'FFA8
Bit rate register	BRR	R/W	H'FF	H'FFA9
Serial control register 3	SCR3	R/W	H'00	H'FFAA
Transmit data register	TDR	R/W	H'FF	H'FFAB
Serial status register	SSR	R/W	H'84	H'FFAC
Receive data register	RDR	R	H'00	H'FFAD
Transmit shift register	TSR	*		_
Receive shift register	RSR	*		_
Bit rate counter	BRC	*		_

Legend:

-: Cannot be read or written.

10.3.2 Register Descriptions

Receive Shift Register (RSR)

The receive shift register (RSR) is for receiving serial data.

Serial data is input in LSB (bit 0) order into RSR from pin RXD, converting it to parallel data. After each byte of data has been received, the byte is automatically transferred to the receive data register (RDR).

RSR cannot be read or written directly by the CPU.

Receive Data Register (RDR)

Bit	7	6	5	4	3	2	1	0
	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

The receive data register (RDR) is an 8-bit register for storing received serial data.

Each time a byte of data is received, the received data is transferred from the receive shift register (RSR) to RDR, completing a receive operation. Thereafter RSR again becomes ready to receive new data. RSR and RDR form a double buffer mechanism that allows data to be received continuously.

RDR is exclusively for receiving data and cannot be written by the CPU.

RDR is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Transmit Shift Register (TSR)

Bit	7	6	5	4	3	2	1	0
Read/Write	_	_	_	_	_	_	_	

The transmit shift register (TSR) is for transmitting serial data.

Transmit data is first transferred from the transmit data register (TDR) to TSR, then is transmitted from pin TXD, starting from the LSB (bit 0).

After one byte of data has been sent, the next byte is automatically transferred from TDR to TSR, and the next transmission begins. If no data has been written to TDR (1 is set in TDRE), there is no data transfer from TDR to TSR.

TSR cannot be read or written directly by the CPU.

Transmit Data Register (TDR)

вп	
DIL	

Bit	7	6	5	4	3	2	1	0
	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

The transmit data register (TDR) is an 8-bit register for holding transmit data.

When SCI3 detects that the transmit shift register (TSR) is empty, it shifts transmit data written in TDR to TSR and starts serial data transmission. While TSR is transmitting serial data, the next byte to be transmitted can be written to TDR, realizing continuous transmission.

TDR can be read or written by the CPU at all times.

TDR is initialized to H'FF upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Serial Mode Register (SMR)

Bit	7	6	5	4	3	2	1	0
	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

The serial mode register (SMR) is an 8-bit register for setting the serial data communication format and for selecting the clock source of the baud rate generator. SMR can be read and written by the CPU at any time.

SMR is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Bit 7—Communication Mode (COM): Bit 7 selects asynchronous mode or synchronous mode as the serial data communication mode.

Bit 7: COM	Description	
0	Asynchronous mode	(initial value)
1	Synchronous mode	

Bit 6—Character Length (CHR): Bit 6 selects either 7 bits or 8 bits as the data length in asynchronous mode. In synchronous mode the data length is always 8 bits regardless of the setting here.

Bit 6: CH	IR Description	
0	8-bit data	(initial value)
1	7-bit data*	
Note: *	When 7-bit data is selected as the character length in as	ynchronous mode, the MSB

Bit 5—Parity Enable (PE): In asynchronous mode, bit 5 selects whether or not a parity bit is to be added to transmitted data and checked in received data. In synchronous mode there is no adding or checking of parity regardless of the setting here.

(bit 7) in the transmit data register is not transmitted.

Bit 5: PE	Description
0	Parity bit adding and checking disabled (initial value)
1	Parity bit adding and checking enabled*
Note: *	When PE is set to 1, then either odd or even parity is added to transmit data, depending on the setting of the parity mode bit (PM). When data is received, it is checked for odd or even parity as designated in bit PM.

Bit 4—Parity Mode (PM): In asynchronous mode, bit 4 selects whether odd or even parity is to be added to transmitted data and checked in received data. The PM setting is valid only if bit PE is set to 1, enabling parity adding/checking. In synchronous mode, or if parity adding/checking is disabled in asynchronous mode, the PM setting is invalid.

Bit 4: PM	Description	
0	Even parity* ¹	(initial value)
1	Odd parity* ²	

Notes: 1. When even parity is designated, a parity bit is added to the transmitted data so that the sum of 1s in the resulting data is an even number. When data is received, the sum of 1s in the data plus parity bit is checked to see if the result is an even number.

2. When odd parity is designated, a parity bit is added to the transmitted data so that the sum of 1s in the resulting data is an odd number. When data is received, the sum of 1s in the data plus parity bit is checked to see if the result is an odd number.

Bit 3—Stop Bit Length (STOP): Bit 3 selects 1 bit or 2 bits as the stop bit length in asynchronous mode. This setting is valid only in asynchronous mode. In synchronous mode a stop bit is not added, so this bit is ignored.

Bit 3: STO	P Description	
0	1 stop bit* ¹	(initial value)
1	2 stop bits* ²	
	When data is transmitted, one 1 bit is added at the stop bit.	the end of each transmitted character as

2. When data is transmitted, two 1 bits are added at the end of each transmitted character as the stop bits.

When data is received, only the first stop bit is checked regardless of the stop bit length. If the second stop bit value is 1 it is treated as a stop bit; if it is 0, it is treated as the start bit of the next character.

Bit 2—Multiprocessor Mode (MP): Bit 2 enables or disables the multiprocessor communication function. When the multiprocessor communication function is enabled, the parity enable (PE) and parity mode (PM) settings are ignored. The MP bit is valid only in asynchronous mode; it should be cleared to 0 in synchronous mode.

See section 10.3.6, Multiprocessor Communication Function for details on the multiprocessor communication function.

Bit 2: MP	Description	
0	Multiprocessor communication function disabled	(initial value)
1	Multiprocessor communication function enabled	

Bits 1 and 0—Clock Select 1, 0 (CKS1, CKS0): Bits 1 and 0 select the clock source for the builtin baud rate generator. A choice of $\phi/64$, $\phi/16$, $\phi/4$, or ϕ is made in these bits.

See Bit Rate Register (BRR) in section 10.3.2, Register Descriptions, below for information on the clock source and bit rate register settings, and their relation to the baud rate.

Bit 1: CKS1	Bit 0: CKS0	Description	
0	0	φ clock	(initial value)
	1	∲/4 clock	
1	0	∲/16 clock	
	1	∲/64 clock	

Serial Control Register 3 (SCR3)

Bit	7	6	5	4	3	2	1	0
	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Serial control register 3 (SCR3) is an 8-bit register that controls SCI3 transmit and receive operations, enables or disables serial clock output in asynchronous mode, enables or disables interrupts, and selects the serial clock source. SCR3 can be read and written by the CPU at any time.

SCR3 is initialized to H'00 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Bit 7—Transmit Interrupt Enable (TIE): Bit 7 enables or disables the transmit data empty interrupt (TXI) request when data is transferred from TDR to TSR and the transmit data register empty bit (TDRE) in the serial status register (SSR) is set to 1. The TXI interrupt can be cleared by clearing bit TDRE to 0, or by clearing bit TIE to 0.

Bit 7: TIE	Description	
0	Transmit data empty interrupt request (TXI) disabled	(initial value)
1	Transmit data empty interrupt request (TXI) enabled	

Bit 6—Receive Interrupt Enable (RIE): Bit 6 enables or disables the receive error interrupt (ERI), and the receive data full interrupt (RXI) requested when data is transferred from RSR to RDR and the receive data register full bit (RDRF) in the serial status register (SSR) is set to 1. There are three kinds of receive error: overrun, framing, and parity. RXI and ERI interrupts can be cleared by clearing SSR flag RDRF, or flags FER, PER, and OER to 0, or by clearing bit RIE to 0.

Bit 6: RIE	Description	
0	Receive data full interrupt request (RXI) and receive error interrup (ERI) disabled	t request (initial value)
1	Receive data full interrupt request (RXI) and receive error interrup (ERI) enabled	t request

Bit 5—Transmit Enable (TE): Bit 5 enables or disables the start of a transmit operation.

Bit 5: TE	Description
0	Transmit operation disabled* ¹ (TXD is a general I/O port) (initial value)
1	Transmit operation enabled* ² (TXD is the transmit data pin)
Notes: 1.	The transmit data register empty bit (TDRE) in the serial status register (SSR) is fixed at 1.
2.	In this state, writing transmit data in TDR clears bit TDRE in SSR to 0 and starts serial data transmission.

Before setting TE to 1 it is necessary to set the transmit format in SMR. When performing simultaneous transmission and reception in synchronous mode, TE and RE should be set to 1 simultaneously by a single instruction when they are both cleared to 0.

Bit 4—Receive Enable (RE): Bit 4 enables or disables the start of a receive operation.

Bit 4: RE	Description
0	Receive operation disabled* ¹ (RXD is a general I/O port) (initial value)
1	Receive operation enabled* ² (RXD is the receive data pin)
Notes: 1.	When RE is cleared to 0, this has no effect on the SSR flags RDRF, FER, PER, and OER, which retain their states.
2.	Serial data receiving begins when, in this state, a start bit is detected in asynchronous mode, or serial clock input is detected in synchronous mode.
	Before setting RE to 1 it is necessary to set the receive format in SMR. When performing simultaneous transmission and reception in synchronous mode, TE and RE should be set to 1 simultaneously by a single instruction when they are both cleared to 0.

Bit 3—Multiprocessor Interrupt Enable (MPIE): Bit 3 enables or disables multiprocessor interrupt requests. This setting is valid only in asynchronous mode, and only when the multiprocessor mode bit (MP) in the serial mode register (SMR) is set to 1. This bit is ignored when COM is set to 1 or when bit MP is cleared to 0.

Bit 3: M	IPIE	Description					
0		Multiprocessor interrupt request disabled (ordinary receive operation)					
		(initial value)					
		Clearing condition:					
		Multiprocessor bit receives a data value of 1					
1		Multiprocessor interrupt request enabled*					
Note: *		3 does not transfer receive data from RSR to RDR, does not detect receive errors, does not set status flags RDRF, FER, and OER in SSR. Until a multiprocessor bit					

value of 1 is received, the receive data full interrupt (RXI) and receive error interrupt (ERI) are disabled and serial status register (SSR) flags RDRF, FER, and OER are not set. When the multiprocessor bit receives a 1, the MPBR bit of SSR is set to 1, MPIE is automatically cleared to 0, RXI and ERI interrupts are enabled (provided bits TIE and RIE in SCR3 are set to 1), and setting of the RDRF, FER, and OER flags is enabled.

Bit 2—Transmit End Interrupt Enable (TEIE): Bit 2 enables or disables the transmit end interrupt (TEI) requested if there is no valid transmit data in TDR when the MSB is transmitted.

Bit 2: TEI	E Description	
0	Transmit end interrupt (TEI) disabled	(initial value)
1	Transmit end interrupt (TEI) enabled*	
Note: *	A TEI interrupt can be cleared by clearing the SSR bit TDRE to 0 and transmit end bit (TEND) to 0, or by clearing bit TEIE to 0.	clearing the

Bits 1 and 0—Clock Enable 1, 0 (CKE1, CKE0): Bits 1 and 0 select the clock source and enable or disable clock output at pin SCK₃. The combination of bits CKE1 and CKE0 determines whether pin SCK₃ is a general I/O port, a clock output pin, or a clock input pin.

Note that the CKE0 setting is valid only when operation is in asynchronous mode using an internal clock (CKE1 = 0). This bit is invalid in synchronous mode or when using an external clock (CKE1 = 1). In synchronous mode and in external clock mode, clear CKE0 to 0. After setting bits CKE1 and CKE0, the operation mode must first be set in the serial mode register (SMR).

Bit 1: CKE1	Bit 0: CKE0	Communication Mode	Clock Source	SCK ₃ Pin Function	
0	0	Asynchronous	Internal clock	I/O port ^{*1}	
		Synchronous	Internal clock	Serial clock output*1	
0	1	Asynchronous	Internal clock	Clock output* ²	
		Synchronous	Reserved	Reserved	
1	0	Asynchronous	External clock	Clock input* ³	
		Synchronous	External clock	Serial clock input	
1	1	Asynchronous	Reserved	Reserved	
		Synchronous	Reserved	Reserved	

See table 10.12 in section 10.3.3, Operation, for details on clock source selection.

Notes: 1. Initial value

- 2. A clock is output with the same frequency as the bit rate.
- 3. Input a clock with a frequency 16 times the bit rate.

Serial Status Register (SSR)

Bit	7	6	5	4	3	2	1	0
	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT
Initial value	1	0	0	0	0	1	0	0
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W
Note: * Only 0 can be written for flag clearing.								

The serial status register (SSR) is an 8-bit register containing status flags for indicating SCI3 states, and containing the multiprocessor bits.

SSR can be read and written by the CPU at any time, but the CPU cannot write a 1 to the status flags TDRE, RDRF, OER, PER, and FER. To clear these flags to 0 it is first necessary to read a 1. Bit 2 (TEND) and bit 1 (MPBR) are read-only bits and cannot be modified.

SSR is initialized to H'84 upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Bit 7—Transmit Data Register Empty (TDRE): Bit 7 is a status flag indicating that data has been transferred from TDR to TSR.

Bit 7: TDRE	Description
0	Indicates that transmit data written to TDR has not been transferred to TSR
	Clearing conditions: After reading TDRE = 1, cleared by writing 0 to TDRE. When data is written to TDR by an instruction.
1	Indicates that no transmit data has been written to TDR, or the transmit data written to TDR has been transferred to TSR (initial value)
	Setting conditions: When bit TE in SCR3 is cleared to 0. When data is transferred from TDR to TSR.

Bit 6—Receive Data Register Full (RDRF): Bit 6 is a status flag indicating whether there is receive data in RDR.

Bit 6: RDRF	Description
0	Indicates there is no receive data in RDR (initial value)
	Clearing conditions: After reading RDRF = 1, cleared by writing 0 to RDRF. When data is read from RDR by an instruction.
1	Indicates that there is receive data in RDR
	Setting condition: When receiving ends normally, with receive data transferred from RSR to RDR
Nata: If a read	us sweet is detected at the and of reactiving on if hit DE is actical control variation 0

Note: If a receive error is detected at the end of receiving, or if bit RE in serial control register 3 (SCR3) is cleared to 0, RDR and RDRF are unaffected and keep their previous states. An overrun error (OER) occurs if receiving of data is completed while bit RDRF remains set to 1. If this happens, receive data will be lost.

Bit 5—Overrun Error (OER): Bit 5 is a status flag indicating that an overrun error has occurred during data receiving.

Bit 5: OE	R Description
0	Indicates that data receiving is in progress or has been completed*1 (initial value)
	Clearing condition: After reading OER = 1, cleared by writing 0 to OER
1	Indicates that an overrun error occurred in data receiving*2
	Setting condition: When data receiving is completed while RDRF is set to 1
Notes: 1.	When bit RE in serial control register 3 (SCR3) is cleared to 0, OER is unaffected and keeps its previous state.
2.	RDR keeps the data received prior to the overrun; data received after that is lost. While

 RDR keeps the data received prior to the overrun; data received after that is lost. While OER is set to 1, data receiving cannot be continued. In synchronous mode, data transmitting cannot be continued either.

Bit 4—Framing Error (FER): Bit 4 is a status flag indicating that a framing error has occurred during asynchronous receiving.

Bit 4: FER	Description				
0	Indicates that data receiving is in progress or has been completed* ¹ (initial value)				
	Clearing condition: After reading FER = 1, cleared by writing 0 to FER				
1	Indicates that a framing error occurred in data receiving				
	Setting condition: The stop bit at the end of receive data is checked for a value of 1 and found to be 0^{\ast^2}				
	nen bit RE in serial control register 3 (SCR3) is cleared to 0, FER is unaffected and eps its previous state.				
	nen two stop bits are used only the first stop bit is checked, not the second. When a ming error occurs, receive data is transferred to RDR but RDRF is not set. While				

framing error occurs, receive data is transferred to RDR but RDRF is not set. While FER is set to 1, data receiving cannot be continued. In synchronous mode, data transmitting cannot be continued either.

Bit 3—Parity Error (PER): Bit 3 is a status flag indicating that a parity error has occurred during asynchronous receiving.

Bit 3: PER	Description
0	Indicates that data receiving is in progress or has been completed* ¹ (initial value)
	Clearing condition: After reading PER = 1, cleared by writing 0 to PER
1	Indicates that a parity error occurred in data receiving*2
	Setting condition: When the sum of 1s in received data plus the parity bit does not match the parity mode bit (PM) setting in the serial mode register (SMR)
	nen bit RE in serial control register 3 (SCR3) is cleared to 0, PER is unaffected and eps its previous state.

 When a parity error occurs, receive data is transferred to RDR but RDRF is not set. While PER is set to 1, data receiving cannot be continued. In synchronous mode, data transmitting cannot be continued either.

Bit 2—Transmit End (TEND): Bit 2 is a status flag indicating that TDRE was set to 1 when the last bit of a transmitted character was sent. TEND is a read-only bit and cannot be modified directly.

Bit 2: TEND	Description	
0	Indicates that transmission is in progress	
	Clearing conditions: After reading TDRE = 1, cleared by writing 0 to TDRE. When data is written to TDR by an instruction.	
1	Indicates that a transmission has ended (i	nitial value)
	Setting conditions: When bit TE in SCR3 is cleared to 0. If TDRE is set to 1 when the last bit of a transmitted character is sen	ıt.

Bit 1—Multiprocessor Bit Receive (MPBR): Bit 1 holds the multiprocessor bit in data received in asynchronous mode using a multiprocessor format. MPBR is a read-only bit and cannot be modified.

Bit 1:	MP	PBR Description	
0		Indicates reception of data in which the multiprocessor bit is 0^* (init	tial value)
1		Indicates reception of data in which the multiprocessor bit is 1	
Note:	*	If bit RE is cleared to 0 while a multiprocessor format is in use, MPBR retains it previous state.	iS

Bit 0—Multiprocessor Bit Transmit (MPBT): Bit 0 holds the multiprocessor bit to be added to transmitted data when a multiprocessor format is used in asynchronous mode. Bit MPBT is ignored when synchronous mode is chosen, when the multiprocessor communication function is disabled, or when data transmission is disabled.

Bit 0: MPBT	Description	
0	The multiprocessor bit in transmit data is 0	(initial value)
1	The multiprocessor bit in transmit data is 1	

Bit Rate Register (BRR)

Bit	7	6	5	4	3	2	1	0
	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

The bit rate register (BRR) is an 8-bit register which, together with the baud rate generator clock selected by bits CKS1 and CKS0 in the serial mode register (SMR), sets the transmit/receive bit rate.

BRR can be read or written by the CPU at any time.

BRR is initialized to H'FF upon reset or in standby mode, watch mode, subactive mode, or subsleep mode.

Table 10.6 gives examples of how BRR is set in asynchronous mode. The values in table 10.6 are for active (high-speed) mode.

	OSC (MHz)											
		2			2.457	76		4			4.1943	304
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	1	70	+0.03	1	86	+0.31	1	141	+0.03	1	148	-0.04
150	0	207	+0.16	0	255	0	1	103	+0.16	1	108	+0.21
300	0	103	+0.16	0	127	0	0	207	+0.16	0	217	+0.21
600	0	51	+0.16	0	63	0	0	103	+0.16	0	108	+0.21
1200	0	25	+0.16	0	31	0	0	51	+0.16	0	54	-0.70
2400	0	12	+0.16	0	15	0	0	25	+0.16	0	26	+1.14
4800	_			0	7	0	0	12	+0.16	0	13	-2.48
9600	_			0	3	0	—			0	6	-2.48
19200	—			0	1	0	—				—	
31250	0	0	0				0	1	0		—	_
38400			_	0	0	0		—			—	_

Table 10.6 BRR Settings and Bit Rates in Asynchronous Mode

		4.91	52		6			7.372	8		8			
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)		
110	1	174	-0.26	1	212	+0.03	2	64	+0.70	2	70	+0.03		
150	1	127	0	1	155	+0.16	1	191	0	1	207	+0.16		
300	0	255	0	1	77	+0.16	1	95	0	1	103	+0.16		
600	0	127	0	0	155	+0.16	0	191	0	0	207	+0.16		
1200	0	63	0	0	77	+0.16	0	95	0	0	103	+0.16		
2400	0	31	0	0	38	+0.16	0	47	0	0	51	+0.16		
4800	0	15	0	0	19	-2.34	0	23	0	0	25	+0.16		
9600	0	7	0	0	9	-2.34	0	11	0	0	12	+0.16		
19200	0	3	0	0	4	-2.34	0	5	0	_	_			
31250		_		0	2	0		_		0	3	0		
38400	0	1	0				0	2	0					

OSC (MHz)

		OSC (MHz)									
		9.830	04		10						
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)					
110	2	86	+0.31	2	88	-0.25					
150	1	255	0	2	64	+0.16					
300	1	127	0	1	129	+0.16					
600	0	255	0	1	64	+0.16					
1200	0	127	0	0	129	+0.16					
2400	0	63	0	0	64	+0.16					
4800	0	31	0	0	32	-1.36					
9600	0	15	0	0	15	+1.73					
19200	0	7	0	0	7	+1.73					
31250	0	4	-1.70	0	4	0					
38400	0	3	0	0	3	+1.73					

OSC (MHz)

Notes: 1. Settings should be made so that error is within 1%.

2. BRR setting values are derived by the following equation.

$$N = \frac{OSC}{64 \times 2^{2n} \times B} \times 10^6 - 1$$

- B: Bit rate (bits/s)
- N: BRR baud rate generator setting (0 \le N \le 255)
- OSC: Value of ϕ_{osc} (MHz)
- n: Baud rate generator input clock number (n = 0 to 3) (The relation between n and the clock is shown in table 10.7.)
- 3. The error values in table 10.6 were derived by performing the following calculation and rounding off to two decimal places.

Error (%) =
$$\frac{B-R}{R} \times 100$$

- B: Bit rate found from n, N, and OSC
- R: Bit rate listed in left column of table 10.6

The meaning of n is shown in table 10.7.

		SMR Setting				
n	Clock	CKS1	CKS0			
0	φ	0	0			
1	φ/4	0	1			
2	φ/16	1	0			
3	φ/64	1	1			

Table 10.7 Relation between n and Clock

Table 10.8 shows the maximum bit rate for selected frequencies in asynchronous mode. Values in table 10.8 are for active (high-speed) mode.

Table 10.8	Maximum Bit Rate at Selecte	ed Frequencies (Asynchronous Mode)
-------------------	-----------------------------	------------------------------------

			Setting	
OSC (MHz)	Maximum Bit Rate (bits/s)	n	Ν	
2	31250	0	0	
2.4576	38400	0	0	
4	62500	0	0	
4.194304	65536	0	0	
4.9152	76800	0	0	
6	93750	0	0	
7.3728	115200	0	0	
8	125000	0	0	
9.8304	153600	0	0	
10	156250	0	0	

Table 10.9 shows typical BRR settings in synchronous mode. Values in table 10.9 are for active (high-speed) mode.

				os	C (MHz)				
Bit Rate		2		4		8	10		
(bits/s)	n	Ν	n	Ν	n	Ν	n	Ν	
110		_			_		_		
250	1	249	2	124	2	249			
500	1	124	1	249	2	124			
1 K	0	249	1	124	1	249			
2.5 K	0	99	0	199	1	99	1	124	
5 K	0	49	0	99	0	199	0	249	
10 K	0	24	0	49	0	99	0	124	
25 K	0	9	0	19	0	39	0	49	
50 K	0	4	0	9	0	19	0	24	
100 K		_	0	4	0	9	_		
250 K	0	0*	0	1	0	3	0	4	
500 K			0	0*	0	1			
1 M					0	0*			
2.5 M									

Table 10.9	Typical BRR Settings and Bit Rates (Synchronous Mode)
-------------------	--	---

Legend:

Blank: Cannot be set

—: Can be set, but error will result

*: Continuous transfer not possible at this setting

BRR setting values are derived by the following equation.

$$N = \frac{OSC}{8 \times 2^{2n} \times B} \times 10^6 - 1$$

Legend:

B: Bit rate (bits/s)

N: BRR baud rate generator setting $(0 \le N \le 255)$

OSC: Value of ϕ OSC (MHz)

n: Baud rate generator input clock number (n = 0, 1, 2, 3)

The meaning of n is shown in table 10.10.

		SMR Setting						
n	Clock	CKS1	CKS0					
0	φ	0	0					
1	ф/4	0	1					
2	ф/16	1	0					
3	φ/64	1	1					

Table 10.10 Relation between n and Clock

10.3.3 Operation

SCI3 supports serial data communication in both asynchronous mode, where each character transferred is synchronized separately, and synchronous mode, where transfer is synchronized by clock pulses.

The choice of asynchronous mode or synchronous mode, and the communication format, is made in the serial mode register (SMR), as shown in table 10.11. The SCI3 clock source is determined by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3), as shown in table 10.12.

Asynchronous Mode:

- Data length: choice of 7 bits or 8 bits
- Options include addition of parity bit, multiprocessor bit, and one or two stop bits (transmit/receive format and character length are determined by this combination of options).
- Framing error (FER), parity error (PER), overrun error (OER), and line breaks can be detected when data is received.
- Clock source: Choice of internal clocks or an external clock
 When an internal clock is selected: Operates on baud rate generator clock. A clock can be output with the same frequency as the bit rate.

When an external clock is selected: A clock input with a frequency 16 times the bit rate is required (internal baud rate generator is not used).

Synchronous Mode:

- Transfer format: 8 bits
- Overrun error can be detected when data is received.
- Clock source: Choice of internal clocks or an external clock

When an internal clock is selected: Operates on baud rate generator clock, and outputs a serial clock.

When an external clock is selected: The internal baud rate generator is not used. Operation is synchronous with the input clock.

SMR Setting						Communication Format					
Bit 7: COM		Bit 2: MP	Bit 5: PE	Bit 3: STOP	Mode	Data Length	Multipro- cessor Bit	Parity Bit	Stop Bit Length		
0	0	0	0	0	Asynchronous	8-bit data	No	No	1 bit		
				1	mode				2 bits		
			1	0	-			Yes	1 bit		
				1	-				2 bits		
	1	-	0	0	-	7-bit data	-	No	1 bit		
				1	-				2 bits		
			1	0	-			Yes	1 bit		
				1	-				2 bits		
	0	1	*	0	Asynchronous	8-bit data	Yes	No	1 bit		
			*	1	mode				2 bits		
	1	-	*	0	(multiprocessor	7-bit data	-		1 bit		
			*	1	format)				2 bits		
1	*	0	*	*	Synchronous mode	8-bit data	No	_	None		

Table 10.11 SMR Settings and SCI3 Communication Format

Legend: * Don't care

SMR	S	CR3		Transmit/Receive Clock		
Bit 7: COM	Bit 1: CKE1	Bit 0: CKE0	 Mode	Clock Source	Pin SCK ₃ Function	
0	0	0	Asynchronous	Internal	I/O port (SCK $_{3}$ function not used)	
		1 mode			Outputs clock with same frequency as bit rate	
	1	0	_	External	Clock should be input with frequency 16 times the desired bit rate	
1	0	0	Synchronous	Internal	Outputs a serial clock	
	1	0	mode	External	Inputs a serial clock	
0	1	1	Reserved	(illegal set	ttings)	
1	0	1	—			
1	1	1				

Table 10.12 SMR and SCR3 Settings and Clock Source Selection

Continuous Transmit/Receive Operation Using Interrupts: Continuous transmit and receive operations are possible with SCI3, using the RXI or TXI interrupts. Table 10.13 explains this use of these interrupts.

Interrupt	Flag	Interrupt Conditions	Remarks
RXI	RDRF RIE	When serial data is received normally and receive data is transferred from RSR to RDR, RDRF is set to 1. If RIE is 1 at this time, RXI is enabled and an interrupt occurs. (See figure 10.4.)	The RXI interrupt handler routine should read the receive data from RDR and clear RDRF to 0. Continuous receiving is possible if these operations are completed before the next data has been completely received in RSR.
ТХІ	TDRE TIE	When TSR empty (previous trans- mission complete) is detected and the transmit data set in TDR is transferred to TSR, TDRE is set to 1. If TIE is 1 at this time, TXI is enabled and an interrupt occurs. (See figure 10.5.)	The TXI interrupt handler routine should write the next transmit data to TDR and clear TDRE to 0.Continuous transmission is possible if these operations are completed before the data transferred to TSR has been completely transmitted.
TEI	TEND TEIE	When the last bit of the TSR transmit character has been sent, if TDRE is 1, then 1 is set in TEND. If TEIE is 1 at this time, TEI is enabled and an interrupt occurs. (See figure 10.6.)	TEI indicates that, when the last bit of the TSR transmit character was sent, the next transmit data had not been written to TDR.

Table 10.13 Transmit/Receive Interrupts

Figure 10.4 RDRF Setting and RXI Interrupt

Figure 10.6 TEND Setting and TEI Interrupt

10.3.4 Operation in Asynchronous Mode

In asynchronous communication mode, a start bit indicating the start of communication and a stop bit indicating the end of communication are added to each character that is sent. In this way synchronization is achieved for each character as a self-contained unit.

SCI3 consists of independent transmit and receive modules, giving it the capability of full duplex communication. Both the transmit and receive modules have a double-buffer configuration, allowing data to be read or written during communication operations so that data can be transmitted and received continuously.

Transmit/Receive Formats

Figure 10.7 shows the general format for asynchronous serial communication.

Figure 10.7 Data Format in Asynchronous Serial Communication Mode

The communication line in asynchronous communication mode normally stays at the high level, in the "mark" state. SCI3 monitors the communication line, and begins serial data communication when it detects a "space" (low-level signal), which is regarded as a start bit.

One character consists of a start bit (low level), transmit/receive data (in LSB-first order: starting with the least significant bit), a parity bit (high or low level), and finally a stop bit (high level), in this order.

In asynchronous data receiving, synchronization is with the falling edge of the start bit. SCI3 samples data on the 8th pulse of a clock that has 16 times the frequency of the bit rate, so each bit of data is latched at its center.

Table 10.14 shows the 12 transmit/receive formats formats that can be selected in asynchronous mode. The format is selected in the serial mode register (SMR).

	SMR	Serial Transfer Format and Frame Length													
CHR	PE	MP	STOP	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	S				8-bit	data				STOP	,	
0	0	0	1	S				8-bit	data				STOP	STOP	•
0	1	0	0	S		8-bit data P STOP							•		
0	1	0	1	S				8-bit	data				Ρ	STOP	STOP
1	0	0	0	S				7-bit	data			STOP	0		
1	0	0	1	S				7-bit	data			STOP	STOP	-	
1	1	0	0	S				7-bit	data			Ρ	STOP	-	
1	1	0	1	S		7-bit data				Ρ	P STOP STOP				
0	*	1	0	S				8-bit	data				MPB	STOP	•
0	*	1	1	S				8-bit	data				MPB	STOP	STOP
1	*	1	0	S				7-bit	data			MPB	STOP	•	
1	*	1	1	S				7-bit	data			MPB	STOP	STOP	•

Table 10.14 Serial Communication Formats in Asynchronous Mode

Legend: * Don't care

S: Start bit

STOP: Stop bit

P: Parity bit

MPB: Multiprocessor bit

Clock

The clock source is determined by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3). See table 10.12 for the settings. Either an internal clock source can be used to run the built-in baud rate generator, or an external clock source can be input at pin SCK₃.

When an external clock is input at pin SCK₃, it should have a frequency 16 times the desired bit rate.

When an internal clock source is used, SCK₃ is used as the clock output pin. The clock output has the same frequency as the serial bit rate, and is synchronized as in figure 10.8 so that the rising edge of the clock occurs in the center of each bit of transmit/receive data.

Data Transmit/Receive Operations

SCI3 Initialization: Before data is sent or received, bits TE and RE in serial control register 3 (SCR3) must be cleared to 0, after which initialization can be performed using the procedure shown in figure 10.9.

Note: When modifying the operation mode, transfer format or other settings, always be sure to clear bits TE and RE first. When TE is cleared to 0, bit TDRE will be set to 1. Clearing RE does not clear the status flags RDRF, PER, FER, or OER, or alter the contents of the receive data register (RDR).

When an external clock is used in asynchronous mode, do not stop the clock during operation, including during initialization. When an external clock is used in synchronous mode, do not supply the clock during initialization.

Figure 10.9 shows a typical flow chart for SCI3 initialization.

Figure 10.9 Typical Flow Chart when SCI3 Is Initialized

Transmitting: Figure 10.10 shows a typical flow chart for data transmission. After SCI3 initialization, follow the procedure below.

Figure 10.10 Typical Data Transmission Flow Chart (Asynchronous Mode)

SCI3 operates as follows during data transmission.

SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR). Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is requested.

Serial data is transmitted from pin TXD using the communication format outlined in table 10.14. Next, TDRE is checked as the stop bit is being transmitted.

If TDRE is 0, data is transferred from TDR to TSR, and after the stop bit is sent, transmission of the next frame starts. If TDRE is 1, the TEND bit in SSR is set to 1, and after the stop bit is sent the output remains at 1 (mark state). A TEI interrupt is requested in this state if bit TEIE in SCR3 is set to 1.

Figure 10.11 shows a typical operation in asynchronous transmission mode.

Figure 10.11 Typical Transmit Operation in Asynchronous Mode (8-Bit Data, Parity Bit Added, and 1 Stop Bit)

Receiving: Figure 10.12 shows a typical flow chart for receiving serial data. After SCI3 initialization, follow the procedure below.

Figure 10.12 Typical Serial Data Receiving Flow Chart in Asynchronous Mode

SCI3 operates as follows when receiving serial data in asynchronous mode.

SCI3 monitors the communication line, and when a start bit (0) is detected it performs internal synchronization and starts receiving. The communication format for data receiving is as outlined in table 10.14. Received data is set in RSR from LSB to MSB, then the parity bit and stop bit(s) are received. After receiving the data, SCI3 performs the following checks:

- Parity check: The number of 1s received is checked to see if it matches the odd or even parity selected in bit PM of SMR.
- Stop bit check: The stop bit is checked for a value of 1. If there are two stop bits, only the first bit is checked.
- Status check: The RDRF bit is checked for a value of 0 to make sure received data can be transferred from RSR to RDR.

If no receive error is detected by the above checks, bit RDRF is set to 1 and the received data is stored in RDR. At that time, if bit RIE in SCR3 is set to 1, an RXI interrupt is requested. If the error check detects a receive error, the appropriate error flag (OER, PER, or FER) is set to 1. RDRF retains the same value as before the data was received. If at this time bit RIE in SCR3 is set to 1, an ERI interrupt is requested.

Table 10.15 gives the receive error detection conditions and the processing of received data in each case.

Note: Data receiving cannot be continued while a receive error flag is set. Before continuing the receive operation it is necessary to clear the OER, FER, PER, and RDRF flags to 0.

Receive Error	Abbr.	Detection Conditions	Received Data Processing
Overrun error	OER	Receiving of the next data ends while bit RDRF in SSR is still set to 1	Received data is not transferred from RSR to RDR
Framing error	FER	Stop bit is 0	Received data is transferred from RSR to RDR
Parity error	PER	Received data does not match the parity (odd/even) set in SMR	Received data is transferred from RSR to RDR

Figure 10.13 shows a typical SCI3 data receive operation in asynchronous mode.

10.3.5 Operation in Synchronous Mode

In synchronous mode, data is sent or received in synchronization with clock pulses. This mode is suited to high-speed serial communication.

SCI3 consists of independent transmit and receive modules, so full duplex communication is possible, sharing the same clock between both modules. Both the transmit and receive modules have a double-buffer configuration. This allows data to be written during a transmit operation so that data can be transmitted continuously, and enables data to be read during a receive operation so that data can be received continuously.

Transmit/Receive Format

Figure 10.14 shows the general communication data format for synchronous communication.

Figure 10.14 Data Format in Synchronous Communication Mode

In synchronous communication, data on the communication line is output from one falling edge of the serial clock until the next falling edge. Data is guaranteed valid at the rising edge of the serial clock.

One character of data starts from the LSB and ends with the MSB. The communication line retains the MSB state after the MSB is output.

In synchronous receive mode, SCI3 latches receive data in synchronization with the rising edge of the serial clock.

The transmit/receive format is fixed at 8-bit data. No parity bit or multiprocessor bit is added in this mode.

Clock

Either an internal clock from the built-in baud rate generator is used, or an external clock is input at pin SCK₃. The choice of clock sources is designated by bit COM in SMR and bits CKE1 and CKE0 in serial control register 3 (SCR3). See table 10.12 for details on selecting the clock source.

When operation is based on an internal clock, a serial clock is output at pin SCK₃. Eight clock pulses are output per character of transmit/receive data. When no transmit or receive operation is being performed, the pin is held at the high level.

Data Transmit/Receive Operations

SCI3 Initialization: Before transmitting or receiving data, follow the SCI3 initialization procedure explained under 10.3.4, SCI3 Initialization, and illustrated in figure 10.9.

Transmitting: Figure 10.15 shows a typical flow chart for data transmission. After SCI3 initialization, follow the procedure below.

SCI3 operates as follows during data transmission in synchronous mode.

SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR). Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is requested.

If clock output is selected, SCI3 outputs eight serial clock pulses. If an external clock is used, data is output in synchronization with the clock input.

Serial data is transmitted from pin TXD in order from LSB (bit 0) to MSB (bit 7).

Then TDRE is checked as the MSB (bit 7) is being transmitted. If TDRE is 0, data is transferred from TDR to TSR, and after the MSB (bit 7) is sent, transmission of the next frame starts. If TDRE is 1, the TEND bit in SSR is set to 1, and after the MSB (bit 7) has been sent, the MSB state is maintained. A TEI interrupt is requested in this state if bit TEIE in SCR3 is set to 1.

After data transmission ends, pin SCK₃ is held at the high level.

Note: Data transmission cannot take place while any of the receive error flags (OER, FER, PER) is set to 1. Be sure to confirm that these error flags are cleared to 0 before starting transmission.

Figure 10.16 shows a typical SCI3 transmit operation in synchronous mode.

Figure 10.16 Typical SCI3 Transmit Operation in Synchronous Mode

Receiving: Figure 10.17 shows a typical flow chart for receiving data. After SCI3 initialization, follow the procedure below.

Figure 10.17 Typical Data Receiving Flow Chart in Synchronous Mode

SCI3 operates as follows when receiving serial data in synchronous mode.

SCI3 synchronizes internally with the input or output of the serial clock and starts receiving. Received data is set in RSR from LSB to MSB.

After data has been received, SCI3 checks to confirm that the value of bit RDRF is 0 indicating that received data can be transferred from RSR to RDR. If this check passes, RDRF is set to 1 and the received data is stored in RDR. At this time, if bit RIE in SCR3 is set to 1, an RXI interrupt is requested. If an overrun error is detected, OER is set to 1 and RDRF remains set to 1. Then if bit RIE in SCR3 is set to 1, an ERI interrupt is requested.

For the overrun error detection conditions and receive data processing, see table 10.15.

Note: Data receiving cannot be continued while a receive error flag is set. Before continuing the receive operation it is necessary to clear the OER, FER, PER, and RDRF flags to 0.

Figure 10.18 shows a typical receive operation in synchronous mode.

Figure 10.18 Typical Receive Operation in Synchronous Mode

Simultaneous Transmit/Receive: Figure 10.19 shows a typical flow chart for transmitting and receiving simultaneously. After SCI3 synchronization, follow the procedure below.

Figure 10.19 Simultaneous Transmit/Receive Flow Chart in Synchronous Mode
- Notes: 1. To switch from transmitting to simultaneous transmitting and receiving, use the following procedure.
 - First confirm that TDRE and TEND are both set to 1 and that SCI3 has finished transmitting. Next clear TE to 0. Then set both TE and RE to 1.
 - 2. To switch from receiving to simultaneous transmitting and receiving, use the following procedure.
 - After confirming that SCI3 has finished receiving, clear RE to 0. Next, after confirming that RDRF and the error flags (OER FER, PER) are all 0, set both TE and RE to 1.

10.3.6 Multiprocessor Communication Function

The multiprocessor communication function enables several processors to share a single serial communication line. The processors communicate in asynchronous mode using a format with an additional multiprocessor bit (multiprocessor format).

In multiprocessor communication, each receiving processor is addressed by an ID code. A serial communication cycle consists of two cycles: an ID-sending cycle that identifies the receiving processor, and a data-sending cycle. The ID-sending cycle and data-sending cycle are differentiated by the multiprocessor bit. The multiprocessor bit is 1 in an ID-sending cycle, and 0 in a data-sending cycle.

The transmitting processor starts by sending the ID of the receiving processor with which it wants to communicate as data with the multiprocessor bit set to 1. Next the transmitting processor sends transmit data with the multiprocessor bit cleared to 0. When a receiving processor receives data with the multiprocessor bit set to 1, it compares the data with its own ID. If the data matches its ID, the receiving processor continues to receive incoming data. If the data does not match its ID, the receiving processor skips further incoming data until it again receives data with the multiprocessor bit set to 1. Multiple processors can send and receive data in this way.

Figure 10.20 shows an example of communication among different processors using a multiprocessor format.

Figure 10.20 Example of Interprocessor Communication Using Multiprocessor Format (Data H'AA Sent to Receiving Processor A)

Four communication formats are available. Parity-bit settings are ignored when a multiprocessor format is selected. For details see table 10.14.

For a description of the clock used in multiprocessor communication, see section 10.3.4, Operation in Asynchronous Mode.

Transmitting Multiprocessor Data: Figure 10.21 shows a typical flow chart for multiprocessor serial data transmission. After SCI3 initialization, follow the procedure below.

Figure 10.21 Typical Multiprocessor Data Transmission Flow Chart

SCI3 operates as follows during data transmission using a multiprocessor format.

SCI3 monitors bit TDRE in SSR. When this bit is cleared to 0, SCI3 recognizes that there is data written in the transmit data register (TDR), which it transfers to the transmit shift register (TSR). Then TDRE is set to 1 and transmission starts. If bit TIE in SCR3 is set to 1, a TXI interrupt is requested.

Serial data is transmitted from pin TXD using the communication format outlined in table 10.14.

Next, TDRE is checked as the stop bit is being transmitted. If TDRE is 0, data is transferred from TDR to TSR, and after the stop bit is sent, transmission of the next frame starts. If TDRE is 1, the TEND bit in SSR is set to 1, and after the stop bit is sent the output remains at 1 (mark state). A TEI interrupt is requested in this state if bit TEIE in SCR3 is set to 1.

Figure 10.22 shows a typical SCI3 operation in multiprocessor communication mode.

Receiving Multiprocessor Data: Figure 10.23 shows a typical flow chart for receiving data using a multiprocessor format. After SCI3 initialization, follow the procedure below.

Figure 10.23 Typical Flow Chart for Receiving Serial Data Using Multiprocessor Format

Figure 10.24 gives an example of data reception using a multiprocessor format.

10.3.7 Interrupts

SCI3 has six interrupt sources: transmit end, transmit data empty, receive data full, and the three receive error interrupts (overrun error, framing error, and parity error). All share a common interrupt vector. Table 10.16 describes each interrupt.

Table 10.16 SCI3 Interrupts

Interrupt	Description	Vector Address
RXI	Interrupt request due to receive data register full (RDRF)	H'0024
TXI	Interrupt request due to transmit data register empty (TDRE)	
TEI	Interrupt request due to transmit end (TEND)	_
ERI	Interrupt request due to receive error (OER, FER, or PER)	

The interrupt requests are enabled and disabled by bits TIE and RIE of SCR3.

When bit TDRE in SSR is set to 1, TXI is requested. When bit TEND in SSR is set to 1, TEI is requested. These two interrupt requests occur during data transmission.

The initial value of bit TDRE is 1. Accordingly, if the transmit data empty interrupt request (TXI) is enabled by setting bit TIE to 1 in SCR3 before placing transmit data in TDR, TXI will be requested even though no transmit data has been readied.

Likewise, the initial value of bit TEND in SSR is 1. Accordingly, if the transmit end interrupt request (TEI) is enabled by setting bit TEIE to 1 in SCR3 before placing transmit data in TDR, TEI will be requested even though no data has been transmitted.

These interrupt features can be used to advantage by programming the interrupt handler to move the transmit data into TDR. When this technique is not used, the interrupt enable bits (TIE and TEIE) should not be set to 1 until after TDR has been loaded with transmit data, to avoid unwanted TXI and TEI interrupts.

When bit RDRF in SSR is set to 1, RXI is requested. When any of SSR bits OER, FER, or PER is set to 1, ERI is requested. These two interrupt requests occur during the receiving of data.

Details on interrupts are given in section 3.3, Interrupts.

10.3.8 Application Notes

When using SCI3, attention should be paid to the following matters.

Relation between Bit TDRE and Writing Data to TDR: Bit TDRE in the serial status register (SSR) is a status flag indicating that TDR does not contain new transmit data. TDRE is automatically cleared to 0 when data is written to TDR. When SCI3 transfers data from TDR to TSR, bit TDRE is set to 1.

Data can be written to TDR regardless of the status of bit TDRE. However, if new data is written to TDR while TDRE is cleared to 0, assuming the data held in TDR has not yet been shifted to TSR, it will be lost. For this reason it is advisable to confirm that bit TDRE is set to 1 before each write to TDR and not write to TDR more than once without checking TDRE in between.

Operation when Multiple Receive Errors Occur at the Same Time: When two or more receive errors occur at the same time, the status flags in SSR are set as shown in table 10.17. If an overrun error occurs, data is not transferred from RSR to RDR, and receive data is lost.

SSR Status Flags			gs	Receive Data Transfer	r				
RDRF *	OER	FER	PER	(RSR \rightarrow RDR)	Receive Error Status				
1	1	0	0	Not transferred	Overrun error				
0	0	1	0	Transferred	Framing error				
0	0	0	1	Transferred	Parity error				
1	1	1	0	Not transferred	Overrun error + framing error				
1	1	0	1	Not transferred	Overrun error + parity error				
0	0	1	1	Transferred	Framing error + parity error				
1	1	1	1	Not transferred	Overrun error + framing error + parity error				

Table 10.17 SSR Status Flag States and Transfer of Receive Data

Note: * RDRF keeps the same state as before the data was received. However, if due to a late read of received data in one frame an overrun error occurs in the next frame, RDRF is cleared to 0 when RDR is read.

Break Detection and Processing: Break signals can be detected by reading the RXD pin directly when a framing error (FER) is detected. In the break state the input from the RXD pin consists of all 0s, so FER is set and the parity error flag (PER) may also be set. In the break state SCI3 continues to receive, so if the FER bit is cleared to 0 it will be set to 1 again.

Sending a Mark or Break Signal: When TE is cleared to 0 the TXD pin becomes an I/O port, the level and direction (input or output) of which are determined by the PDR and PCR bits. This feature can be used to place the TXD pin in the mark state or send a break signal.

To place the serial communication line in the mark (1) state before TE is set to 1, set the PDR and PCR bits both to 1. Since TE is cleared to 0, TXD becomes a general output port outputting the value 1.

To send a break signal during data transmission, set the PCR bit to 1 and clear the PDR bit to 0, then clear TE to 0. When TE is cleared to 0 the transmitter is initialized, regardless of its current state, so the TXD pin becomes an output port outputting the value 0.

Receive Error Flags and Transmit Operation (Sysnchronous Mode Only): When a receive error flag (OER, PER, or FER) is set to 1, SCI3 will not start transmitting even if TDRE is cleared to 0. Be sure to clear the receive error flags to 0 when starting to transmit. Note that clearing RE to 0 does not clear the receive error flags.

Receive Data Sampling Timing and Receive Margin in Asynchronous Mode: In asynchronous mode SCI3 operates on a base clock with 16 times the bit rate frequency. In receiving, SCI3 synchronizes internally with the falling edge of the start bit, which it samples on the base clock. Receive data is latched at the rising edge of the eighth base clock pulse. See figure 10.25.

Figure 10.25 Receive Data Sampling Timing in Asynchronous Mode

The receive margin in asynchronous mode can therefore be derived from the following equation.

 $M = \{(0.5 - 1/2N) - (D - 0.5) / N - (L - 0.5) F\} \times 100\%$ Equation (1)

- M: Receive margin (%)
- N: Ratio of clock frequency to bit rate (N = 16)
- D: Clock duty cycle (D = 0.5 to 1)
- L: Frame length (L = 9 to 12)
- F: Absolute value of clock frequency error

In equation (1), if F (absolute value of clock frequency error) = 0 and D (clock duty cycle) = 0.5, the receive margin is 46.875% as given by equation (2) below.

When D = 0.5 and F = 0,

 $M = \{0.5 - 1/(2 \times 16)\} \times 100\% = 46.875\%$ Equation (2)

This value is theoretical. In actual system designs a margin of from 20 to 30 percent should be allowed.

Relationship between Bit RDRF and Reading RDR: While SCI3 is receiving, it checks the RDRF flag. When a frame of data has been received, if the RDRF flag is cleared to 0, data receiving ends normally. If RDRF is set to 1, an overrun error occurs.

RDRF is automatically cleared to 0 when the contents of RDR are read. If RDR is read more than once, the second and later reads will be performed with RDRF cleared to 0. While RDRF is 0, if RDR is read when reception of the next frame is just ending, data from the next frame may be read. This is illustrated in figure 10.26.

Figure 10.26 Relationship between Data and RDR Read Timing

To avoid the situation described above, after RDRF is confirmed to be 1, RDR should only be read once and should not be read twice or more.

When the same data must be read more than once, the data read the first time should be copied to RAM, for example, and the copied data should be used. An alternative is to read RDR but leave a safe margin of time before reception of the next frame is completed. Specifically, reading of RDR should be completed before bit 7 is transferred in synchronous mode, or before the stop bit is transferred in asynchronous mode.

Caution on Switching of SCK₃ **Function:** If pin SCK₃ is used as a clock output pin by SCI3 in synchronous mode and is then switched to a general input/output pin (a pin with a different function), the pin outputs a low level signal for half a system clock (ϕ) cycle immediately after it is switched.

This can be prevented by either of the following methods according to the situation.

1. When an SCK, function is switched from clock output to non clock-output

When stopping data transfer, issue one instruction to clear bits TE and RE in SCR3 to 0 and to set bits CKE1 and CKE0 to 1 and 0, respectively. In this case, bit COM in SMR should be left 1. The above prevents SCK₃ from being used as a general input/output pin. To avoid an intermediate level of voltage from being applied to SCK₃, the line connected to SCK₃ should be pulled up to the V_{cc} level via a resistor, or supplied with output from an external device.

- 2. When an SCK₃ function is switched from clock output to general input/output When stopping data transfer,
 - a. Issue one instruction to clear bits TE and RE in SCR3 to 0 and to set bits CKE1 and CKE0 to 1 and 0, respectively.
 - b. Clear bit COM in SMR to 0
 - c. Clear bits CKE1 and CKE0 in SCR3 to 0

Note that special care is also needed here to avoid an intermediate level of voltage from being applied to SCK₃.

Caution on Switching TxD Function: If pin TXD is used as a data output pin by SCI3 in synchronous mode and is then switched to a general input/output pin (a pin with a different function), the pin outputs a high level signal for one system clock (ϕ) cycle immediately after it is switched.

Section 11 14-Bit PWM (H8/3857 Group Only)

11.1 Overview

The H8/3857 Group is provided with a 14-bit PWM (pulse width modulator), which can be used as a D/A converter by connecting a low-pass filter. The H8/3854 Group does not have this module.

11.1.1 Features

Features of the 14-bit PWM are as follows.

• Choice of two conversion periods

A conversion period of $32,768/\phi$, with a minimum modulation width of $2/\phi$ (PWCR0 = 1), or a conversion period of $16,384/\phi$, with a minimum modulation width of $1/\phi$ (PWCR0 = 0), can be chosen.

• Pulse division method for less ripple

11.1.2 Block Diagram

Figure 11.1 shows a block diagram of the 14-bit PWM.

Figure 11.1 Block Diagram of the 14 bit PWM

11.1.3 Pin Configuration

Table 11.1 shows the output pin assigned to the 14-bit PWM.

Table 11.1Pin Configuration

Name	Abbr.	I/O	Function
PWM output pin	PWM	Output	Pulse-division PWM waveform output

11.1.4 Register Configuration

Table 11.2 shows the register configuration of the 14-bit PWM.

Table 11.2 Register Configuration

Name	Abbr.	R/W	Initial Value	Address
PWM control register	PWCR	W	H'FE	H'FFD0
PWM data register U	PWDRU	W	H'C0	H'FFD1
PWM data register L	PWDRL	W	H'00	H'FFD2

11.2 Register Descriptions

11.2.1 PWM Control Register (PWCR)

Bit	7	6	5	4	3	2	1	0
								PWCR0
Initial value	1	1	1	1	1	1	1	0
Read/Write	_					_		W

PWCR is an 8-bit write-only register for input clock selection.

Upon reset, PWCR is initialized to H'FE.

Bits 7 to 1—Reserved Bits: Bits 7 to 1 are reserved; they are always read as 1, and cannot be modified.

Bit 0—Clock Select 0 (PWCR0): Bit 0 selects the clock supplied to the 14-bit PWM. This bit is a write-only bit; it is always read as 1.

Bit 0: PWCR0	Description	
0	The input clock is $\phi/2$ ($t_{\phi}^* = 2/\phi$). The conversion period is 16,384/ ϕ , with a minimum modulation width of 1/ ϕ . (initial value)
1	The input clock is $\phi/4$ ($t_{\phi}^* = 4/\phi$). The conversion period is 32,768/ ϕ , with a minimum modulation width of $2/\phi$.	_

Note: to: Period of PWM input clock

11.2.2	PWM Data Registers U and L (PWDRU, PWDRL)
--------	---

Bit	7	6	5	4	3	2	1	0
PWDRU			PWDRU5	PWDRU4	PWDRU3	PWDRU2	PWDRU1	PWDRU0
Initial value	1	1	0	0	0	0	0	0
Read/Write	_	_	W	W	W	W	W	W
Bit	7	6	5	4	3	2	1	0
PWDRL	PWDRL7	PWDRL6	PWDRL5	PWDRL4	PWDRL3	PWDRL2	PWDRL1	PWDRL0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PWDRU and PWDRL form a 14-bit write-only register, with the upper 6 bits assigned to PWDRU and the lower 8 bits to PWDRL. The value written to PWDRU and PWDRL gives the total high-level width of one PWM waveform cycle.

When 14-bit data is written to PWDRU and PWDRL, the register contents are latched in the PWM waveform generator, updating the PWM waveform generation data. The 14-bit data should always be written in the following sequence, first to PWDRL and then to PWDRU.

- 1. Write the lower 8 bits to PWDRL.
- 2. Write the upper 6 bits to PWDRU.

PWDRU and PWDRL are write-only registers. If they are read, all bits are read as 1.

Upon reset, PWDRU and PWDRL are initialized to H'C000.

11.3 Operation

When using the 14-bit PWM, set the registers in the following sequence.

- 1. Set bit PWM in port mode register 1 (PMR1) to 1 so that pin $P1_4$ /PWM is designated for PWM output.
- 2. Set bit PWCR0 in the PWM control register (PWCR) to select a conversion period of either 32,768/♦ (PWCR0 = 1) or 16,384/♦ (PWCR0 = 0).
- 3. Set the output waveform data in PWM data registers U and L (PWDRU/L). Be sure to write in the correct sequence, first PWDRL then PWDRU. When data is written to PWDRU, the data in these registers will be latched in the PWM waveform generator, updating the PWM waveform generation in synchronization with internal signals.

One conversion period consists of 64 pulses, as shown in figure 11.2. The total of the highlevel pulse widths during this period (T_{μ}) corresponds to the data in PWDRU and PWDRL. This relation can be represented as follows.

 $T_{_{\rm H}}$ = (data value in PWDRU and PWDRL + 64) \times t_{0}/2

where t ϕ is the PWM input clock period, either 2/ ϕ (bit PWCR0 = 0) or 4/ ϕ (bit PWCR0 = 1). Example: Settings in order to obtain a conversion period of 8,192 µs:

When bit PWCR0 = 0, the conversion period is 16,384/ ϕ , so ϕ must be 2 MHz. In this case $t_{rn} = 128 \ \mu$ s, with 1/ ϕ (resolution) = 0.5 μ s.

When bit PWCR0 = 1, the conversion period is $32,768/\phi$, so ϕ must be 4 MHz. In this case tfn = 128 µs, with $2/\phi$ (resolution) = 0.5 µs.

Accordingly, for a conversion period of 8,192 $\mu s,$ the system clock frequency ($\phi)$ must be 2 MHz or 4 MHz.

Figure 11.2 PWM Output Waveform

Section 12 A/D Converter

12.1 Overview

The H8/3857 Group and H8/3854 Group include a resistance-ladder-based successiveapproximation analog-to-digital converter. The maximum number of analog input channels is eight in the H8/3857 Group and four in the H8/3854 Group.

12.1.1 Features

The A/D converter has the following features.

- 8-bit resolution
- Input channels
 - 8 in H8/3857 Group
 - 4 in H8/3854 Group
- Conversion time: approx. 12.4 µs per channel (at 5 MHz operation)
- Built-in sample-and-hold function
- Interrupt requested on completion of A/D conversion
- A/D conversion can be started by external trigger input

12.1.2 Block Diagram

Figure 12.1 shows a block diagram of the A/D converter.

Figure 12.1 Block Diagram of the A/D Converter

12.1.3 Pin Configuration

Table 12.1 shows the A/D converter pin configuration.

Table 12.1	Pin Configuration
-------------------	-------------------

Name	Abbr.	I/O	Function
Analog power supply pin*	AV_{cc}	Input	Power supply and reference voltage of analog part
Analog ground pin*	AV_{ss}	Input	Ground and reference voltage of analog part
Analog input pin 0*	AN ₀	Input	Analog input channel 0
Analog input pin 1*	AN,	Input	Analog input channel 1
Analog input pin 2*	AN ₂	Input	Analog input channel 2
Analog input pin 3*	AN ₃	Input	Analog input channel 3
Analog input pin 4	AN ₄	Input	Analog input channel 4
Analog input pin 5	AN_{5}	Input	Analog input channel 5
Analog input pin 6	AN ₆	Input	Analog input channel 6
Analog input pin 7	AN ₇	Input	Analog input channel 7
External trigger input pin	ADTRG	Input	External trigger input for starting A/D conversion

Note: * The analog power supply pin, analog ground pin, and analog input pins 0 to 3 are functions of the H8/3857 Group only, and are not provided in the H8/3854 Group. In the H8/3854 Group, the analog power supply pin is the power supply pin (V_{cc}), and the analog ground pin is the ground pin (V_{ss}).

12.1.4 Register Configuration

Table 12.2 shows the A/D converter register configuration.

Table 12.2Register Configuration

Name	Abbr.	R/W	Initial Value	Address
A/D mode register	AMR	R/W	H'30	H'FFC4
A/D start register	ADSR	R/W	H'7F	H'FFC6
A/D result register	ADRR	R	Undefined	H'FFC5

12.2 Register Descriptions

12.2.1 A/D Result Register (ADRR)

Bit	7	6	5	4	3	2	1	0
	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0
Initial value	Undefined							
Read/Write	R	R	R	R	R	R	R	R

The A/D result register (ADRR) is an 8-bit read-only register for holding the results of analog-todigital conversion.

ADRR can be read by the CPU at any time, but the ADRR values during A/D conversion are not fixed.

After A/D conversion is complete, the conversion result is stored in ADRR as 8-bit data; this data is held in ADRR until the next conversion operation starts.

ADRR is not cleared on reset.

12.2.2 A/D Mode Register (AMR)

Bit	7	6	5	4	3	2	1	0
	CKS	TRGE		—	CH3	CH2	CH1	CH0
Initial value	0	0	1	1	0	0	0	0
Read/Write	R/W	R/W		_	R/W	R/W	R/W	R/W

AMR is an 8-bit read/write register for specifying the A/D conversion speed, external trigger option, and the analog input pins.

Upon reset, AMR is initialized to H'30.

Bit 7—Clock Select (CKS): Bit 7 sets the A/D conversion speed.

		Cor	nversion Time				
Bit 7: CKS	Conversion Period	$\phi = 2 \text{ MHz}$	$\phi = 5 \text{ MHz}$				
0	62/\phi (initial value)	31 μs	12.4 μs				
1	31/ φ	15.5 μs	*				
Note: * Operation is not guaranteed if the conversion time is less than 12.4 µs. Set bit 7 for a							

value of at least 12.4 µs.

Bit 6—External Trigger Select (TRGE): Bit 6 enables or disables the start of A/D conversion by external trigger input.

Bit 6: TR	E Description	
0	Disables start of A/D conversion by external trigger (init	tial value)
1	Enables start of A/D conversion by rising or falling edge of external trig pin ADTRG*	iger at
Note: *	The external trigger (ADTRG) edge is selected by bit INTEG4 of the IRQ edge register (IEGR). See Interrupt Edge Select Register (IEGR) in section 3.3.2, Int Control Registers, for details.	

Bits 5 and 4—Reserved Bits: Bits 5 and 4 are reserved; they are always read as 1, and cannot be modified.

Bits 3 to 0—Channel Select (CH3 to CH0): Bits 3 to 0 select the analog input channel.

Bit 2: CH2	Bit 1: CH1	Bit 0: CH0	Analog Input Channel	
0	*	*	No channel selected	(initial value)
1	0	0	AN ₀ * ¹	
		1	AN ₁ * ¹	
	1	0	AN_2^{*1}	
		1	AN_3^{*1}	
0	0	0	AN ₄	
		1	AN ₅	
	1	0	AN ₆	
		1	AN ₇	
1	*	*	Reserved	
	CH2 0 1	CH2 CH1 0 * 1 0 - - 0 - 0 0 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c } \hline \textbf{CH2} & \textbf{CH1} & \textbf{CH0} & \textbf{Analog Input Channel} \\ \hline 0 & * & * & \textbf{No channel selected} \\ \hline 1 & 0 & 0 & AN_o^{*1} \\ \hline 1 & AN_1^{*1} \\ \hline 1 & 0 & AN_2^{*1} \\ \hline 1 & 0 & AN_2^{*1} \\ \hline 1 & AN_3^{*1} \\ \hline 0 & 0 & AN_4 \\ \hline 1 & AN_5 \\ \hline 1 & 0 & AN_6 \\ \hline 1 & AN_7 \\ \hline \end{array} $

The channel selection should be made while bit ADSF is cleared to 0.

Legend: * Don't care

Note: 1. Channels AN_0 to AN_3 are functions of the H8/3857 Group only, and must not be selected in the H8/3854 Group.

12.2.3 A/D Start Register (ADSR)

Bit	7	6	5	4	3	2	1	0
	ADSF							
Initial value	0	1	1	1	1	1	1	1
Read/Write	R/W	_	_	_	_	_	_	

The A/D start register (ADSR) is an 8-bit read/write register for starting and stopping A/D conversion.

A/D conversion is started by writing 1 to the A/D start flag (ADSF) or by input of the designated edge of the external trigger signal, which also sets ADSF to 1. When conversion is complete, the converted data is set in the A/D result register (ADRR), and at the same time ADSF is cleared to 0.

Bit 7—A/D Start Flag (ADSF): Bit 7 controls and indicates the start and end of A/D conversion.

Bit 7: ADSF	Description	
0	Read: Indicates the completion of A/D conversion	(initial value)
	Write: Stops A/D conversion	
1	Read: Indicates A/D conversion in progress	
	Write: Starts A/D conversion	

Bits 6 to 0—Reserved Bits: Bits 6 to 0 are reserved; they are always read as 1, and cannot be modified.

12.3 Operation

12.3.1 A/D Conversion Operation

The A/D converter operates by successive approximations, and yields its conversion result as 8-bit data.

A/D conversion begins when software sets the A/D start flag (bit ADSF) to 1. Bit ADSF keeps a value of 1 during A/D conversion, and is cleared to 0 automatically when conversion is complete.

The completion of conversion also sets bit IRRAD in interrupt request register 2 (IRR2) to 1. An A/D conversion end interrupt is requested if bit IENAD in interrupt enable register 2 (IENR2) is set to 1.

If the conversion time or input channel needs to be changed in the A/D mode register (AMR) during A/D conversion, bit ADSF should first be cleared to 0, stopping the conversion operation, in order to avoid malfunction.

12.3.2 Start of A/D Conversion by External Trigger Input

The A/D converter can be made to start A/D conversion by input of an external trigger signal. External trigger input is enabled at pin ADTRG when bit IRQ4 in port mode register 2 (PMR2) is set to 1, and bit TRGE in AMR is set to 1. Then when the input signal edge designated in bit IEG4 of the IRQ edge select register (IEGR) is detected at pin ADTRG, bit ADSF in ADSR will be set to 1, starting A/D conversion.

Figure 12.2 shows the timing.

Figure 12.2 External Trigger Input Timing

12.4 Interrupts

When A/D conversion ends (ADSF changes from 1 to 0), bit IRRAD in interrupt request register 2 (IRR2) is set to 1.

A/D conversion end interrupts can be enabled or disabled by means of bit IENAD in interrupt enable register 2 (IENR2).

For further details see section 3.3, Interrupts.

12.5 Typical Use

An example of how the A/D converter can be used is given below, using channel 1 (pin AN1) as the analog input channel. Figure 12.3 shows the operation timing.

- Bits CH3 to CH0 of the A/D mode register (AMR) are set to 0101, making pin AN₁ the analog input channel. A/D interrupts are enabled by setting bit IENAD to 1, and A/D conversion is started by setting bit ADSF to 1.
- When A/D conversion is complete, bit IRRAD is set to 1, and the A/D conversion result is stored in the A/D result register (ADRR). At the same time ADSF is cleared to 0, and the A/D converter goes to the idle state.
- Bit IENAD = 1, so an A/D conversion end interrupt is requested.
- The A/D interrupt handling routine starts.
- The A/D conversion result is read and processed.
- The A/D interrupt handling routine ends.

If ADSF is set to 1 again afterward, A/D conversion starts and steps 2 through 6 take place.

Figures 12.4 and 12.5 show flow charts of procedures for using the A/D converter.

Figure 12.3 Typical A/D Converter Operation Timing

Figure 12.4 Flow Chart of Procedure for Using A/D Converter (1) (Polling by Software)

Figure 12.5 Flow Chart of Procedure for Using A/D Converter (2) (Interrupts Used)

12.6 Application Notes

- Data in the A/D result register (ADRR) should be read only when the A/D start flag (ADSF) in the A/D start register (ADSR) is cleared to 0.
- Changing the digital input signal at an adjacent pin during A/D conversion may adversely affect conversion accuracy.

Section 13 Dot Matrix LCD Controller (H8/3857 Group)

13.1 Overview

The LCD controller has built-in display RAM, and performs dot matrix LCD display. One bit of display RAM data corresponds to illumination or non-illumination of one dot on the LCD panel, making possible displays with an extremely high degree of freedom.

The LCD controller incorporates all the functions required for LCD display, allowing a dot matrix display of up to 40×32 dots.

I/O ports are used for the interface with the CPU, offering excellent software heritability when using a combination of MPU and LCD driver.

This module operates on the subclock, making it ideal for use in small portable devices.

13.1.1 Features

- Built-in bit-mapped display RAM (2084 bits) Maximum of 1280 display bits (selectable from 40 × 32 bits, 56 × 16 bits, 64 × 8 bits, 40 × 16 bits, or 40 × 8 bits)
- Choice of 1/8, 1/16, or 1/32 duty
- Low power consumption enabling extended drive on battery power Subclock operation Module standby
- Built-in 2X or 3X LCD power supply step-up circuit
- Comprehensive display control functions Display data read/write, display on/off control, vertical display scrolling, arbitrary area blinking, read-modify-write
- CPU interface I/O port interface
- Built-in contrast control circuit
- Built-in LCD power supply bleeder resistances and voltage follower type op-amp circuits

13.1.2 Block Diagram

Figure 13.1 Block Diagram of LCD Controller

Rev.3.00 Jul. 19, 2007 page 328 of 532 REJ09B0397-0300

13.1.3 Pin Configuration

Table 13.1 shows the pins assigned to the LCD controller.

Table 13.1	Pin Configuration
-------------------	-------------------

Pin Name	Abbr.	I/O	Function
Common output pins	COM1 to COM32	Output	LCD common drive pins
Segment output pins	SEG1 to SEG64	Output	LCD segment drive pins
LCD bias setting pins	V3, V4	Input	LCD bias setting
LCD test pin	V34	Input	Internal resistance test pins, shorted to V3
LCD step-up capacitance connection pins	C1+, C1– C2+, C2–	_	For connection of external capacitances for LCD step-up
LCD drive power supply level	V1OUT to V5OUT	I/O	LCD drive power supply level input/output pins
LCD step-up circuit reference power supply	V _{ci}	Input	Reference input voltage for LCD step-up circuit, also functioning as step-up circuit power supply
LCD step-up power supply output pin	VLOUT	Output	LCD step-up voltage output pin
LCD drive power supply	V_{LCD}	Input	LCD drive power supply input pin

13.1.4 Register Configuration

The LCD controller has one index register and ten control registers, all of which are accessed via an I/O port interface. Except for the display data register (LR4), these registers cannot be read. The LCD controller register configuration is shown in table 13.2.

Table 13.2 Register Configuration

					Index	Regis	ter
Name	Abbr.	R/W	RS	IR3	IR2	IR1	IR0
Index register	IR	W	0	_	_	_	
Control register 1	LR0	W	1	0	0	0	0
Control register 2	LR1	W					1
Address register	LR2	W				1	0
Frame frequency setting register	LR3	W					1
Display data register	LR4	R/W			1	0	0
Display start line register	LR5	W					1
Blink register	LR6	W				1	0
Blink start line register	LR8	W	_	1	0	0	0
Blink end line register	LR9	W	_				1
Contrast control register	LRA	W				1	0

13.2 Register Descriptions

13.2.1 Index Register (IR)

Bit	7	6	5	4	3	2	1	0
	—	—	_	_	IR3	IR2	IR1	IR0
Initial value	_	—	—	—	0	0	0	0
Read/Write		—	—	—	W	W	W	W

IR is an 8-bit write-only register that selects one of the LCD controller's ten control registers. IR is selected when RS is 0.

Upon reset, IR is initialized to H'00.

Bits 7 to 4—Reserved Bits: Bits 7 to 4 are reserved; they should always be cleared to 0.

Bits 3 to 0—Index Register (IR3 to IR0): Bits 3 to 0 are used to select one of the LCD controller's ten control registers. The correspondence between the settings of IR3 to IR0 and the selected registers is shown in table 13.2. Other settings are invalid.

13.2.2 Control Register 1 (LR0)

Bit	7	6	5	4	3	2	1	0
	—	—	LSBY	PWR	—	SOB	DDTY1	DDTY0
Initial value	_		0	0		0	0	0
Read/Write	_		W	W	_	W	W	W

LR0 is an 8-bit write-only register that performs LCD module standby mode setting, step-up circuit control, switching between character display and graphic display, and drive duty selection.

Upon reset, LR0 is initialized to H'00.

Bits 7 and 6—Reserved Bits: Bits 7 and 6 are reserved; they should always be cleared to 0.

Bit 5—Module Standby (LSBY): Bit 5 is the module standby setting bit. When LSBY is set to 1, the LCD controller enters standby mode. At this time, the state of the PWR bit is not affected, but the DISP and OPON bits in LR1 are reset.

Bit 5: LSBY Description

0	LCD controller operates normally	(initial value)
1	Step-up and internal operations halt, display is turned off, and LC standby mode	D controller enters

Bit 4—Step-Up Circuit Operation Setting (PWR): Bit 4 selects operation or halting of the step-up circuit.

Bit 4: PWR	Description	
0	Step-up circuit halts	(initial value)
1	Step-up circuit operates	

Bit 3—Reserved Bit: Bit 3 is reserved; it should always be cleared to 0.

Bit 2—Display Mode Select (SOB): Bit 2 selects either character display mode or graphic display mode.

Bit 2: SOB	Description				
0	Character display mode				
	Bits 4 to 0 of one display memory data byte are output to the segment pins				
	(initial value)				
1	Graphic display mode				
	All bits in one display memory data byte are output to the segment pins				
	The X address that can be output is in the range H'0 to H'4 in the case of 1/32 duty, H'0 to H'6 in the case of 1/16 duty, and H'0 to H'7 in the case of 1/8 duty				

Bits 1 and 0—Display Duty Select (DDTY1, DDTY0): Bits 1 and 0 select a display duty of 1/32, 1/16, or 1/8.

Bit 1:	DDTY1	Bit 0:	DDTY0	Description
--------	-------	--------	-------	-------------

0	0	1/32 duty selected	(initial value)
	1	1/16 duty selected	
		Y address H'10 to H'1F display data is invalid	
1	*	1/8 duty selected	
		Y address H'8 to H'1F display data is invalid	

Legend: * Don't care

13.2.3 Control Register 2 (LR1)

Bit	7	6	5	4	3	2	1	0
		DISP		OPON	RMW		INC	BLK
Initial value	—	0		0	0	—	0	0
Read/Write		W	_	W	W		W	W

LR1 is an 8-bit write-only register that selects operation or halting of LCD display and the op-amp circuits, performs read-modify-write mode setting, and selects the address to be incremented in the display memory.

Upon reset, LR1 is initialized to H'00.

Bit 7—Reserved Bit: Bit 7 is reserved; it should always be cleared to 0.

Bit 6—LCD Operation Setting (DISP): Bit 6 selects operation or halting of the LCD display. When the LSBY bit in LR0 is set to 1, DISP is cleared.

Bit 6: DISP	Description	
0	LCD is turned off. All LCD outputs go to the V_{ss} level	(initial value)
1	LCD is turned on	

Bit 5—Reserved Bit: Bit 5 is reserved; it should always be cleared to 0.

Bit 4—Op-Amp Circuit Operation Setting (OPON): Bit 4 selects operation or halting of the opamp circuits. When the LCD drive power supply level is applied to V1OUT to V5OUT from an external source, OPON must be cleared to 0.

When the LSBY bit in LR0 is set to 1, OPON is cleared.

Bit 4: OPON Description

0	Built-in op-amps are halted, and output becomes high-impedance. LCD drive			
	voltage can be input from external source	(initial value)		
1	Built-in op-amps operate			

Bit 3—Read-Modify-Write Setting (RMW): Bit 3 selects whether display memory X or Y address incrementing is carried out after a write/read access, or only after a write access (read-modify-write mode).

0	Address is incremented after write/read access to display memory	(initial value)
1	Read-modify-write mode is set	
	In this mode, address is incremented only after write access to display	memory

Bit 2—Reserved Bit: Bit 2 is reserved; it should always be cleared to 0.

Bit 1—Increment Address Select (INC): Bit 1 selects either the X address or the Y address as the address to be incremented after the display memory access specified by the RMW bit. The selected address is cleared after a display memory access with the maximum value for the valid display data area; in this case the other address is incremented.

Bit 1: INC	Description			
0	Incrementing of display memory Y address has priority; X address is incremented after Y address overflow (initial value)			
1	Incrementing of display memory X address has priority; Y address is incremented after X address overflow	_		

Bit 0—Blink Operation Setting (BLK): Bit 0 enables or disables the blink function. If BLK is set to 1 while the DISP bit is set to 1 and LCD display is operating, the blink function is enabled and blinking operates in the range set by BK7 to BK0 in LR6, BSL4 to BSL0 in LR8, and BEL4 to BEL0 in LR9.

Bit 0: BLK	Description	
0	Blinking is disabled	(initial value)
1	Blinking is enabled	

Bit	7	6	5	4	3	2	1	0
	XA2	XA1	XA0	YA4	YA3	YA2	YA1	YA0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

13.2.4 Address Register (LR2)

LR2 is an 8-bit write-only register that sets the display memory X- and Y-direction addresses accessed by the CPU.

Upon reset, LR2 is initialized to H'00.

Bits 7 to 5—X Address Setting (XA2 to XA0): Bits 7 to 5 set the display memory X-direction address. A value from H'0 to H'7 can be set, but if the SOB bit in LR0 is set to 1, display data H'7 is invalid with 1/16 duty, and display data from H'5 to H'7 is invalid with 1/32 duty.

When the INC bit in LR1 is set to 1, the address is automatically incremented after the access specified by the RMW bit in LR1, and is cleared after an access with the maximum value for the valid display data area. When INC is 0 and YA4 to YA0 represent the maximum value for the valid display data area, the address is incremented after the access specified by RMW.

Bits 4 to 0—Y Address Setting (YA4 to YA0): Bits 4 to 0 set the display memory Y-direction address. A value from H'00 to H'1F can be set, but display data from H'10 to H'1F is invalid with 1/16 duty, and display data from H'08 to H'1F is invalid with 1/8 duty.

When the INC bit in LR1 is cleared to 0, the address is automatically incremented after the access specified by the RMW bit in LR1, and is cleared after an access with the maximum value for the valid display data area. When INC is 1 and XA2 to XA0 represent the maximum value for the valid display data area, the address is incremented after the access specified by RMW.

13.2.5 Frame Frequency Setting Register (LR3)

Bit	7	6	5	4	3	2	1	0
		—	FS5	FS4	FS3	FS2	FS1	FS0
Initial value	—	—	0	0	0	0	0	0
Read/Write		—	W	W	W	W	W	W

LR3 is an 8-bit write-only register that sets the frame frequency.

Upon reset, LR3 is initialized to H'00.

Bits 7 and 6—Reserved Bits: Bits 7 and 6 are reserved; they should always be cleared to 0.

Bits 5 to 0—Frame Frequency Setting (FS5 to FS0): Bits 5 to 0 control the subclock division ratio and set the LCD frame frequency. The relationship between the LCD frame frequency f_F (Hz), the subclock frequency f_W (Hz), the division ratio r, and the LCD duty 1/N is as follows:

$$f_F = \frac{f_W}{r \times N}$$

Set a division ratio suitable for the characteristics of the LCD panel used. The correspondence between register settings and division ratios is shown in table 13.3.

		I	=S			Division			I	-s			Division			I	FS			Division			I	FS			Division
5	4	3	2	1	0	Ratio r	5	4	3	2	1	0	Ratio r	5	4	3	2	1	0	Ratio r	5	4	3	2	1	0	Ratio r
0	0	0	0	0	0	2	0	1	0	0	0	0	34	1	0	0	0	0	0	66	1	1	0	0	0	0	98
0	0	0	0	0	1	4	0	1	0	0	0	1	36	1	0	0	0	0	1	68	1	1	0	0	0	1	100
0	0	0	0	1	0	6	0	1	0	0	1	0	38	1	0	0	0	1	0	70	1	1	0	0	1	0	102
0	0	0	0	1	1	8	0	1	0	0	1	1	40	1	0	0	0	1	1	72	1	1	0	0	1	1	104
0	0	0	1	0	0	10	0	1	0	1	0	0	42	1	0	0	1	0	0	74	1	1	0	1	0	0	106
0	0	0	1	0	1	12	0	1	0	1	0	1	44	1	0	0	1	0	1	76	1	1	0	1	0	1	108
0	0	0	1	1	0	14	0	1	0	1	1	0	46	1	0	0	1	1	0	78	1	1	0	1	1	0	110
0	0	0	1	1	1	16	0	1	0	1	1	1	48	1	0	0	1	1	1	80	1	1	0	1	1	1	112
0	0	1	0	0	0	18	0	1	1	0	0	0	50	1	0	1	0	0	0	82	1	1	1	0	0	0	114
0	0	1	0	0	1	20	0	1	1	0	0	1	52	1	0	1	0	0	1	84	1	1	1	0	0	1	116
0	0	1	0	1	0	22	0	1	1	0	1	0	54	1	0	1	0	1	0	86	1	1	1	0	1	0	118
0	0	1	0	1	1	24	0	1	1	0	1	1	56	1	0	1	0	1	1	88	1	1	1	0	1	1	120
0	0	1	1	0	0	26	0	1	1	1	0	0	58	1	0	1	1	0	0	90	1	1	1	1	0	0	122
0	0	1	1	0	1	28	0	1	1	1	0	1	60	1	0	1	1	0	1	92	1	1	1	1	0	1	124
0	0	1	1	1	0	30	0	1	1	1	1	0	62	1	0	1	1	1	0	94	1	1	1	1	1	0	126
0	0	1	1	1	1	32	0	1	1	1	1	1	64	1	0	1	1	1	1	96	1	1	1	1	1	1	128

 Table 13.3
 Register Settings and Division Ratios

Examples of subclock frequency, LCD duty, and division ratio settings, and frame frequencies, are shown in table 13.4.

Table 13.4 Sample Frame Frequency Settings

		Sub	oclock Frequency (kHz)	
Displa	y Duty 1/N	32.768	38.4	
1/8	Division ratio r	48	56	
	Frame frequency f_F (Hz)	85.3	85.7	
1/16	Division ratio r	24	28	
	Frame frequency f_F (Hz)	85.3	85.7	
1/32	Division ratio r	12	14	
	Frame frequency f_F (Hz)	85.3	85.7	

13.2.6 Display Data Register (LR4)

Bit	7	6	5	4	3	2	1	0
	D7	D6	D5	D4	D3	D2	D1	D0
Initial value	Undefined							
Read/Write	R/W							

LR4 is an 8-bit read/write register used to perform read/write access to the display memory specified by XA2 to XA0 and YA4 to YA0 in LR2.

In a write to display memory, the write is performed directly to the display memory via this register. In a read, the data is temporarily latched into this register before being output to the bus.

After a reset, the display memory and LR4 contents are undefined.

13.2.7 Display Start Line Register (LR5)

Bit	7	6	5	4	3	2	1	0
	—	—	—	ST4	ST3	ST2	ST1	ST0
Initial value	_	_	_	0	0	0	0	0
Read/Write		_	_	W	W	W	W	W

LR5 is an 8-bit write-only register that specifies the line at which display starts.

Upon reset, LR5 is initialized to H'00.

Bits 7 to 5—Reserved Bits: Bits 7 to 5 are reserved; they should always be cleared to 0.

Bits 4 to 0—Display Start Line Setting (ST4 to ST0): Bits 4 to 0 specify the line at which display starts. Set a value of [display start line -1].

Changing the setting in this register enables vertical scrolling to be implemented. The possible settings are 0 to 31 for 1/32 duty, 0 to 15 for 1/16 duty, and 0 to 7 for 1/8 duty. Display will not be performed normally if these ranges are exceeded.

13.2.8 Blink Register (LR6)

Bit	7	6	5	4	3	2	1	0
	BK7	BK6	BK5	BK4	BK3	BK2	BK1	BK0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

LR6 is an 8-bit write-only register that specifies blink areas. An area is made to blink by writing 1 to the corresponding bit in this register. There are no restrictions on areas that can blink simultaneously, and the entire screen can be made to blink by writing 1 to all the bits. The setting in this register is valid only when the BLK bit in LR1 is set to 1.

The blink areas corresponding to the register bits depend on the value of the SOB bit in LR0, as shown below.

SOB	BK7	BK6	BK5	BK4	BK3	BK2	BK1	BK0
0	SEG36 to SEG40				SEG16 to SEG20			SEG1 to SEG5
1	SEG57 to SEG64				SEG25 to SEG32		SEG9 to SEG16	SEG1 to SEG8

Upon reset, LR6 is initialized to H'00.

13.2.9 Blink Start Line Register (LR8)

Bit	7	6	5	4	3	2	1	0
		—		BSL4	BSL3	BSL2	BSL1	BSL0
Initial value	—		—	0	0	0	0	0
Read/Write		_		W	W	W	W	W

LR8 is an 8-bit write-only register that specifies the start line of an area made to blink.

Upon reset, LR8 is initialized to H'00.

Bits 7 to 5—Reserved Bits: Bits 7 to 5 are reserved; they should always be cleared to 0.

Bits 4 to 0—Blink Start Line Setting (BSL4 to BSL0): Bits 4 to 0 specify the start line of an area made to blink. Set a value of [blink start line – 1].

The possible settings are 0 to 31 for 1/32 duty, 0 to 15 for 1/16 duty, and 0 to 7 for 1/8 duty. Normal operation is not guaranteed if these ranges are exceeded.

13.2.10 Blink End Line Register (LR9)

Bit	7	6	5	4	3	2	1	0
	—	—	—	BEL4	BEL3	BEL2	BEL1	BEL0
Initial value		_		0	0	0	0	0
Read/Write		—	_	W	W	W	W	W

LR9 is an 8-bit write-only register that specifies the end line of an area made to blink.

Upon reset, LR9 is initialized to H'00.

Bits 7 to 5—Reserved Bits: Bits 7 to 5 are reserved; they should always be cleared to 0.

Bits 4 to 0—Blink End Line Setting (BEL4 to BEL0): Bits 4 to 0 specify the end line of an area made to blink. Set a value of [blink end line – 1].

The possible settings are 0 to 31 for 1/32 duty, 0 to 15 for 1/16 duty, and 0 to 7 for 1/8 duty. Normal operation is not guaranteed if these ranges are exceeded.

13.2.11 Contrast Control Register (LRA)

Bit	7	6	5	4	3	2	1	0
		—	—	_	CCR3	CCR2	CCR1	CCR0
Initial value	_		_	_	0	0	0	0
Read/Write	_	_		_	W	W	W	W

LRA is an 8-bit write-only register that specifies the contrast control resistance value.

Upon reset, LRA is initialized to H'00.

Bits 7 to 4—Reserved Bits: Bits 7 to 4 are reserved; they should always be cleared to 0.

Bits 3 to 0—Contrast Control Setting (CCR3 to CCR0): Bits 3 to 0 specify the value of the contrast control resistance between the V_{LCD} and V1 levels. By adjusting the contrast control resistance between the V_{LCD} and V1 levels, it is possible to adjust the contrast of the LCD panel. The contrast control resistance can be set in the range from 0.1R to 1.6R, where R is the LCD bleeder resistance.

Bit 3: CCR3	Bit 2: CCR2	Bit 1: CCR1	Bit 0: CCR0	Contrast Control Resistance	
0	0	0	0	1.6R	(initial value)
			1	1.5R	
		1	0	1.4R	
			1	1.3R	
	1	0	0	1.2R	
			1	1.1R	
		1	0	1.0R	
			1	0.9R	
1	0	0	0	0.8R	
			1	0.7R	
		1	0	0.6R	
			1	0.5R	
	1	0	0	0.4R	
			1	0.3R	
		1	0	0.2R	
			1	0.1R	

13.3 Operation

13.3.1 System Overview

The LCD controller operates at 1/32, 1/16, or 1/8 duty. The display size is a maximum of 40×32 dots (4 rows of 8 columns with a 5×8 -dot font). As the LCD controller operates on the subclock to perform display control, the time, etc., can be constantly displayed. As this module includes a built-in 2X or 3X LCD power supply step-up circuit, an LCD system can be configured with just a few external parts (resistors and capacitors). Also, since data in the display RAM is retained even in module standby mode, and step-up operation is not performed, low power consumption can be achieved without affecting the display.

Figure 13.2 System Block Diagram

13.3.2 CPU Interface

The LCD controller's registers are not included in the memory map shown in figure 2.16 (a). They are controlled from the CPU by means of chip-internal LCD pins DB7 to DB0, RS, R/\overline{W} , and STRB, via chip-internal I/O ports 9 and A. The pin configuration is shown in table 13.5, and an example of the timing for access to registers in the LCD controller is shown in figure 13.3. For information on port 9 and port A, see the descriptions in section 8, I/O Ports.

Pin Name	Abbr.	I/O	Function
Data bus pins	DB7 to DB0	I/O	When $R/\overline{W} = 0$, these pins input data to be written to a register; when $R/\overline{W} = 1$, they output data read from a register
Register selector pin	RS	Input	When $R/S = 0$, the index register is selected; when $RS = 1$, a control register is selected
Read/write select pin	R/W	Input	When $R/\overline{W} = 0$, write access is selected; when $R/\overline{W} = 1$, read access is selected
Strobe pin	STRB	Input	At the fall of STRB, read or write access, as selected by R/\overline{W} , is performed on the register selected by RS

Table 13.5 Pin Configuration

Writing to Index Register

When RS and R/\overline{W} are both cleared to 0, data DB7 to DB0 is written to the index register (IR) at the falling edge of STRB. Do not change RS or R/\overline{W} at the fall of STRB.

Reading and Writing to Control Registers

To access a control register, data indicating the number of the register to be accessed must be written to the index register (IR) before making the access. The register number data to be written to IR is shown in table 13.2. As the register number written to IR is retained until IR is written to again, if the same control register is accessed repeatedly, it is not necessary to write to IR each time.

In a write to a control register, when RS has been set to 1 and R/\overline{W} cleared to 0, data DB7 to DB0 is written to the control register specified by the index register (IR) at the falling edge of STRB.

Except for the display data register (LR4), control registers cannot be read. In a read of LR4, when the LR4 register number is written to the index register (IR), and RS and R/\overline{W} are both set to 1, DB7 to DB0 are set to output mode, and the display memory data at the address specified by the address register (LR2) is output from DB7 to DB0 at the rising edge of STRB. If a read is also performed in the next cycle, the data output is held until the next rise of STRB, but if a write is

performed in the next cycle, DB7 to DB0 are set to input mode from the point at which R/\overline{W} is cleared to 0, and the output is cleared.

In either case, do not change RS or R/\overline{W} at the fall of STRB.

Figure 13.3 Example of Timing Sequence for 8-Bit Data Transfer

Notes on Use of Chip-Internal I/O Ports

For LCD controller interface internal ports 9 and A, port input/output is controlled by means of PCR9 and PCRA in the same way as for ordinary I/O ports, and in output mode, the values set in PDR9 or PDRA are output. Also, LCD controller internal pins RS, R/\overline{W} , and STRB are input-only pins, and DB7 to DB0 input/output is controlled by R/\overline{W} . Therefore, the following points must be noted.

1. After reset release and standby mode release

Since the chip's internal I/O ports go to the high-impedance state in a reset and in standby mode, in initialization after reset or standby mode release, H'06 should be set in PDRA, and H'07 in PCRA. This will set port A to output mode. If the PDRA setting were H'00, there would be a possibility of the index register (IR) being written to.

2. Changing register read/write setting

When an LCD controller register is read ($R/\overline{W} = 1$), DB7 to DB0 output data from the LCD controller side, and so port 9 must be set to input mode. Therefore, H'00 must be written to PCR9, setting port 9 to input mode, before changing the R/\overline{W} setting from 0 to 1. When writing data to an LCD controller register, first change R/\overline{W} from 1 to 0, then write H'FF to PCR9, setting port 9 to output mode.

Examples of display data register (LR4) read/write access when read-modify-write is designated are shown below.

[Set index register to display data register]

• Port A set to output mode, RMW set to 1

MOV.W	#H'0100,R1
MOV.W	#H'04FF,R0
MOV.B	R1L, @PDRA Clear R/\overline{W} to 0
MOV.B	ROH,@PDR9
MOV.B	ROL, @PCR9 Output H'04 from port 9
MOV.B	R1H,@PDRA
MOV.B	R1L, @PDRA Write H'04 to index register

[Read display data register]

MOV.B	R1L, @PCR9 Set port 9 to input mode
MOV.W	#H'0706, R2
MOV.B	<code>R2L</code> , <code>@PDRA</code> Set R/\overline{W} to 1
MOV.B	R2H,@PDRA
MOV.B	@PDR9, R0H Read PDR9 into general register
MOV.B	R2L,@PDRA

[Write to display data register]

MOV.W	#H'0504,R3
MOV.B	R3L, @PDRA Clear R/\overline{W} to 0
NOT.B	ROH Invert general register data
MOV.B	ROH,@PDR9
MOV.B	ROL, @PCR9 Set port 9 to output mode
MOV.B	R3H,@PDRA
MOV.B	R3L @PDRA Write data to display data register

13.3.3 LCD Drive Pin Functions

Common/Segment Output Switching

Among the LCD controller's LCD drive outputs, COM9 to COM32 and SEG64 to SEG41 are switched according to the display duty and display mode.

The display duty is set by control register 1 (LR0) bits DDTY1 and DDTY0, and the display mode by bit SOB.

(1) When SOB = 0 (character display mode)

•	1/8 duty (DDTY1 = 1))
	Common outputs:	COM1 to COM8
	Segment outputs:	SEG1 to SEG40

Note: COM9/SEG64 to COM16/SEG57 output common signal non-selection waveforms, COM17/SEG56 to COM24/SEG49 output the same waveforms as COM1 to COM8, and COM25/SEG48 to COM32/SEG41 output common signal non-selection waveforms.

•	1,10 aug (DD111 0, DD110 1)		
	Common outputs:	COM1 to COM16	
	Segment outputs:	SEG1 to SEG40	

Note: COM17/SEG56 to COM32/SEG41 output the same waveforms as COM1 to COM16.

•	1/32 duty (DDTY1 =	= 0, DDTY0 = 0)
	Common outputs:	COM1 to COM32
	Segment outputs:	SEG1 to SEG40

(2) When SOB = 1 (graphic display mode)

- 1/8 duty (DDTY1 = 1)
 - Common outputs: COM1 to COM8
 - Segment outputs: SEG1 to SEG64
- 1/16 duty (DDTY1 = 0, DDTY0 = 1) Common outputs: COM1 to COM16 Segment outputs: SEG1 to SEG56
- 1/32 duty (DDTY1 = 0, DDTY0 = 0)
 Common outputs: COM1 to COM32
 Segment outputs: SEG1 to SEG40

	Function					
	SOB = 0 (Cha	racter Disp	lay Mode)	SOB = 1 (Graphic Dis	splay Mode)
Pin Name	1/8 Duty	1/16 Duty	1/32 Duty	1/8 Duty	1/16 Duty	1/32 Duty
COM1 to COM8	COM1 to COM8	COM1 to COM16	COM1 to COM16	COM1 to COM8	COM1 to COM16	COM1 to COM16
COM9/SEG64 to COM16/SEG57	Common signal non-selection waveform	_		SEG64 to SEG57	_	
SEG1 to SEG40	SEG1 to SEG40	SEG1 to SEG40	SEG1 to SEG40	SEG1 to SEG56	SEG1 to SEG56	SEG1 to SEG40
COM32/SEG41 to COM25/SEG48	Common signal non-selection waveform	COM16 to COM1	COM32 to COM17	_		COM32 to COM17
COM24/SEG49 to COM17/SEG56	COM8 to COM1	-				

 Table 13.6
 Pin Functions According to Display Mode and Display Duty

13.3.4 Display Memory Configuration and Display

The LCD controller includes 64×32 -bit bit-mapped display memory. As the display memory configuration, a 5-bit $\times 8$ or 8-bit $\times n$ (n = 5, 7, or 8) X-direction combination can be selected, while the Y-direction configuration is 32 bits. Display data written from the CPU is stored horizontally with the MSB at the left and the LSB at the right, as shown in figure 13.4. On the display, 1 data corresponds to illumination (black), and 0 data to non-illumination (colorless).

13.3.5 Display Data Output

The LCD controller has a character display mode (SOB = 0) in which only 5 bits of each display data byte can be output to perform efficient 5-dot \times 8-dot character output, and a graphic display mode (SOB = 1) in which all the bits of a data byte can be output to perform efficient full-dot graphic display. The relationship between the display duty and output pins in each mode is shown in figure 13.5.

Figure 13.5 Display Duty and Valid Display Data Area (1)

Figure 13.5 Display Duty and Valid Display Data Area (2)

Figure 13.5 Display Duty and Valid Display Data Area (3)

13.3.6 Register and Display Memory Access

Register Access

To access a register, RS is first cleared to 0 and the register number of the register to be accessed is set in the index register. Then RS is set to 1, enabling the specified register to be accessed. Some internal registers have nonexistent bits; 0 must be written to these bits. The display data register (LR4) is the only register that can be read.

Display Memory Access

To access the display memory, the address to be accessed is set in the address register (LR2). The memory is then accessed via the display data register (LR4). This access can be performed without awareness of the display-side read. See figure 13.6 for the procedure.

After the respective display data register (LR4) accesses, the X and Y addresses are automatically incremented on the basis of the value set in the INC bit in control register 2 (LR1), and therefore address settings need not be made each time.

With 1/32 duty (DDTY1 = 0, DDTY0 = 0) in graphic display mode (SOB = 1), if INC = 0 the X address remains the same in each read/write access to the display data register (LR4), while the Y address is automatically incremented up to H'1F. After reaching H'1F, the Y address returns to H'00 again, and the X address is simultaneously incremented. If INC = 1, on the other hand, the Y address remains the same in each read/write access to the display data register (LR4), while the X address is automatically incremented up to H'4. After reaching H'4, the X address returns to H'0 again, and the Y address is simultaneously incremented. In this way, consecutive read/write accesses can be made to the entire display memory area.

Figure 13.6 Display Memory Access Methods (SOB = 1, 1/32 Duty)

Reading for Display

The LCD controller's display RAM is of the dual-port type, with accesses from the CPU and reads for LCD display independent of each other. This allows flexible interfacing.

Figure 13.7 Memory Read Procedure

Read-Modify-Write Mode

In the normal state, the X or Y address is incremented after both read and write accesses to the display memory. In read-modify-write mode, the address is incremented only after a write, and remains the same after a read. By using this mode, it is possible to read previously written data, process that data, and then write it back to the same address.

Figure 13.8 Read-Modify-Write Mode Flowchart

13.3.7 Scroll Function

The LCD controller allows vertical scrolling of any number of lines to be performed by specifying the display start line. Figure 13.9 shows the relationship between the display memory and Y address, and the display memory and LCD display after scrolling, for 1/16 duty and 1/8 duty settings. If the display start address is set to H'01, the data at Y address H'00 is displayed in the 16th line. Therefore, when the display is scrolled in order to show the next screen, the data at Y address H'00 must be rewritten with the next display data. This data update should be carried out after the display is scrolled.

13.3.8 Blink Function

Dot Matrix Display Blinking

The LCD controller can perform blinking display in any area. With an 80 Hz frame frequency, the display goes on and off in a cycle of approximately 1.6 seconds.

To set a blink area, in the horizontal direction the line unit is specified by means of the blink start line register (LR8) and blink end line register (LR9), while in the vertical direction a 5-bit unit (SOB = 0) or 8-bit unit (SOB = 1) is set in the blink register (LR6). When 1 is set in the blink register (LR6), blinking of the corresponding dot is controlled. After making these register settings, blinking is started by setting the BLK bit in control register 2 (LR1) to 1. As the blink area is designated by an absolute specification with respect to the display memory, if the display is scrolled the blink area also shifts accordingly.

Figure 13.10 Blink Register (LR6) and Blink Locations

Figure 13.11 Blinking during Display Scrolling (SOB = 0, 1/16 Duty)

13.3.9 Module Standby Mode

The LCD controller has a module standby function that enables low power consumption to be achieved. In module standby mode, the built-in step-up circuit and op-amps are halted, and segment and common outputs go to the V_{ss} (display-off state) level. Display RAM and internal register data is retained, except for the DISP and OPON bits in control register 2 (LR1). The control registers can still be accessed in the module standby state. Figure 13.12 shows the procedures for initiating and clearing module standby mode. The initiation and clearing procedures must be followed exactly in order to protect the display memory contents.

When the CPU is placed in standby mode, set the LSBY bit in control register 1 (LR0) to 1 before executing the standby instruction. After clearing standby mode, follow the module standby clearing procedure to start display.

Figure 13.12 Module Standby Mode and Standby Mode Initiation and Clearing Procedures

13.3.10 Power-On and Power-Off Procedures

As the LCD controller incorporates a complete power supply circuit, the procedures shown in figure 13.13 must be followed when powering on and off. Failure to follow these procedures may result in an abnormal display.

Figure 13.13 Power-On and Power-Off Procedures

13.3.11 Power Supply Circuit

The LCD controller has a built-in 2X or 3X step-up circuit for LCD drive. In standby mode, the power supply circuit is automatically turned off after a maximum of two subclock cycles, and the power consumption of the step-up circuit falls to zero. The power supply circuit can be turned on and off by a command, and an external power supply circuit should be used if the current capacity of the built-in step-up circuit is insufficient.

Step-Up Circuit

By inputting the reference voltage to V_{ci} ($V_{ci} \le V_{cc}$), connecting a capacitor between V_{ss} and VLOUT, C1+ and C1–, and C2+ and C2–, and setting the PWR bit in control register 1 (LR0) to 1, the potential between V_{ci} and V_{cc} is stepped up by a factor of 2 or 3. See figures 13.17 (1) and (2) for the method of connecting the capacitors. As the subclock is used for voltage step-up, step-up will not be performed unless the subclock is supplied. Since V_{ci} is also used for the step-up circuit power supply, an adequate current must be assured.

Step-up cannot be performed below $V_{cc}\!.$ Apply a $V_{_{ci}}$ voltage that gives a VLOUT level between $V_{_{CC}}$ and 7.0 V.

If the step-up circuit is not used, connect V_{ci} to V_{cc} .

LCD Drive Level Power Supply

Six power supply levels—V1, V2, V3, V3, V4, V5, and V_{ss} —are necessary for LCD drive. The V1 to V_{ss} power supplies are normally generated by means of resistive division. The power supply circuit includes a voltage follower op-amp for each voltage level generated by resistive division.

When 1/4 bias is used for LCD display, the V3 and V4 pins should be shorted; when 1/5 bias is used, the V3 and V4 pins should be left open. The V34 pin is an internal resistance test pin, and should always be shorted to the V3 pin externally.

Contrast Control

The LCD controller provides for the following two methods of contrast control.

• Using built-in contrast control circuit

The LCD controller includes a programmable contrast control circuit. The LCD power supply voltage can be adjusted on the basis of a given step-up circuit voltage by making a selection in the contrast control register (LRA).

 By changing step-up circuit reference voltage V_{ci} The step-up circuit voltage level can be varied by changing step-up circuit reference voltage V_{ci}.

External Power Supply

• When an external power supply is input to V_{LCD}

V1 to V5 can be generated by inputting an external power supply to V_{LCD} , and using the built-in op-amps by setting the OPON bit in control register 2 (LR1) to 1. The V_{LCD} input level must be between V_{cc} and 7.0 V.

• When external power supply is input directly to V1 to V5

A power supply can be applied directly to V1, V2, V3, V4, and V5 from an external source by clearing the PWR bit in control register 1 (LR0) and the OPON bit in control register 2 (LR1) to 0, to halt the built-in step-up circuit and cut the built-in op-amp power supply. The same potential as V1 should be input to V_{LCD} . Apply a voltage not exceeding V_{LCD} to V2 through V5. The input level of V_{LCD} and V1 must be between V_{cc} and 7.0 V.

In either case, inputting a voltage exceeding the maximum rated voltage may adversely affect the reliability of the chip.

13.3.12 LCD Drive Power Supply Voltages

There are six LCD drive power supply voltage values—V1 to V5, and V_{ss} . V1 is the highest voltage, and V_{ss} the lowest. As shown in figure 13.14, the common waveforms are formed from a combination of V1, V2, V5, and V_{ss} , while the segment waveforms are formed from a combination of V1, V3, V4, and V_{ss} . V1 and V_{ss} are shared by both common and segment waveforms, but the intermediate voltages are different.

In figure 13.14, the waveforms of outputs SEG1 to SEG40 differ according to the display data. In this example, LCD panel lines for which COM1 is connected are illuminated, and all other dots are not illuminated.

Figure 13.14 LCD Drive Power Supply Waveforms (1/32 Duty)

13.3.13 LCD Voltage Generation Circuit

When Using External Power Supply and Built-In Op-Amps

When the built-in step-up circuit is not used, and the LCD drive voltages are supplied directly from an external power supply, connections should be made as shown in figure 13.15. The $V_{\rm LCD}$ input level must be between $V_{\rm cc}$ and 7.0 V.

The LCD controller includes bleeder resistances that generate levels V1 to V5, and voltage follower op-amp circuits. Set the OPON bit in control register 2 (LR1) to 1. Contrast can be controlled by software, using the contrast control register (LRA).

If the capacitance of the LCD panel to be driven is large, capacitors of around 0.1 to 0.5 μ F should be inserted between the V1OUT to V5OUT built-in op-amp outputs and V_{ss} to provide stabilization. In order for the op-amps to operate normally, the contrast control register (LRA) should be set so that the potential difference between V_{LCD} and V1, and between V5 and V_{ss}, is at least 0.4 V.

Figure 13.15 Example of Connections when Using Built-In Op-Amps and External LCD Power Supply (1/5 Bias)

When Using External Power Supply but Not Using Built-In Op-Amps

When the built-in step-up circuit and op-amps are not used, and the LCD drive voltages are supplied directly from an external power supply, connections should be made as shown in figure 13.16.

As the built-in step-up circuit and op-amps are not used, the OPON bit in control register 2 (LR1) should be cleared to 0.

Figure 13.16 Example of Connections when Not Using Built-In Op-Amps and Using External LCD Power Supply (1/5 Bias)

When Using Built-In Step-Up Circuit and Op-Amps

When the built-in step-up circuit is used, connections should be made as shown in figure 13.17 (1) (3X step-up) or figure 13.17 (2) (2X step-up).

The LCD controller includes bleeder resistances that generate levels V1 to V5, and voltage follower op-amp circuits. When the built-in op-amps are used, the OPON bit in control register 2 (LR1) should be set to 1. Contrast can be controlled by software, using the contrast control register (LRA).

If the capacitance of the LCD panel to be driven is large, capacitors of around 0.1 to 0.5 μ F should be inserted between the V1OUT to V5OUT built-in op-amp outputs and V_{ss} to provide stabilization. In order for the op-amps to operate normally, the contrast control register (LRA) should be set so that the potential difference between V_{LCD} and V1, and between V5 and V_{ss}, is at least 0.4 V.

Since the V_{ci} pin is also used for the step-up circuit power supply, ensure that an adequate current can be supplied when carrying out reference voltage adjustment. The V_{ci} input level must not exceed V_{cc} .

Figure 13.17 Example of Connections when Using Built-In Step-Up Circuit (1) (3X Step-Up, 1/5 Bias)

Figure 13.17 Example of Connections when Using Built-In Step-Up Circuit (2) (2X Step-Up, 1/4 Bias)
When Using Built-In Step-Up Circuit and Bleeder Resistances

If the drive capability of the built-in op-amps is insufficient for the size of the LCD panel, the V1 to V5 levels can be supplied from external bleeder resistances. In this case, clear the OPON bit in control register 2 (LR1) to 0 to turn the op-amps off. The built-in contrast control circuit cannot be used, so contrast control must be handled by an external circuit.

A 1/4 or 1/5 bias value can be set, according to the method of connecting the external bleeder resistances. Figure 13.18 shows an example of the connections for 1/5 bias drive.

The 2X or 3X step-up circuit can be used.

- 6. The Vci input level must not exceed V_{CC} .
- 7. Care is required with connection when using capacitors with polarity.
- 8. Set V1OUT \leq V_{LCD}.

Figure 13.18 Example of Connections when Using 3X Step-Up Circuit and External Bleeder Resistances (1/5 Bias)

Rev.3.00 Jul. 19, 2007 page 372 of 532 REJ09B0397-0300

13.3.14 Contrast Control Circuit

Contrast control can be performed by software (electronic control function) by controlling the LCD drive voltage (the potential difference between V_{LCD} and V1) by means of the contrast control register (LRA). Variable resistance value V_R can be adjusted within the range of 0.1 R to 1.6 R, where R is the value of the basic dividing bleeder resistance between V_{LCD} and V1. The contrast control settings by bits CCR3 to CCR0 in the contrast control register (LRA) are shown in table 13.7.

To ensure stable operation of the voltage follower op-amp circuits that output levels V1 to V5, the contrast control register (LRA) should be set so that the potential difference between V_{LCD} and V1, and between V5 and V_{ss} , is at least 0.4 V. The contrast control ranges are shown in table 13.8.

If contrast control cannot be adequately performed by means of on-chip resistance V_R , control can be performed by inserting a resistance between VLOUT and V_{LCD} .

Contrast Control Register (LRA) Variable Resistance					V1–V _{ss} Potential			
CCR3	CCR2	CCR1	CCR0	Value (V _R)	Difference	Display Color		
0	0	0	0	1.6R	Small	Light		
			1	1.5R	_ ↓	≜		
		1	0	1.4R	_			
			1	1.3R	-			
	1	0	0	1.2R	_			
			1	1.1R	_			
		1	0	1.0R	-			
			1	0.9R	-			
1	0	0	0	0.8R	-			
			1	0.7R	-			
		1	0	0.6R	-			
			1	0.5R	-			
	1	0	0	0.4R	-			
			1	0.3R	-			
		1	0	0.2R	_ ↓	¥		
			1	0.1R	Large	Dark		

Table 13.7 Contrast Control Settings

Table 13.8 Contrast Control Ranges

Bias	LCD Drive Voltage: V _{DR}	Contrast Control Range					
		LCD drive voltage adjustment range:	$0.758 \times (V_{LCD} - V_{SS}) \leq V_{DR} \leq 0.980 \times (V_{LCD} - V_{SS})$				
1/5 bias drive	$\frac{5 \times R}{5 \times R + V_R} \times (V_{LCD} - V_{SS})$	 V5–V_{SS} potential difference limit: 	$\frac{R}{5 \times R + V_R} \times (V_{LCD} - V_{SS}) \ge 0.4 \ [V]$				
		 V_{LCD}–V1 potential difference limit: 	$\frac{V_{R}}{5 \times R + V_{R}} \times (V_{LCD} - V_{SS}) \ge 0.4 \text{ [V]}$				
		LCD drive voltage adjustment range:	$0.714 \times (V_{LCD} - V_{SS}) \le V_{DR} \le 0.976 \times (V_{LCD} - V_{SS})$				
1/4 bias drive	$\frac{4 \times R}{4 \times R + V_R} \times (V_{LCD} - V_{SS})$	 V5–V_{SS} potential difference limit: 	$\frac{R}{4 \times R + V_R} \times (V_{LCD} - V_{SS}) \ge 0.4 \ [V]$				
		 V_{LCD}–V1 potential difference limit: 	$\frac{V_{R}}{4 \times R + V_{R}} \times (V_{LCD} - V_{SS}) \ge 0.4 \text{ [V]}$				

13.3.15 LCD Drive Bias Selection Circuit

The ideal bias value that gives the best contrast is calculated using the equation shown below. If drive is performed at a bias value lower than the optimum, contrast will deteriorate, but the LCD drive voltage (the potential difference between V1 and V_{ss}) can be kept low. If the LCD drive voltage is inadequate even with a low V_{ci} voltage and use of the 3X step-up circuit, or if the output voltage falls and the LCD display becomes faint as batteries wear out, for instance, the display can be made clearer by decreasing the LCD drive bias.

Optimum bias value for 1/N duty drive = $\frac{1}{\sqrt{N} + 1}$

- Notes: 1. When using 1/5 bias, leave the V3 and V4 pins open.
 - 2. When using 1/4 bias, short the V3 and V4 pins.
 - 3. The V3 and V34 pins must always be shorted.

Section 14 Dot Matrix LCD Controller (H8/3854 Group)

14.1 Overview

The LCD controller has built-in display RAM, and performs dot matrix LCD display. One bit of display RAM data corresponds to illumination or non-illumination of one dot on the LCD panel, making possible displays with an extremely high degree of freedom.

The LCD controller incorporates all the functions required for LCD display, allowing a dot matrix display of up to 40×16 dots.

I/O ports are used for the interface with the CPU, offering excellent software heritability when using a combination of MPU and LCD driver.

This module operates on the subclock, making it ideal for use in small portable devices.

14.1.1 Features

- Built-in bit-mapped display RAM (640 bits) Maximum of 640 display bits (selectable from 40 × 16 bits or 40 × 8 bits)
- Choice of 1/8 or 1/16 duty
- Low power consumption enabling extended drive on battery power Subclock operation Module standby
- Comprehensive display control functions Display data read/write, display on/off control, read-modify-write
- CPU interface I/O port interface
- Built-in LCD power supply bleeder resistance circuit

14.1.2 Block Diagram

Figure 14.1 shows a block diagram of the LCD controller.

Figure 14.1 Block Diagram of LCD Controller

14.1.3 Pin Configuration

Table 14.1 shows the pins assigned to the LCD controller.

Table 14.1	Pin Configuration
-------------------	-------------------

Pin Name	Abbr.	I/O	Function
Common output pins	COM1 to COM16	Output	LCD common drive pins
Segment output pins	SEG1 to SEG40	Output	LCD segment drive pins
LCD drive power supply level	V1OUT to V5OUT	I/O	LCD drive power supply level input/output pins

14.1.4 Register Configuration

The LCD controller has one index register and five control registers, all of which are accessed via an I/O port interface. Except for the display data register (LR4), these registers cannot be read. The LCD controller register configuration is shown in table 14.2.

Table 14.2 Register Configuration

				Index Register		
Name	Abbr.	R/W	RS	IR2	IR1	IR0
Index register	IR	W	0			_
Control register 1	LR0	W	1	0	0	0
Control register 2	LR1	W				1
Address register	LR2	W			1	0
Frame frequency setting register	LR3	W				1
Display data register	LR4	R/W		1	0	0

14.2 Register Descriptions

14.2.1 Index Register (IR)

Bit	7	6	5	4	3	2	1	0
		_				IR2	IR1	IR0
Initial value		_	_	_		0	0	0
Read/Write	—					W	W	W

IR is an 8-bit write-only register that selects one of the LCD controller's five control registers. IR is selected when RS is 0.

Upon reset, IR is initialized to H'00.

Bits 7 to 3—Reserved Bits: Bits 7 to 3 are reserved; they should always be cleared to 0.

Bits 2 to 0—Index Register (IR2 to IR0): Bits 2 to 0 are used to select one of the LCD controller's five control registers. The correspondence between the settings of IR2 to IR0 and the selected registers is shown in table 14.2. Other settings are invalid.

14.2.2 Control Register 1 (LR0)

Bit	7	6	5	4	3	2	1	0
	_	_	LSBY				DDTY1	_
Initial value	_		0	_	_		0	_
Read/Write			W			_	W	_

LR0 is an 8-bit write-only register that performs LCD module standby mode setting and drive duty selection.

Upon reset, LR0 is initialized to H'00.

Bits 7 and 6—Reserved Bits: Bits 7 and 6 are reserved; they should always be cleared to 0.

Bit 5—Module Standby (LSBY): Bit 5 is the module standby setting bit. When LSBY is set to 1, the LCD controller enters standby mode. At this time, bits DISP, LPS1, and LPS0 in LR1 are reset.

Bit 5: LSBY Description

0	LCD controller operates normally	(initial value)
1	Power supply to built-in bleeder resistances halts, display is turned of controller enters standby mode	f, and LCD

Bits 4 to 2—Reserved Bits: Bits 4 to 2 are reserved; they should always be cleared to 0.

Bit 1—Display Duty Select (DDTY1): Bit 1 selects a display duty of 1/16 or 1/8.

Bit 1: DDTY1 Description

0	1/16 duty selected	(initial value)		
1	1/8 duty selected			
	Y address H'8 to H'F display data is invalid			

Bit 0—Reserved Bit: Bit 0 is reserved; it should always be cleared to 0.

14.2.3 Control Register 2 (LR1)

Bit	7	6	5	4	3	2	1	0
	—	DISP	LPS1	LPS0	RMW	—	INC	—
Initial value		0	0	0	0	—	0	_
Read/Write	_	W	W	W	W	_	W	—

LR1 is an 8-bit write-only register that selects operation or halting of LCD display and supply or halting of current to the built-in bleeder resistances, performs read-modify-write mode setting, and selects the address to be incremented in the display memory.

Upon reset, LR1 is initialized to H'00.

Bit 7—Reserved Bit: Bit 7 is reserved; it should always be cleared to 0.

Bit 6—LCD Operation Setting (DISP): Bit 6 selects operation or halting of the LCD display. When the LSBY bit in LR0 is set to 1, DISP is cleared.

Bit 6: DISP	Description	
0	LCD is turned off. All LCD outputs go to the $\rm V_{ss}$ level	(initial value)
1	LCD is turned on	

Bits 5 and 4—LCD Power Supply Setting (LPS1, LPS0): Bits 5 and 4 specify use or non-use of the internal power supply as the LCD drive power supply, and of the built-in LCD power supply bleeder resistances. When LPS1 is set to 1, the internal power supply is connected to the bleeder resistances. When LPS0 is set to 1, a power supply divided by the built-in bleeder resistances is supplied. When the LCD drive power supply level is applied to V1OUT through V5OUT from an external source, LPS1 and LPS0 must be cleared to 0.

When the LSBY bit in LR0 is set, LPS1 and LPS0 are cleared.

Bit 5: LPS1	Description	
0	Power supply to V1OUT is halted	(initial value)
1	Power supply voltage is supplied to V1OUT	

Bit 4: LPS0	Description	
0	Built-in bleeder resistances not used	(initial value)
1	Built-in bleeder resistances used	

Bit 3—Read-Modify-Write Setting (RMW): Bit 3 selects whether display memory X or Y address incrementing is carried out after a write/read access, or only after a write access (read-modify-write mode).

Bit 3: RMW	Description
0	Address is incremented after write/read access to display memory
	(initial value)
1	Read-modify-write mode is set
	In this mode, address is incremented only after write access to display memory

Bit 2—Reserved Bit: Bit 2 is reserved; it should always be cleared to 0.

Bit 1—Increment Address Select (INC): Bit 1 selects either the X address or the Y address as the address to be incremented after the display memory access specified by the RMW bit. The selected address is cleared after a display memory access with the maximum value for the valid display data area; in this case the other address is incremented.

Bit 1: INC	Description
0	Incrementing of display memory Y address has priority; X address is incremented after Y address overflow (initial value)
1	Incrementing of display memory X address has priority; Y address is incremented after X address overflow

Bit 0—Reserved Bit: Bit 0 is reserved; it should always be cleared to 0.

14.2.4 Address Register (LR2)

Bit	7	6	5	4	3	2	1	0
	XA2	XA1	XA0	—	YA3	YA2	YA1	YA0
Initial value	0	0	0		0	0	0	0
Read/Write	W	W	W	—	W	W	W	W

LR2 is an 8-bit write-only register that sets the display memory X- and Y-direction addresses accessed by the CPU.

Upon reset, LR2 is initialized to H'00.

Bits 7 to 5—X Address Setting (XA2 to XA0): Bits 7 to 5 set the display memory X-direction address. A value from H'0 to H'4 can be set. Do not perform access in the range H'5 to H'7.

When the INC bit in LR1 is set to 1, the address is automatically incremented after the access specified by the RMW bit in LR1, and is cleared after an H'4 access. When INC is 0 and YA3 to YA0 represent the maximum value for the valid display data area, the address is incremented after the access specified by RMW.

Bit 4—Reserved Bit: Bit 4 is reserved; it should always be cleared to 0.

Bits 3 to 0—Y Address Setting (YA3 to YA0): Bits 3 to 0 set the display memory Y-direction address. A value from H'0 to H'F can be set, but display data from H'8 to H'F is invalid with 1/8 duty.

When the INC bit in LR1 is cleared to 0, the address is automatically incremented after the access specified by the RMW bit in LR1, and is cleared after an access with the maximum value for the

valid display data area. When INC is 1 and the value in XA2 to XA0 is H'4, the address is incremented after the access specified by RMW.

14.2.5 Frame Frequency Setting Register (LR3)

Bit	7	6	5	4	3	2	1	0
	—	—	—	—	—	FS2	FS1	FS0
Initial value	—	—	—	—	—	0	0	0
Read/Write		—	—	—		W	W	W

LR3 is an 8-bit write-only register that sets the frame frequency.

Upon reset, LR3 is initialized to H'00.

Bits 7 to 3—Reserved Bits: Bits 7 to 3 are reserved; they should always be cleared to 0.

Bits 2 to 0—Frame Frequency Setting (FS2 to FS0): Bits 2 to 0 control the subclock division ratio and set the LCD frame frequency. The relationship between the LCD frame frequency f_F (Hz), the subclock frequency f_W (Hz), the division ratio r, and the LCD duty 1/N is as follows:

$$f_F = \frac{f_W}{r \times N}$$

Set a division ratio suitable for the characteristics of the LCD panel used. The correspondence between register settings, division ratios, and frame frequencies at each display duty is shown in table 14.3.

					Display	Duty 1/N	
					1/8	1	/16
				5	Subclock Fre	quency f _w (k	Hz)
			Division	32.768	38.4	32.768	38.4
FS2	FS1	FS0	ratio r	Frame Frequency f _F (Hz)			
0	0	0	2	2048.0	2400.0	1024.0	1200.0
		1	4	1024.0	1200.0	512.0	600.0
	1	0	8	512.0	600.0	256.0	300.0
		1	16	256.0	300.0	128.0	150.0
1	0	0	32	128.0	150.0	64.0	75.0
		1	64	64.0	75.0	32.0	37.5
	1	0	128	32.0	37.5	16.0	18.8
		1	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited

 Table 14.3
 Register Settings, Division Ratios, and Frame Frequencies at Each Display Duty

14.2.6 Display Data Register (LR4)

Bit	7	6	5	4	3	2	1	0
	D7	D6	D5	D4	D3	D2	D1	D0
Initial value	Undefined							
Read/Write	R/W							

LR4 is an 8-bit read/write register used to perform read/write access to the display memory specified by XA2 to XA0 and YA3 to YA0 in LR2.

In a write to display memory, the write is performed directly to the display memory via this register. In a read, the data is temporarily latched into this register before being output to the bus.

After a reset, the display memory and LR4 contents are undefined.

14.3 Operation

14.3.1 System Overview

The LCD controller operates at 1/16 or 1/8 duty. The display size is a maximum of 40×16 dots. As the LCD controller operates on the subclock to perform display control, the time, etc., can be constantly displayed. Also, since data in the display RAM is retained even in module standby mode, low power consumption can be achieved without affecting the display.

Figure 14.2 System Block Diagram

14.3.2 CPU Interface

The LCD controller's registers are not included in the memory map shown in figure 2.16 (b). They are controlled from the CPU by means of chip-internal LCD pins DB7 to DB0, RS, R/W, and STRB, via chip-internal I/O ports 9 and A. The pin configuration is shown in table 14.4, and an example of the timing for access to registers in the LCD controller is shown in figure 14.3. For information on port 9 and port A, see the descriptions in section 8, I/O Ports.

Pin Name	Abbr.	I/O	Function
Data bus pins	DB7 to DB0	I/O	When $R/\overline{W} = 0$, these pins input data to be written to a register; when $R/\overline{W} = 1$, they output data read from a register
Register selector pin	RS	Input	When $R/S = 0$, the index register is selected; when $RS = 1$, a control register is selected
Read/write select pin	R/W	Input	When $R/\overline{W} = 0$, write access is selected; when $R/\overline{W} = 1$, read access is selected
Strobe pin	STRB	Input	At the fall of STRB, read or write access, as selected by $R/\overline{W},$ is performed on the register selected by RS

Table 14.4 Pin Configuration

Writing to Index Register

When RS and R/\overline{W} are both cleared to 0, data DB7 to DB0 is written to the index register (IR) at the falling edge of STRB. Do not change RS or R/\overline{W} at the fall of STRB.

Reading and Writing to Control Registers

To access a control register, data indicating the number of the register to be accessed must be written to the index register (IR) before making the access. The register number data to be written to IR is shown in table 14.2. As the register number written to IR is retained until IR is written to again, if the same control register is accessed repeatedly, it is not necessary to write to IR each time.

In a write to a control register, when RS has been set to 1 and R/\overline{W} cleared to 0, data DB7 to DB0 is written to the control register specified by the index register (IR) at the falling edge of STRB.

Except for the display data register (LR4), control registers cannot be read. In a read of LR4, when the LR4 register number is written to the index register (IR), and RS and R/\overline{W} are both set to 1, DB7 to DB0 are set to output mode, and the display memory data at the address specified by the address register (LR2) is output from DB7 to DB0 at the falling edge of STRB. If a read is also performed in the next cycle, the data output is held until the next fall of STRB, but if a write is

performed in the next cycle, DB7 to DB0 are set to input mode from the point at which R/\overline{W} is cleared to 0, and the output is cleared.

In either case, do not change RS or R/\overline{W} at the fall of STRB.

Figure 14.3 Example of Timing Sequence for 8-Bit Data Transfer

Notes on Use of Chip-Internal I/O Ports

For LCD controller interface internal ports 9 and A, port input/output is controlled by means of PCR9 and PCRA in the same way as for ordinary I/O ports, and in output mode, the values set in PDR9 or PDRA are output. Also, LCD controller internal pins RS, R/\overline{W} , and STRB are input-only pins, and DB7 to DB0 input/output is controlled by R/\overline{W} . Therefore, the following points must be noted.

1. After reset release and standby mode release

Since the chip's internal I/O ports go to the high-impedance state in a reset and in standby mode, in initialization after reset or standby mode release, H'06 should be set in PDRA, and H'07 in PCRA. This will set port A to output mode. If the PDRA setting were H'00, there would be a possibility of the index register (IR) being written to.

2. Changing register read/write setting

When an LCD controller register is read ($R/\overline{W} = 1$), DB7 to DB0 output data from the LCD controller side, and so port 9 must be set to input mode. Therefore, H'00 must be written to PCR9, setting port 9 to input mode, before changing the R/\overline{W} setting from 0 to 1. When writing data to an LCD controller register, first change R/\overline{W} from 1 to 0, then write H'FFF to PCR9, setting port 9 to output mode.

Examples of display data register (LR4) read/write access when read-modify-write is designated are shown below.

[Set index register to display data register]

• Port A set to output mode, RMW set to 1

MOV.W	#H'0100,R1
MOV.W	#H'04FF,R0
MOV.B	R1L, @PDRA Clear R/\overline{W} to 0
MOV.B	ROH,@PDR9
MOV.B	ROL, @PCR9 Output H'04 from port 9
MOV.B	R1H,@PDRA
MOV.B	R1L, @PDRA Write H'04 to index register

[Read display data register]

MOV.B	R1L, @PCR9 Set port 9 to input mode
MOV.W	#H'0706, R2
MOV.B	R2L,@PDRA Set R/\overline{W} to 1
MOV.B	R2H,@PDRA
MOV.B	R2L,@PDRA
MOV.B	@PDR9, ROH Read PDR9 into general register

[Write to display data register]

MOV.W	#H'0504,R3
MOV.B	R3L, @PDRA Clear R/\overline{W} to 0
NOT.B	ROH Invert general register data
MOV.B	ROH,@PDR9
MOV.B	ROL, @PCR9 Set port 9 to output mode
MOV.B	R3H,@PDRA
MOV.B	R3L @PDRA Write data to display data register

14.3.3 LCD Drive Pin Functions

Common/Segment Output

The display duty is set by control register 1 (LR0) bits DDTY1.

• 1/8 duty (DDTY1 = 1) Common outputs: COM1 to COM8 Segment outputs: SEG1 to SEG40

Note: COM9 to COM16 output common signal non-selection waveforms

• 1/16 duty (DDTY1 = 0) Common outputs: COM1 to COM16 Segment outputs: SEG1 to SEG40

Table 14.5 Pin Functions According to Display Duty

	unction	
Pin Name	1/8 Duty	1/16 Duty
COM1 to COM8	COM1 to COM8	COM1 to COM16
COM9 to COM16	Common signal non-selection waveform	
SEG1 to SEG40	SEG1 to SEG40	SEG1 to SEG40

14.3.4 Display Memory Configuration and Display

The LCD controller includes 40×16 -bit bit-mapped display memory. As the display memory configuration, an 8-bit \times 5 X-direction combination can be selected, while the Y-direction configuration is 16 bits. Display data written from the CPU is stored horizontally with the MSB at the left and the LSB at the right, as shown in figure 14.4. On the display, 1 data corresponds to illumination (black), and 0 data to non-illumination (colorless).

Figure 14.4 Memory Data and Display

14.3.5 Display Data Output

The relationship between the LCD controller display duty and output pins is shown in figure 14.5.

Figure 14.5 Display Duty and Valid Display Data Area

14.3.6 Register and Display Memory Access

Register Access

To access a register, RS is first cleared to 0 and the register number of the register to be accessed is set in the index register. Then RS is set to 1, enabling the specified register to be accessed. Some internal registers have nonexistent bits; 0 must be written to these bits. The display data register (LR4) is the only register that can be read.

Display Memory Access

To access the display memory, the address to be accessed is set in the address register (LR2). The memory is then accessed via the display data register (LR4). This access can be performed without awareness of the display-side read. See figure 14.6 for the procedure.

After the respective display data register (LR4) accesses, the X and Y addresses are automatically incremented on the basis of the value set in the INC bit in control register 2 (LR1), and therefore address settings need not be made each time.

With 1/16 duty (DDTY1 = 0), if INC = 0 the X address remains the same in each read/write access to the display data register (LR4), while the Y address is automatically incremented up to H'F. After reaching H'F, the Y address returns to H'0 again, and the X address is simultaneously incremented. If INC = 1, on the other hand, the Y address remains the same in each read/write access to the display data register (LR4), while the X address is automatically incremented up to H'4. After reaching H'4, the X address returns to H'0 again, and the Y address is simultaneously incremented. In this way, consecutive read/write accesses can be made to the entire display memory area.

Figure 14.6 Display Memory Access Methods (1/16 Duty)

Reading for Display

Reads for LCD display are performed asynchronously with respect to accesses by the CPU. However, since simultaneous accesses would corrupt data in the RAM, arbitration is carried out within the chip. Basically, accesses by the CPU have priority, and reads for display are performed in the intervals between CPU accesses.

Figure 14.7 Memory Read Procedure

Read-Modify-Write Mode

In the normal state, the X or Y address is incremented after both read and write accesses to the display memory. In read-modify-write mode, the address is incremented only after a write, and remains the same after a read. By using this mode, it is possible to read previously written data, process that data, and then write it back to the same address.

Figure 14.8 Read-Modify-Write Mode Flowchart

14.3.7 Module Standby Mode

The LCD controller has a module standby function that enables low power consumption to be achieved. In module standby mode, the current supply to the built-in bleeder resistances is halted, and segment and common outputs go to the V_{ss} (display-off state) level. Display RAM and internal register data is retained, except for the DISP, LPS1, and LPS0 bits in control register 2 (LR1). The control registers can still be accessed in the module standby state. Figure 14.9 shows the procedures for initiating and clearing module standby mode. The initiation and clearing procedures must be followed exactly in order to protect the display memory contents.

When the CPU is placed in standby mode, set the LSBY bit in control register 1 (LR0) to 1 before executing the standby instruction. After clearing standby mode, follow the module standby clearing procedure to start display.

Figure 14.9 Module Standby Mode and Standby Mode Initiation and Clearing Procedures

14.3.8 Power-On and Power-Off Procedures

As the LCD controller incorporates a complete power supply circuit, the procedures shown in figure 14.10 must be followed when powering on and off. Failure to follow these procedures may result in an abnormal display.

Figure 14.10 Power-On and Power-Off Procedures

14.3.9 Power Supply Circuit

The LCD controller has a built-in bleeder resistance circuit for LCD drive. In standby mode, the voltage circuits are automatically turned off and the power consumption of the power supply circuit falls to zero. The power supply circuit can be turned on and off by a command, and an external power supply circuit should be used if the current capacity of the built-in step-up circuit is insufficient.

LCD Drive Level

Six power supply levels—V1, V2, V3, V3, V4, V5, and V_{ss} —are necessary for LCD drive. The V1 to V_{ss} power supplies are normally generated by means of resistive division.

When 1/4 bias is used for LCD display, the V3OUT and V4OUT pins should be shorted; when 1/5 bias is used, the V3OUT and V4OUT pins should be left open.

External Power Supply

- When external power supply is input directly to pins V1OUT through V5OUT A power supply can be applied directly to V1OUT, V2OUT, V3OUT, V4OUT, and V5OUT from an external source by clearing bits LPS0 and LPS1 to 0 in control register 2 (LR1) to halt the power supply to the built-in bleeder resistance circuit. Apply a voltage not exceeding V_{cc} to pins V1OUT through V5OUT.
- When an external power supply is input to pin V1OUT V1 to V5 can be generated by inputting an external power supply to V1OUT, and using the built-in bleeder resistances by setting the LPS1 bit to 1 in control register 2 (LR1). Apply a voltage not exceeding V_{cc} to pin V1OUT.

In either case, inputting a voltage exceeding V_{cc} may adversely affect the reliability of the chip.

14.3.10 LCD Drive Power Supply Voltages

There are six LCD drive power supply voltage values—V1 to V5, and V_{ss} . V1 is the highest voltage, and V_{ss} the lowest. As shown in figure 14.11, the common waveforms are formed from a combination of V1, V2, V5, and V_{ss} , while the segment waveforms are formed from a combination of V1, V3, V4, and V_{ss} . V1 and V_{ss} are shared by both common and segment waveforms, but the intermediate voltages are different.

In figure 14.11, the waveforms of outputs SEG1 to SEG40 differ according to the display data. In this example, LCD panel lines for which COM1 is connected are illuminated, and all other dots are not illuminated.

Figure 14.11 LCD Drive Power Supply Waveforms (1/16 Duty)

14.3.11 LCD Voltage Generation Circuit

When Using Internal Power Supply and Built-In Bleeder Resistances

The LCD controller includes bleeder resistances that generate levels V1 to V5. For the LCD drive power supply, drive can be performed using the internal power supply and V_{cc} , or using an external supply. When the internal power supply is used, and the built-in bleeder resistances are employed, bits LPS1 and LPS0 in control register 2 (LR1) should both be set to 1. If the capacitance of the LCD panel to be driven is large, capacitors of around 0.1 to 0.5 µF should be inserted between V10UT to V50UT and V_{ss} to provide stabilization.

Figure 14.12 When Using Internal Power Supply and Built-In Bleeder Resistances (1/5 Bias)

When Using External Power Supply and Built-In Bleeder Resistances

When an external power supply is supplied from V1OUT and the built-in bleeder resistances are used, clear LPS1 to 0 and set LPS0 to 1 in control register 2 (LR1), and make the connections shown in figure 14.13. The power supply applied to V1OUT must not exceed V_{cc} . If the capacitance of the LCD panel to be driven is large, capacitors of around 0.1 to 0.5 μ F should be inserted between V1OUT to V5OUT and V_{ss} to provide stabilization.

Figure 14.13 When Using External Power Supply and Built-In Bleeder Circuit (1/4 Bias)

When Using External Power Supply and Bleeder Resistances

If the drive capability of the built-in bleeder resistance is insufficient for the size of the LCD panel, the V1 to V5 levels can be supplied from external bleeder resistances. In this case, clear the LPS1 and LPS0 bits in control register 2 (LR1) to 0, and make the connections shown in figure 14.14.

Figure 14.14 When Using External Power Supply and External Bleeder Circuit (1/5 Bias)

14.3.12 LCD Drive Bias Selection Circuit

The ideal bias value that gives the best contrast is calculated using the equation shown below. If drive is performed at a bias value lower than the optimum, contrast will deteriorate, but the LCD drive voltage (the potential difference between V1 and V_{ss}) can be kept low. If the output voltage falls and the LCD display becomes faint as batteries wear out, for instance, the display can be made clearer by decreasing the LCD drive bias.

Optimum bias value for 1/N duty drive =
$$\frac{1}{\sqrt{N} + 1}$$

Notes: 1. When using 1/5 bias, leave the V3OUT and V4OUT pins open.

2. When using 1/4 bias, short the V3OUT and V4OUT pins.

Section 15 Electrical Characteristics (H8/3857 Group)

15.1 H8/3855, H8/3856, and H8/3857 Absolute Maximum Ratings (Standard Specifications)

Table 15.1 shows the absolute maximum ratings.

Item		Symbol	Value	Unit	Notes
Power supply voltage		V _{cc}	-0.3 to +7.0	V	
Analog power supply voltage		AV _{cc}	-0.3 to +7.0	V	
LCD power supply voltage		V	-0.3 to +8.0	V	*1
Programming voltage (FWE)		V_{in}	–0.3 to V $_{\rm cc}$ +0.3	V	*2
Input voltage	Except port B and LCD power supply	V _{in}	–0.3 to V $_{\rm cc}$ +0.3	V	
	Port B	AV	–0.3 to AV $_{\rm cc}$ +0.3	V	
	LCD power supply	V_{in}	–0.3 to V $_{\scriptscriptstyle LCD}$ +0.3	V	*3
Operating temperature		T _{opr}	-20 to +75	°C	*4
Storage temperature		T _{stg}	–55 to +125	°C	

Table 15.1 Absolute Maximum Ratings

Caution: Permanent damage may occur to the chip if maximum ratings are exceeded. Normal operation should be under the conditions specified in Electrical Characteristics. Exceeding these values can result in incorrect operation and reduced reliability.

Notes: 1. A voltage not lower than V_{cc} must be applied as LCD power supply voltage V_{LCD} .

- 2. 12 V must not be applied to the FWE pin, as this will permanently damage the device.
- When the built-in op-amps are not used, and the LCD drive voltages are supplied directly from an external source, this applies to V1OUT, V2OUT, V3OUT, V4OUT, and V5OUT.
- 4. The operating temperature range when programming/erasing flash memory is: $T_a = 0^{\circ}C$ to +75°C.

15.2 H8/3855, H8/3856, and H8/3857 Electrical Characteristics (Standard Specifications)

15.2.1 Power Supply Voltage and Operating Range

The power supply voltage and operating range of the H8/3855, H8/3856, and H8/3857 are indicated by the shaded region in the figures below.

(1) Power Supply Voltage vs. Oscillator Frequency Range

(2) Power Supply Voltage vs. Operating Frequency Range

(3) Analog Power Supply Voltage vs. A/D Converter Operating Range

15.2.2 DC Characteristics

Table 15.2 shows the DC characteristics of the H8/3855, H8/3856, and H8/3857.

Table 15.2 DC Characteristics of H8/3855, H8/3856, and H8/3857 (1)

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $AV_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*4}$, including subactive mode, unless otherwise specified.

Item	Symbol	Applicable Pins	Test Conditions	Values					
				Min	Тур	Max	Unit Notes		
Input high voltage	V _{IH}	$\label{eq:response} \begin{array}{l} \overline{\text{RES}}, \\ \overline{\text{WKP}}_{0} \text{ to } \overline{\text{WKP}}_{7}, \\ \overline{\text{IRQ}}_{0} \text{ to } \overline{\text{IRQ}}_{4}, \\ TMIB, TMIC, TMIF, \end{array}$	$V_{\rm cc}$ = 4.0 V to 5.5 V	0.8 V _{cc}		V _{cc} +0.3	V		
		TEST2, FWE, SCK ₁ , SCK ₃ , ADTRG		$0.9 V_{cc}$	_	V _{cc} +0.3	_		
		UD, SI ₁ , RXD	$V_{\rm cc}$ = 4.0 V to 5.5 V	$0.7 \ V_{cc}$		V _{cc} +0.3	V		
				$0.8 \ V_{cc}$		V _{cc} +0.3	-		
		OSC,	$V_{\rm cc}$ = 4.0 V to 5.5 V	V_{cc} –0.5	_	V _{cc} +0.3	V		
				V _{cc} -0.3	_	V _{cc} +0.3	_		
		X1		V _{cc} -0.3	_	V _{cc} +0.3	V		
		P1 ₀ to P1 ₇ , P2 ₀ to P2 ₇ ,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	$0.7 V_{cc}$	—	V _{cc} +0.3	V		
		P3 ₀ to P3 ₇ , P4 ₀ to P4 ₃ , P5 ₀ to P5 ₇		0.8 V _{cc}	_	V _{cc} +0.3	_		
		PB ₀ to PB ₇	$V_{\rm cc}$ = 4.0 V to 5.5 V	$0.7 \ \mathrm{V_{cc}}$		AV _{cc} +0.3	3 V		
				$0.8 \ V_{cc}$	_	AV _{cc} +0.3	3		
Input low voltage	V _{IL}	RES, WKP ₀ to WKP ₇ , IRQ ₀ to IRQ ₄ , TMIB, TMIC, TMIF,	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3	—	0.2 V _{cc}	V		
		TEST2, FWE, SCK₁, SCK₃, ADTRG		-0.3	_	0.1 V _{cc}			
		UD, SI ₁ , RXD	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3	_	$0.3 \ V_{\rm cc}$	V		
				-0.3	_	$0.2 \ V_{cc}$	_		
		OSC,	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3	—	0.5	V		
				-0.3	_	0.3	-		
					Value	S			
---------------------------------------	-------------------	--	---	----------------------	-------	---------------------	------	----------------------------------	--
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes	
Input low	V _{IL}	X1		-0.3		0.3	V		
voltage		P1 ₀ to P1 ₇ , P2 ₀ to P2 ₇ , P3 ₀ to P3 ₇ ,	$V_{cc} = 4.0 V \text{ to } 5.5 V$	-0.3	—	0.3 V _{cc}	V		
		P4 ₀ to P4 ₃ , P5 ₀ to P5 ₇ , PB ₀ to PB ₇		-0.3		0.2 V _{cc}			
Output high voltage	$V_{\rm OH}$	$P1_{0}$ to $P1_{7}$, $P2_{0}$ to $P2_{7}$,	$V_{\rm cc}$ = 4.0 V to 5.5 V $-I_{\rm OH}$ = 1.0 mA	V_{cc} –1.0	—	—	V		
		$P3_{0}$ to $P3_{7}$, $P4_{0}$ to $P4_{2}$, $P5_{0}$ to $P5_{7}$	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ $-I_{oH} = 0.5 \text{ mA}$	V _{cc} –0.5	—	_	_		
			-I _{он} = 0.1 mA	V_{cc} –0.5	_	_			
Output low voltage	V _{ol}	$P1_{0}$ to $P1_{7}$, $P4_{0}$ to $P4_{2}$,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ $I_{oL} = 1.6 \text{ mA}$	_	—	0.6	V		
		$P5_0$ to $P5_7$	I _{oL} = 0.4 mA		_	0.5			
		$P2_{0}$ to $P2_{7}$, $P3_{0}$ to $P3_{7}$	V_{cc} = 4.0 V to 5.5 V I_{oL} = 10 mA		—	1.5	V		
			V_{cc} = 4.0 V to 5.5 V I_{oL} = 1.6 mA	_	—	0.6			
_			I _{oL} = 0.4 mA		_	0.5			
Input/output leakage current	I _{IL}	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$V_{in} = 0.5 V \text{ to}$ $V_{cc} - 0.5 V$	_	_	1.0	μA		
		PB_0 to PB_7	$V_{in} = 0.5 V \text{ to}$ AV _{cc} - 0.5 V	—	_	1.0	μA	_	
Pull-up MOS	$-I_{p}$	$P1_{o}$ to $P1_{7}$,	$V_{\rm cc} = 5$ V, $V_{\rm in} = 0$ V	50.0	_	300.0	μA		
current		$P3_0$ to $P3_7$, $P5_0$ to $P5_7$	$V_{\rm cc}$ = 3.3 V, $V_{\rm in}$ = 0 V	—	100	—	μA	Reference values	
Input capacitance	C_{in}	All input pins except power supply pins	$f = 1 \text{ MHz}, V_{in} = 0 \text{ V},$ $T_a = 25^{\circ}\text{C}$	—	—	15.0	pF		
Active mode current dissipation	I _{OPE1}	V _{cc}	Active mode (high speed) $V_{cc} = 5 V$, $f_{osc} = 10 MHz$		10.0	15.0	mA	* ¹ * ²	
	I _{OPE2}	V _{cc}	Active mode (medium speed) $V_{cc} = 5 V$, $f_{osc} = 10 \text{ MHz}$		2.0	3.5	mA	* ¹ * ²	

					Value	es		
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Sleep mode current dissipation	I _{sleep}	V _{cc}	$V_{cc} = 5 V,$ $f_{osc} = 10 MHz$	_	4.0	7.0	mA	* ¹ * ²
Subactive mode current dissipation	I _{SUB}	V _{cc}	$V_{cc} = 3.3 V,$ LCD on, (with 2X step-up) 32-kHz crystal oscillator used ($\phi_{suB} = \phi_w/2$)	—	70	150	μA	* ¹ * ²
			$V_{cc} = 3.3 V,$ LCD on, (with 2X step-up) 32-kHz crystal oscillator used ($\phi_{SUB} = \phi_w/8$)		65		μA	* ¹ * ² Reference values
			$V_{cc} = 3.3 V,$ LCD not used, 32- kHz crystal oscillato used ($\phi_{SUB} = \phi_W/2$)	 r	20		μA	* ¹ * ² Reference values
Subsleep mode current dissipation	I _{SUBSP}	V _{cc}	$V_{cc} = 3.3 V,$ LCD on, (with 2X step-up) 32-kHz crystal oscillator used ($\phi_{su_B} = \phi_w/2$)	_	65	130	μA	* ¹ * ²
Watch mode current dissipation	I _{watch}	V _{cc}	V _{cc} = 3.3 V, LCD on, (with 2X step-up) 32-kHz crystal oscillator used		60	90.0	μA	* ¹ * ²
			V_{cc} = 3.3 V, LCD not used, 32-kHz crystal oscillator used		7.0	15.0	μA	* ¹ * ²
Standby mode current dissipation	I _{STBY}	V _{cc}	32-kHz crystal oscillator not used		—	5.0	μA	* ¹ * ²
Program/ erase current dissipation	I _{FLASH}	V _{cc}	$0^{\circ}C \le T_a \le 70^{\circ}C$ $f_{_{OSC}} = 12 \text{ MHz}$	_	16	22	mA	* ¹ * ² * ³
RAM data retaining voltage	V _{RAM}	V _{cc}		2.0	_	_	V	* ¹ * ²

15. Electrical Characteristics (H8/3857 Group)

Mode	Internal State	Pins	LCD Power Supply	Oscillator Pins
Active mode (high and medium speed)	Operates	$V_{\rm cc}$	$V_{LCD} = 6.0 V$	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{cc}$
Sleep mode	Only timer operates	$V_{\rm cc}$	$V_{LCD} = 6.0 V$	_
Subactive mode	Operates	V _{cc}	$V_{LCD} = 6.0 V$ (When LCD is not used, $V_{LCD} = V_{CC}$)	System clock oscillator: Crystal Subclock oscillator: Crystal
Subsleep mode	Only timer operates, CPU stops	V_{cc}	$V_{LCD} = 6.0 V$	_
Watch mode	Only time-base clock operates, CPU stops	V _{cc}	$V_{LCD} = 6.0 V$ (When LCD is not used, $V_{LCD} = V_{CC}$)	_
Standby mode	CPU and timers all stop	$V_{\rm cc}$	$V_{LCD} = V_{CC}$	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{cc}$
Programming/ erasing* ³	Operates	$V_{\rm cc}$	$V_{LCD} = V_{CC}$	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{cc}$

Notes: 1. Pin states during current measurement

2. Excludes current in pull-up MOS transistors and output buffers.

3. Applies to F-ZTAT version only.

4. The guaranteed temperature as an electrical characteristic for die type products is 75°C.

Table 15.3 DC Characteristics of H8/3855, H8/3856, and H8/3857 (2)

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $AV_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*2}$, including subactive mode, unless otherwise specified.

					Valu	es		
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Allowable output low	I _{ol}	Output pins except in ports 2 and 3	V_{cc} = 4.0 V to 5.5 V	—	_	2.0	mA	*1
current (per pin)		Ports 2 and 3	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	10.0		
(per piri)		All output pins		_	_	0.5		
Allowable output low	$\Sigma I_{\rm OL}$	Output pins except in ports 2 and 3	V_{cc} = 4.0 V to 5.5 V	_	_	20.0	mA	* ¹
current (total))	Ports 2 and 3	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	80.0		
		All output pins		—		20.0		
Allowable output high	— I _{он}	All output pins	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	_	—	2.0	mA	*1
current (per pin)				—	—	0.2		
Allowable output high	$\Sigma - \mathbf{I}_{OH}$	All output pins	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	10.0	mA	*1
current (total))			_		8.0		

Notes: 1. Excludes LCD output pins.

2. The guaranteed temperature as an electrical characteristic for die type products is 75°C.

15.2.3 AC Characteristics

Table 15.4 shows the control signal timing, and tables 15.5 and 15.6 show the serial interface timing, of the H8/3855, H8/3856, and H8/3857.

Table 15.4 Control Signal Timing of H8/3855, H8/3856, and H8/3857

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $AV_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*3}$, including subactive mode, unless otherwise specified.

		Applicable			Values	6		Reference
Item	Symbol	••	Test Conditions	Min	Тур	Max	Unit	Figure
System clock	f _{osc}	OSC1, OSC2	V_{cc} = 4.0 V to 5.5 V	2.0		10.0	MHz	
oscillation frequency				2.0		5.0	_	
OSC clock (ϕ_{osc})	t _{osc}	OSC1, OSC2	V_{cc} = 4.0 V to 5.5 V	100.0		1000.0	ns	*1
cycle time				200.0	_	1000.0	_	Figure 15.1
System clock (t _{cyc}			2		16	t _{osc}	*1
cycle time				_	_	2000.0	ns	_
Subclock oscillation frequency	f _w	X1, X2		—	32.768	—	kHz	
Watch clock (ϕ_w) cycle time	t _w	X1, X2			30.5	_	μS	
Subclock ($\phi_{\scriptscriptstyle SUB}$) cycle time	$t_{_{subcyc}}$			2		8	t _w	*2
Instruction cycle time)			2	—	—	t _{cyc} t _{subcyc}	
Oscillation	t _{rc}	OSC_1, OSC_2	V_{cc} = 4.0 V to 5.5 V	40.0		_	ms	
stabilization time (crystal oscillator)				60.0	—	—	_	
Oscillation stabilization time	t _{rc}	X ₁ , X ₂		2	_	_	S	
External clock high	t _{cph}	OSC ₁	$V_{\rm cc}$ = 4.0 V to 5.5 V	40.0		_	ns	Figure 15.1
width				80.0	_	_	_	
External clock low	t _{cpl}	OSC ₁	V_{cc} = 4.0 V to 5.5 V	40.0	_	_	ns	Figure 15.1
width				80.0	_	_	_	
External clock rise	t _{cPr}	OSC ₁	V_{cc} = 4.0 V to 5.5 V	_		15.0	ns	Figure 15.1
time				—	_	20.0	_	
External clock fall	t _{CPf}	OSC ₁	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	15.0	ns	Figure 15.1
time						20.0		

15.	Electrical Characteristics	(H8/3857 Group)	
-----	-----------------------------------	-----------------	--

		Applicable			Value	es		Reference	
Item	Symbol	••	Test Conditions	Min	Тур	Max	Unit	Figure	
External subclock high width	t _{xH}	X ₁		0.4/fx	—	—	S	Figure 15.2	
External subclock low width	t _{xL}	X ₁		0.4/fx		—	S	Figure 15.2	
External subclock rise time	t _{xr}	X,		—		100.0	ns	Figure 15.2	
External subclock fall time	t _{xf}	X ₁		—	—	100.0	ns	Figure 15.2	
RES pin low width	t _{REL}	RES		10	—	_	t _{cyc}	Figure 15.3	
Input pin high width	t _{iH}	IRQ₀ to IRQ₄, WKP₀ to WKP₂, ADTRG, TMIB, TMIC, TMIF		2			t _{cyc} t _{subcyc}	Figure 15.4	
Input pin low width	t _{iL}	IRQ ₀ to IRQ ₄ , WKP ₀ to WKP ₇ , ADTRG, TMIB, TMIC, TMIF		2	_		t _{cyc} t _{subcyc}	Figure 15.4	
UD pin minimum transition width	t _{udh} t _{udl}	UD		4	—	—	t _{cyc} t _{subcyc}	Figure 15.5	

Notes: 1. A frequency between 1 MHz and 10 MHz is required when an external clock is input.

2. Selected with bits SA1 and SA0 in system control register 2 (SYSCR2).

3. The guaranteed temperature as an electrical characteristic for die type products is 75° C.

Table 15.5 Serial Interface (SCI1) Timing of H8/3855, H8/3856, and H8/3857

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $AV_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^*$, unless otherwise specified.

		Applicable		Values				Reference
Item	Symbol	••	Test Conditions	Min	Тур	Max	Unit	Figure
Input serial clock cycle time	t _{scyc}	SCK		4		_	$\mathbf{t}_{_{\mathrm{cyc}}}$	Figure 15.6
Input serial clock high width	t _{scкн}	SCK		0.4		_	t _{scyc}	Figure 15.6
Input serial clock low width	t _{sckl}	SCK		0.4	_	_	$\mathbf{t}_{_{\mathrm{Scyc}}}$	Figure 15.6
Input serial clock	t _{scKr}	SCK,	V_{cc} = 4.0 V to 5.5 V	_	_	60.0	ns	Figure 15.6
rise time				—	_	80.0		
Input serial clock	t _{sckf}	SCK,	$V_{\rm cc}$ = 4.0 V to 5.5 V	—	_	60.0	ns	Figure 15.6
fall time				—	_	80.0		
Serial output data	t _{sop}	SO ₁	V_{cc} = 4.0 V to 5.5 V	_	_	200.0	ns	Figure 15.6
delay time				_	_	350.0		
Serial input data	t _{sis}	SI	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	200.0			ns	Figure 15.6
setup time				400.0	_			
Serial input data	t _{s⊪}	SI	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	200.0	_	_	ns	Figure 15.6
hold time				400.0	_	_		

Note: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.

Table 15.6Serial Interface (SCI3) Timing of H8/3855, H8/3856, and H8/3857

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $AV_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^*$, unless otherwise specified.

					Value	s		Reference
Item		Symbol	Test Conditions	Min	Тур	Max	Unit	Figure
Input clock	Asynchronous	t _{scyc}		4			t _{cyc}	Figure 15.7
cycle	Synchronous			6	_		_	
Input clock	pulse width	t _{scкw}		0.4	_	0.6	$t_{_{Scyc}}$	Figure 15.7
	ata delay time	t _{TXD}	$V_{\rm cc}$ = 4.0 V to 5.5 V		_	1	t _{cyc}	Figure 15.8
(synchronoi	us mode)				_	1	_	
	ta setup time	t _{RXS}	$V_{\rm cc}$ = 4.0 V to 5.5 V	200.0	—	_	ns	Figure 15.8
(synchronoi	us mode)			400.0	—	_	_	
	ta hold time	t _{RXH}	$V_{\rm cc}$ = 4.0 V to 5.5 V	200.0	_	_	ns	Figure 15.8
(synchronoi	us mode)			400.0	_		_	

Note: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.

15.2.4 A/D Converter Characteristics

Table 15.7 shows the A/D converter characteristics of the H8/3855, H8/3856, and H8/3857.

Table 15.7A/D Converter Characteristics of H8/3855, H8/3856, and H8/3857

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*4}$, unless otherwise specified.

		Applicable	Test		Value	S		Reference
Item	Symbol	Pins	Conditions	Min	Тур	Max	Unit	Figure
Analog power supply voltage	AV_{cc}	AV_{cc}		3.0	_	5.5	V	*1
Analog input voltage	$AV_{_{\rm IN}}$	AN ₀ to AN ₇		AV_{ss} –0.3		AV _{cc} +0.3	V	
Analog power supply	AI_{OPE}	AV _{cc}	$AV_{cc} = 5.0 V$	_		1.5	mA	
current	AI _{STOP1}	AV _{cc}	$AV_{cc} = 5.0 V$	_	300	_	μA	* ² Reference value
	AI _{STOP2}	AV _{cc}		_	_	5.0	μA	*3
Analog input capacitance	C _{AIN}	AN_0 to AN_7		_	_	30.0	рF	
Allowable signal source impedance	R _{AIN}			_	_	5.0	kΩ	
Resolution (data length)				_	_	8	Bit	
Non-linearity error				_		±2.0	LSB	
Quantization error				_		±0.5	LSB	
Absolute accuracy				_		±2.5	LSB	
Conversion time				12.4		124	μs	

Notes: 1. Set $AV_{cc} \le V_{cc}$, and set $AV_{cc} = V_{cc}$ when the A/D converter is not used.

2. Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle.

3. Al_{STOP2} is the current at reset and in standby, watch, subactive, and subsleep modes while the A/D converter is idle.

4. The guaranteed temperature as an electrical characteristic for die type products is 75°C.

15.2.5 LCD Characteristics

Table 15.8 shows the LCD characteristics, and table 15.9 shows the step-up circuit characteristics, of the H8/3855, H8/3856, and H8/3857.

Table 15.8 LCD Characteristics of H8/3855, H8/3856, and H8/3857

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $AV_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*4}$, including subactive mode, unless otherwise specified.

					Value	es		
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Common driver on-resistance	R _{COM}	COM1 to COM32	$\pm Id = 0.05 \text{ mA},$ V _{LCD} = 4 V		6	20	kΩ	* ¹
Segment driver on-resistance	R_{seg}	SEG1 to SEG64	$\pm Id = 0.05 \text{ mA},$ V _{LCD} = 4 V	_	6	20	kΩ	* ¹
LCD power supply current	I _{EE}	V _{LCD}	$V_{LCD} = 5.5 V,$ $f_x = 32.768 \text{ kHz}$	_	20	40	μA	* ²
LCD power supply voltage	$V_{\rm LCD}$	V		$V_{\rm cc}$		7.0	V	* ³

Notes: 1. Applies to the resistance (R_{COM}) between the V1OUT, V2OUT, V5OUT, and V_{SS} pins and the common signal pins (COM1 to COM32), and the resistance (R_{SEG}) between the V1OUT, V3OUT, V4OUT, and V_{SS} pins and the segment signal pins (SEG1 to SEG64), when Id is flowing in the pins.

 This is the current when the built-in op-amps are operating and display is halted (all driver outputs are at the V_{ss} level).

3. Specifies the voltage range in which the COM/SEG pin output voltages are within the LCD reference voltage values (V1, V2, V3, V4, V5, and V_{ss}) ±0.15 V in the unloaded state. A voltage not lower than V_{cc} must be applied to V_{LcD} .

 The guaranteed temperature as an electrical characteristic for die type products is 75°C.

Table 15.9 Step-Up Circuit Characteristics of H8/3855, H8/3856, and H8/3857

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $AV_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*^2}$, including subactive mode, unless otherwise specified.

		Applicable			Value	s		
Item	Symbol	Pins	Test Conditions	Min	Тур	Max	Unit	Notes
2X step-up output voltage	V _{UP2}	VLOUT	$\begin{split} V_{cc} &= V_{ci} = 3.0 \text{ V}, \\ I_{o} &= 0.03 \text{ mA}, \\ C &= 1 \ \mu\text{F}, \\ X1 &= 32 \text{ kHz}, \\ T_{a} &= 25^{\circ}\text{C} \end{split}$		5.96		V	Figure 15.9 Reference values
3X step-up output voltage	V _{UP3}	VLOUT	$\begin{split} V_{cc} &= 3.0 \text{ V}, \\ V_{ci} &= 2.0 \text{ V}, \\ I_{o} &= 0.03 \text{ mA}, \\ C &= 1 \ \mu\text{F}, \\ X1 &= 32 \text{ kHz}, \\ T_{a} &= 25^{\circ}\text{C} \end{split}$		5.90		V	Figure 15.9 Reference values
Step-up circuit reference voltage	$V_{c^{i}}$	V_{ci}	$V_{_{\text{ci}}} \leq V_{_{\text{CC}}}$	1.6		3.5	V	*1

Notes: 1. As $V_{cc} \le VLOUT \le 7.0$ V, with 2X step-up $V_{cc}/2 \le V_{ci} \le 3.5$ V, and with 3X step-up $V_{cc}/3 \le V_{ci} \le 2.33$ V.

A voltage not exceeding $V_{\rm cc}$ should be input to $V_{\rm ci}$. If this condition is not observed, there is a risk of permanent damage to the device.

 The guaranteed temperature as an electrical characteristic for die type products is 75°C.

15.2.6 Flash Memory Characteristics

Table 15.10 shows the flash memory characteristics.

Table 15.10 Flash Memory Characteristics

Conditions: $V_{cc} = 4.5 \text{ V}$ to 5.5 V, $AV_{cc} = 4.5 \text{ V}$ to 5.5 V, $V_{ss} = AV_{ss} = 0.0 \text{ V}$, $T_a = 0^{\circ}\text{C}$ to +75°C (program/erase operating temperature range)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Programming t	ime* ¹ * ² * ⁴	t _P		10	200	ms/32 bytes	
Erase time*1*3*	× ⁵	t _e		100	300	ms/block	
Rewrite times		N_{wec}		_	100	Times	
Programming	Wait time after SWE bit setting*1	х	10	_	_	μS	
	Wait time after PSU bit setting*1	у	50	_	_	μS	
	Wait time after P bit setting*1*4	Z		_	200	μS	
	Wait time after P bit clearing*1	α	10	_	_	μS	
	Wait time after PSU bit clearing*1	β	10	_	_	μS	
	Wait time after PV bit setting*1	γ	4	_	_	μS	
	Wait time after H'FF dummy write*1	3	2	_	_	μS	
	Wait time after PV bit clearing*1	η	4	_	_	μS	
	Maximum number of writes*1*4	Ν		_	1000	Times	
Erasing	Wait time after SWE bit setting*1	х	10	_	_	μS	
	Wait time after ESU bit setting*1	у	200	_	_	μS	
	Wait time after E bit setting*1*5	Z	_	_	5	ms	
	Wait time after E bit clearing*1	α	10	_	_	μS	
	Wait time after ESU bit clearing*1	β	10	_	_	μS	
	Wait time after EV bit setting*1	γ	20	_	_	μS	
	Wait time after H'FF dummy write*1	3	2	_	_	μS	
	Wait time after EV bit clearing*1	η	5	_	_	μS	
	Maximum number of erases*1*5	Ν		_	60	Times	

Notes: 1. Follow the program/erase algorithms when making the time settings.

2. Programming time per 32 bytes. (Indicates the total time during which the P bit is set in flash memory control register 1 (FLMCR1). Does not include the program-verify time.)

- 3. Time to erase one block. (Indicates the time during which the E bit is set in FLMCR1. Does not include the erase-verify time.)
- 4. Maximum programming time $(t_p(max) = Wait time after P bit setting (z) \times maximum number of writes (N))$
- 5. Maximum erase time

 $(t_{E}(max) = Wait time after E bit setting (z) \times maximum number of erases (N))$

15.3 Operation Timing

Figures 15.1 to 15.8 show timing diagrams.

Figure 15.2 Subclock Input Timing

Figure 15.3 **RES** Pin Low Width Timing

Figure 15.4 Input Timing

Figure 15.5 UD Pin Minimum Transition Width Timing

Figure 15.6 SCI1 Input/Output Timing

Figure 15.7 SCK3 Input Clock Timing

15.4 Output Load Circuit

Figure 15.10 Output Load Conditions

15.5 Usage Note

Although both the F-ZTAT and mask ROM versions fully meet the electrical specifications listed in this manual, there may be differences in the actual values of the electrical characteristics, operating margins, noise margins, and so forth, due to differences in the fabrication process, the on-chip ROM, and the layout patterns.

If the F-ZTAT version is used to carry out system evaluation and testing, therefore, when switching to the mask ROM version the same evaluation and testing procedures should also be conducted on the mask ROM version.

Section 16 Electrical Characteristics (H8/3854 Group)

16.1 H8/3852, H8/3853, and H8/3854 Absolute Maximum Ratings (Standard Specifications)

Table 16.1 shows the absolute maximum ratings.

Item		Symbol	Value	Unit	Notes
Power supply v	voltage	V _{cc}	-0.3 to +7.0	V	
Programming \	voltage (FWE)	V _{in}	–0.3 to V $_{\rm cc}$ +0.3	V	*1
Input voltage	Except LCD power supply	V _{in}	–0.3 to V $_{\rm cc}$ +0.3	V	
	LCD power supply	V _{in}	–0.3 to V $_{\rm cc}$ +0.3	V	*2
Operating temp	perature	T _{opr}	-20 to +75	°C	* ³
Storage tempe	rature	T _{stg}	-55 to +125	°C	

Table 16.1 Absolute Maximum Ratings

Caution: Permanent damage may occur to the chip if maximum ratings are exceeded. Normal operation should be under the conditions specified in Electrical Characteristics. Exceeding these values can result in incorrect operation and reduced reliability.

Notes: 1. 12 V must not be applied to the FWE pin, as this will permanently damage the device.

 When the internal power supply and internal bleeder resistances are not used, and the LCD drive voltages are supplied directly from an external source, this applies to V1OUT, V2OUT, V3OUT, V4OUT, and V5OUT.

3. The operating temperature range when programming/erasing flash memory is: $T_a = 0^{\circ}C$ to +75°C.

16.2 H8/3852, H8/3853, and H8/3854 Electrical Characteristics (Standard Specifications)

16.2.1 Power Supply Voltage and Operating Range

The power supply voltage and operating range of the H8/3852, H8/3853, and H8/3854 are indicated by the shaded region in the figures below.

(1) Power Supply Voltage vs. Oscillator Frequency Range

(2) Power Supply Voltage vs. Operating Frequency Range

(3) Power Supply Voltage vs. A/D Converter Operating Range

16.2.2 DC Characteristics

Table 16.2 shows the DC characteristics of the H8/3852, H8/3853, and H8/3854.

Table 16.2 DC Characteristics of H8/3852, H8/3853, and H8/3854 (1)

 $V_{cc} = 2.7$ V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0$ V to 5.5 V of H8/3854F, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C*⁴, including subactive mode, unless otherwise specified.

					Value		
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit Notes
Input high voltage	V _{IH}	$\begin{tabular}{c} \hline RES,\\ \hline WKP_0 to WKP_7,\\ \hline IRQ_0, IRQ_1,\\ \hline IRQ_3, IRQ_4,\\ \end{tabular}$	V_{cc} = 4.0 V to 5.5 V	0.8 V _{cc}		V _{cc} +0.3	V
		TMIB, TMIF, TEST2, FWE, SCK ₃ , ADTRG		$0.9 V_{cc}$	—	V _{cc} +0.3	_
		RXD	V_{cc} = 4.0 V to 5.5 V	$0.7 \ V_{cc}$	_	V _{cc} +0.3	V
				$0.8 \ V_{cc}$	_	V _{cc} +0.3	_
		OSC,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	V_{cc} –0.5	—	V _{cc} +0.3	V
				V_{cc} –0.3	_	V _{cc} +0.3	
		X1		V_{cc} –0.3		V _{cc} +0.3	V
		P1 ₀ to P1 ₂ , P1 ₅ , P1 ₇ ,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	$0.7 \ V_{cc}$	_	V _{cc} +0.3	V
		P2 ₀ to P2 ₇ , P4 ₀ to P4 ₃ , P5 ₀ to P5 ₇ , PB ₄ to PB ₇		0.8 V _{cc}	_	V _{cc} +0.3	
Input low voltage	V _{IL}	$\begin{tabular}{c} \hline \mathbf{RES},\\ \hline \mathbf{WKP}_0 to $\overline{\mathbf{WKP}_7}$,\\ \hline \mathbf{IRQ}_0, \mathbf{IRQ}_1,\\ \hline \mathbf{IRQ}_3, \mathbf{IRQ}_4,\\ \hline \end{tabular}$	V_{cc} = 4.0 V to 5.5 V	-0.3		0.2 V _{cc}	V
		TMIB, TMIF, TEST2, FWE, SCK₃, ADTRG		-0.3		0.1 V _{cc}	_
		RXD	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	-0.3	—	$0.3 V_{\rm cc}$	V
				-0.3	_	$0.2 \ V_{cc}$	
		OSC,	V_{cc} = 4.0 V to 5.5 V	-0.3	_	0.5	V
				-0.3	—	0.3	

					Value	es		
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Input low	VIL	X1		-0.3		0.3	V	
voltage		P1 ₀ to P1 ₂ , P1 ₅ , P1 ₇ , P2 ₀ to P2 ₇ ,	V_{cc} = 4.0 V to 5.5 V	-0.3		0.3 V _{cc}	V	
		$P4_0$ to $P4_3$, $P5_0$ to $P5_7$, PB_4 to PB_7		-0.3	_	0.2 V _{cc}		
Output high voltage	V_{OH}	P1 ₀ to P1 ₂ , P1 ₅ , P1 ₇ ,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ $-I_{OH} = 1.0 \text{ mA}$	V _{cc} -1.0	_	_	V	
		P2 ₀ to P2 ₇ , P4 ₀ to P4 ₂ , P5 ₀ to P5 ₇	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ $-I_{oH} = 0.5 \text{ mA}$	V _{cc} –0.5	—	—	_	
			—I _{он} = 0.1 mA	V_{cc} –0.5	_	—		
Output low voltage	V _{ol}	P1 ₀ to P1 ₂ , P1 ₅ , P1 ₇ ,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ $I_{ol} = 1.6 \text{ mA}$	_	—	0.6	V	
		$P4_{0}$ to $P4_{2}$, $P5_{0}$ to $P5_{7}$	I _{ol} = 0.4 mA	_	_	0.5	_	
		$P2_0$ to $P2_7$	$V_{cc} = 4.0 \text{ V}$ to 5.5 V $I_{ol} = 10 \text{ mA}$	—	—	1.5		
			$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ $I_{ol} = 1.6 \text{ mA}$		_	0.6		
			I _{oL} = 0.4 mA	_		0.5		
Input/output leakage current	I _L	RES, TEST2, FWE, OSC ₁ , P1 ₀ to P1 ₂ , P1 ₅ , P1 ₇ , P2 ₀ to P2 ₇ , P4 ₀ to P4 ₃ , P5 ₀ to P5 ₇ , PB ₄ to PB ₇	$V_{in} = 0.5 V \text{ to}$ $V_{cc} - 0.5 V$	_		1.0	μA	
Pull-up MOS	-I _p	$P1_0$ to $P1_2$,	$V_{cc} = 5 \text{ V}, V_{in} = 0 \text{ V}$	50.0		300.0	μA	
current		$P1_{5}$, $P1_{7}$, $P5_{0}$ to $P5_{7}$	$V_{cc} = 3.3 \text{ V},$ $V_{in} = 0 \text{ V}$	_	100	_	μA	Reference values
Input capacitance	\mathbf{C}_{in}	All input pins except power supply pins	$ f = 1 \text{ MHz}, V_{in} = 0 \text{ V}, $ $ T_a = 25^{\circ}\text{C} $	_		15.0	pF	

					Value	es		
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Active mode current dissipation	I _{OPE1}	V _{cc}	Active mode (high speed) $V_{cc} = 5 V$, $f_{osc} = 10 MHz$ A/D not used		10.0	15.0	mA	* ¹ * ²
	I _{OPE3}	V _{cc}	Active mode (high speed) $V_{cc} = 5 V$, $f_{osc} = 10 MHz$ A/D operating		_	16.5	mA	* ¹ * ²
	I _{OPE2}	V _{cc}	Active mode (medium speed) $V_{cc} = 5 V$, $f_{osc} = 10 MHz$ A/D not used		2.0	3.5	mA	* ¹ * ²
Sleep mode current dissipation	I _{sleep}	V _{cc}	$V_{cc} = 5 V,$ $f_{osc} = 10 MHz$ A/D not used		4.3	7.0	mA	* ¹ * ²
Subactive mode current dissipation	I _{SUB}	V _{cc}	$V_{cc} = 5.0 V,$ LCD on, 32-kHz crystal oscillator used ($\phi_{SUB} = \phi_W/2$)		80	160	μΑ	* ¹ * ² * ⁵
			$V_{cc} = 5.0 V,$ LCD on, 32-kHz crystal oscillator used ($\phi_{sub} = \phi_w/8$)		70	—	μA	* ¹ * ² * ⁵ Reference values
			$V_{cc} = 3.3 V,$ LCD not used, 32- kHz crystal oscillator used ($\phi_{SUB} = \phi_W/2$)		20	_	μΑ	* ¹ * ² Reference values
Subsleep mode current dissipation	I _{SUBSP}	V _{cc}	$V_{cc} = 5.0 V,$ LCD on, 32-kHz crystal oscillator used ($\phi_{SUB} = \phi_W/2$)		50	100	μA	* ¹ * ² * ⁵
Watch mode current dissipation	I _{watch}	V _{cc}	V _{cc} = 5.0 V, LCD on, 32-kHz crystal oscillator used		40	80	μA	* ¹ * ² * ⁵
			V_{cc} = 3.3 V, LCD not used, 32-kHz crystal oscillator used		7.0	15.0	μA	* ¹ * ²
Standby mode current dissipation	I _{stby}	V _{cc}	32-kHz crystal oscillator not used			5.0	μA	* ¹ * ²

Rev.3.00 Jul. 19, 2007 page 428 of 532 REJ09B0397-0300

					Value			
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Program/ erase current dissipation	I _{FLASH}	V _{cc}	$0^{\circ}C \le T_a \le 70^{\circ}C$ $f_{osc} = 12 \text{ MHz}$		16	22	mA	* ¹ * ² * ³
RAM data retaining voltage	V_{RAM}	V _{cc}		2.0	_	_	V	* ¹ * ²

Notes: 1. Pin states during current measurement

Mode	Internal State	Pins	Oscillator Pins
Active mode (high and medium speed)	Operates	V_{cc}	System clock oscillator: Crystal Subclock oscillator: Pin X ₁ = V _{cc}
Sleep mode	Only timer operates	V _{cc}	
Subactive mode	Operates	V _{cc}	System clock oscillator: Crystal Subclock oscillator: Crystal
Subsleep mode	Only timer operates, CPU stops	V_{cc}	
Watch mode	Only time-base clock operates, CPU stops	V_{cc}	
Standby mode	CPU and timers all stop	V_{cc}	System clock oscillator: Crystal Subclock oscillator: Pin X ₁ = V _{cc}
Programming/ erasing* ³	Operates	V_{cc}	System clock oscillator: Crystal Subclock oscillator: Pin $X_1 = V_{cc}$

- 2. Excludes current in pull-up MOS transistors and output buffers.
- 3. Applies to F-ZTAT version only.
- 4. The guaranteed temperature as an electrical characteristic for die type products is 75° C.
- 5. When power is supplied to the built-in bleeder resistances from V $_{\rm cc}$ (LPS0 = LPS1 = 1 in LR2).

Table 16.3 DC Characteristics of H8/3852, H8/3853, and H8/3854 (2)

 $V_{cc} = 2.7$ V to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0$ V to 5.5 V of H8/3854F, $V_{ss} = 0.0$ V, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C*², including subactive mode, unless otherwise specified.

					Valu	es		
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Allowable output low	I _{ol}	Output pins except in port 2	V_{cc} = 4.0 V to 5.5 V	—	—	2.0	mA	*1
current (per pin)		Port 2	V_{cc} = 4.0 V to 5.5 V	_	_	10.0		
(per pin)		All output pins		_	_	0.5		
Allowable output low	ΣI_{OL}	Output pins except in port 2	V_{cc} = 4.0 V to 5.5 V	_	_	20.0	mA	*1
current (total))	Port 2	$V_{\rm cc}$ = 4.0 V to 5.5 V	—		80.0		
		All output pins		_	_	20.0		
Allowable output high	$-\mathbf{I}_{OH}$	All output pins	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	_	—	2.0	mA	*1
current (per pin)				—	—	0.2		
Allowable output high	$\Sigma - \mathbf{I}_{OH}$	All output pins	V_{cc} = 4.0 V to 5.5 V	_	_	10.0	mA	*1
current (total))			_	_	8.0		

Notes: 1. Excludes LCD output pins.

2. The guaranteed temperature as an electrical characteristic for die type products is 75°C.

16.2.3 AC Characteristics

Table 16.4 shows the control signal timing, and table 16.5 shows the serial interface timing, of the H8/3852, H8/3853, and H8/3854.

Table 16.4 Control Signal Timing of H8/3852, H8/3853, and H8/3854

 $V_{cc} = 2.7 \text{ V}$ to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0 \text{ V}$ to 5.5 V of H8/3854F, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*3}$, including subactive mode, unless otherwise specified.

		Applicable			Values	6		Reference
Item	Symbol	••	Test Conditions	Min	Тур	Max	Unit	Figure
System clock	f _{osc}	OSC1, OSC2	$V_{cc} = 4.0 \text{ V}$ to 5.5 V	2.0		10.0	MHz	
oscillation frequency				2.0	_	5.0		
OSC clock (ϕ_{osc})	t _{osc}	OSC1, OSC2	$V_{\rm cc}$ = 4.0 V to 5.5 V	100.0	_	1000.0	ns	*1
cycle time				200.0		1000.0	_	Figure 16.1
System clock (t _{cyc}			2	_	16	t _{osc}	*1
cycle time				_		2000.0		-
Subclock oscillation frequency	f _w	X1, X2			32.768	_	kHz	
Watch clock (ϕ_w) cycle time	t _w	X1, X2			30.5	_	μS	
Subclock (ϕ_{SUB}) cycle time	t _{subcyc}			2	—	8	t _w	*2
Instruction cycle time)			2		_	t _{cyc} t _{subcyc}	
Oscillation	t _{rc}	OSC_1, OSC_2	V_{cc} = 4.0 V to 5.5 V	40.0	_	_	ms	
stabilization time (crystal oscillator)				60.0	—	_	_	
Oscillation stabilization time	t _{rc}	X ₁ , X ₂		2	—	_	S	
External clock high	t _{cph}	OSC ₁	$V_{\rm cc}$ = 4.0 V to 5.5 V	40.0		_	ns	Figure 16.1
width				80.0	_	_		
External clock low	t _{cpl}	OSC ₁	V_{cc} = 4.0 V to 5.5 V	40.0		_	ns	Figure 16.1
width				80.0	_	_	_	
External clock rise	t _{cPr}	OSC ₁	V_{cc} = 4.0 V to 5.5 V	_		15.0	ns	Figure 16.1
time				—	_	20.0	_	
External clock fall	t _{CPf}	OSC ₁	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	15.0	ns	Figure 16.1
time				—		20.0	_	

16. Electrical Characteristics (H8/3854 Group)

		Applicable			Value	es		Reference
Item	Symbol	••	Test Conditions	Min	Тур	Max	Unit	Figure
External subclock high width	\mathbf{t}_{xH}	X ₁		0.4/fx		_	S	Figure 16.2
External subclock low width	t _{xL}	X ₁		0.4/fx	_	_	S	Figure 16.2
External subclock rise time	t _{xr}	X ₁		_		100.0	ns	Figure 16.2
External subclock fall time	t _{xr}	X ₁		_	_	100.0	ns	Figure 16.2
RES pin low width	t _{REL}	RES		10	—	—	t _{cyc}	Figure 16.3
Input pin high width	t _{iH}	IRQ ₀ , IRQ ₁ , IRQ ₃ , IRQ ₄ , WKP ₀ to WKP ₇ , ADTRG, TMIB, TMIF		2		_	t _{cyc} t _{subcyc}	Figure 16.4
Input pin low width	t _{iL}	IRQ ₀ , IRQ ₁ , IRQ ₃ , IRQ ₄ , WKP ₀ to WKP ₇ , ADTRG, TMIB, TMIF		2			t _{cyc} t _{subcyc}	Figure 16.4

Notes: 1. A frequency between 1 MHz and 10 MHz is required when an external clock is input.

2. Selected with bits SA1 and SA0 in system control register 2 (SYSCR2).

3. The guaranteed temperature as an electrical characteristic for die type products is 75° C.

Table 16.5 Serial Interface (SCI3) Timing of H8/3852, H8/3853, and H8/3854

 $V_{cc} = 2.7 \text{ V}$ to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0 \text{ V}$ to 5.5 V of H8/3854F, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^*$, unless otherwise specified.

					Value	S		Reference
Item		Symbol	Test Conditions	Min	Тур	Max	Unit	Figure
Input clock	Asynchronous	t _{scyc}		4	_	_	t _{cyc}	Figure 16.5
cycle	Synchronous	_		6	—	—		
Input clock	pulse width	t _{scкw}		0.4		0.6	$t_{_{Scyc}}$	Figure 16.5
	ta delay time	t _{TXD}	$V_{\rm cc}$ = 4.0 V to 5.5 V			1	t _{cyc}	Figure 16.6
(synchronou	us mode)					1		
	a setup time	t _{RXS}	$V_{\rm cc}$ = 4.0 V to 5.5 V	200.0			ns	Figure 16.6
(synchronou	us mode)			400.0		—		
Receive dat		t _{RXH}	$V_{\rm cc}$ = 4.0 V to 5.5 V	200.0			ns	Figure 16.6
(synchronou	us mode)			400.0				

Note: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.

16.2.4 A/D Converter Characteristics

Table 16.6 shows the A/D converter characteristics of the H8/3852, H8/3853, and H8/3854.

Table 16.6 A/D Converter Characteristics of H8/3852, H8/3853, and H8/3854

 $V_{cc} = 2.7 V$ to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0 V$ to 5.5 V of H8/3854F, $V_{ss} = 0.0 V$, $T_a = -20^{\circ}C$ to +75°C*, unless otherwise specified.

		Applicable	Test		Value	es	Reference
Item	Symbol	Pins	Conditions	Min	Тур	Max	Unit Figure
Analog input voltage	AV_{IN}	AN_4 to AN_7		V _{ss} –0.3		V _{cc} +0.3	V
Analog input capacitance	C _{AIN}	AN ₄ to AN ₇		_	_	30.0	pF
Allowable signal source impedance	R _{AIN}			_	—	5.0	kΩ
Resolution (data length)					—	8	Bit
Non-linearity error				_	_	±2.0	LSB
Quantization error				_		±0.5	LSB
Absolute accuracy				_		±2.5	LSB
Conversion time				12.4		124	μs

Note: * The guaranteed temperature as an electrical characteristic for die type products is 75°C.

16.2.5 LCD Characteristics

Table 16.7 shows the LCD characteristics of the H8/3852, H8/3853, and H8/3854.

Table 16.7LCD Characteristics of H8/3852, H8/3853, and H8/3854

 $V_{cc} = 2.7 \text{ V}$ to 5.5 V of the mask ROM version of H8/3852, H8/3853, and H8/3854, $V_{cc} = 3.0 \text{ V}$ to 5.5 V of H8/3854F, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*2}$, including subactive mode, unless otherwise specified.

				Values				
Item	Symbol	Applicable Pins	Test Conditions	Min	Тур	Max	Unit	Notes
Common driver on-resistance	R_{COM}	COM1 to COM16	\pm Id = 0.05 mA, V _{cc} = 4 V	—	6	20	kΩ	*1
Segment driver on-resistance	$R_{_{SEG}}$	SEG1 to SEG40	\pm Id = 0.05 mA, V _{cc} = 4 V	—	6	20	kΩ	*1
LCD power supply bleeder resistance	R_{lcd}		$V_{cc} = 5.0 V,$ $f_x = 32.768 \text{ kHz}$	200	400	700	kΩ	

Notes: 1. Applies to the resistance (R_{com}) between the V1OUT, V2OUT, V5OUT, and V_{ss} pins and the common signal pins (COM1 to COM16), and the resistance (R_{sec}) between the V1OUT, V3OUT, V4OUT, and V_{ss} pins and the segment signal pins (SEG1 to SEG40), when Id is flowing in the pins.

The voltage applied to V1OUT through V5OUT must not exceed $V_{\rm cc}$.

2. The guaranteed temperature as an electrical characteristic for die type products is 75°C.

16.2.6 Flash Memory Characteristics

Table 16.8 shows the flash memory characteristics.

Table 16.8 Flash Memory Characteristics

Conditions: $V_{cc} = 4.5$ V to 5.5 V, $V_{ss} = 0.0$ V, $T_a = 0^{\circ}$ C to +75°C (program/erase operating temperature range)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Programming time*1*2*4		t _P	_	10	200	ms/32 bytes	
Erase time*1*3*	5	t _e	_	100	300	ms/block	
Rewrite times		N_{wec}	_	_	100	Times	
Programming	Wait time after SWE bit setting*1	х	10	_	_	μS	
	Wait time after PSU bit setting*1	у	50	_	_	μS	
	Wait time after P bit setting*1*4	Z	_	_	200	μS	
	Wait time after P bit clearing*1	α	10	_	_	μS	
	Wait time after PSU bit clearing*1	β	10	_	_	μS	
	Wait time after PV bit setting*1	γ	4	_	_	μS	
	Wait time after H'FF dummy write*1	3	2	_	_	μS	
	Wait time after PV bit clearing*1	η	4	_	_	μS	
	Maximum number of writes*1*4	Ν	_	_	1000	Times	
Erasing	Wait time after SWE bit setting*1	х	10	_	_	μS	
	Wait time after ESU bit setting*1	у	200	_	_	μS	
	Wait time after E bit setting*1*5	Z	_	_	5	ms	
	Wait time after E bit clearing*1	α	10	_	_	μS	
	Wait time after ESU bit clearing*1	β	10	_	_	μS	
	Wait time after EV bit setting*1	γ	20	_	_	μS	
	Wait time after H'FF dummy write*1	3	2	_	_	μS	
	Wait time after EV bit clearing*1	η	5	_	_	μS	
	Maximum number of erases*1*5	Ν	_	_	60	Times	

Notes: 1. Follow the program/erase algorithms when making the time settings.

2. Programming time per 32 bytes. (Indicates the total time during which the P bit is set in flash memory control register 1 (FLMCR1). Does not include the program-verify time.)

- 3. Time to erase one block. (Indicates the time during which the E bit is set in FLMCR1. Does not include the erase-verify time.)
- 4. Maximum programming time $(t_p(max) = Wait time after P bit setting (z) \times maximum number of writes (N))$
- 5. Maximum erase time

($t_{E}(max)$ = Wait time after E bit setting (z) × maximum number of erases (N))

16.3 Operation Timing

Figures 16.1 to 16.6 show timing diagrams.

Figure 16.2 Subclock Input Timing

Figure 16.3 **RES** Pin Low Width Timing

Figure 16.4 Input Timing

Figure 16.5 SCK3 Input Clock Timing

16.4 Output Load Circuit

16.5 Usage Note

Although both the F-ZTAT and mask ROM versions fully meet the electrical specifications listed in this manual, there may be differences in the actual values of the electrical characteristics, operating margins, noise margins, and so forth, due to differences in the fabrication process, the on-chip ROM, and the layout patterns.

If the F-ZTAT version is used to carry out system evaluation and testing, therefore, when switching to the mask ROM version the same evaluation and testing procedures should also be conducted on the mask ROM version.

Appendix A CPU Instruction Set

A.1 Instructions

Operation Notation

Symbol	Description			
Rd8/16	General register (destination) (8 or 16 bits)			
Rs8/16	General register (source) (8 or 16 bits)			
Rn8/16	General register (8 or 16 bits)			
CCR	Condition code register			
N	N (negative) flag in CCR			
Z	Z (zero) flag in CCR			
V	V (overflow) flag in CCR			
С	C (carry) flag in CCR			
PC	Program counter			
SP	Stack pointer			
#xx: 3/8/16	Immediate data (3, 8, or 16 bits)			
d: 8/16	Displacement (8 or 16 bits)			
@aa: 8/16	Absolute address (8 or 16 bits)			
+	Addition			
_	Subtraction			
×	Multiplication			
÷	Division			
^	Logical AND			
\vee	Logical OR			
\oplus	Exclusive logical OR			
\rightarrow	Move			
_	Logical complement			

Condition Code Notation

Symbol	Description
\$	Modified according to the instruction result
*	Not fixed (value not guaranteed)
0	Always cleared to 0
_	Not affected by the instruction execution result

Table A.1Instruction Set

			In				sin Ler				es)	с	ond	ditio	on (Cod	le	
Mnemonic	Operand Size	Operation	#xx: 8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @aa	Implied	I	н	N	z	v	с	No. of States
MOV.B #xx:8, Rd	В	#xx:8 → Rd8	2											€	€	0		2
MOV.B Rs, Rd	В	$Rs8 \rightarrow Rd8$		2										€	€	0		2
MOV.B @Rs, Rd	В	@Rs16 → Rd8			2									€	€	0	_	4
MOV.B @(d:16, Rs), Rd	В	@(d:16, Rs16)→ Rd8				4								↕	↕	0	_	6
MOV.B @Rs+, Rd	В	@Rs16 → Rd8 Rs16+1 → Rs16					2							€	€	0		6
MOV.B @aa:8, Rd	В	@aa:8 \rightarrow Rd8						2						↕	↕	0		4
MOV.B @aa:16, Rd	В	@aa:16 \rightarrow Rd8						4						↕	↕	0		6
MOV.B Rs, @Rd	В	$Rs8 \rightarrow @Rd16$			2									↕	↕	0		4
MOV.B Rs, @(d:16, Rd)	В	$Rs8 \rightarrow @(d:16, Rd16)$				4								€	€	0		6
MOV.B Rs, @-Rd	В	Rd16–1 → Rd16 Rs8 → @Rd16					2							€	€	0		6
MOV.B Rs, @aa:8	В	Rs8 \rightarrow @aa:8						2						↕	\updownarrow	0		4
MOV.B Rs, @aa:16	В	$Rs8 \rightarrow @aa:16$						4						↕	↕	0		6
MOV.W #xx:16, Rd	W	#xx:16 → Rd	4											€	€	0		4
MOV.W Rs, Rd	W	$Rs16 \rightarrow Rd16$		2										\updownarrow	\updownarrow	0		2
MOV.W @Rs, Rd	W	@Rs16 → Rd16			2									¢	¢	0	_	4
MOV.W @(d:16, Rs), Rd	W	@(d:16, Rs16) → Rd16				4							_	¢	¢	0	_	6
MOV.W @Rs+, Rd	W	@ Rs16 → Rd16 Rs16+2 → Rs16					2							€	€	0		6
MOV.W @aa:16, Rd	W	@aa:16 \rightarrow Rd16						4				—		¢	¢	0	_	6
MOV.W Rs, @Rd	W	$Rs16 \rightarrow @Rd16$			2									¢	¢	0		4
MOV.W Rs, @(d:16, Rd)	W	$Rs16 \rightarrow @(d:16, Rd16)$				4								↕	↕	0	_	6
MOV.W Rs, @-Rd	w	Rd16–2 → Rd16 Rs16 → @Rd16					2							€	€	0		6
MOV.W Rs, @aa:16	W	$Rs16 \rightarrow @aa:16$						4						\updownarrow	\updownarrow	0		6
POP Rd	w	$@SP \rightarrow Rd16$ SP+2 $\rightarrow SP$					2							€	€	0		6

			In			res on					s)	с	one	ditio	on (Cod	le	
Mnemonic	Operand Size	Operation	#xx: 8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @aa	Implied	I	н	N	z	v	с	No. of States
PUSH Rs	w	$SP-2 \rightarrow SP$ Rs16 $\rightarrow @SP$					2						_	€	\$	0		6
ADD.B #xx:8, Rd	В	$Rd8+#xx:8 \rightarrow Rd8$	2										€	€	\$	\updownarrow	\$	2
ADD.B Rs, Rd	В	$Rd8+Rs8 \rightarrow Rd8$		2									¢	¢	\$	\$	¢	2
ADD.W Rs, Rd	W	$Rd16+Rs16 \rightarrow Rd16$		2									(1)	¢	¢	€	¢	2
ADDX.B #xx:8, Rd	В	$Rd8\text{+}\#xx:8\ \text{+}C \rightarrow Rd8$	2										¢	¢	(2)	↕	\$	2
ADDX.B Rs, Rd	В	$Rd8+Rs8 + C \rightarrow Rd8$		2								_	€	↕	(2)	\Leftrightarrow	¢	2
ADDS.W #1, Rd	W	$Rd16+1 \rightarrow Rd16$		2								_			_			2
ADDS.W #2, Rd	W	$Rd16+2 \rightarrow Rd16$		2											—			2
INC.B Rd	В	$Rd8+1 \rightarrow Rd8$		2										¢	\$	\updownarrow		2
DAA.B Rd	В	Rd8 decimal adjust \rightarrow Rd8		2								_	*	¢	¢	*	(3)	2
SUB.B Rs, Rd	В	$Rd8-Rs8 \rightarrow Rd8$		2									¢	¢	\$	\Rightarrow	\$	2
SUB.W Rs, Rd	W	Rd16–Rs16 \rightarrow Rd16		2									(1)	¢	¢	¢	¢	2
SUBX.B #xx:8, Rd	В	$Rd8\text{-}\#xx:8\text{-}C\rightarrowRd8$	2										¢	¢	(2)	\Rightarrow	¢	2
SUBX.B Rs, Rd	В	Rd8–Rs8 –C \rightarrow Rd8		2									¢	¢	(2)	¢	¢	2
SUBS.W #1, Rd	W	Rd16−1 → Rd16		2											—	<u> </u>		2
SUBS.W #2, Rd	W	$Rd16-2 \rightarrow Rd16$		2											—	<u> </u>		2
DEC.B Rd	В	$Rd8-1 \rightarrow Rd8$		2										¢	\$	¢	_	2
DAS.B Rd	В	Rd8 decimal adjust \rightarrow Rd8		2								_	*	¢	¢	*	_	2
NEG.B Rd	В	$0-\text{Rd} \rightarrow \text{Rd}$		2									¢	¢	¢	€	¢	2
CMP.B #xx:8, Rd	В	Rd8–#xx:8	2										€	\Rightarrow	¢	\Rightarrow	¢	2
CMP.B Rs, Rd	В	Rd8–Rs8		2								_	\Leftrightarrow	\Rightarrow	€	\Leftrightarrow	¢	2
CMP.W Rs, Rd	W	Rd16–Rs16		2									(1)	¢	¢	\Leftrightarrow	¢	2
MULXU.B Rs, Rd	В	$Rd8 \times Rs8 \rightarrow Rd16$		2											—	<u> </u>	—	14

			In				sin Ler			e/ Syte	s)	с	ond	ditio	on (Cod	e	
Mnemonic	Operand Size	Operation	#xx: 8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @aa	Implied	I	н	N	z	v	с	No. of States
DIVXU.B Rs, Rd	В	$Rd16$ $\div Rs8 \rightarrow Rd16$ (RdH: remainder, RdL: quotient)		2										(5)	(6)			14
AND.B #xx:8, Rd	В	$Rd8 \land #xx:8 \rightarrow Rd8$	2											¢	\Rightarrow	0	—	2
AND.B Rs, Rd	В	$Rd8 \land Rs8 \rightarrow Rd8$		2										↕	\Rightarrow	0	—	2
OR.B #xx:8, Rd	В	$Rd8 \lor #xx:8 \rightarrow Rd8$	2											\updownarrow	\Leftrightarrow	0	—	2
OR.B Rs, Rd	В	$Rd8 \lor Rs8 \rightarrow Rd8$		2										¢	\Rightarrow	0	—	2
XOR.B #xx:8, Rd	В	$Rd8 \oplus \#xx:8 \to Rd8$	2											↕	\Rightarrow	0	—	2
XOR.B Rs, Rd	В	$Rd8\oplusRs8 oRd8$		2										€	\Rightarrow	0	—	2
NOT.B Rd	В	$\overline{Rd} \to Rd$		2										¢	\Rightarrow	0	—	2
SHAL.B Rd	В			2										€	\Leftrightarrow	\Leftrightarrow	€	2
SHAR.B Rd	В			2										⇒	\Leftrightarrow	0	€	2
SHLL.B Rd	В			2										\$	\$	0	\$	2
SHLR.B Rd	В	$0 \rightarrow \boxed[b_7 \ b_0] \rightarrow C$		2										0	↔	0	\$	2
ROTXL.B Rd	В			2										⇒	\leftrightarrow	0	⇒	2
ROTXR.B Rd	В	b ₇ b ₀ C		2										€	\Rightarrow	0	€	2
ROTL.B Rd	В			2										\$	↔	0	\$	2
ROTR.B Rd	В	▶ C b ₇ b ₀		2										€	€	0	€	2

			In					-	ode 1 (B		s)	с	one	ditio	on (Coc	le	Π
Mnemonic	Operand Size	Operation	#xx: 8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @aa	Implied	I	н	N	z	v	с	No. of States
BSET #xx:3, Rd	В	(#xx:3 of Rd8) ← 1		2									—					2
BSET #xx:3, @Rd	В	(#xx:3 of @Rd16) \leftarrow 1			4								—					8
BSET #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← 1						4					—					8
BSET Rn, Rd	В	(Rn8 of Rd8) ← 1		2									—					2
BSET Rn, @Rd	В	(Rn8 of @Rd16) ← 1			4								—					8
BSET Rn, @aa:8	В	(Rn8 of @aa:8) ← 1						4					—					8
BCLR #xx:3, Rd	В	(#xx:3 of Rd8) ← 0		2									—					2
BCLR #xx:3, @Rd	В	(#xx:3 of @Rd16) ← 0			4								—	—		—		8
BCLR #xx:3, @aa:8	В	(#xx:3 of @aa:8) ← 0						4					—					8
BCLR Rn, Rd	В	(Rn8 of Rd8) ← 0		2									—					2
BCLR Rn, @Rd	В	(Rn8 of @Rd16) ← 0			4								—					8
BCLR Rn, @aa:8	В	(Rn8 of @aa:8) ← 0						4					—					8
BNOT #xx:3, Rd	В	$(\#xx:3 \text{ of } Rd8) \leftarrow \\ (\#xx:3 \text{ of } Rd8)$		2									—					2
BNOT #xx:3, @Rd	В	$(\#xx:3 \text{ of } @Rd16) \leftarrow \\ (\#xx:3 \text{ of } @Rd16)$			4													8
BNOT #xx:3, @aa:8	В	$(\#xx:3 \text{ of } @aa:8) \leftarrow \\ (\#xx:3 \text{ of } @aa:8)$						4					—					8
BNOT Rn, Rd	В	(Rn8 of Rd8) ← (Rn8 of Rd8)		2									—					2
BNOT Rn, @Rd	В	$\begin{array}{l} (\text{Rn8 of } @\text{Rd16}) \leftarrow \\ (\text{Rn8 of } @\text{Rd16}) \end{array}$			4								—					8
BNOT Rn, @aa:8	В	$(\frac{\text{Rn8 of } @aa:8}{\text{Of } @aa:8}) \leftarrow (\overline{\text{Rn8 of } @aa:8})$						4					—					8
BTST #xx:3, Rd	В	$(\overline{\#xx:3} \text{ of } \overline{\text{Rd8}}) \rightarrow Z$		2									—	—	¢	—		2
BTST #xx:3, @Rd	В	$(\overline{\#xx:3 \text{ of } @\text{Rd16}}) \rightarrow Z$	1		4								—	—	¢	—		6
BTST #xx:3, @aa:8	В	$(\overline{\#xx:3} \text{ of } \overline{@aa:8}) \rightarrow Z$						4					—		€			6
BTST Rn, Rd	В	$(\overline{\text{Rn8}} \ \overline{\text{of}} \ \overline{\text{Rd8}}) \rightarrow \text{Z}$	1	2									—		¢			2
BTST Rn, @Rd	В	$(\overline{\text{Rn8}} \ \overline{\text{of}} \ \overline{@\text{Rd16}}) \rightarrow \text{Z}$			4								—		¢			6
BTST Rn, @aa:8	В	$(\overline{\text{Rn8}} \ \overline{\text{of}} \ \overline{@aa:8}) \rightarrow \text{Z}$						4					_		\Rightarrow			6

			In					•	lode h (B		s)	с	one	ditio	on (Cod	le	
Mnemonic	Operand Size	Operation	#xx: 8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @aa	Implied	I	н	N	z	v	с	No. of States
BLD #xx:3, Rd	В	(#xx:3 of Rd8) \rightarrow C		2								_			_	_	¢	2
BLD #xx:3, @Rd	В	(#xx:3 of @Rd16) \rightarrow C			4							_	_				¢	6
BLD #xx:3, @aa:8	В	(#xx:3 of @aa:8) \rightarrow C						4						_			¢	6
BILD #xx:3, Rd	В	$(\overline{\#xx:3} \text{ of } \overline{\text{Rd8}}) \rightarrow \text{C}$		2													\$	2
BILD #xx:3, @Rd	В	$(\overline{\#xx:3} \ \overline{of} \ \overline{@Rd16}) \rightarrow C$			4												¢	6
BILD #xx:3, @aa:8	В	$(\overline{\#xx:3} \ \overline{of} \ \overline{@aa:8}) \rightarrow C$						4				_					¢	6
BST #xx:3, Rd	В	$C \rightarrow (\#xx:3 \text{ of } Rd8)$		2														2
BST #xx:3, @Rd	В	$C \rightarrow (\#xx:3 \text{ of } @Rd16)$			4									—			_	8
BST #xx:3, @aa:8	В	$C \rightarrow (\#xx:3 \text{ of } @aa:8)$						4									—	8
BIST #xx:3, Rd	В	$\overline{C} \rightarrow (\#xx:3 \text{ of } Rd8)$		2														2
BIST #xx:3, @Rd	В	$\overline{C} \rightarrow (\#xx:3 \text{ of } @ \text{Rd16})$			4												—	8
BIST #xx:3, @aa:8	В	$\overline{C} \rightarrow (\#xx:3 \text{ of } @aa:8)$						4										8
BAND #xx:3, Rd	В	C∧(#xx:3 of Rd8) → C		2													\$	2
BAND #xx:3, @Rd	В	C∧(#xx:3 of @Rd16) → C			4												\$	6
BAND #xx:3, @aa:8	В	C∧(#xx:3 of @aa:8) → C						4									\$	6
BIAND #xx:3, Rd	В	$C \land (\overline{\#xx:3} \text{ of } \overline{Rd8}) \rightarrow C$		2													\$	2
BIAND #xx:3, @Rd	В	$C \land (\overline{\#xx:3} \text{ of } \overline{@Rd16}) \rightarrow C$			4												\$	6
BIAND #xx:3, @aa:8	В	$C \land (\overline{\#xx:3} \text{ of } \overline{@aa:8}) \rightarrow C$						4									\$	6
BOR #xx:3, Rd	В	C∨(#xx:3 of Rd8) → C		2											_	_	¢	2
BOR #xx:3, @Rd	В	C∨(#xx:3 of @Rd16) → C			4									—			¢	6
BOR #xx:3, @aa:8	В	C∨(#xx:3 of @aa:8) → C						4									\$	6
BIOR #xx:3, Rd	В	$C_{\vee}(\overline{\#xx:3} \text{ of } \overline{\text{Rd8}}) \rightarrow C$		2													¢	2
BIOR #xx:3, @Rd	В	$C_{\vee}(\overline{\#xx:3} \text{ of } \overline{@Rd16}) \rightarrow C$			4												\$	6
BIOR #xx:3, @aa:8	В	$C_{\vee}(\overline{\#xx:3} \text{ of } \overline{@aa:8}) \rightarrow C$						4						—			\$	6
BXOR #xx:3, Rd	В	C⊕(#xx:3 of Rd8) → C		2								_		—			¢	2
BXOR #xx:3, @Rd	В	C⊕(#xx:3 of @Rd16) → C			4								_	<u> </u>	_	_	\$	6
BXOR #xx:3, @aa:8	В	C⊕(#xx:3 of @aa:8) → C						4									\$	6
BIXOR #xx:3, Rd	В	$C \oplus (\overline{\#xx:3} \text{ of } \overline{Rd8}) \to C$		2								_	_		_	_	¢	2

				In				sing Ler				s)	с	on	ditio	on (Coc	le	
Mnemonic	Operand Size	Operation	Branching Condition	#xx: 8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @aa	Implied	I	н	N	z	v	с	No. of States
BIXOR #xx:3, @Rd	В	C⊕(#xx:3 o	$f \overline{@Rd16}) \rightarrow C$			4												\$	6
BIXOR #xx:3, @aa:8	В	C⊕(#xx:3 o	$\overline{f} @aa:8) \rightarrow C$						4									\$	6
BRA d:8 (BT d:8)		$PC \leftarrow PC + c$	d:8							2								—	4
BRN d:8 (BF d:8)	—	$PC \leftarrow PC + 2$	2							2								—	4
BHI d:8	—	lf	$C \lor Z = 0$							2								—	4
BLS d:8	_	condition	C ∨ Z = 1							2			_					—	4
BCC d:8 (BHS d:8)	—	is true	C = 0							2								—	4
BCS d:8 (BLO d:8)	_	then	C = 1							2					—			—	4
BNE d:8	—	PC ←	Z = 0							2								—	4
BEQ d:8	—	PC+d:8	Z = 1							2								—	4
BVC d:8	—	else next;	V = 0							2								—	4
BVS d:8	_		V = 1							2								—	4
BPL d:8	—		N = 0							2								—	4
BMI d:8	—		N = 1							2								—	4
BGE d:8	—		N⊕V = 0							2								—	4
BLT d:8			N⊕V = 1							2								—	4
BGT d:8	—		$Z \lor (N \oplus V) = 0$							2								—	4
BLE d:8	—		$Z \lor (N \oplus V) = 1$							2								—	4
JMP @Rn		$PC \leftarrow Rn16$	6			2												—	4
JMP @aa:16	_	PC ← aa:16	6						4						—			—	6
JMP @@aa:8	_	PC ← @aa	:8								2				—			—	8
BSR d:8		$SP-2 \rightarrow SF$ $PC \rightarrow @SF$ $PC \leftarrow PC+c$)							2									6
JSR @Rn		$SP-2 \rightarrow SF$ $PC \rightarrow @SF$ $PC \leftarrow Rn16$)			2													6
JSR @aa:16		$SP-2 \rightarrow SF$ PC $\rightarrow @SF$ PC $\leftarrow aa:10$)						4										8

			In				sin Lei				es)	с	on	ditie	on (Cod	le	
Mnemonic	Operand Size	Operation	#xx: 8/16	Rn	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)	@ @aa	Implied	I	н	N	z	v	с	No. of States
JSR @@aa:8		$SP-2 \rightarrow SP$ $PC \rightarrow @SP$ $PC \leftarrow @aa:8$								2								8
RTS	_	$PC \leftarrow @SP$ $SP+2 \rightarrow SP$									2			—				8
RTE		$\begin{array}{l} CCR \leftarrow @SP \\ SP+2 \rightarrow SP \\ PC \leftarrow @SP \\ SP+2 \rightarrow SP \end{array}$									2	\$	\$	\$	\$	¢	\$	10
SLEEP	_	Transit to power-down state									2			—				2
LDC #xx:8, CCR	В	#xx:8 → CCR	2									\$	\$	\$	\$	\$	\$	2
LDC Rs, CCR	В	$Rs8 \rightarrow CCR$		2								\$	\$	\$	\$	\$	\$	2
STC CCR, Rd	В	$CCR \rightarrow Rd8$		2								—	—	—	—	_	—	2
ANDC #xx:8, CCR	В	$CCR \land #xx:8 \rightarrow CCR$	2									\$	€	\$	\$	¢	\$	2
ORC #xx:8, CCR	В	CCR_{\vee} #xx:8 \rightarrow CCR	2									\$	\$	\$	\$	\$	\$	2
XORC #xx:8, CCR	В	$CCR \oplus \#xx:8 \rightarrow CCR$	2									\$	\$	\$	\$	\$	\$	2
NOP		$PC \leftarrow PC+2$									2		—	—				2
EEPMOV		if R4L ≠ 0 Repeat @R5 → @R6 R5+1 → R5 R6+1 → R6 R4L–1 → R4L Until R4L = 0 else next;									4							(4)

Notes: (1) Set to 1 when there is a carry or borrow from bit 11; otherwise cleared to 0.

(2) If the result is zero, the previous value of the flag is retained; otherwise the flag is cleared to 0.

- (3) Set to 1 if decimal adjustment produces a carry; otherwise retains value prior to arithmetic operation.
- (4) The number of states required for execution is 4n + 9 (n = value of R4L).
- (5) Set to 1 if the divisor is negative; otherwise cleared to 0.
- (6) Set to 1 if the divisor is zero; otherwise cleared to 0.

A.2 Operation Code Map

Table A.2 is an operation code map. It shows the operation codes contained in the first byte of the instruction code (bits 15 to 8 of the first instruction word).

Instruction when first bit of byte 2 (bit 7 of first instruction word) is 0. Instruction when first bit of byte 2 (bit 7 of first instruction word) is 1.

DAA DAS BLE ш Bit-manipulation instructions ADDX SUBX ISR BGT ш BLT MOV CMP BGE с *NOM EEPMOV ADDS SUBS BMI ш DEC ЧМ NC ВРL ∢ Note: * The PUSH and POP instructions are identical in machine language to MOV instructions. BVS MOV ი ADD SUB BVC ω ADDX MOV ADD OMP SUBX XOR AND MOV В BIST BLD BILD NEG ГРС BEQ \sim NOT BST BIAND ANDC RTE AND BNE BAND 9 BIXOR XORC XOR BCS BSR BXOR ß BIOR ORC BCC RTS ЯО 4 BOR ROTR BTST ГРС ROTXR BLS ო ROTL BCLR STC ВНІ ROTXL N SHAR SLEEP DIVXU BNOT BRN SHLR -MULXU SHAL BSET NOP BRA SHLL 0 N N ß \sim ∢ ш C Δ ш ш 0 -N ო 4 9 ω ი High

Table A.2 Operation Code Map

Rev.3.00 Jul. 19, 2007 page 451 of 532 REJ09B0397-0300

Renesas

A.3 Number of Execution States

The tables here can be used to calculate the number of states required for instruction execution. Table A.4 indicates the number of states required for each cycle (instruction fetch, data read/write, etc.) in instruction execution, and table A.3 indicates the number of cycles of each type occurring in each instruction. The total number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states = I × S₁ + J × S₂ + K × S_K + L × S_L + M × S_M + N × S_N

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.

BSET #0, @FF00

From table A.4: I = L = 2, J = K = M = N = 0

From table A.3: $S_1 = 2$, $S_1 = 2$

Number of states required for execution = $2 \times 2 + 2 \times 2 = 8$

When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and on-chip RAM is used for stack area.

JSR @ @ 30 From table A.4: I = 2, J = K = 1, L = M = N = 0

From table A.3:

 $S_{\scriptscriptstyle \rm I}=S_{\scriptscriptstyle \rm J}=S_{\scriptscriptstyle \rm K}=2$

Number of states required for execution = $2 \times 2 + 1 \times 2 + 1 \times 2 = 8$

Execution Status		Ad	ccess Location
(Instruction Cycle)		On-Chip Memory	On-Chip Peripheral Module
Instruction fetch	S,	2	_
Branch address read	S	-	
Stack operation	Sκ	=	
Byte data access	S_{L}	-	2 or 3*
Word data access	S _м	-	
Internal operation	S _N	1	

Table A.3 Number of Cycles in Each Instruction

Note: * Depends on which on-chip module is accessed. See section 2.9.1, Notes on Data Access for details.

Table A.4 Number of Cycles in Each Instruction

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
ADD	ADD.B #xx:8, Rd	1					
	ADD.B Rs, Rd	1					
	ADD.W Rs, Rd	1					
ADDS	ADDS.W #1, Rd	1					
	ADDS.W #2, Rd	1					
ADDX	ADDX.B #xx:8, Rd	1					
	ADDX.B Rs, Rd	1					
AND	AND.B #xx:8, Rd	1					
	AND.B Rs, Rd	1					
ANDC	ANDC #xx:8, CCR	1					
BAND	BAND #xx:3, Rd	1					
	BAND #xx:3, @Rd	2			1		
	BAND #xx:3, @aa:8	2			1		
Bcc	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					
	BVS d:8	2					
	BPL d:8	2					
	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
BCLR	BCLR #xx:3, Rd	1					
	BCLR #xx:3, @Rd	2			2		
	BCLR #xx:3, @aa:8	2			2		
	BCLR Rn, Rd	1					

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K		Word Data Access M	Internal Operation N
BCLR	BCLR Rn, @Rd	2			2		
	BCLR Rn, @aa:8	2			2		
BIAND	BIAND #xx:3, Rd	1					
	BIAND #xx:3, @Rd	2			1		
	BIAND #xx:3, @aa:8	2			1		
BILD	BILD #xx:3, Rd	1					
	BILD #xx:3, @Rd	2			1		
	BILD #xx:3, @aa:8	2			1		
BIOR	BIOR #xx:3, Rd	1					
	BIOR #xx:3, @Rd	2			1		
	BIOR #xx:3, @aa:8	2			1		
BIST	BIST #xx:3, Rd	1					
	BIST #xx:3, @Rd	2			2		
	BIST #xx:3, @aa:8	2			2		
BIXOR	BIXOR #xx:3, Rd	1					
	BIXOR #xx:3, @Rd	2			1		
	BIXOR #xx:3, @aa:8	2			1		
BLD	BLD #xx:3, Rd	1					
	BLD #xx:3, @Rd	2			1		
	BLD #xx:3, @aa:8	2			1		
BNOT	BNOT #xx:3, Rd	1					
	BNOT #xx:3, @Rd	2			2		
	BNOT #xx:3, @aa:8	2			2		
	BNOT Rn, Rd	1					
	BNOT Rn, @Rd	2			2		
	BNOT Rn, @aa:8	2			2		
BOR	BOR #xx:3, Rd	1					
	BOR #xx:3, @Rd	2			1		
	BOR #xx:3, @aa:8	2			1		
BSET	BSET #xx:3, Rd	1					
	BSET #xx:3, @Rd	2			2		
	BSET #xx:3, @aa:8	2			2		
	BSET Rn, Rd	1					
	BSET Rn, @Rd	2			2		

Appendix A CPU Instruction Set

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K		Word Data Access M	Internal Operation N
BSET	BSET Rn, @aa:8	2			2		
BSR	BSR d:8	2		1			
BST	BST #xx:3, Rd	1					
	BST #xx:3, @Rd	2			2		
	BST #xx:3, @aa:8	2			2		
BTST	BTST #xx:3, Rd	1					
	BTST #xx:3, @Rd	2			1		
	BTST #xx:3, @aa:8	2			1		
	BTST Rn, Rd	1					
	BTST Rn, @Rd	2			1		
	BTST Rn, @aa:8	2			1		
BXOR	BXOR #xx:3, Rd	1					
	BXOR #xx:3, @Rd	2			1		
	BXOR #xx:3, @aa:8	2			1		
CMP	CMP. B #xx:8, Rd	1					
	CMP. B Rs, Rd	1					
	CMP.W Rs, Rd	1					
DAA	DAA.B Rd	1					
DAS	DAS.B Rd	1					
DEC	DEC.B Rd	1					
DIVXU	DIVXU.B Rs, Rd	1					12
EEPMOV	EEPMOV	2			2n + 2*		1
INC	INC.B Rd	1					
JMP	JMP @Rn	2					
	JMP @aa:16	2					2
	JMP @@aa:8	2	1				2
JSR	JSR @Rn	2		1			
	JSR @aa:16	2		1			2
	JSR @@aa:8	2	1	1			
LDC	LDC #xx:8, CCR	1					
	LDC Rs, CCR	1					
MOV	MOV.B #xx:8, Rd	1					
	MOV.B Rs, Rd	1					
Note: *	n: Initial value in Ré each.	1L. The sour	ce and desti	nation opera	ands are ac	cessed n +	1 times

					Appendix A	CPU Instr	uction Set
Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
MOV	MOV.B @Rs, Rd	1			1		
	MOV.B @(d:16, Rs), Rd	2			1		
	MOV.B @Rs+, Rd	1			1		2
	MOV.B @aa:8, Rd	1			1		
	MOV.B @aa:16, Rd	2			1		
	MOV.B Rs, @Rd	1			1		
	MOV.B Rs, @(d:16, Rd)	2			1		
	MOV.B Rs, @-Rd	1			1		2
	MOV.B Rs, @aa:8	1			1		
	MOV.B Rs, @aa:16	2			1		
	MOV.W #xx:16, Rd	2					
	MOV.W Rs, Rd	1					
	MOV.W @Rs, Rd	1				1	
	MOV.W @(d:16, Rs), Rd	2				1	
	MOV.W @Rs+, Rd	1				1	2
	MOV.W @aa:16, Rd	2				1	
	MOV.W Rs, @Rd	1				1	
	MOV.W Rs, @(d:16,	2				1	

Rd)

MULXU

NEG

NOP

NOT

OR

ORC

ROTL

ROTR

MOV.W Rs, @-Rd

MULXU.B Rs, Rd

NEG.B Rd

NOT.B Rd

OR.B #xx:8, Rd

ORC #xx:8, CCR

OR.B Rs, Rd

ROTL.B Rd

ROTR.B Rd

NOP

MOV.W Rs, @aa:16 2

1

1

1

1

1

1

1

1

1

1

1

1

2

12

Appendix A CPU Instruction Set

Instruction	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	•	Word Data Access M	Internal Operation N
ROTXL	ROTXL.B Rd	1					
ROTXR	ROTXR.B Rd	1					
RTE	RTE	2		2			2
RTS	RTS	2		1			2
SHAL	SHAL.B Rd	1					
SHAR	SHAR.B Rd	1					
SHLL	SHLL.B Rd	1					
SHLR	SHLR.B Rd	1					
SLEEP	SLEEP	1					
STC	STC CCR, Rd	1					
SUB	SUB.B Rs, Rd	1					
	SUB.W Rs, Rd	1					
SUBS	SUBS.W #1, Rd	1					
_	SUBS.W #2, Rd	1					
POP	POP Rd	1		1			2
PUSH	PUSH Rs	1		1			2
SUBX	SUBX.B #xx:8, Rd	1					
	SUBX.B Rs, Rd	1					
XOR	XOR.B #xx:8, Rd	1					
	XOR.B Rs, Rd	1					
XORC	XORC #xx:8, CCR	1					

Appendix B Internal I/O Registers

B.1 Register Addresses

B.1.1 H8/3857 Group Addresses

Address	Register				Bit	Names				Module
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'80	FLMCR1*	¹ FWE	SWE			EV	PV	Е	Р	Flash
H'81	FLMCR2*	¹ FLER	_		_	_	_	ESU	PSU	memory
H'82										_
H'83	EBR* ¹	_	EB6	EB5	EB4	EB3	EB2	EB1	EB0	
H'84										_
H'85										_
H'86										
H'87										_
H'88										_
H'89	MDCR*1	_	_	_	_	_	_	TSDS2	TSDS1	
H'8A										_
H'8B										_
H'8C										_
H'8D										
H'8E										
H'8F	SYSCR3*	1	—	_	_	FLSHE	_	—	—	_
H'90	TCSRW*	B6WI	TCWE	B4WI	TCSRW	/E B2WI	WDON	B0WI	WRST	Watchdog
H'91	TCW* ²	TCW7	TCW6	TCW5	TCW4	TCW3	TCW2	TCW1	TCW0	timer
H'92	TMW* ²	—			_		CKS2	CKS1	CKS0	_
H'93										
H'94										
H'95										_
H'96										_
H'97										_
H'98										_
H'99										_
H'9A										_
H'9B										_

Appendix B Internal I/O Registers

Address I	Reaister				Bit	Names				Module
	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'9C										
H'9D										_
H'9E										_
H'9F										_
H'AO S	SCR1	SNC1	SNC0	_	_	CKS3	CKS2	CKS1	CKS0	SCI1
H'A1 S	SCSR1	_	SOL	ORER	_	_	_	_	STF	_
H'A2 S	SDRU	SDRU7	SDRU6	SDRU5	SDRU4	SDRU3	SDRU2	SDRU1	SDRU0	_
H'A3	SDRL	SDRL7	SDRL6	SDRL5	SDRL4	SDRL3	SDRL2	SDRL1	SDRL0	_
H'A4										
H'A5										_
H'A6										_
H'A7										_
H'A8	SMR	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0	SCI3
H'A9 I	BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0	_
H'AA S	SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_
H'AB ⁻	TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	_
H'AC S	SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	_
H'AD I	RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	_
H'AE										
H'AF										_
H'B0 ⁻	ТМА	TMA7	TMA6	TMA5	_	ТМАЗ	TMA2	TMA1	TMA0	Timer A
H'B1 ⁻	TCA	TCA7	TCA6	TCA5	TCA4	TCA3	TCA2	TCA1	TCA0	_
H'B2 ⁻	TMB	TMB7	_	_	_	_	TMB2	TMB1	TMB0	Timer E
H'B3 ⁻	TCB/TLB	TCB7/ TLB7	TCB6/ TLB6	TCB5/ TLB5	TCB4/ TLB4	TCB3/ TLB3	TCB2/ TLB2	TCB1/ TLB1	TCB0/ TLB0	_
H'B4 ⁻	ТМС	TMC7	TMC6	TMC5	_	_	TMC2	TMC1	TMC0	Timer C
H'B5 ⁻	TCC/TLC	TCC7/ TLC7	TCC6/ TLC6	TCC5/ TLC5	TCC4/ TLC4	TCC3/ TLC3	TCC2/ TLC2	TCC1/ TLC1	TCC0/ TLC0	_
H'B6 ⁻	TCRF	TOLH	CKSH2	CKSH1	CKSH0	TOLL	CKSL2	CKSL1	CKSL0	Timer F
H'B7 ⁻	TCSRF	OVFH	CMFH	OVIEH	CCLRH	OVFL	CMFL	OVIEL	CCLRL	-
H'B8	TCFH	TCFH7	TCFH6	TCFH5	TCFH4	TCFH3	TCFH2	TCFH1	TCFH0	_

Address	Register				Bit N	lames				Module
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'B9	TCFL	TCFL7	TCFL6	TCFL5	TCFL4	TCFL3	TCFL2	TCFL1	TCFL0	Timer F
H'BA	OCRFH	OCRFH7	OCRFH6	OCRFH5	OCRFH4	OCRFH3	OCRFH2	OCRFH1	OCRFH0	
H'BB	OCRFL	OCRFL7	OCRFL6	OCRFL5	OCRFL4	OCRFL3	OCRFL2	OCRFL1	OCRFL0	
H'BC										
H'BD										
H'BE										
H'BF										
H'C0										
H'C1										
H'C2										
H'C3										
H'C4	AMR	CKS	TRGE	_	_	CH3	CH2	CH1	CH0	A/D
H'C5	ADRR	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	converter
H'C6	ADSR	ADSF	_	_	_	_	_	_	_	
H'C7										
H'C8	PMR1	IRQ3	IRQ2	IRQ1	PWM		TMOFH	TMOFL	TMOW	I/O ports
H'C9	PMR2	_	_	_	_	IRQ0	POF1	UD	IRQ4	
H'CA	PMR3	_	_	_	_	_	SO1	SI1	SCK1	
H'CB	PMR4	NMOD7	NMOD6	NMOD5	NMOD4	NMOD3	NMOD2	NMOD1	NMOD0	
H'CC	PMR5	WKP7	WKP6	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	
H'CD										
H'CE										
H'CF										
H'D0	PWCR		_		_				PWCR0	14-bit
H'D1	PWDRU	_	_	PWDRU5	FWDRU4	PWDRU3	PWDRU2	PWDRU1	PWDRU0	PWM
H'D2	PWDRL	PWDRL7	PWDRL6	PWDRL5	PWDRL4	PWDRL3	PWDRL2	PWDRL1	PWDRL0	
H'D3										
H'D4	PDR1	P1,	P1 ₆	P1₅	P1₄	P1₃	P1 ₂	P1,	P1 ₀	I/O ports
H'D5	PDR2	P2 ₇	P2 ₆	P2₅	P2 ₄	P2 ₃	P2 ₂	P2,	P2 ₀	
H'D6	PDR3	P3 ₇	P3 ₆	P3₅	P3₄	P3 ₃	P3 ₂	P3,	P3 ₀	
H'D7	PDR4					P4 ₃	P4 ₂	P4,	P4 ₀	
H'D8	PDR5	P5,	P5 ₆	P5₅	P5₄	P5 ₃	P5 ₂	P5,	P5 ₀	
H'D9										

Appendix B Internal I/O Registers

Addres	s Register				Bit I	Names				Module
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'DA										I/O ports
H'DB										_
H'DC	PDR9	P9 ₇	P9 ₆	P9 ₅	P9 ₄	P9 ₃	P9 ₂	P9,	P9 ₀	_
H'DD	PDRA	_	_			PA ₃	PA ₂	PA ₁	PA ₀	_
H'DE	PDRB	PB ₇	PB ₆	PB_{5}	PB_4	PB ₃	PB ₂	PB ₁	PB₀	_
H'DF										_
H'E0	PUCR1	PUCR1 ₇	PUCR1 ₆	$PUCR1_{5}$	$PUCR1_4$	PUCR1 ₃	PUCR1 ₂	PUCR1 ₁	PUCR1 ₀	_
H'E1	PUCR3	PUCR3 ₇	PUCR3 ₆	PUCR3₅	PUCR3 ₄	PUCR3 ₃	PUCR3 ₂	PUCR3 ₁	PUCR3 ₀	_
H'E2	PUCR5	PUCR57	PUCR5 ₆	PUCR5₅	PUCR5 ₄	PUCR5 ₃	PUCR5 ₂	PUCR5 ₁	PUCR5 ₀	_
H'E3										_
H'E4	PCR1	PCR1 ₇	PCR1 ₆	PCR1₅	PCR1₄	PCR1 ₃	PCR1 ₂	PCR1 ₁	PCR1 ₀	_
H'E5	PCR2	PCR2 ₇	PCR2 ₆	$PCR2_{5}$	$PCR2_4$	PCR2 ₃	PCR2 ₂	PCR2 ₁	PCR2 ₀	_
H'E6	PCR3	PCR3 ₇	PCR3 ₆	PCR3₅	PCR3 ₄	PCR3 ₃	PCR3 ₂	PCR3 ₁	PCR3 ₀	_
H'E7	PCR4	_	_				PCR4 ₂	PCR4 ₁	PCR4 ₀	_
H'E8	PCR5	PCR5 ₇	PCR5 ₆	PCR5₅	PCR5 ₄	PCR5 ₃	PCR5 ₂	PCR5 ₁	PCR5 ₀	_
H'E9										_
H'EA										_
H'EB										_
H'EC	PCR9	PCR9 ₇	PCR9 ₆	$PCR9_{5}$	$PCR9_4$	PCR9₃	PCR9 ₂	PCR9 ₁	PCR9 ₀	_
H'ED	PCRA	_	_	_	_	$PCRA_3$	$PCRA_2$	PCRA ₁	$PCRA_0$	_
H'EE										
H'EF										_
H'F0	SYSCR1	SSBY	STS2	STS1	STS0	LSON	—	_	—	System
H'F1	SYSCR2	_	_		NESEL	DTON	MSON	SA1	SA0	control
H'F2	IEGR	_	_	_	IEG4	IEG3	IEG2	IEG1	IEG0	_
H'F3	IENR1	IENTA	IENS1	IENWP	IEN4	IEN3	IEN2	IEN1	IEN0	_
H'F4	IENR2	IENDT	IENAD			IENTFH	IENTFL	IENTC	IENTB	_
H'F5										_
H'F6	IRR1	IRRTA	IRRS1		IRRI4	IRRI3	IRRI2	IRRI1	IRRI0	_
H'F7	IRR2	IRRDT	IRRAD			IRRTFH	IRRTFL	IRRTC	IRRTB	_
H'F8										_
H'F9	IWPR	IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	_

Rev.3.00 Jul. 19, 2007 page 462 of 532 REJ09B0397-0300

Addres	s Registe	r	Bit Names								
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	
H'FA											
H'FB											
H'FC											
H'FD											
H'FE											
H'FF											
Legen	d:										

SCI1: Serial communication interface 1

SCI3: Serial communication interface 3

Notes: 1. Applies to the F-ZTAT version. In the mask ROM version, a read access to the address of a register other than MDCR will always return 0, a read access to the MDCR address will return an undefined value, and writes are invalid.

2. Applies to the F-ZTAT version. In the mask ROM version, read accesses to the corresponding addresses will always return 1, and writes are invalid.

B.1.2 H8/3854 Group Addresses

Addres	s Register				Bit	Names				Module
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'80	FLMCR1*	FWE	SWE			EV	PV	Е	Р	Flash
H'81	FLMCR2*	¹ FLER	_	_	_		_	ESU	PSU	memory
H'82										
H'83	EBR* ¹	_	EB6	EB5	EB4	EB3	EB2	EB1	EB0	
H'84										
H'85										
H'86										
H'87										
H'88										
H'89	MDCR* ¹		_	_	_	_		TSDS2	TSDS1	
H'8A										
H'8B										
H'8C										
H'8D										
H'8E										
H'8F	SYSCR3*	1				FLSHE				
H'90	TCSRW*	² B6WI	TCWE	B4WI	TCSRW	E B2WI	WDON	BOWI	WRST	Watchdog
H'91	TCW* ²	TCW7	TCW6	TCW5	TCW4	TCW3	TCW2	TCW1	TCW0	timer
H'92	TMW* ²	_					CKS2	CKS1	CKS0	
H'93										
H'94										
H'95										
H'96										
H'97										
H'98										
H'99										
H'9A										
H'9B										
H'9C										
H'9D										
H'9E										
H'9F										

Rev.3.00 Jul. 19, 2007 page 464 of 532 REJ09B0397-0300

Addres	s Register	Bit Names									
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	
H'A0											
H'A1										-	
H'A2										-	
H'A3										-	
H'A4										-	
H'A5											
H'A6											
H'A7										-	
H'A8	SMR	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0	SCI3	
H'A9	BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0		
H'AA	SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0		
H'AB	TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	•	
H'AC	SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	•	
H'AD	RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	•	
H'AE											
H'AF										-	
H'B0	TMA	TMA7	TMA6	TMA5	_	TMA3	TMA2	TMA1	TMA0	Timer A	
H'B1	TCA	TCA7	TCA6	TCA5	TCA4	TCA3	TCA2	TCA1	TCA0		
H'B2	TMB	TMB7	_	_	_	_	TMB2	TMB1	TMB0	Timer B	
H'B3	TCB/TLB		TCB6/	TCB5/	TCB4/	TCB3/	TCB2/	TCB1/	TCB0/	•	
		TLB7	TLB6	TLB5	TLB4	TLB3	TLB2	TLB1	TLB0		
H'B4										-	
H'B5											
H'B6	TCRF	TOLH	CKSH2	CKSH1	CKSH0	TOLL	CKSL2	CKSL1	CKSL0	Timer F	
H'B7	TCSRF	OVFH	CMFH	OVIEH	CCLRH	OVFL	CMFL	OVIEL	CCLRL	-	
H'B8	TCFH	TCFH7	TCFH6	TCFH5	TCFH4	TCFH3	TCFH2	TCFH1	TCFH0	-	
H'B9	TCFL	TCFL7	TCFL6	TCFL5	TCFL4	TCFL3	TCFL2	TCFL1	TCFL0	-	
H'BA	OCRFH								OCRFH0	_	
H'BB	OCRFL	OCRFL7	OCRFL6	OCRFL5	OCRFL4	OCRFL3	OCRFL2	OCRFL1	OCRFL0		
H'BC										-	
H'BD										-	
H'BE										_	
H'BF										_	
H'C0										_	
H'C1											

Appendix B Internal I/O Registers

Addres	s Register		Bit Names								
(low)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name	
H'C2											
H'C3										-	
H'C4	AMR	CKS	TRGE	_	_	СНЗ	CH2	CH1	CH0	A/D	
H'C5	ADRR	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	converter	
H'C6	ADSR	ADSF							_	-	
H'C7											
H'C8	PMR1	IRQ3	_	IRQ1	_	_	TMOFH	TMOFL	TMOW	I/O ports	
H'C9	PMR2					IRQ0			IRQ4	-	
H'CA										_	
H'CB	PMR4	NMOD7	NMOD6	NMOD5	NMOD4	NMOD3	NMOD2	NMOD1	NMOD0	_	
H'CC	PMR5	WKP7	WKP6	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	_	
H'CD											
H'CE										-	
H'CF										-	
H'D0										-	
H'D1										-	
H'D2										-	
H'D3										-	
H'D4	PDR1	P1,	_	P1₅	_	_	P1 ₂	P1,	P1 ₀	I/O ports	
H'D5	PDR2	P2,	P2 ₆	P2₅	P2 ₄	P2 ₃	P2 ₂	P2,	P2 ₀	-	
H'D6										-	
H'D7	PDR4	_	_	_	_	P4 ₃	P4 ₂	P4,	P4 ₀	_	
H'D8	PDR5	P5,	P5 ₆	P5₅	P5₄	P5₃	P5 ₂	P5 ₁	P5₀	-	
H'D9										-	
H'DA										-	
H'DB										-	
H'DC	PDR9	P9 ₇	P9 ₆	P9₅	P94	P9 ₃	P9 ₂	P9 ₁	P9 ₀	-	
H'DD	PDRA	_				PA ₃	PA ₂	PA ₁	PA ₀	-	
H'DE	PDRB	PB ₇	PB ₆	PB₅	PB_4				_	-	
H'DF										-	
H'E0	PUCR1	PUCR1 ₇		PUCR1₅			PUCR1 ₂	PUCR1 ₁	PUCR1 ₀	-	
H'E1										-	
H'E2	PUCR5	PUCR57	PUCR5 ₆	PUCR5₅	PUCR5 ₄	PUCR5 ₃	PUCR5 ₂	PUCR51	PUCR5 ₀	-	
H'E3										-	

Rev.3.00 Jul. 19, 2007 page 466 of 532 REJ09B0397-0300

Address	Register				Bit	Names				Module
	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'E4	PCR1	PCR1 ₇	_	PCR1₅	_	_	PCR1 ₂	PCR1 ₁	PCR1 ₀	I/O ports
H'E5	PCR2	PCR2 ₇	PCR2 ₆	PCR2₅	$PCR2_4$	PCR2 ₃	PCR2 ₂	PCR2 ₁	PCR2₀	
H'E6										_
H'E7	PCR4	_	_	_	_	_	PCR4 ₂	PCR4 ₁	PCR4 ₀	
H'E8	PCR5	PCR5 ₇	PCR5 ₆	PCR5₅	$PCR5_4$	PCR5 ₃	PCR5 ₂	PCR5 ₁	PCR5₀	
H'E9										_
H'EA										
H'EB										_
H'EC	PCR9	PCR9 ₇	PCR9 ₆	PCR9₅	$PCR9_4$	PCR9 ₃	PCR9 ₂	PCR9 ₁	PCR9 ₀	_
H'ED	PCRA	_	_			$PCRA_3$	PCRA ₂	PCRA ₁	PCRA ₀	
H'EE										_
H'EF										_
H'F0	SYSCR1	SSBY	STS2	STS1	STS0	LSON	_		_	System
H'F1	SYSCR2	_	_	_	NESEL	DTON	MSON	SA1	SA0	control
H'F2	IEGR	_	_	_	IEG4	IEG3	_	IEG1	IEG0	_
H'F3	IENR1	IENTA	—	IENWP	IEN4	IEN3	_	IEN1	IEN0	_
H'F4	IENR2	IENDT	IENAD			IENTFH	IENTFL		IENTB	
H'F5										
H'F6	IRR1	IRRTA	—		IRRI4	IRRI3	_	IRRI1	IRRI0	_
H'F7	IRR2	IRRDT	IRRAD			IRRTFH	IRRTFL		IRRTB	
H'F8										_
H'F9	IWPR	IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	_
H'FA										
H'FB										_
H'FC										_
H'FD										_
H'FE										_
H'FF										
l egend.										

Legend:

SCI3: Serial communication interface 3

- Notes: 1. Applies to the F-ZTAT version. In the mask ROM version, a read access to the address of a register other than MDCR will always return 0, a read access to the MDCR address will return an undefined value, and writes are invalid.
 - 2. Applies to the F-ZTAT version. In the mask ROM version, read accesses to the corresponding addresses will always return 1, and writes are invalid.

B.2 Register Descriptions

H'80 Flash memory (On-chip flash memory version only)

Note: * Determined by the state of the FWE pin.

H'81

Flash memory error

0	Flash memory is operating normally Flash memory program/erase protection (error protection) is disabled [Clearing condition] Reset or hardware standby mode
1	An error occurred during flash memory programming/erasing Flash memory program/erase protection (error protection) is enabled [Setting condition] See section 6.6.3, Error Protection

EBR—Erase block register

H'83 Flash memory (On-chip flash memory version only)

Bit	:	7	6	5	4	3	2	1	0
		_	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial valu	le :	0	0	0	0	0	0	0	0
Read/Wri	te:		R/W						

Flash memory erase blocks

Block (Size)	Addresses
EB0 (1 kbyte)	H'0000 to H'03FF
EB1 (1 kbyte)	H'0400 to H'07FF
EB2 (1 kbyte)	H'0800 to H'0BFF
EB3 (1 kbyte)	H'0C00 to H'0FFF
EB4 (28 kbytes)	H'1000 to H'7FFF
EB5 (16 kbytes)	H'8000 to H'BFFF
EB6 (12 kbytes)	H'C000 to H'EDFF

MDCR-Mode control register

Flash memory (On-chip flash memory version only)

Bit :	7	6	5	4	3	2	1	0
	_	—					TSDS2	TSDS1
Initial value :	0	0	0	0	0	0	*	*
Read/Write :	—	—			—	—	R	R
Nata v Datau							Test pin m	nonitor bits

H'89

Note: * Determined by the TEST and TEST2 pins.

SYSCR3—	SYSCR3—System control register 3					H'8F (On-chip flash n			Flash memory nemory version only)	
Bit	:	7	6	5	4	3	2	1	0	
					_	FLSHE			_	
Initial valu	ie :	0	0	0	0	0	0	0	0	
Read/Writ	te :	_	_	 Flash	memory o	R/W	 ster enabl	e	_	
				0		emory cont				

H'90 Flash memory (On-chip flash memory version only)

Note: * Can be written to only when the write condition is satisfied.

TCW—Timer counter W

Flash memory (On-chip flash memory version only)

Bit :	7	6	5	4	3	2	1	0
	TCW7	TCW6	TCW5	TCW4	TCW3	TCW2	TCW1	TCW0
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							

H'91

TMW—Timer mode register W						H'92 Flash me (On-chip flash memory version				
Bit	:	7	6	5		4	3	2	1	0
							_	CKS2	CKS1	CKS0
Initial value Read/Write		1	1	1		1	1	1 <u>R/W</u>	1 R/W	1 R/W
	С	 Clock sele	ct							
		Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS		_	Description			
		0	0	0	-	Inter	nal clock: d	¢/64		
		0	0	1		Inter	nal clock: d	¢/128		
		0	1	0		Inter	nal clock: @	¢/256		
		0	1	1		Inter	nal clock: @	¢/512		
		1	0	0		Inter	nal clock: d	¢/1024		
		1	0	1		Inter	nal clock: d	¢/2048		
		1	1	0		Internal clock:				

Note: TMW is an 8-bit read/write register that selects the input clock. Upon reset, TMW is initialized to H'FF.

Internal clock: $\phi/8192$ (initial value)

1

1

1

SCR1—Serial o		H'A0 S (H8/3857 Group o			SCI1 Group only)			
Bit	7	6	5	4	3	2	1	0
	SNC1	SNC0	_		CKS3	CKS2	CKS1	CKS0
Initial value	0	0	0	0	0	0	0	0

Read/Write

R/W	R/W	R/	W	R/W R	/W R/W	R/W	R/V
	Clock	Select (CKS2 t	o CKS0)	1		_
					Serial C	lock Cycle	
	Bit 2	Bit 1	Bit 0	Prescaler	Synch	nronous	
	CKS2	CKS1	CKS0	Division	$\phi = 5 \text{ MHz}$	φ = 2.5 MHz	
	0	0	0	ф/1024	204.8 μs	409.6 μs	
			1	ф/256	51.2 μs	102.4 μs	
		1	0	ф/64	12.8 μs	25.6 μs	
			1	ф/32	6.4 μs	12.8 μs	
	1	0	0	ф/16	3.2 μs	6.4 μs	1
			1	ф/8	1.6 μs	3.2 μs	
		1	0	φ/4	0.8 µs	1.6 μs	
			1	φ/2		0.8 μs	1

source select

Clock source is prescaler S, and pin SCK 1 is output pin 0

Clock source is external clock, and pin SCK₁ is input pin 1

Operation mode select

0	0	8-bit synchronous transfer mode
	1	16-bit synchronous transfer mode
1	0	Continuous clock output mode
	1	Reserved

SCSR1—Serial control/status register 1

SCI1 (H8/3857 Group only)

Note: * Only a write of 0 for flag clearing is possible.

SDRU—Serial	data regis	ter U	Н	''A2 (1	H8/3857 (SCI1 Group only)			
Bit	7	6	5	4	3	2	1	0	
	SDRU7	SDRU6	SDRU5	SDRU4	SDRU3	SDRU2	SDRU1	SDRU0	
Initial value	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Used to set transmit data and store receive data 8-bit transfer mode: Not used 16-bit transfer mode: Upper 8 bits of data SDRL—Serial data register L H'A3 SCI1									
SDRL—Serial	data regis	ter L			Н				
SDRL—Serial	data regis	ter L			Н		H8/3857 (SCI1 Group only)	
SDRL—Serial	data regist	ter L	5	4	H 3		H8/3857 (1		
			5 SDRL5	4 SDRL4		(1		Group only)	
	7 SDRL7	6	SDRL5	SDRL4	3 SDRL3	(I 2 SDRL2	1 SDRL1	0 SDRL0	
Bit	7 SDRL7	6 SDRL6	SDRL5	SDRL4	3 SDRL3	(I 2 SDRL2	1 SDRL1	0 SDRL0	

SMR—Serial mode register

SCI3

Bit	7	6	5	4	3	2	1	0
	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

SCR3—Serial control register 3

H'AA

SCI3

Bit	7	6	5	4	3	2	1	0
	TIE	RIE		RE	MPIE	TEIE	CKE1	CKE0
Initial value	0	0	0	0		0		0
Read/Write	•	-	÷	-	0	•	0	•
Read/write	R/W	R/W	/ R/W	R/W	R/W	R/W	R/W	R/W
	Clock e	nable –						
	Bit 1	Bit 0			Descripti	on		
	CKE1	CKE0	Communicatio	on Mode	Clock Sou	rce	SCK ₃ Pir	Function
	0	0	Asynchronous	S	Internal clo		I/O port	
			Synchronous		Internal clo		Serial clo	
		1	Asynchronous	\$	Internal clo		Clock out	•
			Synchronous		this combined	(Do not set nation)	this comb	I (Do not set pination)
	1	0	Asynchronous	3	External cl	ock	Clock inp	ut
			Synchronous		External cl	ock	Serial clo	ck input
		1	Asynchronous	6	Reserved this combi	(Do not set nation)	Reserved this comb	l (Do not set bination)
			Synchronous		Reserved this combined	(Do not set nation)	Reserved this comb	I (Do not set bination)
Transm	nit end int	errupt e	nable					
0 Tr	ansmit end	l interrup	ot (TEI) disable	d				
1 Tr	ansmit end	l interrup	ot (TEI) enabled	k				
Multipro	cessor int	errupt e	enable					
[Cle	aring cond	lition]	ot request disab ives a data valı	``	ry receive o	peration)		
Unti	I a multipro	ocessor l (ERI) are	ot request enab bit value of 1 is e disabled, and	received, t				
Receive e	nable							
0 Recei	ve operatio	on disab	led (RXD is a g	eneral I/O	port)			
1 Recei	ve operatio	on enabl	ed (RXD is the	receive da	ta pin)			
Transmit en	able							
0 Transmi	t operation	disable	d (TXD is a ger	neral I/O po	ort)			
1 Transmi	t operation	enabled	d (TXD is the tra	ansmit data	a pin)			
Receive interr	upt enable	е						
0 Receive d	ata full inte	errupt red	quest (RXI) and	receive ei	ror interrupt	request (El	RI) disabled	k
1 Receive d	ata full inte	errupt red	quest (RXI) and	l receive ei	rror interrupt	request (El	RI) enabled	
Transmit interru	pt enable							
0 Transmit dat	a empty in	terrupt r	equest (TXI) di	sabled				
1 Transmit dat	a empty in	terrupt r	equest (TXI) er	nabled				

TDR—Transmi	it data reg	gister			Н	'AB		SC	13
Bit	7	6	5	4	3	2	1	0	_
	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	
Initial value	1	1	1	1	1	1	1	1	-
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Data to be transferred to TSR

SSR—Serial status register

H'AC

SCI3

Bit		7	6	5	4	3	2	1	0
		TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT
Initia	l value	1	0	0	0	0	1	0	0
Read	d/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W
		cessor bit re tes reception		hich the multi	processor hit		processor bi		ismit data is 0
		tes reception							ismit data is 0
	Transmit e	end							
	0 Indicates that transmission is in progress								
	[Clearing conditions] After reading TDRE = 1, cleared by writing 0 to TDRE. When data is written to TDR by an instruction.								
	1 Indicate	s that a trans							
	[Setting	conditions]			ntrol register				
			If IDRE is	set to 1 wher	n the last bit c	of a transmitte	ed character	is sent.	
	Parity error	****				at a d			
	[Clearing]	that data rece	• •	•	eared by writi				
		that a parity e							
	[Setting co				ceived data p	lus the narity	hit does not	match	
		onation			setting in the				
F	raming error	r							
	Indicates th			•					
	[Clearing co				red by writing	g 0			
1		at a framing			•				
	[Setting cor	ndition] I	he stop bit at	the end of re	eceive data is	checked and	d found to be	0	
Öv	errun error								
	Indicates that		• • •						
	[Clearing con	-	-		ed by writing	0			
	Indicates that				0				
	[Setting cond	illion] vvr	ien reception	or the next s	erial data is c	completed wr	IIIE RDRF IS S	Set to T	
	eive data reg								
	dicates there					_			
[C	[Clearing conditions] After reading RDRF = 1, cleared by writing 0. When data is read from RDR by an instruction.								
1 In	1 Indicates that there is receive data in RDR								
[S	Setting conditi	ion] Whe	n receiving e	nds normally	, with receive	data transfe	rred from RS	R to RDR	
Trans	mit data reg	ister empty							
0 Indi	icates that tra	ansmit data w	ritten to TDR	has not beer	n transferred	to TSR			
Cle	earing conditi				by writing 0. an instruction	I.			
1 Indi	icates that no	transmit dat	a has been w	ritten to TDR	, or the trans	mit data writt	en to TDR ha	is been transf	erred to TSR
ISe	ttina conditio	nsl When	bit TE in seri	al control req	ister 3 (SCR	3) is 0			

When data is transferred from TDR to TSR.

Note: *Only a write of 0 for flag clearing is possible.

RDR—Receive data register

D:+			7	6		F	4	0	0	-	0	
Bit		Γ		6		5	4	3	2	1	0	
			RDR7	RDF	ιο R	DR5	RDR4	RDR3	RDR2	RDR1	RDR0	
	l value		0	0		0	0	0	0	0	0	
Read	d/Write		R	R		R	R	R	R	R	R	
MA-	—Time	r m	ode reg	ister A				Н	'B0		Timer	
Bit			7	6		5	4	3	2	1	0	
			TMA7	TMA	A6 T	MA5	_	ТМАЗ	TMA2	TMA1	TMA0	
Initia	al value	L	0	0		0	1	0	0	0	0	
Read	d/Write		R/W	R/V	V F	R/W	_	R/W	R/W	R/W	R/W	
	k outp		elect	Interna	l clock	select						
		1 t s /32	elect	Interna		select		Prescaler	and Divide	er Batio		
		16		TMA3	TMA2	TMA1	TMA0	or Overflow	or Overflow Period			
	1 0 φ	8		0	0	0	0	PSS	ф/8192		Interval	
	1 φ	4					1	PSS	ф/4096		timer	
						1	-				-	
10	0 0 φ	_W /3	2			· ·	0	PSS	ф/2048			
1 (_{//} 3 //1					1	PSS	ф/512			
	1 φ		6		1	0	1 0	PSS PSS	φ/512 φ/256			
	1 ¢ 1 0 ¢	_W /1	6		1	0	1 0 1	PSS PSS PSS	φ/512 φ/256 φ/128		- - -	
	1 ¢ 1 0 ¢	_{//} /1 //8	6		1		1 0 1 0	PSS PSS PSS PSS	 φ/512 φ/256 φ/128 φ/32 		- - - -	
	1 ¢ 1 0 ¢	_{//} /1 //8	6			0	1 0 1 0 1	PSS PSS PSS PSS PSS	 φ/512 φ/256 φ/128 φ/32 φ/8 		· · ·	
	1 ¢ 1 0 ¢	_{//} /1 //8	6	1	1	0	1 0 1 0 1 0	PSS PSS PSS PSS PSS PSW	φ/512 φ/256 φ/128 φ/32 φ/8 1 s		Time	
	1 ¢ 1 0 ¢	_{//} /1 //8	6	1		0	1 0 1 0 1 0 1 1 0	PSS PSS PSS PSS PSW PSW	 φ/512 φ/256 φ/128 φ/32 φ/8 1 s 0.5 s 		Time base	
	1 ¢ 1 0 ¢	_{//} /1 //8	6	1		0	1 0 1 0 1 0 1 0 1 0	PSS PSS PSS PSS PSS PSW PSW PSW	 φ/512 φ/256 φ/128 φ/32 φ/8 1 s 0.5 s 0.25 s 			
	1 ¢ 1 0 ¢	_{//} /1 //8	6	1	0	0 1 0 1 1 1	1 0 1 0 1 0 1 0 1 0 1	PSS PSS PSS PSS PSW PSW PSW PSW	φ/512 φ/256 φ/128 φ/32 φ/8 1 s 0.5 s 0.25 s 0.03125			
	1 ¢ 1 0 ¢	_{//} /1 //8	6	1		0	1 0 1 0 1 0 1 0 1 0 1 0	PSS PSS PSS PSS PSS PSW PSW PSW	φ/512 φ/256 φ/128 φ/32 φ/8 1 s 0.5 s 0.25 s 0.03125			
	1 ¢ 1 0 ¢	_{//} /1 //8	6	1	0	0 1 0 1 1 1	1 0 1 0 1 0 1 0 1 0 1	PSS PSS PSS PSS PSW PSW PSW PSW	φ/512 φ/256 φ/128 φ/32 φ/8 1 s 0.5 s 0.25 s 0.03125			

H'AD

SCI3

									•
ГСА—Timer с	counter A					H	l'B1		Time
Bit	7	6	5		4	3	2	1	0
	TCA7	TCA6	TCA5	Г	FCA4	TCA3	TCA2	TCA1	TCA0
Initial value	0	0	0		0	0	0	0	0
Read/Write	R	R	R		R	R	R	R	R
					Coun	t value			
MB—Timer	mode regis	ster B				Н	I'B2		Time
Bit	7	6	5		4	3	2	1	0
	TMB7	_	_		_	_	TMB2	TMB1	TMB0
Initial value	0	1	1		1	1	0	0	0
Read/Write	R/W	—	—			—	R/W	R/W	R/W
Auto-reload f	unction se	elect	Clo	ck se	elect				
0 Interval ti	mer functio	n selected	0	0 0	Inter	nal clock:	ф/8192		
1 Auto-reloa	ad function	selected		1	Inter	nal clock:	ф/2048		
				1 0	Inter	nal clock:	φ/512		
				1	Inter	nal clock:	φ/256		
			1	0 0	Inter	nal clock:	φ/64		
		1	Inter	nal clock:	φ/16				
		1 0		nal clock:					
				1			(Rising or fa	

TCB—Timer co	ounter B				Н	['B3		Timer B
Bit	7	6	5	4	3	2	1	0
	TCB7	TCB6	TCB5	TCB4	TCB3	TCB2	TCB1	TCB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R
TLB—Timer lo	ad registe	er B		Coun	t value H	['B3		Timer B
Bit	7	6	5	4	3	2	1	
	TLB7	TLB6	TLB5	TLB4	TLB3	TLB2	TLB1	TLB0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Reload value

TMC-	-Timer	mode	register	С
------	--------	------	----------	---

Bit	7	6		5			4	3	2	1	0
	TMC7	TMC6	Т	MC5		-			TMC2	TMC1	TMC0
Initial value	0	0		0			1	1	0	0	0
Read/Write	R/W	R/W	F	R/W		-			R/W	R/W	R/W
				Clo	ck	sele	ect				
				0	0	0	Interr	nal clock:	ф/8192		
						1	Interr	nal clock:	ф/2048		
Auto-reload fur	nction sel	ect			1	0	Interr	nal clock:	ф/512		
0 Interval time	er function	selected				1	Interr	nal clock:	ф/64		
1 Auto-reload	function s	elected		1	0	0	Interr	nal clock:	ф /16		
						1	Interr	nal clock:	φ/4		
					1	0	Interr	nal clock:	¢ _W ∕4		
						1	Exter	nal event	(TMIC):	Rising or fa	lling edge
		Co	bun	ter ı	Jp/	dov	vn co	ntrol			
		0	0	TC		10.0		auntar			

		er up/				
	0	TOO	•			

0	0	TCC is an up-counter
	1	TCC is a down-counter
1	*	TCC up/down operation is hardware-controlled by input at the UD pin. TCC is a down-counter if the UD input is high, and an up-counter if the UD input is low.

Legend: * Don't care

TCC—Timer c	ounter C				H	I'B5 (1	H8/3857 (Timer Group only
Bit	7	6	5	4	3	2	1	0
	TCC7	TCC6	TCC5	TCC4	тссз	TCC2	TCC1	TCC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R
				Coun	t value			

TLC—Timer load register C H'B5 Timer C (H8/3857 Group only) Bit 7 6 5 4 3 2 1 0 TLC7 TLC5 TLC4 TLC3 TLC2 TLC1 TLC6 TLC0 Initial value 0 0 0 0 0 0 0 0 W Read/Write W W W W W W W Reload value TCRF—Timer control register F Timer F H'B6 Bit 7 6 5 4 3 2 0 1 TOLH CKSH2 CKSH1 CKSH0 TOLL CKSL2 CKSL1 CKSL0 Initial value 0 0 0 0 0 0 0 0 Read/Write W W W W W W w W **Toggle output level H Clock select L** Low level 0 * External event (TMIF): Rising or falling edge 0 * 1 High level Internal clock: 0/32 1 0 0 1 Internal clock: 0/16 1 Internal clock: $\phi/4$ 0 Internal clock: $\phi/2$ 1 Toggle output level L 0 Low level High level 1 Clock select H 16-bit mode selected. TCFL overflow signals are counted. 0 * * 0 Internal clock: 0/32 1 0 1 Internal clock: 0/16 Internal clock: $\phi/4$ 1 0

Legend: * Don't care

Internal clock: $\phi/2$

1

Timer F

Note: * Only a write of 0 for flag clearing is possible.

TCFH—8-bit ti	imer coun	ter FH			Н	['B8		Timer F		
Bit	7	6	5	4	3	2	1	0		
	TCFH7	TCFH6	TCFH5	TCFH4	TCFH3	TCFH2	TCFH1	TCFH0		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Count value									
TCFL—8-bit ti	mer coun	ter FL		Н	['B9		Timer F			
Bit	7	6	5	4	3	2	1	0		
	TCFL7	TCFL6	TCFL5	TCFL4	TCFL3	TCFL2	TCFL1	TCFL0		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
OCRFH—Out	ut comp	ne registe	ar FH	Count	t value	['BA		Timer F		
OCKIII—Outj	out compa	ire regisu	.1 1 11		11	I DA		rinter r		
Bit	7	6	5	4	3	2	1	0		
	OCRFH7	OCRFH6	OCRFH5	OCRFH4	OCRFH3	OCRFH2	OCRFH1	OCRFH0		
Initial value	1	1	1	1	1	1	1	1		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
OCRFL—Outr	out compa	re registe	er FL		Н	I'BB		Timer F		
Bit	7	6	5	4	3	2	1	0		
	OCRFL7	OCRFL6	OCRFL5	OCRFL4	OCRFL3	OCRFL2	OCRFL1	OCRFL0		
Initial value	1	1	1	1	1	1	1	1		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

AMR—A/D mode register

H'C4

A/D converter

	_		_			_	_		_
Bit	7	6	5		4	3	2	1	0
	CKS	TRGE			-	CH3	CH2	2 CH1	CH0
Initial value	0	0	1		1	0	0	0	0
Read/Write	R/W	R/W	_	-	_	R/W	R/W	/ R/W	R/W
			C	hann/	el selec	.+			
				Bit 3	Bit 2	Bit 1	Bit 0		
				CH3	CH2	CH1	CH0	Analog inp	ut channel
			-	0	0	*	*	No channe	
				-	1	0	0	AN ₀ *1	
							1	AN1 ^{*1}	
						1	0	AN2*1	
							1	AN3 ^{*1}	
				1	0	0	0	AN ₄	
							1	AN ₅	
						1	0	AN ₆	
							1	AN ₇	
				1	1	*	*	Reserved	
		_							
			al trigge						
							-	rnal trigger	
		1 Er	nables sta external t	rt of A	/D cony at pin /	Version I	by rising	g or falling e	dge
					~~ pii /				

Clock select

Bit 7		Convers	ion Time
CKS	Conversion Period	$\phi = 2 \text{ MHz}$	$\phi = 5 \text{ MHz}$
0	62/ 	31 µs	12.4 μs
1	31/ф	15.5 μs	*2

- Legend: * Don't care
- Notes:
- 1. AN₀ to AN₃ can be selected in the H8/3857 Group only. They must not be selected in the H8/3854 Group.
 - 2. Operation is not guaranteed if the conversion time is less than $12.4 \,\mu s$. Set bit 7 for a value of at least 12.4 µs.

ADRR—A/D re	esult re	gister				Н	l'C5	A/D converter			
Bit	7	(6	5	4	3	2	1	0		
	ADR	7 AC	DR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0		
Initial value	Undefir	ned Unde	efined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined		
Read/Write	R	efined Undefined Unde A/D c egister 7 6 5 4 ISF — — —				R	R	R	R		
					A/D conve	rsion resu	lt				
ADSR—A/D sta	art regi	register H'C6 A/D converter									
	_										
Bit	7	(6	5	4	3	2	1	0		
	ADS	F –	_	—	—			—	—		
Initial value	0		1	1	1	1	1	1	1		
Read/Write	R/W			—	—	—		—	—		
	A/E) status	flag					_			
	0	Read	Indic	cates the o	completion	of A/D co	nversion				
		Write	Stop	os A/D cor	version						
	1	Read	Indio	cates A/D	conversior	n in progre	SS				
		Write	Star	ts A/D cor	version						

PMR1—Port mode register 1

H'C8

I/O ports

Note: * IRQ2 and PWM are functions of the H8/3857 Group only. In the H8/3854 Group these bits are reserved, and must always be cleared to 0.

Note: * POF1 and UD are functions of the H8/3857 Group only. In the H8/3854 Group these bits are reserved, and must always be cleared to 0.

Bit	7	6	5	4	3	2	1	0
	NMOD7	NMOD6	NMOD5	NMOD4	NMOD3	NMOD2	NMOD1	NMOD0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

0 P2_n has CMOS output
1 P2_n has NMOS open-drain output

PMR5—Port mode register 5

		0	_					
Bit	7	6	5	4	3	2	1	0
	WKP ₇	WKP ₆	WKP_5	WKP ₄	WKP ₃	WKP ₂	WKP ₁	WKP ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			P5 _n	/WKP _n pi	n functio	n switch		
			0	Functions	s as P5 _n I/	O pin		
			1		as WKP _n			
PWCR—PWM	control r	egister			Н	'D0	1	4-bit PWM
		-				(1	H8/3857 (Group only
Bit	7	6	5	4	3	2	1	0
			_		_	_		PWCR0
Initial value	1	1	1	1	1	1	1	0
Read/Write	_	_	_	_	_	_		W
Read/Write	 Clock	select		_	—	—	—	
Read/Write	0 Th	select — e input clo h a minim					 od is 16,38	

Note: *to: Period of PWM input clock

Upper 6 bits of data for generating PWM waveform

H'CC

I/O ports

PWDRL—PV	VM data	register L
----------	---------	------------

H'D2 14-bit PWM (H8/3857 Group only)

Bit	7	6	5	4	3	2	1	0
	PWDRL7	PWDRL6	PWDRL5	PWDRL4	PWDRL3	PWDRL2	PWDRL1	PWDRL0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

Lower 8 bits of data for generating PWM waveform

PDR1—Port d	ata regist	er 1			Ι	I/O po	I/O ports		
Bit	7	6	5	4	3	2	1	0	_
	P1 ₇	P1 ₆ *	P1 ₅	P14*	P1 ₃ *	P12	P1 ₁	P1 ₀	
Initial value	0	0	0	0	0	0	0	0	-
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note: * $P1_6$, $P1_4$, and $P1_3$ are functions of the H8/3857 Group only. In the H8/3854 Group these bits are reserved, and must always be set to 1.

PDR2—Port da	ita registe	r 2			H	I/O ports		
Bit	7	6	5	4	3	2	1	0
	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							
PDR3—Port da	ita registe	r 3			H	['D6		I/O ports
						(.	H8/3857 (Group only)
Bit	7	6	5	4	3	2	1	0
	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
Initial value	0	0	0	0	0	0	0	0

PDR4—Port da	ta registe	er 4			Н	'D7		I/O ports
Bit	7	6	5	4	3	2	1	0
					P4 ₃	P4 ₂	P4 ₁	P4 ₀
Initial value	1	1	1	1	Undefined	0	0	0
Read/Write	—	—	—	—	R	R/W	R/W	R/W
PDR5—Port da	ta registe	1 1 1 1 Undefined 0 0 R R/W R/W R/W register 5 H'D8 7 6 5 4 3 2 1 P57 P56 P55 P54 P53 P52 P51 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W register 9 H'DC H'DC 7 6 5 4 3 2 1 7 6 5 4 3 2 1 9 P99 P94 P93 P92 P91 0 0 0 0 0 0 0						
Bit	7	6	5	4	3	2	1	0
	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PDR9—Port da	ta registe	er 9			Η	'DC		I/O ports
Bit	7	6	5	4	3	2	1	0
	P9 ₇	P9 ₆	P9 ₅	P9 ₄	P9 ₃	P9 ₂	P9 ₁	P9 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PDRA—Port da	ata registe	er A			Η	'DD		I/O ports
Bit	7	6	5	4	3	2	1	0
					PA ₃	PA ₂	PA ₁	PA ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write		—	—		R/W	R/W	R/W	R/W
PDRB—Port da	ata registe	er B			Η	'DE		I/O ports
Bit	7	6	5	4	3	2	1	0
	PB ₇	PB ₆	PB_5	PB_4	PB ₃ *	PB_2^*	PB ₁ *	PB ₀ *
Read/Write	R	R	R	R	R	R	R	R
Note: * PB ₃ to	PB ₀ are	functions of	of the H8/3	3857 Grou	up only.			

Note: * PB_3 to PB_0 are functions of the H8/3857 Group only. In the H8/3854 Group these bits are reserved.

Note: * PCR1₆, PCR1₄, and PCR1₃ are functions of the H8/3857 Group only. In the H8/3854 Group these bits are reserved, and must always be cleared to 0.

SYSCR1—Syste	em contro	ol register	1		H	['F0	Sys	stem control		
Bit	7	6	5	4	3	2	1	0		
	SSBY	STS2	STS1	STS0	LSON	_		_		
Initial value	0	0	0	0	0	1	1	1		
Read/Write	R/W	R/W	R/W	R/W	R/W		_	_		
				Low sp	eed on fla	ag				
						erates on th	-			
				1 The	e CPU ope	erates on th	ne subcloo	ck (≬ _{SUB})		
		Standby timer select 2 to 0								
			0 0	0 Wait	ime = 8,19	92 states				
				1 Wait	ime = 16,3	384 states				
			1	0 Wait	ime = 32,7	768 states				
				1 Wait	ime = 65,5	536 states	_			
			1 *	* Wait	ime = 131	,072 states	S			
	Softw	are standl	by							
		/hen a SLE ade to slee		uction is ex	ecuted in a	active mod	e, a transi	tion is		
		/hen a SLE ade to sub		uction is ex ode.	ecuted in s	subactive r	node, a tra	ansition is		
				uction is ex le or watch		active mod	e, a transi	tion is		
		/hen a SLE ade to wat		uction is ex	ecuted in s	subactive r	node, a tra	ansition is		

Legend: * Don't care

System control

Bit		7	6	5	4	3		2	2	1	0
			_		NESEL	DTON		MS	ON	SA1	SA0
Initial valu	е	1 1 1 0 — — <u>R/W</u>				0		C)	0	0
Read/Writ	te		_	_	R/W	R/W		R/	W	R/W	R/W
[
	Med	lium spee	d on flag				Su	bac	tive n	node clo	ck select
		Operates	in active (ł	nigh-speed	d) mode		0	0	φ _W /8		
	1	Operates	in active (r	nedium-sp	peed) mod	е		1	φ _W /4		
							1	*	φ _W /2		
Dire	ect tr	ansfer on	flag								
					uted in acti de, or sleep		а	trar	nsition	is	
		en a SLEE le to watch			uted in sub node.	active mo	bde	e, a	transi	tion is	
	trans	sition is ma	ade to acti	ve (mediu	uted in acti m-speed) r SSBY = 1,	node if S	SB	Y =	0, M	SON = 1,	
	trans	sition is ma	ade to acti	ve (high-s	uted in acti peed) mod SSBY = 1,	e if SSBY	′ =	0, I	MSÓN	I = 0, and	
	Whe trans and	en a SLEE sition is ma MSON = (P instruction ade to activ	on is exect ve (high-s ive (mediu	uted in sub peed) mod im-speed)	active mo e if SSBY	ode ′=	e, a 1, ⁻	direct TMA3	= 1, LSC	0N = 0,

1 Sampling rate is ϕ_{OSC} /4

Legend: * Don't care

Note: * IEG2 is a function of the H8/3857 Group only.

In the H8/3854 Group this bit is reserved, and must always be cleared to 0.

Note: * IENS1 and IEN2 are functions of the H8/3857 Group only.

In the H8/3854 Group these bits are reserved, and must always be cleared to 0.

Note: * IENTC is a function of the H8/3857 Group only. In the H8/3854 Group this bit is reserved, and must always be cleared to 0.

System control

H'F6

	when it it it A = 1, it is cleared by whiting 0
1	[Setting condition]
	When the timer A counter overflows from H'FF to H'00

IRR1—Interrupt request register 1

Notes: 1. IRRS1 and IRRI2 are functions of the H8/3857 Group only.

In the H8/3854 Group these bits are reserved, and are always 0.

2. Only a write of 0 for flag clearing is possible.

transfer is made

Notes: 1. IRRTC is a function of the H8/3857 Group only.

In the H8/3854 Group this bit is reserved, and is always 0.

2. Only a write of 0 for flag clearing is possible.

IWPR—Wakeup interrupt request register

System control

Bit	7	6	5	4	3	2	1	0
	IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W*							

Wakeup interrupt request flag

0	[Clearing condition]
	When IWPFn = 1, it is cleared by writing 0
1	[Setting condition]
	When pin \overline{WKP}_n is set to interrupt input and a falling signal edge is detected

Note: n = 7 to 0

Note: * Only a write of 0 for flag clearing is possible.

Appendix C I/O Port Block Diagrams

C.1 Block Diagram of Port 1

Figure C.1 (a) Port 1 Block Diagram (Pins P1, to P1,: H8/3857 Group, Pins P1,, P1,: H8/3854 Group)

Rev.3.00 Jul. 19, 2007 page 508 of 532 REJ09B0397-0300

Figure C.1 (b) Port 1 Block Diagram (Pin P1₄: Function of H8/3857 Group Only)

Figure C.1 (c) Port 1 Block Diagram (Pin P1₃: Function of H8/3857 Group Only)

Figure C.1 (d) Port 1 Block Diagram (Pins P1₂ and P1₁)

Figure C.1 (e) Port 1 Block Diagram (Pin P1₀)

C.2 Block Diagram of Port 2

Figure C.2 (a) Port 2 Block Diagram (Pins P2, to P2₂: H8/3857 Group; Pins P2, to P2₁: H8/3854 Group)

Figure C.2 (b) Port 2 Block Diagram (Pin P2₁: H8/3857 Group)

Figure C.2 (c) Port 2 Block Diagram (Pin P2₀)

C.3 Block Diagram of Port 3 (H8/3857 Group Only)

Figure C.3 (a) Port 3 Block Diagram (Pins P3, to P3, Functions of H8/3857 Group Only)

Figure C.3 (b) Port 3 Block Diagram (Pin P3₂: Function of H8/3857 Group Only)

Figure C.3 (c) Port 3 Block Diagram (Pin P3₁: Function of H8/3857 Group Only)

Figure C.3 (d) Port 3 Block Diagram (Pin P3₀: Function of H8/3857 Group Only)

C.4 Block Diagram of Port 4

Figure C.4 (b) Port 4 Block Diagram (Pin P4₂)

Figure C.4 (c) Port 4 Block Diagram (Pin P4₁)

Figure C.4 (d) Port 4 Block Diagram (Pin P4₀)

C.5 Block Diagram of Port 5

Figure C.5 Port 5 Block Diagram

C.6 Block Diagram of Port 9

Figure C.6 Port 9 Block Diagram

C.7 Block Diagram of Port A

Figure C.7 Port A Block Diagram

C.8 Block Diagram of Port B

Figure C.8 Port B Block Diagram (Pins PB₇ to PB₉: H8/3857 Group, Pins PB₇ to PB₄: H8/3854 Group)

Appendix D Port States in the Different Processing States

Table D.1	Port States	Overview
-----------	-------------	----------

Port	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
$P1_{7}$ to $P1_{0}^{*1}$	High impedance	Retained	Retained	High impedance* ²	Retained	Functions	Functions
$P2_7$ to $P2_0$	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
$P3_{7} to P3_{0}^{*1}$	High impedance	Retained	Retained	High impedance* ²	Retained	Functions	Functions
$P4_{3}$ to $P4_{0}$	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
$P5_7$ to $P5_0$	High impedance	Retained	Retained	High impedance* ²	Retained	Functions	Functions
P9 ₇ to P9 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
PA_{3} to PA_{0}	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
PB ₇ to PB ₀ * ¹	•	High impedance	High impedance	High impedance	High impedance	High impedance	High impedance

Notes: 1. P1₆, P1₄, P1₃, P3₇ to P3₆, and PB₃ to PB₆ are functions of the H8/3857 Group only, and are not provided in the H8/3854 Group.

2. High level output when MOS pull-up is in on state.

Appendix E List of Product Codes

Table E.1 H8/3857 Group Product Code Lineup

Product Type			Part No.	Mask Code	Package
H8/3857F		Standard models	HD64F3857FQ	HD64F3857FQ	144-pin QFP (FP-144H)
			HD64F3857TG	HD64F3857TG	144-pin TQFP (TFP-144)
			HCD64F3857	_	Die
H8/3857	Mask ROM	Standard models	HD6433857FQ	HD6433857(***)FQ	144-pin QFP (FP-144H)
versions	versions		HD6433857TG	HD6433857(***)TG	144-pin TQFP (TFP-144)
			HCD6433857	—	Die
H8/3856	H8/3856 Mask ROM versions	Standard models	HD6433856FQ	HD6433856(***)FQ	144-pin QFP (FP-144H)
			HD6433856TG	HD6433856(***)TG	144-pin TQFP (TFP-144)
			HCD6433856	—	Die
	Mask ROM versions	Standard models	HD6433855FQ	HD6433855(***)FQ	144-pin QFP (FP-144H)
			HD6433855TG	HD6433855(***)TG	144-pin TQFP (TFP-144)
			HCD6433855		Die

Table E.2 H8/3854 Group Product Code Lineup

Product Type			Part No.	Mask Code	Package	
H8/3854F		Standard models	HD64F3854H	HD64F3854H	100-pin QFP (FP-100B)	
			HD64F3854W	HD64F3854W	100-pin TQFP (TFP-100G)	
			HCD64F3854	—	Die	
H8/3854	H8/3854 Mask ROM	Standard	HD6433854H	HD6433854(***)H	100-pin QFP (FP-100B)	
versions*	models	HD6433854W	HD6433854(***)W	100-pin TQFP (TFP-100G)		
			HCD6433854	_	Die	
H8/3853 M	18/3853 Mask ROM versions*	Standard models	HD6433853H	HD6433853(***)H	100-pin QFP (FP-100B)	
			HD6433853W	HD6433853(***)W	100-pin TQFP (TFP-100G)	
			HCD6433853	_	Die	
	Mask ROM versions*	Standard models	HD6433852H	HD6433852(***)H	100-pin QFP (FP-100B)	
			HD6433852W	HD6433852(***)W	100-pin TQFP (TFP-100G)	
			HCD6433852		Die	

Notes: For mask ROM versions, (***) is the ROM code.

* Under development

Appendix F Package Dimensions

The package dimention that is shown in the Renesas Semiconductor Package Data Book has priority.

Figure F.1 FP-144H Package Dimensions

Renesas

Appendix F Package Dimensions

Figure F.2 TFP-144 Package Dimensions

Figure F.3 FP-100B Package Dimensions

Appendix F Package Dimensions

Figure F.4 TFP-100G Package Dimensions

Renesas 8-Bit Single-Chip Microcomputer Hardware Manual H8/3857 Group, H8/3857 F-ZTAT[™], H8/3854 Group, H8/3854 F-ZTAT[™]

Publication Date:	1st Edition, March 1999
	Rev.3.00, July 19, 2007
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <85- (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852- 2265-6688, Fax: <852- 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65- 6213-0200, Fax: <65- 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9309, Fax: <603> 7955-9510

http://www.renesas.com

H8/3857 Group, H8/3857 F-ZTAT[™], H8/3854 Group, H8/3854 F-ZTAT[™] Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0397-0300